
1

An Angle Included Optimal Power Flow (OPF)
Model for Power Distribution Network Using

Second Order Cone Programming (SOCP)
Md Mahmud-Ul-Tarik Chowdhury, Student Member, IEEE, Sukumar Kamalasadan, Senior Member, IEEE

Abstract—In recent years, penetration of distributed gener-
ation (DG) has increased rapidly in the power distribution
network, which demands novel and optimal power flow solutions
for improving the power system reliability, resiliency and better-
operating conditions. In this paper, we propose a branch flow-
based SOCP model for the optimal power flow of radial networks.
In the proposed model, the voltage and current angles are
relaxed and a quadratic equation is converted to a conic form
for convexification. Though the angles are relaxed, a convex
equation is also proposed to recover the angle which makes
the solution efficient. In the simulation, we have shown that for
radial networks the relaxation is exact when there are no upper
bounds on loads. Also, theoretical analysis for the branch flow
model is deduced for the convexification of the model. Finally,
the proposed model was tested on two radial networks (modified
32 bus network and IEEE 123 bus network) and the simulation
results are verified with the OpenDSS and MatPower software
packages.

Index Terms—Optimal power flow (OPF), convex relaxation,
branch flow model, load flow, second-order conic programming
(SOCP), power system management.

I. INTRODUCTION

Optimal power flow (OPF) problem is very important for
power systems to decide the optimal point of operation consid-
ering minimization of generation cost, power losses, voltage
amplitude, phase angle fluctuations, and different other factors
including line transmission capacity and voltage regulations
[1]. In a modern distribution system, the integration of re-
newable energy-based distributed generation systems (DGs)
has been growing rapidly and the structure of conventional
distribution networks is changing because of increased pene-
tration of renewable energy resources. Not only the renewable
energy-based distributed generation sources but also new types
of loads, such as electric vehicles, have motivated to look for
novel and smart solutions by the utility industry for power
flow solutions and optimization [2]. Though the bus injection
model is used widely for power flow analysis and optimization,
it focuses only on the nodal parameters and does not take
into account the current and power flow across the branches
[3]. The branch flow model emphasizes the branch parameters
calculations and thus very suitable for distribution system
power flow analysis. In this paper we propose the branch flow
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model for radial networks with high penetration of renewable
energy-based DGs and also used the model for optimization
of a network and to recover the bus angle difference across a
branch from the optimization.

Different types of optimization algorithms have been dis-
cussed in different papers [4]–[10]. Besides that, a power flow
model in radial distribution networks was proposed in [11]
using 3N equations for a network with N+1 buses with newly
defined variables and using the Newton-Raphson method.
Another simple and efficient model for radial distribution
networks was proposed only by the evaluation of a simple
algebraic expression of voltage magnitudes and no trigonomet-
ric functions in [12]. Using a simple and efficient algorithm
another model was presented in [13] to solve radial power
distribution networks, where the algebraic recursive expression
of voltage magnitude and all other parameters for the network
are stored in vector form. However, typical AC optimization
is non-convex and non-convexity increases the complexity of
the power flow equation solutions. On the other hand, with the
increasing penetration of renewable energy-based distributed
generation sources, the optimal power flow (OPF) model for
power systems network require the convex formulation of
power flow equations so that the problem can be solved in a
feasible, fast and efficient way. The convex relaxation of OPF
problem formulation had been proposed first in [14] for SOCP
and in [15] for SDP, since then it has become an important
research topic. Using SOCP relaxation for OPF a feasible and
exact solution can be recovered and the solution is a global
optimum of the original OPF problem if the quadratic and
arctangent equalities both are within the constrains discussed
in [16], [17]. Relaxing the quadratic equality constraints to
inequality constraints, SOCP relaxation is exact for radial
networks, if there are no upper bounds on the loads [18],
[19]. Conditions for SDP in radial and mesh networks and the
exactness related to the modeling of the capacity of a power
line was discussed in [20]–[22].

For optimization in a radial power distribution system, our
model is motivated by [3] and [23], [24]. In [3] a second-
order cone programming (SOCP) based optimization and angle
recovery algorithms have been discussed in both radial and
mesh networks. The optimal placement and sizing of switched
capacitors in distribution circuits for Volt/VAR control are
discussed in [23], [24] which can be treated as a particular
relaxation for the branch flow model considering only the
amplitude of voltage and current flow in the distribution
network.

