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Extracting an individual’s scientific knowledge is essen-
tial for improving educational assessment and understand-
ing cognitive tasks in engineering activities such as reason-
ing and decision making. However, knowledge extraction
is an almost impossible endeavor if the domain of knowl-
edge and the available observational data are unrestricted.
The objective of this paper is to quantify individuals’ theory-
based causal knowledge from their responses to given ques-
tions. Our approach uses directed acyclic graphs (DAGs) to
represent causal knowledge for a given theory and a graph-
based logistic model that maps individuals’ question-specific
subgraphs to question responses. We follow a hierarchical
Bayesian approach to estimate individuals’ DAGs from ob-
servations. The method is illustrated using 205 engineering
students’ responses to questions on fatigue analysis in me-
chanical parts. In our results, we demonstrate how the de-
veloped methodology provides estimates of population-level
DAG and DAGs for individual students. This dual represen-
tation is essential for remediation since it allows us to iden-
tify parts of a theory that a population or individual struggles
with and parts they have already mastered. An addendum of
the method is that it enables predictions about individuals’
responses to new questions based on the inferred individual-
specific DAGs. The latter has implications for the descriptive
modeling of human problem-solving, a critical ingredient in
sociotechnical systems modeling.

Keywords: Knowledge Representation, Theoretical
Knowledge, Bayesian Inference, Item Response Theory

1 Introduction

The use of scientific knowledge is prominent in engi-
neering education and design. Engineering students use the
theoretical knowledge of mechanics of materials, thermody-
namics, and control engineering to devise mechanical and
electrical components. Designers use scientific knowledge
to extrapolate from experiments to real-world applications.
Having the ability to quantify individuals’ scientific knowl-
edge can advance both engineering education practices and
design research. First, this ability would make it possi-
ble to assess students’ knowledge accurately [1], and to de-
velop personalized educational support tools [2] [3]. Sec-
ond, scientific knowledge is an essential ingredient of engi-
neering design expertise necessary for design problem fram-
ing and problem-solving [4] [5]. A descriptive decision-
making model incorporating prior knowledge can better un-
derstand how designers carry out inductive and deductive
reasoning tasks [6] [7] [8]. Furthermore, quantifying indi-
viduals’ knowledge structures is essential for understanding
design cognition, expert-novice behaviors, and systems that
mimic human problem-solving [9].

The representation of scientific knowledge requires
quantifying causal knowledge about specific relationships
among the concepts that make up a theory. There is a need
for approaches that extract such detailed causal knowledge
from individuals’ responses. Primary methods in student
response modeling (e.g., three-parameter logistic model in
item response theory [10]) represent student knowledge us-
ing a single node, the so-called “ability” [11] [12] [13]. In
such methods, a small number of parent nodes (e.g., abil-
ity, educational history, family background) predict whether
a student will succeed or fail in an exam. But modeling the
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ability using a single parameter is not adequate for situa-
tions where a large amount of domain knowledge is required,
such as in engineering education. Recent advances in student
modeling propose dynamic Bayesian networks to explicitly
model prerequisite skill hierarchies and yield meaningful in-
structional policies [14] [15] [16]. Nevertheless, these ap-
proaches still lack the methods for statistical inference of
individual-specific Bayesian networks from observed exam
responses.

To address this knowledge gap, the objective in this pa-
per is to quantify individuals’ theory-based causal knowl-
edge from individuals’ responses to given questions. As the
objective suggests, the paper focuses on a specific type of
scientific knowledge, called theory-based causal knowledge.
Theory-based causal knowledge relies on widely-accepted
principles for explaining physical phenomena where rela-
tions between physical variables are governed using causal
relations. Our approach builds on directed acyclic graphs
(DAG), i.e., graphs with directed links with paths that form
no cycles, representing causal knowledge. For example, con-
sider the DAG in Fig. 1 (far-left) shows, representing the
causal knowledge associated with the distortion energy the-
ory of static failure. There are six physical variables, X =
{F,G,Sy,M,σ,ny}, represented as nodes in the graph. Vari-
able F represents the loading applied to a mechanical com-
ponent with geometry G. The external loading, F , causes the
component to developing internal moment M as shown using
a link directed from F to M. The internal moment, M further
induces normal stress σ. Normal stress σ and yield strength
Sy are used to calculate the yield factor of safety ny. In Fig. 1,
you can also find a schematic of the proposed knowledge ex-
traction methodology. We assume an ideal DAG dictates how
different physical variables are interconnected for a given
theory. Then, we assume that each individual has a unique
DAG, not directly observable, and we model the probability
that causal relations are correctly identified (prior). Given an
individual’s graph, we devise a graph-based logistic (GrL)
model that maps question-specific subgraphs of an individ-
ual’s DAG to the probability of responding correctly to the
given question (likelihood). In particular, we assume that
the probability of a correct response to a question is propor-
tional to the fraction of question-specific causal links—from
the true DAG—that an individual knows correctly. Finally,
we use hierarchical Bayesian inference to estimate the pos-
terior over individuals’ DAGs conditioned on the observed
responses to different questions. The advantage of hierarchi-
cal Bayesian inference methodology is that it can infer the
population- and individual-level uncertainty in model param-
eters when few observed responses are available. This paper
provides multiple improvements in the Bayesian methodol-
ogy compared to our previous work in Ref [17]. These im-
provements are noted throughout the paper.

We illustrate the approach by modeling the DAGs of
undergraduate engineering students about the theory of fa-
tigue failure of mechanical components. The dataset in-
cludes questions testing the students’ knowledge about in-
ternal stresses, the endurance limit, adjustments to the en-
durance limit, and the factor of safety against fatigue fail-

ure [18].
The results from the study highlight the merits of our ap-

proach for quantification of individual-specific causal knowl-
edge as well as for predictions of individuals’ responses to
unseen questions. Our approach enables the identification of
parts of a theory that a subject struggles with and the features
they have already mastered, both essential for providing in-
dividual feedback for personalized education. Moreover, our
approach makes it possible to draw inferences from an in-
dividual’s estimated knowledge structure to new situations
based on the same theory. Such extrapolation is needed be-
cause there are many different problems for a given theory
that individuals can solve, and circumstances never repeat
themselves perfectly.

The organization of this paper is as follows. In Sec-
tion 2.2, we provide the necessary background on item re-
sponse theory. Section 3 provides mathematical details of
DAGs, a graph-based logistic model, and the hierarchical
Bayesian inference approach. In Section 4, we describe the
experimental dataset. In Section 5, we present our results
and highlight the salient features of the method. Finally, we
discuss the implications of these results from engineering ed-
ucation and design. Section 6 summarizes the key conclu-
sions.

