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Abstract

Existing literature on information sharing in contests has established that sharing contest-
specific information influences contestant behaviors, and thereby, the outcomes of a contest.
However, in the context of engineering design contests, there is a gap in knowledge about how
contest-specific information such as competitors’ historical performance influences designers’
actions and the resulting design outcomes. To address this gap, the objective of this study is to
quantify the influence of information about competitors’ past performance on designers’ belief
about the outcomes of a contest, which influences their design decisions, and the resulting design
outcomes. We focus on a single-stage design competition where an objective figure of merit is
available to the contestants for assessing the performance of their design. Our approach includes
(i) developing a behavioral model of sequential decision-making that accounts for information
about competitors’ historical performance, and (ii) using the model in conjunction with a human-
subject experiment where participants make design decisions given controlled strong or weak
performance records of past competitors. Our results indicate that participants spend greater
efforts when they know that the contest history reflects that past competitors had a strong
performance record than when it reflects a weak performance record. Moreover, we quantify
cognitive underpinnings of such informational influence via our model parameters. Based on
the parametric inferences about participants’ cognition, we suggest that contest designers are
better off not providing historical performance records if past contest outcomes do not match

their expectations set up for a given design contest.
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1 Introduction

1.1 The Role of Information in Design-Under-Competition

Engineering design-under-competition can be viewed as a contest where the designers are the con-
testants [1, 2, 3]. Designers compete as individuals or in teams to solve design problems with certain
design objectives. Their reward (e.g., a prize or the profit from product sale) depends on how well
they achieve the design objectives as compared to their competition. Examples include product
design competitions in the market [4, 5] and organized competitions such as R&D competitions
and innovation contests [6, 7].

Existing literature in contest theory has established that the design of a contest influences
contestant behaviors and, thereby, the outcomes of a contest [8, 9, 10, 11]. There are several
aspects of contest design that affect contestant behavior such as design of incentives [12, 13, 14],
contest stages [15, 16, 17], and decisions such as what and how much information to share with the
contestants [18]. Much of existing work on contest design has focused on incentive design as well as
design of multi-stage contests. However, much less attention is given to other aspects such as how
to frame and partition the problem [19], how to characterize contestants [20], what contest-specific
information to present to the contestants [18] and its influence on cognition [21, 22]. Such aspects
become increasingly important while understanding engineering design competition scenarios.

The design literature has established that designers’ decisions are influenced by the informa-
tion that is presented to them [23, 24, 25|, and how it is presented [26, 27, 28], which in turn
affects the design outcomes. In the context of design-under-competition, since the designers are
the contestants, sharing various types of contest-specific information such as knowledge about the
sponsors of the contest, the reputation of the contest, and the competitors in the contest [6, 29]
also affects their cognition, behaviors, and outcomes. Consider, for example, the publicly avail-
able data on a crowdsourcing platform called GrabCAD [30, 31]. GrabCAD hosts crowdsourced
engineering design competitions via sponsor organizations such as NASA and GE. The publicly
available GrabCAD data included information about past contests such as the contest sponsors,
the past winning solutions, the associated winners, and the overall contestants [30]. Availability of
such information has the potential to impact contestants’ beliefs about the outcomes of the current
contest. Similarly, information sharing in competitive contracting influences design decision making
affecting outcomes, design costs, and sustainability [32].

There is extensive literature in contest theory on information sharing in contests [33, 34, 35].
It is established that contests with past competitors who have had “strong” past performance
records would be considered more competitive than contests where past competitors have had
“weak” performances [36, 37]. However, in the context of engineering design, there is a lack
of understanding of the cognitive processes that underpin such behaviors and contest outcomes.
Since design cognition greatly influences design decisions, understanding cognition in design-under-
competition can help contestants make better decisions as well as improve design outcomes. To

address these gaps, our objective in this paper is to quantify the influence of information about
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competitors’ past performance on designers’ beliefs about the outcomes of a contest, which influences

their design decisions, and the resulting design outcomes.

1.2 Scope of this Study

There are several types of contests studied in existing literature and they are broadly categorized
into (1) naturally occurring contests due to disputes or conflicts such as market competitions,
lobbying, wars, and court trials, and (2) organized competitions by contest sponsors to achieve
some goal such as public procurement, R&D competitions, innovation contests, scholarships, and
sports [38]. In the context of engineering design, both naturally occurring contests such as product
design competitions between firms [4, 5] and organized contests such as crowdsourcing contests
exist [6, 7]. Each type of contest scenario has its nuances that may influence designer behaviors
in a manner that begets the need to establish several different models of design behaviors under
competition. Moreover, engineering-design-specific characteristics such as the type of design prob-
lems [39], the type of design process leveraged [40, 41], whether there are individual designers or
design teams [42], design cognition [43, 44], and the knowledge and expertise of the designers also
influences the design outcomes [23] and could thus influence the outcomes of the contests.

Further, there are various classes of design problems that can be utilized for a design competi-
tion. Consider the class of design optimization problems [45] which are types of design problems
typically focused on physics-based metrics of performance, such as weight or strength of material,
that can be evaluated using objective measures. On the other hand, design creativity problems [46]
cannot be evaluated a priori or by the contestant. Thus, historical information about competitor’s
past performance is one of the several factors that influence design behaviors and contest outcomes.
Other factors such as the type of design problem can also affect the availability or relevance of his-
torical information on design behaviors and contest outcomes. For example, historical information
about objective metrics is typically available in product design competitions between firms via past
product versions. However, subjective evaluations such as a product’s creativity or novelty may
not be available and such information may not be relevant to another design contest.

Clearly, there is a broad range of engineering design contest types and problem types. Thus,
for this study, we focus on a specific scenario by selecting a specific type of contest, the design
problem, the design process, and the decisions made by the designers. Specifically, we focus only
on organized contests where availability of information such as past performance of competitors can
be controlled by the contest organizers along with other contest design aspects such as rewards,
stages, participant pool, and costs. For example, consider a periodic innovation contest organized
by NASA for the design of waste recycling systems in space. In such a scenario, information about
past winning designs may influence contestants’ design thinking and contest organizers need to be
able to make an informed decision about the impact of sharing past performance information.

Assumptions: To formalize such a scenario, we first assume that the contest is non-dynamic,
and non-strategic. This assumption implies that a designer does not get to observe the design

decisions being made by their competitors for the current contest. Consequently, their decisions
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are not in direct response to the decisions being made by their competitors and thus, they are not
strategic from a game-theoretic standpoint. Second, we assume that the only signals players receive
about the competition is via the past performance records of previous competitors. This implies
that we do not consider the effect of learning about competitors in a given contest or updating
one’s state of knowledge about the opponent. These two assumptions are made to isolate the effect
of past performance history of the contest on a designer’s decisions. Third, we focus on a single
stage single-prize contest. Since the incentives and contest stages are also factors that influence
contestant behaviors, they are controlled for in this study. Fourth, we focus on a class of design
problems where contestants have an objective performance measure that they can use to evaluate
their designs. Contestants can generate new designs within a potentiality large but bounded design
space, and can evaluate the design performance at an a-priori known cost. The resource, cost, and
time constraints prevent designers from exhaustively searching the design space. Therefore, they
efficiently explore the design space while minimizing the incurred cost of design and maximizing
the performance. Fifth, the engineering design process is assumed to be a cognitive sequential
information acquisition and decision making (STADM) process [23] (further details of the specific

assumptions are provided in Section 3).

