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Abstract—Proof of Work (PoW) based cyberdefense systems
require incoming network requests to expend effort solving
an arbitrary mathematical puzzle. Current state of the art is
unable to differentiate between trustworthy and untrustworthy
connections, requiring all to solve complex puzzles. In this
paper, we introduce an Artificial Intelligence (AI)-assisted PoW
framework that utilizes IP traffic based features to inform an
‘adaptive’ issuer which can then generate puzzles with varying
hardness. The modular framework uses these capabilities to
ensure that untrustworthy clients solve harder puzzles thereby
incurring longer latency than authentic requests to receive a
response from the server. Our preliminary findings reveal our
approach effectively throttles untrustworthy traffic.

I. INTRODUCTION

A distributed denial-of-service (DDoS) attack is a ma-
licious attempt to disrupt the normal traffic of a targeted
server, service, or network by overwhelming the target or
its surrounding infrastructure with a flood of Internet traffic.
A possible defensive strategy is an effective Proof-of-Work
(PoW) based system [3], [1], [2]. A PoW system works by
requiring incoming network requests to expend effort solving
an arbitrary mathematical puzzle to prevent anybody from
attacking the system. In PoW based systems, a client has to
commit some computation (CPU cycle, bandwidth, etc.) to
solve a puzzle to prove her authenticity.

PoW systems generally consist of three parts: issuer, solver,
and verifier. The issuer (also called a generator) issues the
puzzle to the solver, which solves them and sends the solution
to the verifier. In a simple networked client-server environ-
ment, the server contains the issuer/generator and the verifier
components, and the client is the solver.

In this paper, we build an Artificial Intelligence (AI)-assisted
PoW framework. We create an ‘adaptive’ issuer which can
generate puzzles with varying hardness. The idea behind the
system is to penalize untrustworthy connections by issuing
them ‘hard’ puzzles and at the same time give ‘easy’ puzzles
to trustworthy requests. Critically, these challenges introduce
latency in the environment for untrustworthy connections. The
distinction between trustworthy/untrustworthy clients can be
made by using the incoming traffic specific features. In other
words, an AI subsystem can compute a reputation score for
an incoming request, that can guide the puzzle generator.

Our framework has two useful properties. First, each client
pays a cost for utilizing the system, and this cost increases as
the client’s reputation score worsens. Second, the amount of
work inflicted by a puzzle is adaptive and can be tuned. The
framework will ensure that clients with bad reputation scores
incur longer latency to receive a response from the server than

authentic requests. This latency is beneficial to the network
under attack to slow down the incoming malicious traffic.

By creating this AI-assisted PoW puzzling scheme with
the above mentioned properties, we strengthen the defensive
posture of organizations that use these strategies. Our frame-
work is modular and each component can be customized.
Components include: an AI model that generates a reputation
score, a puzzle generator, a puzzle solver, a puzzle verifier,
and a policy that maps a reputation score to puzzle hardness.
Regarding the last component, a network administrator may
specify a policy based on her specific security needs. Next,
we describe our system architecture and evaluations. Our
results demonstrate that the AI assisted PoW puzzle introduces
latency in the network for clients with bad reputation scores.

Fig. 1. An illustration of our framework. (1) The client issues an HTTP request to the
server. (2) The AI model inspects the features of the request as input and produces a
reputation score. (3) The policy module maps the reputation score to a difficulty. (4)
The puzzle generation module generates a puzzle and sends it to the client to solve. (5)
The puzzle verification module verifies the puzzle solution returned by the client. (6)
On solving the puzzle correctly, the server is informed. (7) The server responds with the
requested resource.

II. SYSTEM ARCHITECTURE

The architecture of our AI-assisted PoW framework is
depicted in Figure 1. The components of this framework are
described below.

1) AI Model: To create a proof of concept we use DAbR
[4] as our AI model. DAbR is an euclidean distance-based
technique that generates a reputation score for an IP address
by learning from previously known malicious IP addresses
and their attributes. The model generates a reputation score
for an IP with an accuracy of 80%. The reputation score is
normalized to a scale of 0 - 10, where a higher score represents



a more untrustworthy client. This reputation score serves as
an input to the policy module as a variable mapped to puzzle
hardness.