20
20

 IE
EE

 In
du

st
ry

 A
pp

lic
at

io
ns

 S
oc

ie
ty

 A
nn

ua
l M

ee
tin

g 
| 9

78
-1

-7
28

1-
71

92
-0

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IA
S4

49
78

.2
02

0.
93

34
78

5

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on November 28,2022 at 14:08:43 UTC from IEEE Xplore.  Restrictions apply. 



2

In the proposed approach, at first, the voltage and current
angle are eliminated for converting the non-convex equations
into convex equations and the quadratic equality is converted
into an inequality constraint by the means of conic relaxation
for the OPF. Also, a convex equation has been derived for
recovering the bus voltage angle difference, from which the
bus angle will be calculated for a radial distribution network.
The main contributions of the proposed work is that
• The architecture provides an exact solution of the OPF

problem
• It can recover the angles and the recovered angles are

exact
• The approach can be used for both cost and loss mini-

mization
• The approach is scalable and computationally feasible.
• The approach considers multiple DER penetration based

OPF.
The paper is organized as follows. Section II discusses

the theoretical background including the OPF methodology
and relaxation framework. Section III discusses the model
implementation methods and results and Section IV concludes
the paper.

II. THEORETICAL BACKGROUND

A. Branch Flow Model

Fig. 1. Branch flow model including PEVs.

In this paper, L is denoted for the set of connected branches
in the network and i, j, and k denote the bus indexes. For the
line from bus i to bus j, real power flow, reactive power flow
and squared of the magnitude of current flow denotes as Pij ,
Qij and lij respectively. Sij is the apparent power flow. Pgj

and Qgj are the power injected at bus j when Pdj and Qdj

are the real and reactive power demand at bus j. Considering
the power in a line as

Sij = ViI
∗
ij (1)

Vi − Vj = ZijIij (2)

The power flow between buses can be represented as

Sgj − Sdj =
∑

k:j−→ k

Sjk −
∑

i:i−→ j

(Sij − Zij |Iij |2) + y∗j |Vj |2

(3)

i, j, k ∈ N
[(i, j), (j, k)] ∈ L

Vj = Vi −
ZijS

∗
ij

V ∗i
(4)

Taking the magnitude squared in (4),

|Vj |2 = |Vi|2 + |Z2
ij ||Iij |2 − (ZijS

∗
ij + Z∗ijSij) (5)

Fig. 2. Line model.

Based on the line model in Fig. 2, the real and reactive
power flow across a line between two buses i and j can be
expressed as following:

Pij = GijV
2
i −GijViVj cos(Θij)−BijViVj sin(Θij) (6)

Qij = −BijV
2
i +BijViVj cos(Θij)−GijViVj sin(Θij) (7)

Then from (1),

|Vi|2 =
P 2
ij +Q2

ij

|Iij |2
(8)

B. Optimal Power Flow

The aim of optimal power flow is to supply the demand in
a whole network in a way, so that all of the physical laws of
power flow are satisfied, while some constraints are imposed.
In this paper mainly four objective functions as represented in
(9)-(12) is considered.

Line loss minimization,

min[
∑

(i,j)∈L

rij lij ] (9)

or, generation cost minimization,

min[
∑

(i)∈N

ciPgi ] (10)

or, minimization in bus voltage difference,

min[
∑

(i,j)∈N

αi(ui − uj)] (11)

or

min[
∑

(i,j)∈L

rij lij +
∑

(i)∈N

ciPgi +
∑

(i)∈N

αiui] (12)

In addition to the equations 9)−(12) the following constraints
have been included to satisfy realistic power balance.

Pmin
gi ≤ Pgi ≤ Pmax

gi

Qmin
gi ≤ Qgi ≤ Qmax

gi

Pmin
di
≤ Pdi ≤ Pmax

di

Qmin
di
≤ Qdi

≤ Qmax
di

(13)

Θmin
ij ≤ Θij ≤ Θmax

ij

umin
i ≤ ui ≤ umax

i

lmin
ij ≤ lij ≤ lmax

ij
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C. Relaxation and convexification for SOCP OPF

Convex relaxation encloses the non-convex space in a fea-
sible convex space for the power flow equations. The solution
from this convexed space bounds the optimal objective value
of the parent non-convex space [7]. A lower bound and a upper
boundary for minimization and maximization is provided by
relaxations. For convexification of the equations (1)-(7), new
variables have been introduced which can be defined as:
|Iij |2 = lij

|Vj |2 = uj and |Vi|2 = ui

Then from (3), we can get

Pgj − Pdj =
∑

k:j−→ k

Pjk −
∑

i:i−→ j

(Pij − rij lij) + gjuj

(14)