1.3 Approach and Rationale

Our approach to address the research objective consists of two steps. First, we modeled the influence
of past performance record of competitors on a designer’s cognition and information acquisition
decisions. We extended our previous framework on modeling a sequential information acquisition
activity in an engineering design process [23] by considering a design contest. The framework
enabled us to instantiate the cognitive model for this study. Second, we designed and executed
a behavioral experiment where participants of the experiment were given information about past
competitors’ historical performance records with strong or weak performance.

Since cognition is not directly observable, there is a need for computational models that quantify
the influence of information such as past performance records on designers’ cognition and decision-
making behaviors. Such models can aid in developing a theory of mind about the designers [47, 48].
Theory of mind is the humanistic ability to infer others’ mental models, preferences, and intent [49].
While humans can infer cognition via the theory of mind, there is a lack of computational tools that
can do so. As design cognition strongly influences behaviors and outcomes, inferring contestants’
cognition can aid the contest organizers in making better decisions while designing such contests to
influence design behavior change [50, 51]. This can result in better predictions about the outcomes
of design contests as well as achievement of desired contest outcomes. Such models can also help
competitors in a market make informed decisions.

The paper is structured as follows. We first discuss the experiment details which are provided
in Section 2. Then, we describe the model in Section 3. It is based on the assumptions that
individuals strive to maximize their expected payoff and use the Bayesian approach to update their

cognitive state of knowledge based on new information. We utilized experimental data to estimate
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the parameters in the model and to test hypotheses about the influence of past performance record
on design cognition, behavior, and outcomes. The results are discussed in Section 4. Finally, we
discuss the implications of this study, and the validity of the modeling assumptions in Section 5. It
is to be noted that references to a contestant, designer, individual, and participant are respectively
made in the context of a contest, the design scenario, the computational model, and the behavioral

experiment.

2 Experimental Study

In this section, we describe the experimental study. Specifically, we discuss the problem statement
shown to the participants, our design of experiment (DOE) rationale, the hypotheses formulation
and operationalization. Throughout this section, the participants in the behavioral experiment are

considered as the contestants for a design contest.

2.1 The Track Design Game

Participants were told that they will participate in a series of contests organized by a firm that is
interested in designing roller coasters. In every contest, they were required to design a track. They
were informed that they are competing against an opponent while solving the track design problem
as described in Section 2.1.1. The contestant that achieved a higher value of the design objective
for a given contest won the corresponding prize amount for that contest.

In reality, the “opponent” was a modeled agent that was designed with a past performance
record. The modeled agent either had a strong past performance record or a weak past perfor-
mance record. Moreover, the participants were either given information about their performance
record or not. The authors’ decision to design the competitors as a modeled agent was made to
achieve experimental control in order to quantify the influence of historical information about com-
petitors’ performance on a participant’s design behaviors and outcomes. The modeled agent was
also designed to be consistent with their past performance while competing against a participant in
a given contest. Neither the participant nor the modeled agent could observe the design decisions
of the other. Further details about the design of the agent and the controlled factors are provided

in Section 2.3.

2.1.1 The Task

We utilized the track design problem statement from our previous study, which has been designed
to be representative of a design search problem [23]. The task was to design a roller coaster track
where the objective E(x)(= f(z)) of the designer was to “maximize enjoyment experienced by the
rider of the track”. To achieve the objective, a participant needed to design a circular valley segment
of the track with an appropriate width w(= z) as shown in Figure 1. The participants were not
provided an explicit mathematical form of the “enjoyment function” E(w). The rationale was that

in real design scenarios, design objectives are a combination of qualitative and quantitative factors
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Figure 1: The actual interface of track design game used by the participants in the experiment.
The interface reflects the moment after a participant executes a “try” and submits a width value
of 489 for which the enjoyment value of 26.274 is shown to the participant.

that seldom have a mathematical form explicitly known to the designers. What the designers may
know is the influence of various design parameters such as the width w of the track on the design
outcome, that is, “enjoyment”. Thus, the participants were informed that a small valley width
would make the ride uncomfortable due to high g forces and a wide valley has a high radius of
curvature, that is, a “flat” track. Both cases result in reduced enjoyment, which implied that there
is an optimal width w for which the enjoyment for the rider is maximized.

We designed the objective function E(w) such that it satisfies requirements such as concavity,
non-negativity, function parameterization, and function asymmetry in order to control for factors
such as incentivization, intuition, guessing, and problem difficulty to avoid interference with the
experimental results. Considering such characteristics, we modeled the enjoyment function through

a Log-Normal function. The enjoyment (E(w)) of the track is defined as:

f — (In (w) — In (H) — In(f) — 0.0081)?
E(w) = (0.25H% — 80H .00405) + . 1
(w) = (0.25 80H) exp (0.00405) - €xp 0.0162 (1)
The maximum value of enjoyment function occurs at the width value wpyax. We modeled wmax as a
function of the track height H and a factor f such that wy.x = fH. The corresponding maximum

enjoyment value FEl .y is:
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Enax = (0.25H - 80). (2)

The function is normalized to have a maximum value dependent on the height of the track.
We did so because intuitively a “taller” ride should have a higher maximum possible enjoyment.
To reduce the effect of learning about optimal width value wyax as a function of height H, we
introduced a factor f that was uniformly sampled for every new contest (refer to Section 2.3) from
the range of [0.6,0.9]. In the experiment, the height values H are uniformly chosen for every new
contest from the range of 600 to 1000 units. Thus, F,.x values range between 70 to 170. The Fpax
range was carefully chosen to ensure that participants did not develop misconceptions about the
maximum achievable enjoyment value. For example, participants may believe that the maximum
achievable enjoyment value for a track is 100 due to the special significance of this number to
represent a full score. By randomizing objective function parameters, we reduced the influence of
such preconceived notions.

Participants were expected to iteratively search for width w values of the track such that it
maximizes the enjoyment experienced by the rider. A try is defined to be a submission of one
w value. For each trial, participants incurred a cost, and they were shown the corresponding
enjoyment value, that is, the value of the objective function. For example, Figure 1 shows that
a participant has tried 8 times, the cost for which is 200 cents. Further details on the design of
the incentive structure are provided in Section 2.3. A table and a graph of search data are also
provided to the participants to reduce the cognitive load of having to remember their search history.
The participants are also provided with an initial height H of the track and are informed that the
circular valley has a constant depth of 50 units. Participants are explicitly provided the feasible
design space in this study, and the information appears as “Iry values for width greater than X”
as shown in Figure 1. We did so for experimental control such that we reduce the influence of
problem-specific information on a participant’s design behaviors and outcomes. In other words,
there is reduced variance in participants’ knowledge about the design space. (Refer to our previous
work [23], on which we also build the model in Section 3, where we consider the influence of

participants’ knowledge about the design space.)

2.2 Contest Specific Information: Past Design Ratings

The information about competitors’ past performance record was termed as the “design ratings”
given by the firm to the design solutions generated by the competitors in the past. A design rating
is the firm’s assessment of the goodness of the competitors’ past design solutions. The rating was
given on a Bad-Average-Fuair-Good-Great scale, where “Bad” rating is the worst possible rating,
and “Great” rating is the best possible rating. If information about the competition history was
provided, then participants are shown a histogram of the design ratings of the best design solutions
submitted by the competitors in the past 10 to 15 contests as shown in the top-right in Figure 1.
Such information was intended for the participants to develop judgment about the competitiveness

of the contest via past performance records. Moreover, to control for the effect of design fixations,
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we did not provide information about the design artefact. Instead, the design ratings provided
qualitative information about the design solutions without explicitly revealing the past designs.
The participants also do not observe any real-time actions or decisions made by an opponent in
the currently played contest.

To generate past performance data, we utilized a quantitative measure of design ratings and
created a modeled agent’s performance distribution. From such a distribution, performance data
was sampled and then converted to a qualitative scale as seen by the participants. We note that
the performance distribution of the competitors is static implying that it is not being updated for
them.