2 Related Work

2.1 Knowledge Representation in Engineering Design

Domain-specific knowledge can be structured in differ-
ent ways, e.g., causal relations, taxonomies, rules, procedu-
ral knowledge, etc. [19–21]. Many studies undertake com-
putational approaches for representing knowledge of design
processes and design artifacts, e.g., in the product systems
design [22, 23]. The goal of these computational studies is
to discover generalized and specialized product knowledge
from design databases for supporting tool development for
improved analogical design. Dong and Sarakar [24] rep-
resent complex products and processes as matrices where
nodes are product elements and cells are structural, func-
tional or behavioral relationships between nodes. Then, they
derive generalized design knowledge as the macroscopic
level information from matrix representations using singular
value decomposition. With the goal of quantifying a prod-
uct’s innovativeness in terms of component-level decisions,
Rebhuhn et al. [25] represent the product design process as
the hierarchy of product, function, and components. They
use multi-agent models to propagate novelty scores of prod-
ucts down to the component level. Siddharth et al. [26] de-
velop engineering knowledge graph by aggregating entities
and their relationships from a patent database. Fu at al. [27]
analyze the US patent database and discover different struc-
tural forms such as hierarchy and ring. Despite this devel-
opment, computational approaches for representing and es-
timating an individual’s theory-driven causal knowledge are
lacking. The proposed methodology addresses this gap by
modeling theory-specific causal knowledge as a probabilis-
tic causal graph and estimating person-specific causal graphs
using Bayesian inference.
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Fig. 1. A schematic for the forward probabilistic graphical method. An example of the question-specific subgraph for calculation of internal
moment M comprises of variables (F,G,M).

2.2 Background on Item Response Theory

Item response theory (IRT) describes fundamental prin-
ciples for formal assessment of individuals’ characteris-
tics [28] [10] [29]. IRT is based on the relationship between
an individual’s performance on test items and the individ-
ual’s overall ability characteristics, which the test is designed
to measure. Several statistical models are used to model
individual characteristics and test items. IRT-based models
have two standard components: (i) they represent an individ-
ual’s ability in terms of single- or multi-dimensional latent
parameters, and (ii) they represent the probability of correct
response as a monotonically increasing function of ability.
This function of ability is sometimes called the item char-
acteristic curve. An example application of IRT is the force
concept inventory which tests the Newtonian concepts along
six dimensions such as kinematics, impetus, active force,
action-reaction pairs, concatenation of influence, and other
effects such as centrifugal forces [30].

Different IRT models are distinguished based on the
number of parameters used to define the item characteris-
tic curve. The three-parameter logistic (3PL) model is a
basic IRT model for binary response (correct or incorrect).
Assuming that R individuals are tested on L questions, the
3PL model has one person-specific ability parameter θr,
r = 1, . . . ,R, and the three question-specific parameters for
l = 1, . . .L are as follows:

1. Problem discrimination αl: This measures how the
probability of answering a question correctly changes
with ability.

2. Problem difficulty βl: This measures problem difficulty
based on the ability required to get the correct answer.

A higher ability to solve a given problem corresponds to
greater problem difficulty.

3. Pseudo-guessing parameter cl: This accounts for the
probability of getting a correct answer by guessing in
a multiple-choice question and is one over the number
of choices.

Let Erl taking values in {0,1} denote the answer that individ-
ual r gives to question l. The probability of a correct answer,
i.e., the response likelihood, is:

p(Erl = 1|θr,αl ,βl ,cl) = cl +(1− cl)sigm(αl (θr−βl)) ,
(1)

where sigm(x) = 1/(1+ e−x) is the sigmoid function. Fig. 2
visualizes the 3PL likelihood function for fixed slope αl ,
threshold β, and guessing parameter cl . The guessing pa-
rameter cl corresponds to the pseudo guessing probability.
The slope parameter αl characterizes the problem discrimi-
nation. The threshold parameter β accounts for the problem
difficulty. The likelihood of a correct response monotoni-
cally increases with a person’s ability.

Building on IRT, multidimensional IRT (MIRT) mod-
els represent an individual’s ability to use more than one di-
mension are state-of-the-art [31]. In such models, a vector
of independent dimensions replaces a unidimensional abil-
ity parameter. However, there are limitations to applying
MIRT when measuring the interconnected ability character-
istics. MIRT models assume that all ability dimensions are
required for answering any question correctly, and the prob-
ability of a correct response increases with every dimension
(monotonicity assumption). MIRTs do not allow for the pos-
sibility that a question may require only a subset of ability
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Fig. 2. Graphical representation of the three-parameter logistic
(3PL) model given in (1). Slope αl , threshold β, and guessing pa-
rameter cl represent the problem discrimination, problem difficulty,
and the pseudo-guessing probability, respectively.

dimensions to answer correctly. They also assume that the
responses of different questions are uncorrelated and based
on independent ability dimensions (local independence as-
sumption). This assumption does not allow us to make pre-
dictions of answers to unseen questions.

IRT models mainly represent unidimensional or inde-
pendent multidimensional ability parameters. They do not
define more complex, interconnected ability characteristics,
such as a knowledge graph. The graphical ability represen-
tation requires only a subset of the most relevant ability di-
mensions to explain an individual’s performance on a ques-
tion. Also, current IRT models can only predict responses for
test questions used while training the model. The question-
specific parameters in the item characteristic curve do not
allow predictions to be made on unseen questions. There is
also little work in the literature on how we can accurately
infer multi-dimensional ability from test responses. The pre-
sented approach addresses the above limitations of the ex-
isting IRT models in the following manner: (i) it imposes a
theory-specific structure on individual-specific ability, which
is essential because the nature of human knowledge is best
represented through the strong constraints of domain knowl-
edge [32] [8] [33]; (ii) it incorporates Bayesian statistical
inference to estimate the individual-specific ability dimen-
sions and represents uncertainty in these estimates. Section
3 presents mathematical details of this approach.

3 Methodology

The proposed method involves the following steps for
representing individuals’ theory-based causal knowledge: (i)
define a structure over the true causal knowledge for a given
theory, (ii) model a priori uncertainty in how much individu-
als know of the true causal scientific knowledge, (iii) defines
the relationship between an individual’s knowledge and the
probability of correct response to theory-related questions,
and (iv) characterize the posterior probability over individu-
als’ causal scientific knowledge conditional on the observed
question responses.

3.1 Representing Causal Knowledge as Directed
Acyclic Graph

We use DAGs to represent causal relationships in a sci-
entific theory. DAGs are graphs consisting of directed links
connecting pairs of causally related physical variables with
the additional requirement that there are no cyclic paths of
directed links. The DAG is an abstraction of structural equa-
tions, which may include a diverse set of mathematical mod-
els, computer algorithms, etc. [34]. In such structural equa-
tions, some variables are inputs, and some are outputs, and
the interpretation is that the input variables cause the output
variables. These causal relationships are represented with
directed links, putting aside the specific equations. For ex-
ample, Fig. 5 shows a simplified graphical representation of
the causal relationships between variables in the stress-based
theory of fatigue failure.

An important assumption is that the causal knowledge
being modeled is propositional (i.e., the person knows a
functional relationship between two variables) rather than
procedural (i.e., the person knows a rule) [15]. Further, the
physical variables in a DAG can take any real value. Still, the
causal links between physical variables are binary, i.e., a link
either exists or does not exist. This simple representation still
lets us quantify the effects of individuals’ knowledge on their
responses to theory-related questions.

