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ABSTRACT
Heuristics are essential for addressing the complexities of

engineering design processes. The goodness of heuristics is
context-dependent. Appropriately tailored heuristics can enable
designers to find good solutions efficiently, and inappropriate
heuristics can result in cognitive biases and inferior design out-
comes. While there have been several efforts at understanding
which heuristics are used by designers, there is a lack of norma-
tive understanding about when different heuristics are suitable.
Towards addressing this gap, this paper presents a reinforcement
learning-based approach to evaluate the goodness of heuristics
for three sub-problems commonly faced by designers while car-
rying out design under resource constraints: (i) learning the
mapping between the design space and the performance space,
(ii) sequential information acquisition in design, and (iii) deci-
sion to stop information acquisition. Using a multi-armed ban-
dit formulation and simulation studies, we learn the heuristics
that are suitable for these sub-problems under different resource
constraints and problem complexities. The results of our simu-
lation study indicate that the proposed reinforcement learning-
based approach can be effective for determining the quality of
heuristics for different sub-problems, and how the effectiveness
of the heuristics changes as a function of the designer’s prefer-
ence (e.g., performance versus cost), the complexity of the prob-
lem, and the resources available.

Keywords: Heuristics, Decision Making, Reinforcement
Learning, Multi-armed Bandit

1 Introduction
Heuristics are context-dependent directives, based on intu-

ition, tacit knowledge, or experiential understanding, which pro-
vide design process direction to increase the chance of reaching
satisfactory (but not necessarily optimal) solutions [1]. Although
they allow us to navigate the design process, sometimes, they are
fallible depending on the context and circumstances [1]. Heuris-
tics work well in environments for which they have evolved, but
fail miserably in other situations [2]. They can result in cognitive
biases. For example, the use of catalogs for framing the design
space can result in the cognitive bias of “fixation” [3].

While there is now an improved understanding of which
heuristics people use in engineering design and systems engi-
neering, there is a lack of normative understanding of how good
the heuristics are in the presence of finite (limited) resources,
and how well heuristics transfer from one design problem to an-
other. To address the research gap, the objective of the paper is to
analyze the quality of design heuristics under different resource
constraints and problem complexities.

To achieve this objective, we present an approach which
consists of (i) abstracting the design problems into a set of ideal-
ized sub-problems, (ii) representing the design process as a set of
process heuristics to solve the sub-problems, and (iii) using rein-
forcement learning (RL) to learn optimal heuristics through se-
quential solution of design problems sampled from the problem
space. Specifically, we abstract the design problem as a sequen-
tial information acquisition and decision making process, which
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consists of the following three sub-problems (see Figure 1): (1)
decision to choose function learning model for learning the map-
ping between the design space and the performance space, (2)
information acquisition decision to choose next design point for
evaluation, and (3) deciding whether to stop the information ac-
quisition process. We choose a class of parametric design prob-
lems where the designer’s goal is to select a set of design param-
eters that maximize performance. The designer is assumed to
possess a set of simulation models/experimental apparatus, and a
fixed budget to run the experiments.

FIGURE 1: An overview of the research approach.

Our results indicate that reinforcement learning can be used
as an effective approach to determine the quality of heuristics for
different sub-problems, and how the effectiveness of the heuris-
tics changes as a function of the designer’s preference (e.g., per-
formance versus cost), the complexity of the problem, and the
resources available.

The paper is organized as follows. We present a review
of literature on heuristics in engineering design, cognitive sci-
ence, and artificial intelligence in Section 2. Section 3 provides
an overview of the approach followed in this paper. Section 4
presents the formulation of the reinforcement learning problem,
and Section 5 presents the results. Finally, closing comments are
presented in Section 6.