For design search problems, theoretically, the true design quality achievement (TDQ) can be

quantitatively formulated as follows:

Design objective value achieved for a problem

True Design Quality Achievement = x 100% (3)

Optimal design objective value for a problem

In reality, assessments of design quality in the context of design search problems are not trivial.
The firms organizing design contests themselves do not know the maximum achievable design
objective value for a problem. However, we assumed that the contest organizers (in this case,
the firm) are capable of making an accurate assessment of the true design quality of the design
solutions generated by the competitors. We term this assessment by the firm of the true design
quality achieved by an individual, as the “quantified design rating”. For example, a quantified
design rating of 90% for a track design problem with maximum enjoyment value of 120 implies that
a player achieved an enjoyment value of 108.

For the competitors’ past performance data, quantified design ratings were sampled from a
Gaussian distribution with some mean design rating fiopp and a standard deviation of oopp = 3%.
As discussed earlier, such ratings are purely theoretical. In order to realistically reflect the past
assessments by the firm of the design solutions generated by the competition, the quantitatively
sampled ratings are categorized into a qualitative scale through a mapping scheme such that ziop, >
95% is “Great”, 95% > piopp > 90% is “Good”, 90% > piopp > 85% is “Fair”, 85% > piopp > 80% is
“Average”, and 80% > fiopp is “Bad” rating. It is to be noted that the participants are not aware of
the quantitative design rating and the mapping scheme. Such metrics were developed for internal
analysis by the authors for various experimental control scenarios as described in Section 2.3.

The quantitative distribution utilized to generate past performance design ratings is also used
to sample the competitors’ (modeled agent’s) enjoyment value achieved for a given contest. The
evaluated performance value of the modeled agent is then utilized to decide whether a participant
wins or loses a given contest. When a participant decided to stop their search in a contest, their
corresponding performance, as well as their competitors’ performance was shown and the winner

was displayed for the contest.
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2.3 Experiment Design

The experiment was a within-subjects study such that each participant experienced three levels of
information about their competitors such that they either had a “strong” past history, a “weak”
one, or no information was provided. We did so because we wanted to infer each individual’s change
in behavior based on past performance information of a contest. This was important for our model,
as discussed in Section 3, because the model parameters quantify individual-specific behavioral
aspects and we do not aggregate information on a group or population level in the model.

The experiment involved a total of 36 participants. These participants were undergraduate and
graduate students at Purdue University, predominantly from mechanical engineering backgrounds.
There were a total of 14 females and 22 males. The experiment was divided into two parts, namely,
With Information (WI) of a “strong” past history or a “weak” one and Without Information (WOI)
of the past history of the competitors. As the parts name suggests, WI part is one where the
information about the competitors’ past performance was provided, and WOI part is one where it
was not. The WOI part had 10 contests and the WI part had 20 contests. Overall, every participant
played a total of 30 contests. The experiment was executed with the two possible orders (WI-WOI
and WOI-WI) of the two parts. Each participant experienced only one of the two orders. Such
ordering of the tasks is done to eliminate order effects [52].

A mean design rating pop, in the range of [80,84]% was utilized for generating “weak” compe-
tition history and a range of [95 — 99]% for generating “strong” competition history. These ranges
were chosen based on observations of past performances of human subjects in our design search
problems and their achievement of true design quality TDQ. It might seem that, in reality, a range
of [80, 84]% for design rating is a “strong” performance. However, in the context of a convex search
problem, we observed in our pilot experiment that human subjects are able to achieve such quality
(TDQ) in 2 to 3 tries on an average. For such low effort, we consider this range of TDQ achievement
to be a “weak” performance.

For the WI part, we randomized a total of 10 strong and 10 weak past performance information
about the competitors making it a total of 20 contests. Thus, overall, every participant played
ten contests given strong past performance information, weak past performance information, and
no information about the past performance, respectively. We minimize the effect of repetition
of contests on learning about the solution space by randomizing the parameters of the objective
function. Thus, every contest a participant plays is randomly generated such that it is not correlated
with previously generated solutions in a different contest (Refer to Section 2.1.1). Moreover, we
randomized strong and weak performance information in the WI part in order to reduce anchoring
effects of successively presenting weak (or strong) competition history. Moreover, it might result
in an apparent belief of high (or low) probability of wins, thereby, further compounding the effect
of anchoring bias along with the gambler’s fallacy. With 36 participants, we collected data of 1080
contests or 360 for each of the three conditions. This sample size of 360 per group is greater than
the minimum of 64 suggested by an a priori power analysis which was conducted using G Power [53]

assuming a small effect size (0.2) of past performance information on design behaviors, 95% power
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of repeated ANOVA hypothesis tests for a within subjects study assuming a low correlation (0.2)
of estimated parameters from the same individual. To reiterate our objective, we want to study
the influence of information about the past performance of competitors on an individual’s design
behaviors. By designing experimental treatments where strong, weak, and no information about
the past performances is provided, we can generate controlled data sets of participant’s decision
making behaviors in various treatments.

The incentive structure for the experiment was designed as follows. The prize for winning a
contest was set to be $7. The cost for a ¢ry was set to be $0.25. The prize to cost ratio was
deliberately high to reduce the influence of a high cost of experimentation on design behaviors. For
the payments, the net gain or loss for any three contests out of the thirty contests was chosen at
random. This was done in order to minimize the wealth effects [54]. The theoretical maximum net
gain was calculated to be $20.25. This calculation was done by considering the best case scenario
such that the participant tries once, costing them $0.25 cents, and they win the contest such that it
gives them a maximum gain of $7 — $0.25 = $6.75 for the contest and 6.75 x 3 = 20.25. Moreover,
participants were given a show-up fee of $5. Theoretically, participants could earn a maximum

total of $25.25 for a session that lasted for approximately 75 minutes.

2.4 Metrics Utilized for Hypothesis Formulation and Testing

We summarize the dependent and independent variables utilized in this study in Table 1. These
variables are used to test the experimental hypotheses discussed in Section 2.5. Moreover, there
are several control variables such as cost of the effort C and the prize of the contest m which are
held constant in the study. For further details regarding experimental control refer to Section 2.3.

We describe the qualitative and quantitative design ratings in detail in Section 2.2. The strong
and weak past performance record was created by utilizing a modeled agent with a performance dis-
tribution that is Gaussian with parameters [fiopp, Topp- It is to be noted that an individual’s belief
about the historical competition was also modeled as a Gaussian distribution but with parameters
[, ob]. The parameters [fopp, Topp) Served as independent variables to vary competitors’ past
performance record while [uy, op,] were the dependent variables estimated as model parameters us-
ing experimental data. Refer to Section A where we illustrate how we leveraged experimental data
with our developed model. In the context of a design search problem, we refer to an individual’s
effort as the outcome of their decision-making behavior, that is, their decision to stop acquiring
information. The individual’s effort was measured as their number of tries T in a design search

problem.

2.5 Hypotheses Operationalization

We list all the hypotheses and their corresponding operationalization in Table 2. We recall the
discussion in Section 1 and reiterate that the competition-specific information influences design
outcomes (H1), designer behaviors (H2) and cognition (H3). Hypothesis H3 is formulated based on

our modeling considerations of how designer behaviors are affected such that the information about

10
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Table 1: The variables of the behavioral experiment, their type, quantification, and description.

Variable Variable Type Quantification Description
Competitors’  Past | Independent A Gaussian distribution | A mean design rating popp between
Performance Record Variable with some mean design | 95% to 99% is considered strong

rating popp and a standard
deviation of oopp = 3%.

past performance and popp between
80% to 85% is considered weak past

performance. Refer to Section 2.2
for further details.