We also assume that a true knowledge graph, including
a set of physical variables and their causal links, is com-
pletely known for the theory under study. Subject matter
experts can construct such true causal knowledge (e.g., ex-
perienced engineers or teachers) or prior knowledge database
(e.g., records of theory-based experiments) [12]. Representa-
tion of scientific theories in DAGs is feasible because DAGs
involve directed links, and their connected paths are acyclic.
Every directed link connecting two variables assumes that
the starting variable is the cause and the ending variable is
the effect. The nonexistence of cyclic paths ensures that a
variable cannot be its cause. Note that any feedback loops
may be represented by appropriately expanding the DAG in
time. Mathematically, let X = {x1,x2, . . . ,xN} be the set of
physical variables relevant to a given scientific theory. The
true knowledge graph for a specific theory is an N×N binary
matrix, KTrue = [kTrue

i j ], where kTrue
i j is 1 if the variable xi is a

direct cause of x j and 0 otherwise.

3.2 Modeling Individuals’ DAGs and their Relationship
to the Correctness of Responses

We assume that a person’s knowledge graph is always
a subgraph of the true knowledge graph of the theory. This
means that if the theory has no direct link from xi to x j, then
a person does not makeup such a link. This ensures that a
subgraph is acyclic if the true graph is acyclic. We can only
test an individual’s knowledge in intersection with the true
knowledge graph. If the individual has the wrong knowledge
graph, they will get the wrong answer. Without the constraint
of the true knowledge graph, there will be N(N− 1)/2 pos-
sible links and 2N(N−1)/2 possible knowledge graphs for N
known variables. The inference of the individualistic knowl-
edge graph then becomes intractable even for moderate N.
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To quantify a priori uncertainty, we assign a prior prob-
ability measure over the space of knowledge graphs. Hierar-
chical Bayesian modeling further allows us to represent the
causal knowledge of each individual and the population in
terms of parameters of the prior distribution (hyperparame-
ters). Then, a graph-based logistic model quantifies the ef-
fect of individuals’ causal knowledge on their responses to
theory-related questions. Fig. 3 represents the plate-notation
diagram for the proposed hierarchical Bayesian model.

Fig. 3. The plate-notation diagram for the proposed hierarchical
Bayesian model. The filled nodes represent the observed variables.

3.2.1 Prior over Knowledge Graphs of Individuals

Let the N×N matrix Kr = [kr,i j] represent the r-th in-
dividual’s knowledge about the causal links using the same
encoding as in KTrue. Prior to making any observations, we
model our belief that individual r knows about the existence
of a true link between xi and x j by:

p(kr,i j = 1|kTrue
i j = 1,ar,i j) = ar,i j, (2)

where ar,i j is a hyper-parameter taking values in [0,1]. Sim-
ilarly, the probability that the person does not know that the
causal link exists is p(kr,i j = 0|kTrue

i j = 1,ar,i j) = 1− ar,i j.
Given the matrix of prior link probabilities Ar = [ar,i j], the
prior over the causal graph of individual r is:

p(Kr|KTrue,Ar) = ∏
i, j:kTrue

i j =1

p(kr,i j|kTrue
i j = 1,ar,i j)

= ∏
i, j:kTrue

i j =1

a
kr,i j
r,i j (1−ar,i j)

1−kr,i j .
(3)

The reader should note that the product is only over the true
causal links.

To capture known correlations between different causal
links and reduce the number of parameters, we impose an
additional assumption on the link probabilities. Namely, we
assume that some link probabilities are identical based on an
expert belief about whether or not they require the knowl-
edge of the same structural equations. For instance, Fig. 5
represents a knowledge graph in which different subgroups
of variables are enclosed in separate boxes. We assume that
different directed links connecting variables between two
fixed subgroups require the knowledge of the same causal
relationships. Then those links are assigned the same link
probability. For example, the probability of all links between
Marin Factors and variable Se are equal.

3.2.2 Hyperprior over the Population-level Knowledge
Graph

To represent the population’s aggregate causal knowl-
edge, we need to assign hyper-priors to the link probabil-
ity matrices Ar. To that end, we reparameterize the link
probability ar,i j using continuous latent variable âr,i j in R,
which may be interpreted as individual r’s link-specific abil-
ity. Then, we assign a normal distribution as the hyper-prior
over âr,i j. The mean parameter in âr,i j’s hyper-prior repre-
sents the group means of the population’s link-specific abil-
ity. Furthermore, rather than sampling an individual’s link-
specific ability âr,i j from a fixed hyper-prior, we represent
it using a systematic offset from the group mean. This ap-
proach of representing hyperpriors is called “non-centered
parameterization,” which is an intuitive way of quantifying
hierarchical information for large population size and eases
exploration of “funnels” in hierarchical models [35]. Let
µi j represent the group means of the population’s ability for
causal link i j. Let an individual r’s offset from the mean
ability be τr,i j. Then, the individual’s link-specific ability is
defined as âr,i j = µi j + τr,i j. Finally, the link probability for
individual r is found by passing the latent link-specific abil-
ity âr,i j through a sigmoid function:

ar,i j = sigm(µi j + τr,i j), (4)

The non-centered reparameterization helps to effectively
capture the population-level and individual-specific causal
knowledge in terms of model parameters.

The group means µi j of these hyper-priors are unknown
and, also, of potential interest because they represent the
population’s link-specific abilities. Therefore, we assign
prior distributions to them for quantifying uncertainty in their
values. The group means µi j can take any value on the real
line and has a normal distribution. The offset parameter τr,i j
represent an individual-specific quantile in the population-
level distribution and is modeled using a normal distribution.
The specific shape and scale parameters of the probability
distributions are chosen as follows:

µi j ∼ Normal(0,1),
τr,i j ∼ Normal(0,15).

(5)
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Individual-specific offset τr,i j is chosen to have a significant
variance to allow a large deviation from the population mean.
For a slight variance in τr,i j, the individual-specific link prob-
ability would converge to the population’s mean.

This model uses a different prior distribution for every
link in the knowledge graph and a non-centered parameter-
ization for representing the hyper-priors. In constrast, our
previous work [17] defined same prior distribution over each
link and used a centered parameterization for hyper-priors.
The rationale for these change are that separate prior dis-
tributions allow us to better study the correlation between
individuals’ link-specific abilities and the non-centered pa-
rameterization helps better posterior exploration.

3.2.3 The Likelihood of Correct Responses by Individ-
uals

In contrast to the IRT, our model requires detailed
knowledge about the subgraph of the true knowledge graph
that each question tests. Each question involves a set of input
variables and an output variable to be evaluated. A question
using multiple output variables may be divided into separate
questions, each with a single output variable. A person an-
swers the question by providing a value of the output vari-
able. The knowledge relevant to answer question l is part
of the knowledge graph that connects the input variables to
the output variable. Mathematically, we can get the relevant
subgraph from the knowledge graph using an N×N reduc-
tion matrix Ql , whose cell value ql,i j is 1 if variable xi and
x j belongs to the set of relevant input variables and zero oth-
erwise. Then, the true knowledge subgraph for question l is
the Hadamard product (elementwise product) of the reduc-
tion matrix Ql and the true knowledge graph KTrue, denoted
as Ql ◦KTrue. In matrix Ql ◦KTrue irrelevant variables have
been replaced by zeros. Furthermore, we assume that r-th
individual’s response to question l depends only on the rele-
vant subgraph Ql ◦Kr.