2 Literature Review
Heuristics have been studied in several different domains.

Within engineering design, design heuristics have been inves-
tigated from the perspective of creating novel design solutions
while managing the complexity of the design process. Re-
searchers in cognitive psychology have studied heuristics as
deviations from rationality, and the resulting cognitive biases.
Within computer science and artificial intelligence communities,
heuristics have been studied with the aim of developing efficient
algorithms to solve hard computational problems. In this section,
we provide a brief review of the literature in these three domains.

2.1 Heuristics in Engineering Design

There has been substantial research on heuristics in the en-
gineering design literature. Based on a thorough evaluation of
the definitions of heuristics, Fu et al. [1] define heuristics as
“context-dependent directives, based on intuition, tacit knowl-
edge, or experiential understanding, which provides design pro-
cess direction to increase the chance of reaching a satisfactory
but not necessarily optimal solution”.

Heuristics are used throughout the design process, includ-
ing creation of new design concepts during the conceptual stage,
decision making in the later stages of design. Through a pro-
tocol study, Yilmaz et al. [4] found that heuristics are frequently
used by engineers in different domains during conceptual design.
Yilmaz and Seifart [5] show how the use of heuristics by expert
designers in the early stages of design leads to novel and creative
solutions. In addition to early stage product design, heuristics
play an important role in early stage systems design. By inter-
viewing ten experts at the Jet Propulsion Laboratory (JPL), Fill-
ingim et al. [6] identified 101 heuristics used in space mission
design. In the later stages of design, such as in design optimiza-
tion, heuristics are used to reduce the complexity of finding opti-
mal designs. Deshmukh et al. [3] show that while these heuristics
are helpful in managing design optimization tasks, they can also
lead to unnecessary constraints and cognitive biases.

2.2 Heuristics in Cognitive Psychology

Heuristics have been studied extensively in psychology as
an alternative to rational decision making. Tversky and Kahne-
man [7] classify decision making heuristics into representative-
ness, availability, adjustment and anchoring. Heuristics are con-
sidered efficient cognitive processes, conscious or unconscious,
that ignore part of the information [8]. Heuristics help in mak-
ing decisions more quickly, frugally, and/or accurately than more
complex methods.

In contrast to the view that heuristics are procedural simpli-
fications from rational models, recent work in cognitive science
suggests that the use of heuristics is in fact rational if we account
for the cognitive constraints [9, 10]. Lewis and co-authors [11]
have coined the phrase “computational rationality” to emphasize
that theories of rational behavior should account for the compu-
tational and cognitive constraints, and the cost of cognitive ef-
fort [12].

2.3 Heuristics in the Computer Science and Artificial Intel-
ligence

Within the artificial intelligence (AI) and computer science
(CS) literature, heuristics are used to solve complex computa-
tional problems such as the traveling salesman problem. Pearl
defines heuristics are defined as “criteria, methods, or princi-
ples for deciding which among several alternate courses of ac-
tion promises to be the most effective in order to achieve some
goal” [13]. Several efforts have been devoted to developing good
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heuristics for specific computational problems.
Within AI, heuristics are used for designing computational

agents that mimic human behavior. The use of heuristics is
particularly prominent in the reinforcement learning literature,
where agents use heuristic policies for learning, such as pure ex-
ploration, pure exploitation, excitation policies, epsilon-greedy
exploration, Boltzmann exploration, Upper confidence bound-
ing, and Thompson sampling [14].

As a summary, the usefulness of heuristics is well recog-
nized in each of these fields. It is also recognized that different
heuristics have different effectiveness under different conditions,
such as different resource constraints. However, there is a lack
of normative understanding of heuristics, which can guide de-
signers to choose the right heuristics considering the nature of
their own problem. Therefore, there is a need for approaches for
determining the appropriateness of heuristics for the problems
commonly encountered in engineering design. To address this
need, we present a reinforcement learning based approach to de-
termine the heuristics that a resourced constrained rational agent
should use. The approach is discussed in the following section.