Belief about the | Dependent Vari- | Belief is quantified as a | Belief about an event is defined
competitors’ perfor- | able Gaussian distribution with | as probability distribution over the
mance in a contest parameters [Mb7 ab]. outcomes of an event. Refer to
(Cognition) the discussion of the model param-

eters in Section 3 for details on be-
lief about the competitors’ perfor-
mance.

Effort (Behavior) The number of iterations in a se-
quential design process is consid-

ered as the effort.

Dependent Vari- | Number of tries T’

able

Performance
come)

(Out- Performance is measured by us-
ing the maximum enjoyment value
achieved by a participant in a con-
test and normalizing the value ac-

cording to Equation 3.

Dependent Vari- | Maximum Enjoyment Value
able E

competitors’ past performance influences a contestant’s belief about their competitors’ performance.
Such a belief represents the hidden mental state of the designer or their cognition. In the following,
we discuss our hypothesis formulation.

We formulated H1 to investigate the influence of competition history on design contest out-
comes. In the context of a design contest, we consider the quality of the design solution as design
performance. In the experiment, the maximum enjoyment value achieved by a participant is con-
sidered representative of their design performance. We hypothesized (H1.1* and H1.3*) based on
existing literature in sports where competition against competitors with strong past performance
results in better player performance as compared to ones with weak past performance [55, 56].
Conversely, we operationalize hypothesis H1.2* such that participants would exhibit conservative
behavior when competition history was unknown which would result in higher performance than
when the competitors were known to have a weak past performance record.

We formulated H2 to further investigate behavioral implications of sharing past competition
specific information. H2 formulation is based on existing literature on information sharing in
contests which shows that there is significant over-expenditure of efforts (compared with theoretical
predictions) when information about a strong competition history is known [18, 57, 58]. This
resulted in the formulation of three operationalized hypotheses, namely, H2.1*, H2.2* and H2.3*.

H3 is formulated to investigate cognitive implications of sharing past performance information.
Our S-STADM model, as discussed in Section 3.2.2, quantifies the cognitive influence of past per-
formance information on a participant’s STADM behaviors via a belief (probability distribution)

about the competitors’ design performance. We use the model parameters to operationalize H3 as

11
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Table 2: Hypotheses and their corresponding operationalization based on the influence of competi-
tors’ past performance on an individual’s efforts, performance, and beliefs.

Hypotheses

Operationalized Hypotheses

H1-Outcome-specific hy-
pothesis:  Competitors’
past performance infor-
mation influences a con-
testant’s performance in
a design contest.

H1.1*: The maximum enjoyment value achieved by a participant in a contest is higher
when they are given that competitors had a strong past performance record (topp
between 95% to 99%) as compared to when they are given that competitors had a
weak past performance record (popp between 80% to 85%).

H1.2*: The maximum enjoyment value achieved by a participant in a contest is
higher when no information is given about the competitors as compared to when
they are given that competitors had a weak past performance record (popp between
80% to 85%).

H1.3*: The maximum enjoyment value achieved by a participant in a contest is lower
when no information is given about competitors as compared to when they are given
that competitors had a strong past performance record (popp between 95% to 99%).

H2- Behavior-specific hy-
pothesis:  Competitors’
past performance infor-
mation influences a con-
testant’s efforts in a de-
sign contest.

H2.1*: The number of tries (T') by a participant is higher when they are given that
competitors had a strong past performance record (popp between 95% to 99%) as
compared to when they are given that competitors had a weak past performance
record (popp between 80% to 85%).

H2.2*: The number of tries (1) by a participant is higher when no information is
given about the competitors as compared to when they are given that competitors
had a weak past performance record (popp between 80% to 85%).

H2.3*: The number of tries (T') by a participant is lower when no information is given
about the competitors as compared to when they are given that their competitors
had a strong past performance record (popp between 95% to 99%).

H3-Cognition-specific

hypothesis: Competi-
tors; past performance
information  influences

a contestant’s  belief
about the competitors’
achievement of the de-
sign objective value in a
contest.

H3.1*: The up value estimated for a participant when they are given that their com-
petitors had a strong past performance record (popp between 95% to 99%) is higher
as compared to the u, value estimated when they are given that their competitors
had a weak past performance record (popp between 80% to 85%).

H3.2*%: The difference between the pp, value estimated for a participant when they do
not know that their competitors had a strong past performance record (popp between
95% t0 99%) and the up value estimated when they do not know that their competitors
had a weak past performance record (popp between 80% to 85%) is zero.

H3.1* and H3.2*. We note that while H1 and H2 are tested using only experimental data, H3 re-
quires model-based inferences. This is because testing H3 requires data on an individual’s cognition
about the competitiveness of the competition which is not readily available through experimental
observations only. Thus, a cognitive model of an individual’s decision making is required. Further,
such a model provides explainability of decision making behaviors. This implies that testing H3
can provide insight into why an individual made the decisions observed whereas testing H1 and H2

provides only provides insights on the contributing factors that influence design outcomes.
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3 A Descriptive Model of Sequential Information Acquisition and

Decision Making Process Under Competition

In this section, we abstract the design contest scenario utilized in the experiment, and our spe-
cific modeling choices for such a scenario including the contest type, the problem type, and the
individual’s type in the design scenario in line with our experiment (Section 3.1). Then, we have
formulated a cognitive model of sequential information acquisition and decision making. We de-
scribe our modeling choices to represent a player’s state of knowledge, the decision making process
for a design optimization scenario, and the causal influences of providing past performance infor-
mation on a player’s decision making process (Section 3.2). To do so, we leverage Bayesian causal

modeling which enables us to then inverse infer the modeled parameters given data (Appendix A).

3.1 The Design Contest Scenario

In order to model a design contest scenario, we abstracted the class of design problems, the activities
of the designer as a contestant, and the type of contest in line with our experiment. In the
following, we have made contest-specific, problem-specific, and individual-specific modeling choices
by considering a single stage single prize contest for engineering design problems as a parsimonious
contest scenario that acts as a starting point in the context of computational modeling for design-

under-competition.

3.1.1 Contest-specific modeling considerations

In this study, we have modeled the design contest by assuming that the contestant is competing in
a non-dynamic and non-strategic contest. We made such an assumption for the following reasons.
First, a dynamic game would imply sequential actions between players which typically is not the case
for design competitions where individuals or teams work independently towards design objectives.
While the decisions made by the designers are sequential in the context of design iterations they
are not sequential in terms of turn taking. Thus, our contest is non-dynamic. Second, the term
”strategy” has a specific significance in game theory literature and it refers to the response of a
player to an opponent’s actions. In the context of engineering design under competition, designers
may not have information about the design decisions being made by their competitors. Thus,
from a game theoretic standpoint a design contest may not be ”strategic” if information about
competitors’ responses is unavailable. Third, we wanted to control for the effect of participants
learning about each other in real time which also influences contestant behaviors since the focus of
this study is to understand the influence of competition history.

Moreover, the information about the past performance records of contests typically comprises
of the best past design solutions generated by the winner. Such information influences a contes-
tant’s belief about the quality of the best competing solutions that may be generated in a contest
and by extension, the belief about the best competitor in the “crowd” or a contestant population.

Such information influences a contestant’s design decisions. There are several other contest-specific
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factors that influence participant behaviors and contest outcomes such as the rewards, the reward
structure, the number of stages of the competition, as well as the reputation of the contest orga-
nizers [12, 13, 14, 59]. For the purpose of this study, such factors are assumed to be held constant

for our modeling choices in consistency with the design of our experiment.