Qgj −Qdj =
∑

k:j−→ k

Qjk −
∑

i:i−→ j

(Qij − xij lij) + bjuj

(15)

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (16)

As (8) is non-convex we need to represent it in a cone. This
can be derived as

4uilij ≥ (2Pij)
2 + (2Qij)

2

(ui + lij)
2 − (ui − lij)2 ≥ (2Pij)

2 + (2Qij)
2

ui + lij ≥
√

(2Pij)2 + (2Qij)2 + (ui − lij)2

ui + lij ≥

∥∥∥∥∥∥
2Pij

2Qij

ui − lij

∥∥∥∥∥∥ (17)

Further with (6) ∗Bij + (7) ∗Gij , we get,

−ViVj sin(Θij)(G
2
ij +B2

ij) = (BijPij +GijQij) (18)

Equation (18) is non-convex but if we relax ViVj ≈ 1 and
sin(Θij) ≈ Θij , where Θij is the bus voltage angle difference
between the bus i and bus j, we get

Θij = −BijPij +GijQij

B2
ij +G2

ij

(19)

Using (19), the angle difference across a line in the network
can be calculated. For radial networks, taking the substation
bus as reference, the bus voltage angle for all of the buses
in the network can be recovered from the calculated angle
difference.

III. MODEL IMPLEMENTATION AND RESULT EVALUATION

The proposed model has been tested for several cases in
the Matlab platform using MOSEK solver. MOSEK solver
can solve convex models, thus the convexity of the proposed
SOCP model is also validated in this environment. The model
is tested on a modified 32 bus system with DGs and for
IEEE 123 bus system for the base case and also for the cases

where 10 %, 30 % and 50 % loads are supplied by DGs.
Then the results were validated from Matpower and OpenDSS
simulation software packages. The simulation shows that the
results are very close for all test cases. In this paper, first, the
test case is performed on a modified 32-bus system which is
a radial distribution system [25]. The system is 12.66 kV and
contains 33 buses and 32 lines.

Fig. 3. Modified 32-bus distribution network.

Comparison among the simulation results for MatPower
Power Flow (MP PF), MatPower Optimal Power Flow
(MP OPF) and Second-Order Conic Programming Optimal
Power Flow (SOCP OPF) is shown in Table II. The voltage
profile from the SOCP model and MatPower NLP model
is shown in Fig. 4, while the objective is generation cost
minimization. The change in the voltage profile is shown in
Fig. 5 in SOCP-OPF with the change in the objective function.

Fig. 4. Voltage profile comparison between MatPower and SOCP OPF.

Fig. 6 is showing the recovered bus voltage angle difference
in the network from the proposed SOCP OPF model and com-
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Fig. 5. Voltage profile for SOCP OPF for different objective functions.

Fig. 6. Bus voltage angle difference in 32 bus network.

Fig. 7. IEEE 123 bus network with 10% DGs.

pared it with the MatPower result. The angle difference calcu-
lated in the SOCP-OPF is almost the same as the MatPower
NLP, which validates the approximation for the convexification
in (19). The loss in the 32 bus network has been shown for
different cases in Table I . The convergence times and the

voltage mismatch values for the different algorithms are also
included in this Table. For the 32 bus network, maximum and
minimum limit and supply from the connected DGs at different
buses and cost coefficients are provided in Table II.

It can be seen from Table I that the % loss using the
proposed approach is less when compared to the power flow
and NLP OPF in Matpower. Also, the computational time
for the proposed architecture is less when compared to other
benchmark software. It can also be noticed that the bus voltage
mismatch is within the limits and very small when compared
to benchmark software. As can be seen from Table II, the
power flow balance is very close to the benchmark software
indicating the optimal solution is close to actual values.

TABLE I
MODIFIED 32 BUS SYSTEM.

MP PF MP OPF SOCP OPF SOCP OPF
(min cost) (min cost) (min loss)

Time .08 Sec .92 Sec .61 Sec .53 Sec
% Loss 4.74 % 1.85 % 1.78 % 1.77 %

Gen cost 319.72 320.21

Bus voltage MP OPF (mc) SOCP OPF (mc)
mismatch vs vs

SOCP OPF(mc) SOCP OPF (ml)

.0003 % 0.045 %
[mc∗ =min cost]
[ml∗ =min loss]

A. Scalability Analysis

Besides the 32 bus radial network, the proposed model has
been also tested in IEEE 123 bus system (Fig. 7) for the
base case as well as for when 10% , 30% and 50% DGs
of the total load is connected in the network. The total load,
generation, % of the loss from base case power flow and %
of loss for different percents of DGs connected in the network
have been shown in Table III. For the 123 bus network, the
voltage mismatch between the SOCP-OPF and the OPenDSS
results and convergence time is shown in Table IV. Voltage
profile for the base case, 10% DG and 30% DG are shown in
Fig. 8, 9 and 10 respectively.