To proceed, we postulate that the probability that an in-
dividual’s correct response is a function of how close the in-
dividual’s relevant knowledge subgraph is to the true knowl-
edge subgraph. We propose that the fraction of relevant links
that a person correctly identifies represents the person’s nor-
malized problem-specific ability. Specifically, for question
l, the number of relevant links is ‖ Ql ◦ KTrue ‖1, where
‖ B ‖1= ∑i, j |bi j| is the sum of absolute cell values of ma-
trix B. Notice since the individual’s knowledge graph is a
subgraph of the true graph, the number of correctly matched
links is simply ‖ (Ql ◦Kr)◦(Ql ◦KTrue) ‖1. Thus, the fraction
of correctly identified links is:

φ(Ql ◦Kr,Ql ◦KTrue) :=
‖ (Ql ◦Kr)◦ (Ql ◦KTrue) ‖1

‖ (Ql ◦KTrue) ‖1
. (6)

This quantity is normalized by the number of all relevant
links for a given question.

Similar to the 3PL model in IRT, we have the follow-
ing parameters to represent the problem-related effects when
modeling the probability of correct response:

1. Slope parameter α: The sensitivity of the probability of
correct answer to the normalized problem-specific abil-
ity φ(Ql ◦Kr,Ql ◦KTrue).

2. Threshold parameter β: The minimum fraction of cor-
rectly identified links required to answer correctly with
probability greater than 0.5. This parameter quantifies
the relevance of selected question-specific links for cor-
rectly answering a given set of questions.

3. Pseudo-guessing parameter cl : The probability of cor-
rect answer by guessing alone. This parameter is de-
pendent on how many choices are available and how re-
sponses are evaluated. Generally, the pseudo-guessing
probability equals one over the number of possible an-
swers.

4. Slip parameter s: This accounts for the possibility that
an individual may know the right causal graph, but they
may not be able to use it correctly, for reasons such as
available information is limited, grading criteria are un-
known, or they make numerical errors.

Slope, threshold, and slip parameters are independent of a
test question because of how the ability is defined. The
problem-specific ability variable φ(Ql ◦Kr,Ql ◦KTrue) incor-
porates problem difficulty, unlike the ability variable in the
3PL model. This design allows us to predict responses to
unseen questions directly from the individual’s knowledge
graph and a given pseudo-guessing probability.

Finally, the probability that individual r answers ques-
tion l correctly is a transformed sigmoid function:

p(Erl = 1 | Ql ,Kr,cl ,α,β,s,KTrue)

= a+bsigm
(
α(φ(Ql ◦Kr,Ql ◦KTrue)−β)

)
.

(7)

To calculate scaling factors a and b, we simultaneously solve
two constraints that impose a lower bound cl and an upper
bound 1− s on the probability of correct response:

p
(
Erl = 1 | φ(Ql ◦Kr,Ql ◦KTrue) = 0

)
= cl ,

p
(
Erl = 1 | φ(Ql ◦Kr,Ql ◦KTrue) = 1

)
= 1− s.

(8)

Accordingly, we find that the scaling factors are b =
1−s−cl

sigm(α(1−β))−sigm(−αβ) and a = cl − bsigm(−αβ). An indi-
vidual with zero knowledge relevant to question l might an-
swer correctly, by guessing, with a probability cl . After ac-
counting for the slip parameter, an individual with complete
knowledge will answer correctly with a probability of 1− s.
The previous work in Ref. [17] did not have any parameter
(similar to s) to account for individuals’ propensity to fail
even after having the right knowledge.

We call this likelihood function—the graph-based logis-
tic (GrL) model. Parameters α and β are invariant across dif-
ferent questions because each question’s explanatory quan-
tity φ is normalized. Moreover, global parameters α and β are
meant to quantify the suitability of the questions for testing
the true knowledge graph, or equivalently, the utility of the
true knowledge graph for answering the questions. A large
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slope α would signify an abrupt change in the correctness
probability and, thus, significant sensitivity to the fraction of
correctly identified links. Additionally, the threshold β closer
to 1 would imply that individuals need to know all the rele-
vant links to answer the given questions correctly. Finding
that α is of the order of 10 and β close to 1 would indicate
that the true knowledge graph and given questions are per-
fectly compatible with each other. For illustration, Fig. 4
visualizes the probability of answering question l correctly
as a function of the fraction of perfectly matched links.

Fig. 4. The graph-based logistic (GrL) model represents the prob-
ability of correct response as a function of the normalized problem-
specific ability, as defined in (7).

The GrL model assumes that all relevant links have
equal importance in answering a question. Other models as-
sign weights to relevant links for quantifying their relative
importance [1], which introduces additional model parame-
ters. But the GrL model focuses on quantifying individuals’
causal knowledge and does not infer relationships between a
scientific theory and given questions. To quantify errors due
to incorrect identification of relevant links, the GrL allows
for a possibility that knowing a fraction of relevant links can
result in a correct answer (through threshold β). Therefore,
the GrL model is an extension of models requiring all rele-
vant links for a correct answer (the AND-type influence) and
models directing at least one link for a correct answer (the
OR-type influence) [15].

Like the prior over individuals’ knowledge graph, we
need to assign priors for model parameters in the likelihood
function in (7). For the analysis in this paper, we assume zero
chances of pseudo-guessing and take cl = 0 for all questions.
The slope α can only take positive values and should be of or-
der ten or higher, implying that the model can effectively dif-
ferentiate between individuals with different abilities. Since
the threshold β can take values between 0 and 1, we assign
it a flat distribution. Finally, the slip parameter s should be

close to zero. The following are the priors over α, β and s.

α∼ Exponential(0.1),
β∼ Beta(1,1),
s∼ Beta(0.5,1),and
cl = 0.

(9)

3.3 Conditioning Individuals’ DAGs on Observed Re-
sponses

Next, a posterior distribution over causal links in a DAG
quantifies the uncertainty about an individual’s causal knowl-
edge, given the observed question responses.

3.3.1 Posterior over Individuals’ Knowledge Graphs

According to (4), the individual-specific link probabil-
ities are reparameterized using the latent model parameters
representing the population-level causal knowledge. The
likelihood function in (7) contributes three additional model
parameters, slope α, threshold β, and slip factor s (guessing
is assumed absent cl = 0). Let V = {µi j,τr,i j}r=1:R;i, j=1:N ∪
{α,β,s} represent the set of these latent model parame-
ters. Then, after observing individuals’ responses E =
[Erl ]r=1:R;l=1:L, the following Bayes’ rule gives the posterior
probability distribution over the model parameters:

p(V |E) = p(E|V )p(V )

p(E)
. (10)

The likelihood of observed question responses p(E|V ) =

∏r=1:R;l=1:L p(Erl |V ) is defined by the graph-based logistic
model from (7). The prior distributions over model parame-
ters p(V ) are defined a priori, possibly by assigning indepen-
dent priors over the model parameters. The model evidence
p(E) =

∫
Ω

p(E|V )p(V )dV is the integration of conditional
likelihood probability over the entire parameter space Ω.