3.1.2 Problem-specific modeling considerations

A class of design problems was considered where designers are required to optimize a given design
objective with a clear figure of merit. We assume that the figure of merit is an objective quantity
that measures the performance of a system as opposed a subjective quantity such as novelty or
creativity of the outcome. For example, crowdsourcing contests organized by NASA provide a
clear figure of merit, such as the weight for a given design artifact, that needs to be minimized.
In such scenarios, designers typically utilize an engineering design process where they perform
information acquisition activities, such as executing simulation models and experiments. In such
activities, designers make decisions about what new information to acquire and when to stop
acquiring information. Such information acquisition decisions heavily influence design outcomes
and consequently, the success of a design contest.

We considered a design scenario where a designer has a design = that affects the design per-
formance f(z). The designer’s objective is to achieve the best design outcome. The designer does
not explicitly know the mathematical relationship between the design variables and the design out-
come, i.e., the function f(x). However, they may know the qualitative relationship between the
design x and the design outcome f(x) due to factors such as their domain knowledge. In such a
scenario, a designer needs to acquire information about the impact of design x on the design out-
come f(x). Such information can be acquired by running (physical or computational) experiments,
which incur a certain cost. Moreover, the information can be acquired sequentially or in parallel.
In Section 3.1.3, we make modeling choices about how an individual acquires information.

We assumed that the designers are aware of the feasible design space and the qualitative rela-
tionship between the design variables and the design outcome. We made such an assumption to
control for the influence of domain knowledge on designer cognition, behaviors, and outcomes in
our experiment. We also aligned the modeled scenario with our experiment by ensuring that the
function f(x) is unknown to the participants. Further details are provided about the design of the

experiment in Section 2.

3.1.3 Individual-specific modeling considerations

An individual’s information acquisition process can be broadly categorized into sequential or par-
allel processes [60]. An information acquisition process is sequential when information is acquired
in steps, and in each step, the acquired information is used to update prior knowledge, result-
ing in a new state of knowledge at the end of that step. Hence, the information acquired in a
sequential process affects subsequent information acquisition decisions. For example, when a de-

signer decides what next experiment to conduct based on the result of previous experiments, the
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process is sequential. In parallel processes, all acquired information is analyzed at the end of the
process [60]. For example, the information acquisition process is parallel when a designer executes
a pre-planned set of experiments and analyzes the results of the entire set at the end. Within the
context of engineering systems design, we recognize that both sequential and parallel information
acquisition processes exist. However, in this study, we focused on modeling a single designer as a
decision-maker who sequentially acquires information to search for an optimal design solution.

In our previous work [23], we modeled an individual’s sequential information acquisition and
decision making (SIADM) behavior. The SIADM framework consists of three main activities:
acquiring information, processing information, and making decisions about where to search and
when to stop the search. These activities are repeated over a sequence of steps, t = 1,...,T.
Any sequential information acquisition activity in the design process can be represented using this
framework.

In this study, we leverage the STADM framework to illustrate the influence of contest-specific
information on an individual’s SIADM process. Thus, we call the model developed in this study
a sequential information acquisition and decision making model under competition (STADM-C).
We summarize our previous work in Section 3.2.3 for further details. We assumed that the cost
associated with acquiring information is independent of the information that is acquired. That
is, the value of the “next x” to choose and the experiment cost did not influence each other.
Moreover, we assumed that the decision to choose x is a problem-specific decision which does not
get influenced by the contest-specific information, such as an opponent’s historical performance
records. The decision to stop, on the other hand, did get influenced by an opponent’s historical
performance records. For example, a contestant may decide to stop in the very beginning (not
participate) in a contest if they know that their opponent’s history is “very strong”. The decision
to stop the search influences the total cost incurred for the search problem, that is, the greater the
number of experiments, the higher the cost. We controlled for the variability of the experimental

costs by assuming that the cost associated with each information acquisition step is constant.

3.2 Information Acquired at Each Step

At each decision making step, ¢ = 1,2,...,T, the participant chose a design X; and received

information about the value of the objective function to be maximized,
Ye = f(X). (4)

They also decided whether to stop or not at time step ¢, S; = 1 or 0.

We assumed that an individual begins the STADM-C process at step t = 0 with some initial
information history Hg which includes a single design Xy and the associated performance Yy =
f(Xp). At t = 0 they were given a choice to enter the contest or not (Sy = 1 or 0), which is a

special case of the stopping decision they consider at any other time step. Thus,
Ho = {(Xo, Yo, 50)} (5)
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The information history H; that the individual has by the end of step ¢ is:
He = Hi—1 U{(Xe, Y7, Se)}- (6)
The best performance (quality) @; of the individual at time step ¢ is given by:

= Y;
Q¢ max Y; (7)
It is to be noted that the initial information history Hy at time step t = 0 is not considered to
calculate @ as participants did not expend any effort for the given information. In other words, if

participants did not enter the contest, their best quality is null.

3.2.1 The Type of an Individual

We define the type 0 of an individual such that it (i) fully specifies their prior state of knowledge
about the opponent, the design objective, and how they are represented in the model, (ii) influences
how they updated their state of knowledge after observing H;, (iii) influences how they decided
to acquire information at each time step, and (iv) influences how they decided to stop. In what
follows, we have made specific modeling choices, trying to be parsimonious (to keep the number of
model parameters as small as possible), while taking into account some of the cognitive limits of
humans. Such a definition of an individual’s type enables us to incorporate model parameters that
encapsulate our beliefs of the behavioral characteristics of individuals such as (i) - (iv) discussed
above. Since the type 6 of an individual encapsulates our beliefs about an individual, we leverage
experimental data as evidence to infer the type € of an individual via model parameters. For further
details on the inference of the type parameters, refer to Section A.

We utilized our previous work [23] to model (i) an individual’s state of knowledge about the
objective function, (ii) how they decided to choose the “next x,” and (iii) how they updated their
state of knowledge about the objective function. It is to be noted that these activities are problem-
specific. However, an individual’s state of knowledge about the opponent’s history and their decision
to stop are a part of their contest-specific decision-making, and its modeling is an extension to our

previous work.

3.2.2 Modeling an Individual’s State of Knowledge

We have modeled the influence of providing information about the historical performance record R
of an opponent as follows. By observing past information, an individual develops “belief” about the
opponent’s best solution B that they are capable of generating in a contest. We modeled the belief
about the best solution B as a sample from a Gaussian distribution with a mean best performance
wy and deviation oy,

B ~ N, 0p), (8)
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where, up and oy, are hyperparameters which are a part of the individual’s type 6. Thus, u; and oy
are individual-specific as well as cognitive in nature as they abstract an individual’s mental state

about their opponents in the form of belief parameters.

3.2.3 Summary of our previous work

As in our previous work [23], we modeled an individual’s belief about the objective function as a
Gaussian process (GP),
f~GP(m,c), 9)

where m and c are the mean and covariance functions.
We utilized a convex mean function m(z) to model the prior belief about the objective function
given by,
m(z) = (—0.0014 - 2% + 2.048 - z — 633.7) , (10)

where, z € R and takes values in the range [350,1000]. The mean function m(x) was generated
from a general quadratic equation axz? + bx + ¢, by setting the values of the parameters a, b,
and ¢ such that the domain of x is consistent with the domain of the design parameter given to
the participants in the experiment. Qualitatively, this is equivalent to participants considering a
convex (parabolic) objective function that has a maximum in the range [350, 1000]. We assume this
consideration as participants were informed in the experiment that the objective function is convex
and the interface allowed the participants to explore width values in the range of [350,1000].

