
AI Adaptive POW: An AI assisted Proof Of Work (POW) framework for DDoS defense

Trisha Chakraborty (Department of Computer Science and Engineering, Mississippi State Uni-
versity, tc2006@msstate.edu),
Shaswata Mitra (Department of Computer Science and Engineering, Mississippi State Univer-
sity, sm3843@msstate.edu),
Sudip Mittal (Department of Computer Science and Engineering, Mississippi State University,
mittal@cse.msstate.edu),
Maxwell Young (Department of Computer Science and Engineering, Mississippi State Univer-
sity, myoung@cse.msstate.edu)

Abstract
To protect the client-server architecture from a Distributed Denial of Service (DDoS) attack we present
AI Adaptive POW. AI Adaptive POW protects an organization by injecting latency during communication
by generating client reputation adaptive puzzles, which need to be solved by a client before the server begins
processing a request. The framework adaptively tunes the difficulty of a puzzle based on a reputation score
calculated by an AI model. This slows down the volume of incoming adversarial traffic. Additionally, the
framework compels the adversary to incur a cost per connection, hence making it expensive for an adversary
to sustain a volumetric DDoS attack.
Keywords
Cybersecurity, Proof of work, Artificial Intelligence, Distributed Denial of Service

1. Introduction

In client-server architecture a load balancer is responsible for validating and distributing incoming client requests
among various server instances. This prevents individual server instances from getting overwhelmed. A client
begins the interaction by initiating a request. After a successful connection has been established, the load
balancer places the request on a server queue. Given a server has bounded queue size, a flood of malicious
traffic can exhaust this queue, making it unavailable for genuine client requests. For the scope of this paper,
we revisited the volumetric Distributed Denial of Service (DDoS) attacks. Here an adversary pretends to be a
genuine client, thereby consuming a considerable quantity of server resources, and leaves little to no resources
for the genuine client. One possible defense strategy is to force all connecting clients to solve a proof of work
computational puzzle as part of the initial client-server connection establishment phase.

A generic Proof of work (POW) framework consists of a puzzle generator, puzzle solver, and puzzle verifier.
The puzzle generator issues the puzzle to the solver, which solves them and sends the solution to the verifier.
These puzzles have different levels of difficulty, i.e., each puzzle requires a different amount of computational
resources to solve. The task of solving puzzles introduces latency during the interaction, and this latency
duration is directly proportional to puzzle difficulty. In this paper, we build a POW based DDoS defense
framework using the Java programming language called AI Adaptive POW. The framework is assisted by an
Artificial Intelligence (AI) to adaptively slow down the adversarial traffic by assigning appropriate POW puzzles
and thus improve the availability of a server during an ongoing DDoS attack. Our AI Adaptive POW framework
utilizes reputation scores to guide the decision of how hard of a puzzle should each client solve. A reputation
score is a heuristic that guides a system in distinguishing between genuine and malicious clients. This heuristic
is computed using AI algorithms that inspect the features of the incoming client requests.

2. Description

AI Adaptive POW is an open-source framework implemented using Java Springboot and Python Flask Frame-
work. The framework consists of four customizable modules, i.e., depending on the security needs of the industry,
various configurable defense postures can be incorporated [1]. Figure 1 illustrates the overall architecture of
the framework. AI Adaptive POW operates at the application layer of the networking stack and interacts with
the transport layer, specifically operating during the TCP handshake phase. When a client wants to initiate

1

Nr. Code metadata description Please fill in this column
C1 Current code version V1.1
C2 Permanent link to code/repository

used for this code version
https : //github.com/trishac97/AI Adaptive POW

C3 Permanent link to Reproducible Cap-
sule

N/A

C4 Legal Code License Creative Commons Zero v1.0 Universal License
C5 Code versioning system used Git
C6 Software code languages, tools, and

services used
Java, Springboot 2.4.0, Python v3.7.6 & Flask 2.1.2

C7 Compilation requirements, operating
environments & dependencies

flask, flask restful, csv, pickle, rgensim, numpy, re-
quests, spring-boot-starter-web, lombok, spring-boot-
starter-tomcat, springfox-swagger2, spring-boot-starter-
validation, okhttp, gson