3.3.2 Procedure for Sampling from the Posterior

The final step is to sample parameter values from the
joint posterior in (10). A common approach for estimat-
ing the posterior distribution is Metropolis-Hastings Markov
Chain Monte Carlo (MCMC) algorithm. However, sam-
pling the posterior for a hierarchical Bayesian model using
Metropolis-Hastings MCMC can be slow [36], especially for
large graphical models. Instead, this study employs the No-
U-Turn sampler (NUTS) that extends the Hamiltonian Monte
Carlo method [37]. The PyMC3 library in a Python envi-
ronment implements the NUTS [38]. To further speed-up
sampling using the NUTS, we reparameterize the binary link
variable kr,i j into an unconstrained real variable using a sig-
moid function of latent variable λr,i j, while ensuring that the
link probability ar,i j remains the same. The specifics of the
reparameterization are as follows:

λr,i j|ar,i j ∼ Normal(Φ−1(ar,i j)),1),
kr,i j = sigm(50λr,i j).

(11)
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The function Φ−1 is the inverse cumulative density function
of the standard normal distribution. Using a significant value
of slope (=50) in the sigmoid function ensures that the repa-
rameterized kr,i j is very close to 0 or 1, and its values can be
directly used for likelihood calculations in (6).

4 Dataset

An anonymized dataset for training and testing the pro-
posed model was collected from the responses to questions
in a final exam of an undergraduate machine design course.
Note that the exam was not explicitly designed for this paper;
instead, it was a part of an observational study. The dataset
consists of responses to 13 questions by 205 undergraduate
mechanical engineering students. The exam tested the stu-
dents’ aggregated knowledge about the concepts of fatigue
failure analysis using a circular shaft design problem. The
students did not receive monetary incentives for their partic-
ipation; however, being the final exam, they were motivated
to achieve the best possible grade. The exam tested each stu-
dent’s domain-specific knowledge using a total of 13 ques-
tions with an overall goal of estimating the factor of safety
against fatigue failure. Refer to appendix 6 for the problem
statement and a list of questions provided to the students dur-
ing the exam.

The questions were intended to test the knowledge of
causal relationships between variables shown in Fig. 5. Here
variable F represents the external loading applied to the steel
shaft with geometry G, which is operated at room tempera-
ture T . The external loading, F , causes the bar to develop
bending moment M. Variable R is the reliability requirement
for the bar. The ultimate tensile strength Sut is a material
property. The theoretical endurance limit Se′ is defined in
terms of the ultimate tensile strength Sut using empirical re-
lations [18, sec. 6-7]. The nominal stress σo is adjusted by
multiplying with the fatigue stress-concentration factor for
bending K f . The adjusted stresses are shown as σ. The en-
durance limit Se′ is adjusted through multiplication by Marin
Factors for different surface finish conditions, size, loading,
temperature, and various factors. This adjusted endurance
limit is denoted as Se. Finally, the factor of safety (FOS) is
shown as n f .

Each question included input variables (design param-
eters) and expected the students to calculate an output vari-
able. Table 1 summarizes the input variables, output vari-
ables, and the relevant causal links for all 13 questions. For
illustration, consider question 2 and question 9, which are
highlighted using loosely spaced dashes and densely spaced
dots, respectively in Fig. 5. In question 2, the subjects are re-
quired to calculate the bending moment Mmax in terms of the
force Fa. To answer this question correctly, the subjects need
to know how the external loading F causes a bar with geome-
try G to develop internal loads (bending moment) M. There-
fore, for question 2, the bending moment M becomes the out-
put variable, and force F and geometry G become the input
variables. Similarly, for question 9, nodes Se′,ka,kb,kc,kd ,
and ke are the input variables and endurance limit Se be-
comes the output variable. The input variables cause the out-
put variables and answers to a given question to depend on

parent nodes for that question.

Table 1. Causal links required to answer the questions

Ques-
tion

Design
Parameters

Output
Parameter

Relevant Causal
Links

Q1 F,G,M σo
(G,M), (G,σo),
(F,M),(M,σo)

Q2 F,G M (G,M), (F,M)

Q3 G,M,σo,K f σ

(G,M), (G,σo),
(M,σo), (σo,σ),
(K f ,σ)

Q4 Sut Se′ (Sut ,Se′)

Q5 G,Sut ka (G,ka) (Sut ,ka)

Q6 F,G kb (F,kb),(G,kb)

Q7 R ke (R,ke)

Q8 F,T kc,kd (F,kc), (T,kd)

Q9
Se′, ka, kb, kc,
kd , ke

Se
(Se′,Se), (ka,Se),
(kb,Se), (kc,Se),
(kd ,Se), (ke,Se)

Q10 σ,Se n f (σ,n f ), (Se,n f )

Q11 F,G M (G,M), (F,M)

Q12 G,M,σo,K f σ

(G,M), (G,σo),
(M,σo), (σo,σ),
(K f ,σ)

Q13 F,G,M σo
(G,M), (G,σo),
(F,M),(M,σo)

5 Results and Discussion

The results include posterior estimates of model pa-
rameters and checks for model accuracy for both the three-
parameter logistic (3PL) model and the graph-based based
logistic (GrL) model. Specifically, the following four parts
constitute the results: i) model checking where we ana-
lyze the model fit, ii) comparing the estimates of individual-
specific aggregate ability with the observed exam score, iii)
evaluating question difficulty in terms of estimated model pa-
rameters, and iv) analyzing individuals’ causal knowledge in
terms of estimated direct acyclic graphs. The analysis uses
the training dataset and testing dataset as two partitions of
the exam questions to perform model checking. The re-
sponses to questions Q1 to Q10 form the training dataset,
whereas the answers of questions Q11,Q12, and Q13 form the
testing dataset. Note that the relevant links for the testing
dataset should be a subset of the relevant links for the train-
ing dataset.

Similar to the GrL model, this work opts for a Bayesian
approach for training the 3PL model. The model parameters
in (1) have the following prior distributions, assuming the
ability parameter θr is a real number, the slope αl and the
threshold βl are positive, and, µ̂ and σ̂ are the hyperpriors
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Fig. 5. The true directed-acyclic graph for the scientific knowledge of fatigue failure. The loosely dashed and densely dotted nodes represent
the relevant variables for questions 2 and 9, respectively.

over θr:

µ̂∼Normal(0,2),
σ̂∼Gamma(1.5,1),

θr ∼Normal(µ̂, σ̂),
αl ∼Lognormal(0,1),
βl ∼Lognormal(0,1), and
cl =0.

(12)

The hyperpriors let us estimate the posterior distributions
over hyperparameters without the need for manual tuning.
The training procedure for hyperparameters is similar to that
of the other parameters.

In both the GrL and the 3PL models, we assign value
zero to the pseudo-guessing parameter, cl = 0. The pseudo-
guessing probability cl is not estimated from observations,
rather it represents the intrinsic uncertainty in randomly
guessing the correct answer. Of course, this uncertainty de-
pends on how many choices are available and how responses
are evaluated. In our case, the dataset consists of written
responses graded by humans. Given the problems can be an-
swered in an arbitrary way, the number of possible answers
is infinite and thus the probability of guessing the answer
correctly is zero.

We train both models using the NUTS sampler of the
PyMC3 library in a Python environment [38]. Posterior pa-
rameter samples are computed on Dell compute clusters with
two 64-core AMD Epyc 7662 ”Rome” processors (128 cores
per node) and 256 GB of memory. The computational time
for the GrL model, with reparameterization of the binary link
variable kr,i j, is approximately 180 minutes for 60,000 iter-
ations. This time is significantly less than the case without
reparameterization, for which 2000 iterations take approx-
imately 118 minutes. The computational time for the 3PL

model is about 16 minutes for 60,000 iterations. The compu-
tational times were averaged over four separate runs.