The covariance function ¢(z, 2") defines the Gaussian process’ behavior between any two points
z and z/. Consistent with our previous work, we assumed that the individuals use a squared

exponential covariance function:

n o .2 (l’ — $/)2
clx,z')=s exp{—%2 , (11)
with unspecified signal strength s > 0 and length scale £ > 0, i.e., they assign flat priors. We
have also assumed that the individuals identified the best signal strength and length scale ¢ by

maximizing the likelihood of the data, i.e., by solving:
St, 0 = arg H;BZXN(Yl;t’m(XLt), o(X1) + A\LL), (12)

where N (-|u, X) denotes the PDF of the multivariate normal distribution with mean p and co-
variance Y. Also, we have introduced the notation Xy, = (X3,...,X;) and Y7, = (Y3,...,Y}) for
the collection of all observed designs and the corresponding performances up to step t. Further-
more, we use m(Xy.;) = (m(Xy),...,m(X;)) for the mean function evaluated at all designs, and
c(Xi1:) = {c(Xi, Xj)} is the covariance matrix of the designs. Finally, the matrix I; is the ¢ x ¢
identity matrix, and X is a fixed parameter (we use A = 107%) added to the diameter to ensure

numerical stability.
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The posterior state of knowledge of the individual about f(z) is also a GP:
fTHe ~ GP (my, ) (13)

where, m; and ¢; are the posterior mean and covariance functions of the GP [61] when it is condi-

tioned on H;. Specifically, the posterior mean is given by,
mi(z) = m(x) + ez, X14) [e(X14) + ML) (Vi — m (X14)), (14)

where the row vector ¢(z, X1.4) = (c(z, X1),...,c(x, X;)) is the cross covariance between the test

point z and the designs observed so far Xi.;. The posterior covariance is:
ci(w,2’) = ez, a') = e(w, Xp) [e(Xe, Xo) + ML) ez, Xu)]T (15)

where AT is the transpose of matrix A.
We used maximization of Expected Improvement (EI) to model how humans make search de-
cisions. EI is defined as the improvement in design performance at x over the current best quality

Q¢ integrated over the possible values of f(z). The mathematical definition of EI is given by,

El(z; M) = E [max(0, f(z) = Qu)|z, Hi]

(16)
= (my(x) — Q) ® (Qelmy (), ¢t (2, 2)) + ¢ (w, ) N (Qe|my () , ¢ (0, 7))

Borji and Itti [62] show that maximization of expected improvement is indicative of how humans

make search decisions. Thus, we modeled the point the participant chose next by:
X1 = arg maﬁcEI(:c; Hi) + 0y, (17)
BAS

where, Z; are independent standard normal random variables, and ¢ > 0 sets the level of the

deviation of an individual from EI, that is, the modeled decision to “choose x.”

3.2.4 Modeling how Individuals Cognitively made Stopping Decisions

We assumed that the individual is rational from the perspective that they tried to maximize their
payoff II in the contest. The stopping payoff II;, that is, the payoff a participant would receive if
they were to stop at time step t is given by:

II; = ﬂ]l[B,oo)(Qt) - Kt, (18)

where, 7 is the prize, 1p )(Q:) is an indicator function such that its value is unity if the best
quality Q: at time step ¢ is higher than opponent’s best quality B, K is the assumed constant cost
associated with each time step t.

With the specification of the contest-specific parameters such as prize and cost, the reader is

now in a position to visualize the plate diagram of the SIADM-C model and the influence of various
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model parameters on the information acquired by the individual as illustrated in Figure 2.

E observed by
an individual
% part of type 6
P
--- _//
| /
I/ X \ X \
=S =5 i
"
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i=1,..., t ‘ .f“’) ‘
./
Information / B \
till step “,// /\‘ \‘/S' \\‘ parameters that
t: hy ‘\\ ) \ ‘ /" individual infers

Figure 2: Graphical illustration of the Sequential Information Acquisition and Decision Making
under Competition (SITADM-C) model at step ¢ of the process. Participant observes an opponent’s
past performance ratings (R). R is qualitative and takes discrete values of bad, average, fair, good,
and great. Parameters such as contestant’s belief about an opponent’s quality B and objective
function [, and s are inferred by the individual. Parameters us, 0y, and o are a part of an individ-
ual’s type 0. Based on the inferred parameters, information h; about the function till step ¢, the
information about the cost K of each try, and prize II, the individual decides to stop S; or not.

We modeled a contestant’s stopping decision as follows. If the expected marginal improvement
in their payoff from step ¢ to (¢t + 1) is negative, then they are more likely to stop. The expected

marginal improvement in the payoff All; is given as,
AHt =K [Ht+1 - Ht|Ht] == E[Ht+1|7‘[t] - E[Ht|7'lt] (19)

The conditioning on the history at time t indicates that the individual constructed AIl; after
having observed it. In the language of probability theory, we say that the stochastic process All;
is filtered by the history H;. In other words, AIl; is known by time ¢. Note that the payoff at time
t, Il;, is not completely determined from the history H; up to that point because the performance
of the opponent, B, has not yet been observed.

We now proceed to calculate AIl;. We have for the first term:

E[ll|H] = E [7lpe)(Qr) — Kt|H]

(20)
= WIP[Qt > B|Ht] —
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where, P(Q; > B|H;) is the probability that the individual assigned to winning at step t. It is
given by:
P[Q; > B|H] = ® (Qt_“”> , (21)

Ob
where ® is the cumulative distribution function of the standard normal. Note the dependence of

the right-hand side on the best performance ); which, at time ¢, is completely determined by the
history H;. For the other term defining AIl;, we have:

EMl41]Qt, Xit1] = Blrlp o) (Qur1) — K(t+ 1)[Hdl,

(22)
=  7wP[Qi1 = BlH — K(t+1),

where P[Q;+1 > B|H:] is the probability that the individual assigned to winning at step (¢ + 1).
This is given by:

PlQi1 > BIH] = E [P [Qt+1 > BlHe1]|Hi]
_ IE (1) Qt-&-lfﬂb ‘th
op
= E [(I) maX{Qt%H}—Mb) Ht}

Oy

= [72 @ (e ) N7 (X ), 0F(Xesn) dy,

Op

(23)

where N (-|i,0%) denotes the probability density function of a standard normal. Note that the
integration in the last step is over the point predictive probability density of the GP at X;i1
with mean given by Equation 14 and variance given by Equation 15 representing the individual’s
knowledge about f(x). Furthermore, the next point to choose X;1 is completely determined from
the history at time ¢, H;, see Equation 17. The integral is evaluated via Monte Carlo integration
using 10, 000 random samples from the point predictive probability density.

Having fully specified the expected marginal payoff after stopping, All;, we modeled the in-
dividual’s decision to stop. Our premise was that the probability of stopping increases as AIl,

decreases. To reflect this, we modeled the stochastic process S; as follows:

1, with probability sigm (—aAIl; —
g — p y sigm ( t—B) (24)
0, otherwise,

and, the stopping probability is given by,

1

Slgm (—OﬁAHt - 6) = 1 + exp (—O[AHt - /8)

(25)
where, o and 3 are type parameters to be determined.

Given all of the above modeling assumptions and equations, we can infer model parameters

given behavioral data. The details of inverse inference are provided in the Appendix A.
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4 Results and Discussion

We utilized the data, collected from the experiment described in Section 2, to infer the model
parameters 6. Based on these parameters and the experimental data, we tested hypotheses H1.1*
to H3.2* and present it in this section. We discuss the implications of each of the hypothesis test

results.