C8 If available Link to developer documen-
tation/manual

https://github.com/trishac97/AI Adaptive POW/blob/
main/README.md

C9 Support email for questions tc2006@msstate.edu

Table 1: Code Metadata.

communication with the server, it sends a SYN packet to the load balancer. The framework fetches the IP
address associated with the SYN packet which serves as an input to an AI model. The AI model then computes
a reputation score. The score is converted into corresponding level of puzzle difficulty as translated by a policy
module. AI Adaptive POW then generates puzzle parameters which is sent back to the client attached to the
SYN-ACK packet. To prevent the adversary from solving easier puzzle, the load balancer can use a small
memory to cache the client IP addresses and currently dispatched puzzle parameters. The client-side employs a
puzzle solving module and computes the puzzle solution. The solution is sent back to the load balancer attached
to the ACK packet. On receiving correct solution, AI Adaptive POW notifies the resource allocation unit of
the load balancer, which forwards the client’s request to the server queue.

An important component of our framework is the POW puzzle [1]. To solve a POW puzzle, the client
repeatedly performs a cryptographic hash function evaluation on the input parameters with an aim of converging
to a constrained solution. The constrained solution governs the level of difficulty of a puzzle. A d-difficulty
puzzle requires d consecutive zeros as the prefix in the output from the hash function. Our framework uses Java
v14 MessageDigest SHA-256 library for hash function evaluation. SHA-256 is a natural choice as it is collision
resistant and bandwidth-efficient, producing only 256 bits of solution.

Next, we describe each of the four customizable modules part of AI Adaptive POW.

2.1 AI Module

The AI module is responsible for computing the reputation score for a client. Our framework employs an
Euclidean distance-based system called DAbR [3] to produce reputation scores. We trained the AI model
using a dataset provided by Cisco Talos [5]. The dataset contains 70,636 known malicious IPs and attributes
(autonomous system number (ASN), internet service provider (ISP), country where the IP is registered, usertype
(residential or commercial user), country where the IP is located, subdivision in the country where the IP is
located, city in the country where the IP is located).

The AI module consists of two phases. First, the module calculates a feature vector from the IP attributes
and represents them in an euclidean space. Collection of such representations form a cluster in the euclidean
space. The cluster origin and feature vectors can be found here [2]. In the second phase, when a client sends
a SYN packet, the IP address x.x.x.x alongside its attributes are captured. The module then calculates the
feature vector of the client IP using pre-calculated feature vector and then generates a reputation score based
on feature similarities between the malicious IP cluster origin and the client IP. The output of the AI module is

2

Fig. 1. Figure illustrates our AI Adaptive POW framework. I. Client initiates a TCP handshake with the load balancer and sends a SYN
packet. II. The load balancer fetches the TCP IP address from the packet and computes a reputation score. III. Depending on the policy
enforced (P1, P2, P3, P4, P5), a d-difficulty puzzle is assigned to r-reputation score. IV. The puzzle generation module generates a d-difficulty
puzzle and sends it along with the ACK packet. V. The puzzle verification module verifies the puzzle solution returned along with the SYNACK
packet. VI. On solving the puzzle correctly, the load balancer informs the resource allocation unit. VII. The request is then sent to a server
instances (S1, S2, S3, S4, S5).

a reputation score r that can take a value in [0, 10], where 0 is considered the worst possible reputation score.

2.2 Policy Module

The policy module is responsible for translating a computed reputation score to a puzzle of corresponding
difficulty. The module takes reputation r as input and produces a value d that refers to the difficulty of a
puzzle. For instance, an IP address with 1 reputation score receives a 0-difficulty puzzle, i.e., the acceptable
hash function solution must contain atleast 1 zero as prefix. Figure 1, depicts a load balancer containing five
possible policies P1, P2, P3, P4 and P5 where the policy P3 is currently in effect.

2.3 Puzzle Generation

The puzzle generation module is a lightweight module responsible for assembling the parameters required to
solve a puzzle. The assembled parameter are attached along with the SYN-ACK packet. The module takes
random seed s, timestamp t and puzzle difficulty d as input and the output is a concatenated bitstring s||t||d.
Note that the load balancer may use a small cache to store corresponding IP address with their corresponding
puzzle parameters. The random seed s is alphanumeric randomly generated string at most 32 bits in length and
is periodically updated as an routine function within our framework. The random string prevents the adversary
from launching a pre-computation attack on the server. Timestamp t prevents the adversary from using one
solution and using it several times.