5.1 Checking Model Accuracy

For estimation of predictive accuracy for the 3PL model
and GrL model, we use three separate approaches: (i) using
an information criterion, precisely Watanabe-Akaike infor-
mation criterion (WAIC) [39], for finding the in-sample de-
viance with an adjustment for the number of model parame-
ters, (ii) using posterior predictive checks to perform visual
verification of how close the models’ predictions are to ob-
served responses (for both training and testing datasets) and
calculate test quantities such as a total number of correct an-
swers, and (iii) using prediction accuracy scores which rep-
resent the fraction of model predictions that exactly match
the observed training and testing data.

The WAIC estimates the expected log pointwise predic-
tive density of observed data l̂pd and subtracts a correction
term pWAIC based on the effective number of model parame-
ters to adjust for overfitting.

êlpdWAIC = l̂pd− p̂WAIC, (13)

where l̂pd is the computed log pointwise predictive density
which can be calculated using

l̂pd =
R

∑
r=1

L

∑
l=1

log p(Erl |E)

=
R

∑
r=1

L

∑
l=1

log
∫

p(Erl |V )p(V |E)dV ,

(14)

and p̂WAIC is a correction term based on the effective number
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of model parameters and is given as

pWAIC =
R

∑
r=1

L

∑
l=1

varpost (log p(Erl |V )) . (15)

For further information about predictive information criteria
for Bayesian models, refer to [39]. We calculated the WAIC
estimates using the PyMC3 library [38].

The in-sample WAIC estimates suggest that the GrL
model can better represent the observed training data than the
3PL model. Table 2 presents the values of WAIC, pWAIC, and
standard error (SE) for WAIC computations. The lower the
WAIC, the better the predictive accuracy. These results indi-
cate that the GrL model has a more significant penalty (has
a higher pWAIC value) as compared to the 3PL model, but
the overall WAIC for the GrL model (638.86) is still lower
than that of the 3PL model (1026.18). This implies that the
additional model complexity of the GrL model is justified, at
least according to WAIC. Note that in this work, the model fit
is better as compared to our previous work [17]. The WAIC
score of the former, 638, is lower than the latter, 721, even
with a much larger number of model parameters.

According to the posterior predictive checking on the
training dataset in Fig. 6, both the GrL model and 3PL model
seem to match the observed response patterns. This result is
further supported in Fig. 7 where both models adequately
explain the total number of correct responses. Bayesian p-
values close to 0.5 signify that about half of posterior sam-
ples are more significant than the observed test quantity, see
Ch. 6 of [40]. For questions Q3 and Q10 in the 3PL model
posterior samples (Fig. 6), the prediction accuracy is low.
This highlights the 3PL model’s ineffectiveness in predicting
responses to questions based on a single ability parameter θ.

To investigate the model accuracy at the level of individ-
ual students, we look at the predictive accuracy score. Sup-
pose sl is an individual’s response to question l, then the aver-
age predictive accuracy score is the fraction of predicted re-

sponses that match with the observed response, ∑
1000
i=1 1sl (ŝl,i)

1000 .
Here ŝl,i is a sample from the posterior and 1sl (ŝl,i) is an in-
dicator function which is 1 if ŝl,i equals to sl and 0 otherwise.
Fig. 8 presents histograms of the student populations’ aver-
age predictive accuracy score on the training dataset. Under
the 3PL model, the average predictive accuracy score is 80%
or higher for 84% students. In contrast, under the GrL model,
the average predictive accuracy score is 90% or higher for
over 95% of the student population.

An essential distinction of the GrL model is its ability
to make predictions on unseen questions Q11,Q12, and Q13
using the posterior link probabilities of respective relevant
links. The 3PL model cannot make such predictions because
the question-specific parameters αl and βl are unknown for
the questions in the testing dataset.

From the results in Fig. 9, the GrL model seems to gen-
erally predict the observed patterns correctly except for ques-
tion Q13. Fig. 10 shows that the number of total correct re-

Fig. 6. Posterior predictive checking on the training dataset. Black
color represents incorrect responses, and ivory color represents cor-
rect responses. Students are ordered by their exam scores.

sponses in the testing dataset is lower than the correspond-
ing prediction made using the GrL model. Overall, the aver-
age predictive accuracy score for the testing dataset is higher
than 90% for approximately 79% of the students, as seen in
Fig. 11.

The lower predictive accuracy for some questions in the
testing set under the GrL model may be attributed to the in-
consistencies in the observed responses. If we assume that
any two questions have the same relevant links, then an in-
dividual’s responses to those questions should be the same
(either correct or incorrect). However, this is not always the
case in the observed responses. For instance, consider stu-
dent #34 in Fig. 11 (marked using a star) for whom the aver-
age predictive accuracy score is 64%. This student answered
training questions Q1 and Q2 correctly but answered ques-
tion Q3 wrong. Consequently, we should expect a correct re-
sponse for Q11, an incorrect response for Q12, and a correct
response for Q13; because questions Q1, Q2, and Q3 have the
same relevant causal links as questions Q13, Q11, and Q12
respectively. However, the student’s actual response to ques-
tion Q11 is correct, response to Q12 is incorrect, and response
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Table 2. Model comparison based on Watanabe-Akaike information criterion (WAIC) and the number of actual training parameters

Model WAIC SE P-WAIC #Parameters

3 Parameter Logistic 1026.18 24.51 58.60 231

Graph Based Logistic 638.86 32.23 245.20 3299

Fig. 7. Both the GrL and the 3PL models adequately explain the
total number of correct answers on the training data. Bayes p value
close to 0 or 1 would imply that a model is incorrect.

Fig. 8. Predictive accuracy scores of the GrL and 3PL models
across the student population. The 3PL model has 80% or higher
scores for 84% of the students, whereas the GrL model has 90% or
higher scores for over 95% of the students.

to Q13 is incorrect. Total 30 students with scores between
60% and 80% have such inconsistency while answering one
of the three testing dataset questions (see Fig. 11). Three
students with accuracy scores close to 33% have an incon-
sistency for two testing dataset questions. Two students with
accuracy scores below 30% have inconsistent answers for all
testing dataset questions. An exact reason for such errors in
the dataset is unclear, but they could arise because students
make mistakes even after correctly knowing the causal links.

5.2 Representing Aggregate-level Ability

Since knowledge assessment practices commonly use a
single number such as total test score to measure an individ-

Fig. 9. Posterior predictive checking on the testing data responses.
Incorrect responses are highlighted in Black and correct responses
in Ivory. The GrL model appears to predict the observed responses
correctly, except for question Q13.

Fig. 10. Posterior predictive checking on the number of total cor-
rect responses for the testing data. The observed number of correct
answers is lower than the prediction made using the GrL model.

ual’s aggregate ability. We investigate whether model param-
eters in the 3PL and GrL model can be rearranged to reflect
individuals’ aggregate ability accurately. In the case of the
fatigue questions, the aggregate ability is observed from the
students’ total exam score, which quantifies overall knowl-
edge of the topic.