4.1 Hypotheses Testing: Influence of Past Performance Information

To test operationalized hypotheses H1 and H2 we conducted a single factor repeated ANOVA test
across the three treatments, (1) where they knew that their competitors had a strong performance
record, (2) where they knew that their competitors had a weak performance record, and (3) where
they did not know the competition history. For H3, we conducted conducted a single factor repeated
ANOVA test to compare the estimated belief parameters pu; of the participants across contests
where they knew that their competitors had a strong past performance record and a weak past
performance record. In all the analyses, we refer to the null hypothesis of a particular hypothesis

as the statement that there is no observed relationship as hypothesized.

4.1.1 Influence on Performance

To test H1.1* to H1.3*, we compared the average of the normalized maximum enjoyment value F
achieved by the participants across the three treatments introduced above. There was no significant
effect of past performance information on current contest performance at the p < .05 level for the
three treatments [F'(2,718) = 0.42,p = 0.62].

The mean p and standard deviation o of the normalized average Enjoyment value achieved by
the participants when they know the competition history is Good is (1% = 95.27%, o& = 10.49),
when they know the competition history is Bad is (u2 = 95.71%, o8 = 4.27) and when they
have No information is (4% = 96.11%, o = 5.73). We note the high variance in performance
distribution O'g when the participants knew that their competitors had a strong past performance
record. We believe that such high variance in performance is due to the influence of the information
about the “goodness” of competition which results in a few participants choosing not to participate
resulting in a zero design rating whereas some expend greater efforts to increment their existing
performance. On an average across individuals, the mean of the performances did not significantly
vary, however, it did result in a spread (high variance) of design quality.

Figure 3a illustrates the histogram of normalized maximum performance achieved the par-
ticipants across the three treatments. We note that participants were able to achieve the best
performance for the experimental STADM tasks frequently. The ability of the participants to do
so is dependent on the nature of the design problem such as the task complexity which was con-
trolled in the experiment. However, we observe that participants achieved best performance in
greater number of contests when they knew that their competitors had a good past performance

as compared to when the competitors had a weak past performance and when they did not have
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Figure 3: Histograms for H1 and H2

information about the competition history.

4.1.2 Influence on Efforts

To test H2.1* to H2.3*, we compare the average of number of tries T achieved by the participants
across the three treatments introduced above. By testing H2.1* to H2.3*, we find that there was
a significant effect of past performance information on the number of tries at the p < .05 level for
the three treatments [F(2,718) = 29.13,p < 0.00001].

The mean p and standard deviation o of the average number of Tries of the participants when
they know the competition history is Good is (,u% = 5.17, ag = 2.00), when they know the
competition history is Bad (u£ = 4.15, 02 = 1.8), and when they have No information (u¥ = 4.77,
JQJY = 2.12). Given that H2 test is statistically significant, we needed to compute a post hoc test to
determine where our differences came from. We selected the Tukey post hoc test which is designed
to compare the dependent variable (in this case, efforts) in each of the treatments to every other
treatment. The results are shown in Table 3.

The results for H2.1* indicate that the participants indeed tried higher number of times when
they knew that their competitors had a strong past performance record as compared to a weak one
(p = 0.001). Therefore, knowledge about competitors’ past information did influence a participant’s
efforts. We also reject the null for H2.2* (p < 0.01) which implies that the participants expended
higher effort when no information was provided to them about their competitors as compared to
when they know that their competitors had a weak performance record. However, we failed to
reject the null for H2.3* (p > 0.05) that the participants expended higher effort when they had
information that the competitors had a strong past performance record as compared to when there
is no information provided to them about their competitors. In other words, the difference between
the expenditure of efforts when the competitors are known to have a strong performance record
and when the competitors are unknown is not statistically significant. Figure 3b illustrates the
histogram of efforts of the participants across contests in the three treatments.

The results for H2.2* and H2.3* indicate that individuals behaved as if they were competing
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against competitors with strong past performance records while making strategic decisions against
an unknown competitors. While theoretically a total lack of information about the competitors is
possible, in reality, information about past contests and by extension, information about the best
past performances, is typically available. Our results suggest that if such information is available
and the participants enter the contest, then they will expend higher effort when they know that

the competitors in the past have had a strong performance record.

Table 3: Summary of the post hoc Tukey test for H2.

Hypothesis | Treatment A | Treatment B | Mean Diff | Std. Error | T-value p-value | Effect Size
H2.1* Weak Strong —1.019 0.1861 —5.48 0.0010 —-0.41
H2.2* Weak No Info —0.619 0.1861 -3.33 0.0025 —0.25
H2.3* Strong No Info 0.400 0.1861 2.15 0.0805 0.16

4.1.3 Influence on Cognition

The hypothesis test results for H3.1* indicate that the participants indeed believe that their com-
petitors’ performance is better when they have had a strong past performance record as compared
to a weak past performance record [F'(1,359) = 4.41,p < 0.05]. This implies that the modeled
parameters are sensitive to the information provided to the participants about their competitors
past performances. To further test the sensitivity of the modeled parameters, we test H3.2*. We
compare the estimated belief parameters iy, of the participants across contests where their competi-
tors had a strong past performance record and a weak past performance record but the participants
did not know about the competitors’ performance record. The hypothesis test results for H3.2*
indicate that there is no statistically significant difference between the estimated belief parameters
tp in the two scenarios [F(1,179) = 0.01,p = 0.92]. This further supports the claim that the
modeled parameters are influenced based on the information provided to the participants about
their competitors’ past performance record.

The mean p and standard deviation o of the average of the estimated Belief parameters of the
participants about their competitors’ performance With Information that the competition history
is Good is (,ug_WI = 90.51%, og_WI = 17.62), With Information that the competition history is
Bad is (MngI = 87.70%, JngI = 16.68), WithOut Information that the competition history is
Good is (ug_WOI = 88.59%, O'g_WOI = 16.63), and WithOut Information that the competition
history is Bad (uB_ 0, = 88.77%, 0B _yvo; = 18.55).

4.2 Hypothesis Tests: Discussion

The hypotheses test results from H1.1* to H1.3* and H2.1* to H2.3* indicate that information
about the past performance record influences a participant’s decision to stop a sequential search
process. However, such information did not affect the mean performance outcomes. The variance
of the performance, however, was high when the participants knew that the competition history

was good. We observed that some participants quit before trying when the competition history was
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good resulting in a 0 performance value. Such an observation points towards the need to investigate
the influence of competition history specific information on drop out rates of the contestants. This
can inform contest organizers’ predictions on the quality and number of solutions generated from
a contest.

If we consider a causal chain such that the independent variable (competitors’ past performance
information) influenced participant efforts, then the efforts should have influenced performance.
However, we analyze that the average maximum performance value across participants is not sig-
nificantly influenced by competition history information despite a significant difference in efforts.
We believe that this result is due to the stochastic nature of the STADM problem used in the be-
havioral experiment as well as the ability of the participants to achieve the maximum performance
relatively easily. While on an average there is a positive relationship between effort and perfor-
mance for an STADM task, we pooled the data across subjects and contests. The variance of search
decisions strategies across subjects and the normalization of performance across different contests
may have also influenced the observed effort-performance relationship. Existing literature on open-
innovation has investigated contest scenarios where variance dominates quality of solutions [63].
Our results highlight the importance of understanding the nature of design problems that can
influence effort-performance relationships which is typically assumed to follow some deterministic
positive relationship in the existing literature on contest theory.