Including (19) in the optimization model, the bus voltage
angle difference can be calculated for the 123 bus system. For
a radial network, taking the substation bus as the reference,
the other bus voltage angle is determined from the angle
difference value. The angle difference value from the proposed
model has been compared with the angle difference from the
OpenDSS in Fig. 11, 12 and 13. The results retrieved from
the proposed SOCP model are very similar to the OpenDSS
values. The small discrepancy in the angle difference is due
to the approximations from the (19) for making it convex.
But from the comparison of the results with the OpenDSS,
the approximation is validated, when the network is a radial
distribution network and the bus angle difference across a line
is small. Besides, as the proposed model is convex, it acquires
less time for converging than compared to NLP based power
flow or optimal power flow.
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TABLE II
MODIFIED 32 BUS SYSTEM FLOW COMPARISONS

MP PF MP OPF SOCP OPF

Bus No. Pg(max) Pg(min) Qg(max) Qg(min) C Pg Qg Pg Qg Pg Qg

1 10 - 10 -10 90 3.90 2.43 2.03 1.50 2.03 1.50
7 0.35 0.100 0.25 00 79 0.00 0.00 0.35 0.25 0.35 0.25

12 0.30 0.075 0.20 00 87 0.00 0.00 0.30 0.20 0.30 0.20
13 0.32 0.000 0.00 00 70 0.00 0.00 0.32 0.00 0.32 0.00
15 0.08 0.075 0.20 00 92 0.00 0.00 0.75 0.20 0.075 0.20
16 0.30 0.300 0.00 00 70 0.00 0.00 0.30 0.00 0.30 0.00
24 0.41 0.100 0.20 00 81 0.00 0.00 0.41 0.20 0.41 0.20

TABLE III
IEEE 123 BUS SYSTEM PERFORMANCE COMPARISONS

123
Bus

System

Total
Load

[Pd(MW)]

Total Gen
SOCP

[Pg(MW)]

% Loss
SOCP

(min loss)

% Loss
SOCP

(min cost)

% Loss
(PF)

Cost
SOCP

(min loss)

Cost
SOCP

(min cost)
Base Case 1.1633 1.2017 3.20 % 3.20 % 3.20 % 110.55 110.55
10% DG 1.1633 1.1892 2.18 % 2.18 % 2.75 % 109.15 109.15
30% DG 1.1633 1.1836 1.71 % 1.71 % 2.71 % 108.44 108.44
50% DG 1.1633 1.1782 1.26 % 1.26 % 2.64 % 107.74 107.74

TABLE IV
IEEE 123 BUS SYSTEM FLOW COMPARISONS

123
Bus

System

Voltage
Mismatch
(min loss)

Voltage
Mismatch
(min cost)

SOCP
Time

(min loss)

SOCP
Time

(min cost)
PF Time

Base Case 0.015 % 0.015 % 0.39 sec 0.28 sec 0.73 sec
10% DG 0.026 % 0.026 % 0.39 sec 0.33 sec 0.80 sec
30% DG 0.073 % 0.073 % 0.41 sec 0.36 sec 0.77 sec
50% DG 0.065 % 0.065 % 0.39 sec 0.36 sec 0.81 sec

Fig. 8. Voltage profile in 123 bus network base case.

IV. CONCLUSION

In this paper, we have proposed and evaluated a branch flow-
based SOCP model that mainly concerns on branch current and
branch power flows instead of nodal injections. We have also
demonstrated the implementation and result evaluation in mod-
ified 32 Bus radial network and IEEE 123 Bus system. Our
results confirm that, for radial networks, the model guarantees

Fig. 9. Voltage profile in 123 bus network with 10% DGs.

a globally optimal solution. The computational efficiency and
time for convergence of the proposed algorithm are also
improved. Furthermore, in this paper, we have proposed a
convex equation to recover the angle from the optimal power
flow model. Including this angle in angle cyclic constraints
can enable the proposed SOCP based OPF model to work in
a mesh network as well.
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Fig. 10. Voltage profile in 123 bus network with 30% DGs.

Fig. 11. Bus voltage angle difference in 123 bus network base case.

Fig. 12. Bus voltage angle difference in 123 bus network with 10% DGs.
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