In the 3PL model, the threshold θ is by definition di-
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Fig. 11. Posterior predictive accuracy scores for individual students
on the testing dataset using the GrL model. The horizontal lines em-
phasize the 30, 60, 80, and 90 predictive accuracy scores. The high-
lighted numbers 2, 3, 30, 9, and 161 in the boxes represent the num-
ber of students between two horizontal lines or between a horizontal
line and maximum (or minimum) predictive accuracy score. The pre-
dictive accuracy score is higher than 90% for 161 students.

rectly related to an individual’s aggregate ability. In the GrL
model, a similar aggregate ability measure can be created by
taking the intersection of the true and an individual-specific
knowledge matrices:

#Matched links =‖ (Kr ◦KTrue) ‖1 . (16)

Fig. 12a shows that the estimated θ in the 3PL model in-
creases with the exam score. However, this increase is al-
most linear, and there is considerable uncertainty (variance)
in their values. On the other hand, the estimated numbers of
matched links in the GrL model (see Fig. 12b) have small un-
certainty and cluster the students based on similarity of exam
scores while maintaining the positive correlation.

5.3 Representing Question Difficulty

Question difficulty is a latent property of different ques-
tions used in knowledge elicitation. Because we do not ob-
serve question difficulty directly in the given dataset, we an-
alyze comparative question difficulty based on the estimated
model parameters.

In the 3PL model, the threshold parameter βl signifies
the difficulty of a question. Based on the posterior estimates
of βl in Fig. 13, we may infer that questions Q1,Q2, and Q4
are easy questions and questions Q6 and Q9 are difficult for
individuals across the population. This estimation of diffi-
culty is mainly along the lines of the percentage of wrong
responses. For instance, high fractions of the students, ap-
proximately 73%, get questions 6 and 9 wrong.

The GrL model lacks a specific model parameter to
quantify problem difficulty. Instead, the number of rele-
vant links (as listed in Table 1) can proxy for problem dif-
ficulty. The higher the number of relevant links required
to answer a question correctly, the larger the question can

(a) Estimated person-specific ability θ from the 3PL model versus the exam
score

(b) Estimated number of matched links from the GrL model versus the exam
score

Fig. 12. Representation of students’ aggregate-level ability. While
both the θ parameter in the 3PL model and the number of matched
links in the GrL model have a positive correlation with the exam score,
the GrL model appears to strongly distinguish the ability in relation to
the exam scores.

be. However, it is essential to emphasize that problem dif-
ficulty varies across different questions and students based
on students’ abilities. An accurate measure of difficulty
would need a precise representation of individuals’ question-
specific knowledge, achievable by quantifying individuals’
knowledge about causal links as discussed in Section 5.4.

The threshold parameter β, in the GrL model, represents
a fraction of relevant links required to answer a question per-
tinent to a given theory. The posterior estimate of threshold
β is close to 0.25, as shown in Fig. 14. A posterior β from
1 signifies the partial relevance of selected causal links for
predicting a correct answer. This deviation may arise from
various external factors. For example, the written responses
in the dataset were graded by multiple graders, which may
induce variation. Also, a written response can be partially
correct, in which case a grader uses their judgment to mark
the answer right or incorrect.

The posterior estimates of slip parameter s using the GrL
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Fig. 13. Posterior estimates of problem difficulty parameter βl for
three-parameter logistic (3PL) model. The boxed numbers highlight
the percentage of subjects who answered the related question incor-
rectly.

Fig. 14. Comparison of the prior and posterior distribution of the β

parameter in the GrL model.

model is of order 10−2, which indicates a low probability for
knowledgeable student subjects to answer incorrectly. Fur-
ther, the posterior estimates of slope parameter α are close to
100, signifying that the model effectively differentiates be-
tween student subjects with varying abilities.

5.4 Representing Causal Knowledge

Unlike the 3PL model, the GrL model can quantify
causal knowledge in terms of link probabilities. Fig. 15
presents the distributions of estimated link probabilities
across different causal links for the entire student population.
Here, the x-axis represents the population-level estimate of
link probability (colormap corresponds to the x-axis), and
the y-axis represents the number of samples. We observe
that the students have better knowledge of some links than
the others. For example, the students know links (Sut ,Se′),
(T,kd), (R,Ke) etc., with high certainty. Conversely, for
some causal links, such as (G,ka) and (G,kb), probability
density is skewed towards 0, signifying poor knowledge of
these links. An instructor can utilize this link-specific knowl-
edge to better focus on the concepts that a population might

find challenging. Some causal links, such as (Ka,Se) and
(Kb,Se), have identical probability density because of the
assumption that causal links between fixed sub-groups have
equal link probability.

The GrL model is also helpful for categorizing the stu-
dents based on their knowledge of causal links. Consider two
students, a high-scoring student who answered all ten train-
ing questions correctly versus a low-scoring student who an-
swered four training questions correctly. The differences in
the knowledge structures of these two students are evident
from the estimated link probabilities in Fig. 16. The high-
scoring student seems to have high knowledge of all rela-
tionships such as, (F,kb), (F,kc) etc., whereas the low scor-
ing student appears to know only some relationships, such as
(Sut ,Se′), (T,kd), (R,ke), with higher probability. In Fig. 16,
it is essential to note that even for the high scoring student,
some links, such as (G,M) and (M,σo), have low probability.
One possible reason for this could be the low threshold β for
the GrL model. This might cause the model to assume that a
particular link is not required to answer a given question.

Further, for some causal links such as, (Se′,Se), (σ,n f ),
the model is uncertain at a population level (Fig. 15). The
uncertainty in some links could be because they either do not
repeat enough times across multiple questions or even when
they repeat more than once, they happen to repeat with many
other links. For example, links (σ,n f ) and (Se,n f ) appear
only in Q10. If an individual gets Q10 incorrect, then the
model will be uncertain about whether both or one link is
weak. On the other hand, the model is quite sure about the
link (Sut ,Se′). This link happens to be the only link required
to answer Q4 correctly, because of which the model has high
certainty about this link. Also, note that the training dataset
was a field dataset and was not specifically collected for this
model. An ideal set of questions to be designed would have
the following features, i) a question tests only one causal link
to maximize the learning about the link-specific knowledge,
ii) if multiple causal links constitute a single question, they
should repeat in other questions so that the trained model has
substantial certainty about individual link probabilities.

5.5 Discussion: Implications for Engineering Education
and Design

The probabilistic graphical method proposed in this pa-
per has implications for learning and teaching in engineering
education. Quantification of students’ causal knowledge can
support the detailed representation of students’ ability [11].
The method provides an in-depth understanding of concepts
a given population (or an individual) understands poorly
knowledge and the concepts that the people (or an individ-
ual) know well. Based on this understanding, instructors and
individualized tutoring systems (ITS) [41] [42] can provide
personalized feedback to help improve students’ knowledge.
In the context of adaptive tests, instructors and ITS can po-
tentially use estimated causal knowledge structures to gen-
erate new questions with varying difficulty using different
combinations of causal links. This would allow instructors
to test the same concepts using different questions and help
reveal students’ knowledge of multiple concepts. The proba-
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Fig. 15. The posterior distributions of population-level link probabilities using the graph-based logistic (GrL) model.

bilistic graphical method can be utilized for scaffold learning
by assisting an instructor in understanding how much support
a learner needs to complete learning tasks. The problem-
specific scaffolding is achievable by assessing the threshold
parameter (β) and the link probabilities (ai j) from the esti-
mated theory-based causal knowledge. This accurate assess-
ment enables the optimal degree of assistance to support the

learner’s development [43].