The test results from H3.1* and H3.2* indicated that we can quantify the impact of competition-
specific information on an individual’s cognition. We do so by representing an individual’s belief
about the competition through the parameter pp such that higher the p;, parameter greater was
the belief about competitors’ performance in a given contest. Such parameters can be utilized
by contest designers to incorporate the influence of participant beliefs about the competitiveness
of a contest based on its participants and to predict the corresponding influence on their design
behaviors and contest outcomes. In our previous work [64], we illustrate how cognitive parameters
and models can be utilized to simulate STADM behaviors. The model parameters in this paper
contribute to the much needed quantification of cognition for the design of contests for engineering
design scenarios. Moreover, the results indicated that the contest designers are better off not
providing information to the participants about past contests if the corresponding winning design
solutions do not meet the standards (low past performance) defined by the organizers for the given
contest. However, regulations may prevent contest organizers from withholding such information
from the participants. In such scenarios, the contest designers need to account for the influence
of such information on participant behaviors and contest outcomes. Further research is required
towards understanding how to catalyze participant motivations towards generating higher design

quality given that they have knowledge about the historical information.

4.3 Observations

We analyzed the cognitive belief parameters (ug_W Iz ,ug_w ;) estimated for every individual when

they had information about the strong and weak performing competitors in the past. We did
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so to categorize every individual’s sensitivity to the information provided to them about their
competitors. Individuals whose average belief about competitors with strong past performance
was higher than that of the weak past performing competitors are labeled as sensitive to the
given information as estimated by the model while others are termed as insensitive. Our model
estimates 22 individuals out of 36 as sensitive. Thus, the model estimates approximately 60% of
the participants as sensitive to the provided information about their competitors based on their
estimated beliefs from experimental data. Such categorization of individuals can inform design
decisions of contest designers such as the need to conservatively frame the problem if majority of
the participants are insensitive to particular types of information. To do so, further model validation
is required by incorporating other informational factors that influence participant behaviors as well

as develop confidence that the model predictions are representative of people behavior.

5 Closing Remarks

We model a strategic SIADM process and make specific modeling choices for the three activities as
discussed in Section 3.1. Specifically, we assume a two-player contest where individuals maximize
their improvement in payoff, decide to stop when they do not see an improvement in their payoff,
and follow a myopic one-step look-ahead strategy for design search. Based on these assumptions,
we study the influence of past performance records, on the SIADM outcomes and behaviors.

This study contributes to the diagnostic evidence of the factors that influence designer behav-
iors under competition by the virtue of experimental control over the information that is available
to the designers about their competitors. Our results indicate that competitors’ past performance
information influences contestant’s efforts. Such a result is consistent with existing literature in
contest theory where it is established that contests with competitors who have “strong” past per-
formance records would be more competitive than contests where competitors’ past performances
have been “weak” [36, 37]. Moreover, we find that such an influence on efforts does not equivalently
translate to influence on performance as the nature of the design problem affects the relationship
between efforts and performance. Such a finding is also consistent with existing literature in contest
theory where Loch et al. [65] discuss problem types and their influence on contest outcomes. For
engineering design contests, a characterization of engineering problem types with varying problem
complexities and its impact on designers’ competitive behaviors needs further investigation. We
did not find existing literature, however, on computational quantification of a participant’s beliefs
about their competitors.

Our STADM-C model quantifies the causal influence of competition-specific information on a
contestant’s belief about their competitors, their stopping decisions for information acquisition and
thereby, the design outcomes. Such a quantification, to the best of our knowledge, is the first
attempt to computationally incorporate cognitive, unobservable, and individual-specific factors in
engineering design competition scenarios. Based on the inference of the modeled parameters on

contestants’ beliefs about their competitors, we suggest that contest designers are better off not
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providing historical performance records if past design qualities do not match the expectations set
up by the sponsors for a given design contest. Thus, the primary contribution of this study is the
understanding and quantification of how competition-specific information influences design contest
outcomes, behaviors, and cognition.

We acknowledge that, in reality, design competitions may involve participants learning about
competitors’ decisions for the current contest rather than just the past, and the contests may
have more than one prize. Similarly, there are different problem-types which influence the contest
outcomes [66, 65]. Our choice of focusing on a specific class of design contest scenarios is a deliberate
one because such contests are a natural starting point [59] in the larger space of the various types

of design contests. These extensions are potential avenues for future work.
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Appendices

A Inferring an individual’s type from experimental observations

The goal of this section is to describe how one can infer the type of an individual 6 given a set of

experimental history observations

ht = he—1 U {(2t, Y1, 5t) }- (26)

We proceeded in a Bayesian way which required the specification of a prior for 6, p(6), a likelihood
for hy given 0, p(h¢|f). The posterior state of knowledge about the type 6 is simply given by Bayes’

rule:

p(0]hs) o< p(he|0)p(0), (27)

and we characterized it approximately via sampling. We now describe each of these steps in detail.
Following the discussion of the previous section, we associated the type with the vector of pa-
rameters 0 = (up, 0p, 0, @, ), all of which have already been defined. From a Bayesian perspective,
we described our prior state of knowledge about # by assigning a probability density function to
them, i.e., 8 became a random vector modeling our epistemic uncertainty about the actual type.
However, to highlight the distinction between 6 and the random variables we defined in the previous
section, we did not capitalize 6. Specifically, the random variables, X;, Y%, .S, are associated with
the subject’s behavior, whereas 6 is associated with our beliefs about the statistics of Xy, Y;, S;.

Having no reason to believe otherwise, we assumed that all components are a priori independent,
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i.e., the prior probability density (PDF) factorizes as:

p(0) = p(p)p(ow)p(o)p(e)p(B), (28)
where, Ug, 02, a, and B are assigned an uninformative Jeffrey’s prior, i.e., p(cy) o %, and
wup ~ U[50,200]. (29)

The range of the uniform distribution was chosen based on the design of the experiment. Note
that here we have silently introduced a convenient notational convention, namely p(v), which is the
PDF of the related random variable evaluated at a given point v.

The second ingredient required for Bayesian inference of the type is the likelihood of the data

h; conditioned on #. This was implicitly defined in the previous section. We have:

p(hilho,0) = [ p(hr|hr—1,6), (30)

r=1

since the model is Markovian. For each term within the product we have:

p(h'r’hr—la 0) = p(xr‘hr—lv 0)p<yr‘$r; hy—1, Q)P(Sr’%, Yr, hy—1, 9)7 (31)

where we simplified using the definition of h,, and the fact that, according to our model, the
next design point is fully determined by the previous history, the next observed performance fully
determined by the design, and the stopping decision fully determined by all design-performance
pairs observed thus far.

We note that while an individual’s belief about the design performance Y is dependent on
their type 6, the inference about an individual’s type does not depend on the value of the design
performance y, which is beyond the participant’s control. From a decision-making perspective, a
participant decides to choose z and decides to stop s,. However, they did not decide the design
performance. Thus, the middle term is constant with respect to theta, and it is dropped from

Equation 31. The first term in Equation 31 is,

Dl lhr_1,0) ~ A (argxe%%o] EI(x;htxa?) | (32)

where, the range of = is based on the design range available to the participants in the experiment.

From Equation 25 we get that the last term is,

p(sr’xra Yry 1, 9) = [Sigm(_aéﬂ'r(ﬂba Ub) - B)]ST [1 - Sigm(_aéﬂ'r(ubv Ub) - B)]lisr ) (33)

where O, (up, 0p) is the realization of AIl, of Equation 3.2.4 when X, = 2, Y, = yp, Hy—1 = hyp—1

and for up and o as in the conditioning 6.
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We sampled from the posterior using the No-U-Turn Sampler (NUTS) [67], a self-tuning variant

of Hamiltonian Monte Carlo [68] from the PyMC3 [69] Python module. We ran the MCMC chain

for 4000 iterations with a burn-in period of 500 samples that are discarded. Equation 27 is used to

estimate the researcher’s posterior over 6 for an individual given their (individual’s) search data.
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