2.4 Puzzle Verification

The puzzle verification module is responsible for verifying the returned solution from the client. The input is
a 256 bits solution bitstring sent by the client and the output is a boolean 0 or 1, where 1 indicates that the
solution is correct and 0 otherwise.

3. Impact Overview

AI Adaptive POW is a prototype framework which operates at the application layer to strengthen organizational
defensive posture against transport layer volumetric DDoS attacks. The main utility of this framework is to
introduce delay on the adversary’s side. This delay can slow down the volume of adversarial requests sent to
the server at a given time and prevents the adversary from consuming majority of the server resources. The
framework’s impact can be summarized in two areas: (1) design impact, and (2) functional impact.

3

3.1 Design Impact

AI Adaptive POW consists of four main modules and each module is lightweight and customizable. Our baseline
framework uses an AI module called DaBR [3], to produce reputation scores which can be replaced by even
more sophisticated reputation score calculation techniques (for example, see [4]). The AI model is trained using
a list of known malicious IPs provided by Cisco Talos[5] which can be replaced by any other third party IP
list service or an amalgamation of more than one lists. When deployed, the framework can leverage any Cyber
Threat Intelligence source available to an organization. Alternatively, the framework can use integer square root
or cuckoo cycle variant as computational puzzle instead of using hash function evalutions. Different policies
can be incorporated which maps the reputation score to difficulty level of the computational puzzle. These
customizable design decisions make the framework ideal for use by cyber defense practitioners.

3.2 Functional Impact

Hash function evaluation ultimately translates into a monetary cost. Faster a machine can compute hash
solution, higher is the power of the CPU. When using AI Adaptive POW, there is a cost associated with
each client to establish a TCP connection. The cost per client increases if the client’s reputation decreases.
For an adversary controlling large number of machines and commandeering each one of them to DDoS an
AI Adaptive POW defended server, each of these client machines needs to establish a TCP connection by
solving puzzles as contingent to their reputation, and only then get on the server queue. This property of
AI Adaptive POW imposes a monetary cost on the adversary for launching a DDoS attack. Additionally, due
to our POW module, the computational puzzle introduces a delay in the system. Assuming the reputation
score of an IP is accurate, the adversarial traffic can be reduced due to the puzzle solving phase. As a result the
server can accommodate genuine requests in its queue, hence improving the availability of the server resources.

4. Conclusion and Future Work

In this work, we implemented AI Adaptive POW framework to defend against DDoS attacks by reducing the
adversarial traffic. AI Adaptive POW accomplishes this by generating POW puzzles with the assistance of an
AI model. Our framework is open-source and can be customized based on the security needs of an organization.
For future work, we aim to implement more robust AI models that produce higher accuracy reputation scores.
Additionally, we plan to explore efficient policy designs.

5. Acknowledgement

This work was supported in part by NSF grant CNS-1816076.

References

[1] Trisha Chakraborty et al. “A Policy Driven AI-Assisted PoW Framework”. In: 52nd IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (IEEE/IFIP DSN 2022) (2022).

[2] DAbR Implementation. https://github.com/shaswata09/DabR. 2022.
[3] Arya Renjan et al. “Dabr: Dynamic attribute-based reputation scoring for malicious ip address detection”.

In: 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). IEEE. 2018, pp. 64–
69.

[4] Henanksha Sainani et al. “IP Reputation Scoring with Geo-Contextual Feature Augmentation”. In: 11.4
(Oct. 2020). url: https://doi.org/10.1145/3419373.

[5] Cisco Talos. Talos Threat Source. https://www.talosintelligence.com/. 2022.

4

https://github.com/shaswata09/DabR
https://doi.org/10.1145/3419373
https://www.talosintelligence.com/

	Introduction
	Description
	AI Module
	Policy Module
	Puzzle Generation
	Puzzle Verification

	Impact Overview
	Design Impact
	Functional Impact

	Conclusion and Future Work
	Acknowledgement