Another application of the probabilistic graphical
method is modeling the dynamic nature of learning. The
method can aid the dynamic Bayesian networks of individ-
uals’ learning [44] [45] through quantitative assessment of
causal knowledge at different time steps. For example, an in-
dividual takes more than one assessment in exams or quizzes
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(a) Estimated knowledge graph for a student with ten correct training re-
sponses. Larger line thickness represents a greater probability of knowing the
link correctly.

(b) Estimated knowledge graph for a student with four correct training re-
sponses. A larger line thickness represents a greater probability of knowing
the link correctly.

Fig. 16. Comparison of the directed-acyclic graphs representing
knowledge structures for high-scoring and low-scoring students. A
larger line thickness represents a greater probability of knowing the
link correctly. The numbers on the link connecting each node repre-
sent the link probability.

for a given course. During these assessments, an individual’s
estimated DAG can capture the state of individuals’ knowl-
edge and indicate how the individual’s knowledge increases
over time.

The computational modeling of human decision-making
in engineering design is another avenue that can benefit from
quantifying causal knowledge. Using the estimated DAGs,
the expertise research can differentiate experts from novices
and test design theories such as novice designers implement
situation-independent rules, and experienced designers tend
to think in a pattern-based way [46]. For design practition-
ers, a better understanding of the knowledge structures can
help reduce the inefficiencies caused by a poor comprehen-

sion of relevant physical variables and their interrelations. A
fast inference of an individual’s causal knowledge can bet-
ter design personal support tools that help human designers
in decision-making [47] [48] [7] and knowledge-based in-
ductive reasoning [49] [8]. With the quantification of knowl-
edge structures, better human-machine interaction (e.g., co-
robotics) and improved design of partially automated artifi-
cial intelligence (AI) based products and systems that work
with humans [9] can be made possible.

To realize the applications above, we have cre-
ated a tool that implements the proposed method
(https://github.com/atharvahans1/knowledge-dag.git).
Given a theory-specific true directed acyclic graph (DAG),
a set of questions, and individuals’ responses to these
questions, such a tool would follow the steps in Section 3
and infer DAGs for the population and individuals (similar to
Figures 15 and 16). The purpose of such a tool is to augment
existing educational tools for knowledge assessment [50]
and adaptive tests [51] with predictive functionalities.

6 Conclusions

This paper quantifies individuals’ theory-based causal
knowledge using an approach based on directed acyclic
graphs (DAGs), a graph-based logistic (GrL) model, and
hierarchical Bayesian inference. The approach uses rela-
tional constraints from a given theory to model individu-
als’ abilities (causal knowledge). It predicts the correct re-
sponse based on individuals’ question-specific causal under-
standing. This approach is domain-general and can be im-
plemented for any causal theory. In the illustrative study,
we tested the approach on engineering students’ response
data to questions related to fatigue failure. The results sug-
gest that hierarchical Bayesian inference quantifies uncer-
tainty in the population’s causal knowledge as well as uncer-
tainty in individual-specific causal knowledge. The posterior
estimates of individual-specific DAGs allow us to identify
low-knowledge and high-knowledge subjects across differ-
ent causal links as presented in Fig. 16. Further, the GrL
model can leverage the estimated individual-specific DAGs
to predict individuals’ responses to unseen questions, given
that a new question requires the same theoretical knowledge
and the pseudo-guessing parameter cl is pre-defined.

Further work is necessary for validating the performance
of the GrL model on multiple-choice questions, for which
the responses are likely to have fewer errors from external
factors such as variation in grading criteria. Future work
should consider improvements in the representation of in-
dividuals’ causal knowledge, e.g., through modeling knowl-
edge of functional relationships connecting parent variables
to a child variable, instead of simply modeling link probabil-
ities. This will also help to better model the complexity of
questions. The presented method requires a priori definition
of theoretical knowledge in terms of a true knowledge graph.
Future extensions could model procedural knowledge by de-
veloping novel prior distributions for unconstrained graphs.
Additionally, a Bayesian inference tool for causal knowledge
representation is required to augment the existing intelligent
tutoring systems for educational remediation and existing de-
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cision support systems for engineering design.
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Nomenclature

X = {xi}i=1:N A collection of N physical variables relevant
to a given theory

KTrue = {kTrue
i j }i, j=1:N N×N binary matrix representing the

true knowledge graph for a specific
theory

Ar N×N matrix of link probabilities representing prior be-
lief about individual r’s knowledge

Kr N × N matrix representing individual r’s knowledge
graph with same encoding as KTrue

Ql N×N binary matrix where i jth cell is 1 if the relation-
ship between variables xi ans x j is relevant to question
l, or 0 otherwise

Erl Binary variable denoting whether individual r’s re-
sponse to question l is correct (1) or incorrect (0)

µi j The group means of the population’s ability for causal
link i j

τr,i j Individual r’s offset from the mean ability µi j

α Slope parameter
β Threshold parameter
cl Pseudo-guessing probability for question l
s Slip parameter
φ A feature function calculating the fraction of correctly

identified links, i.e., matching links between Kr and
KTrue
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A1. Questions for Testing the Knowledge of Fatigue
Analysis

Fig. 17 sketches a circular shaft under cyclic loading that
the students of a machine design class analyze as part of the
final exam. The particular exam includes 13 sub-questions
listed in Table 3. Each exam question requires estimating
one output variable given the values of the output variable’s
parent variables. The students have additional information
through the following problem statement:

A circular steel bar is fixed to the floor, as shown
in Fig. 17. The bar has an ultimate tensile strength
Sut = 180 kpsi, a yield strength Sy = 140 kpsi, and
it has a machined surface. The bar operates at room
temperature. The fatigue stress concentration fac-
tors for bending and shear at the fillet are known to
be K f = 2.3 and K f s = 1.8, respectively.

Table 3. Questions on Fatigue Analysis of a Circular Shaft

Ques-
tion Question Statements

Q1
For the critical plane at the shoulder identify
the critical points on Fig. 17.

Q2
Expression for the bending moment Mmax at
the critical plane in terms of Fa.

Q3

Expression for the maximum normal stress
adjusted for stress concentration for the critical
point (ignore shear stresses due to transverse
load) as a function of Fa.

Q4 Calculate the theoretical endurance limit Se′.

Q5 Calculate the Marin factor ka.

Q6 Calculate the Marin factor kb.

Q7 For a reliability of 99% calculate ke.

Q8
For the given conditions determine the Marin
factors kc, kd and k f .

Q9
Calculate the endurance strength Se of the bar
for a reliability of 99%.

Q10

The magnitude of the load, Fa, in pounds, for
which the infinite life fatigue factor of safety at
the critical point is n f = 1.5.

Q11
Expression for the bending moment Mmin at
the critical plane in terms of Fa.

Q12

Expression for the minimum normal stress
adjusted for stress concentration for the critical
point (ignore shear stresses due to transverse
load) as a function of Fa.

Q13 Show a plot of stress versus time for Q3.
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Fig. 17. A circular shaft under dynamic loading F
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