2) Policy: The policy module takes as an input a reputation
score R (range [0, 10]). Intuitively, a high reputation score
of 10, denoting an untrustworthy client should be allotted
a harder puzzle than a relatively better reputation score of
9. Hence, proper tuning of the difficulty is desired for fine-
grained reputation scores. A policy is a rule-based strategy for
mapping the reputation score of a client to the appropriate
puzzle difficulty. In Section III, we implement and analyze
three such policies.

3) Puzzle generation: Our puzzle generation module issues
a PoW puzzle. A puzzle is generated by collecting request
related data, i.e., timestamp and unique seed (for mitigating
pre-computation attacks), and a difficulty value as defined by
the policy module, all of which is relayed back to the client.

4) Puzzle solver: The data received from the puzzle gen-
eration module are concatenated with the client’s IP address
to form a string that is not altered. To this, a 32-bit string
is added, which the client modifies upon each hash function
evaluation. The client performs evaluations on this input until
it finds an output with a prefix of d zeros; we refer to this as
a d-difficult puzzle. Our strategy is to assign higher difficulty
of puzzles to clients with bad reputations scores.

5) Puzzle Verification: Puzzle verification is light weight
block used to verify the clients solution and offer response if
correct solution is returned.

III. EVALUATION

For our proof of concept implementation we utilize DAbR
[4], which uses IP protocol based features to generate a
reputation score. In this section, we discuss three policies used
for a preliminary evaluation of our framework.

A. Policies 1 and 2: Linear mapping

For this evaluation, R take on values in the set-
{0, 1, ..., 10}. The lower the reputation score, the more con-
fidence we have that the client is trustworthy; conversely,
the higher the reputation score, the more we suspect that the
client is untrustworthy. Consequently, the difficulty of a puzzle
assigned to a client increases with the client’s reputation score.
It takes 31 ms on average to solve a 1-difficult puzzle, and this
time increases with difficulty.

For Policy 1, we map a 1-difficult puzzle to a client with
a reputation score 0, a 2-difficult puzzle to a client with a
reputation score of 1, and so on. Figure 2 shows that the
latency increases with the increase in reputation score. How-
ever, the latency does not grow significantly as the reputation
score increases. To address this, we evaluate Policy 2, where
the easiest puzzle has difficulty 5. Thus, we map a 5-difficult
puzzle to the client with reputation score 0, a 6-difficult puzzle
to a client with a reputation score of 1, and so on. As a
result, the latency increases significantly with higher reputation
scores, delaying service for untrustworthy clients.
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Fig. 2. An evaluation of our three implemented policies. The median of 30 trials is
reported for each reputation score.

B. Policy 3: Error range mapping
In this policy, we consider the error ϵ from DAbR system

[4]. Note that, given this error, the resulting IP reputation
score might be higher or lower than the ground truth. Our
Policy 3 attempts to correct for this in the following way.
All reputation scores si are in the interval [0, 10]. For a score
si, the difficulty value is a value chosen at random in the
interval [⌈di − ϵ⌉, ⌈di + ϵ⌉], where di = ⌈si + 1⌉. Figure 2
shows how the rate of increase in the latency for Policy 3 is
between our two previous policies.

Summary. Our evaluation illustrates how the amount of
latency can be tuned given different mappings between repu-
tation scores and puzzle difficulty. Thus, our framework offers
flexibility and can accommodate the specific security demands
for a range of network settings.

IV. CONCLUSION

In this paper, we proposed and evaluated an AI-assisted
PoW framework. It employs an AI model that uses IP-based
features to output a reputation score. This score serves as an
input to an ‘adaptive’ puzzle generator which creates puzzles
of varying difficulty. In this way, the framework imposes
higher latency on untrustworthy clients. We evaluated our
proposed framework, showcasing how it can help defend
organizations against networking threats.
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