3 Approach
To focus our attention on an specific class of problems en-

countered in engineering design, we start with abstracting the
engineering design process as a sequential decision making pro-
cess [15]. The designer’s goal is to find the design with the best
performance by searching the design space while sequentially
acquiring information about the performance of different design
alternatives [16, 17]. We identify three sub-problems within the
design process, and present different heuristics to solve the prob-
lems. For each sub-problem, we implement a reinforcement
learning model to understand the effectiveness of heuristics un-
der resource constraints, and how their goodness changes with
changes in problem characteristics.

3.1 Engineering Design as a Sequential Decision Making
Process

We consider a scenario where the designer chooses design
parameters x that map to outcome y with constraints g(x) ≤ 0.
The designer does not explicitly know the mathematical rela-
tionship between x and y, but can evaluate the performance at
specified design points using costly computational or physical
experiments [16]. Many design tasks follow this scenario. For
example, in additive manufacturing (AM), optimizing compo-
nents’ mechanical properties (outcome) requires an iterative se-
lection of the AM process parameters [18]. Thus, in order to
maximize the outcome, the designer sequentially evaluates the
design performance (see Figure 2). At each step, the designer
decides on a model, or heuristic, for (1) learning the mapping
between the the design space and the performance, (2) choos-
ing the next point in the design space to evaluate performance by
running a costly experiment, and (3) determining whether to stop

information acquisition (experimentation).
In this sequential decision making process, the designer has

an initial state of knowledge H0 based on a set of observations
D = [xn,yn], along with any prior beliefs. At each iteration, the
designer first chooses a function learning model to predict how
x maps to y. This is followed by selecting a heuristic to choose
the next xi, and evaluate its performance yi. Lastly, the designer
chooses whether to stop based on their updated state of knowl-
edge Hi and constraints g(x), which may be limited budget B.
The process is illustrated in Figure 2.

With the aim of identifying the best heuristics for the design
process, we partition the process into three sub-problems:

1. Decision to choose function learning model
2. Decision to choose next design point
3. Decision to choose when to stop the information acquisition

process

We recognize that these three sub-problems are interdependent,
and the optimal heuristics depend on each other. As a starting
point, in this paper, we identify optimal heuristics for each of
these decisions independently.

3.2 Learning Optimal Heuristics for Engineering Design

We use RL to identify the best heuristics for each sub-
problem. RL approaches are advantageous and attractive when
the objective is to maximize the total benefit over time, and there
are no examples of desired actions given situations, but it is pos-
sible to reward the actions taken according to a performance cri-
terion [19,20]. Additionally, RL has been shown to hold promise
in solving complex problems that require cost-sensitive decision
making [21, 22, 23].

Specifically, we formulate the problem of learning optimal
heuristics for each of the idealized sub-problems as a multi-
armed bandit (MAB) problem. For the first sub-problem, we
evaluate the performance of different function learning models
based on various designer preferences, such as increasing pre-
diction accuracy or reducing cost. Similarly, we analyze how
different heuristics perform in the information acquisition sub-
problem by measuring the improvement in performance from
acquiring information about one additional point in the design
space. Lastly, we assess the quality of different decisions to stop
the information acquisition process under resource constraints,
such as a fixed budget. For all three sub-problems, we also show
how the optimal heuristics change with changes in problem com-
plexity, designer’s preferences, and the amount of resources &
information available.

3.3 Design of the Simulation Experiment

We perform simulation experiments using a RL-based
model. For the simulations, we make the following simplifying
assumptions.
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FIGURE 2: Engineering design as a sequential decision making process.

Assumption 1 (Continuous design space). The design per-
formance f (x) is a one-dimensional continuous function of a sin-
gle design parameter x ∈ X , where X = [−10,10].

Assumption 2 (Objective functions as Gaussian processes).
We represent the mapping between the design space and the
performance space using a class of non-linear functions, called
Gaussian processes (GPs):

f ∼ GP(µ = 0,k), (1)
where µ = 0 is the mean and k is the covariance kernel. We
select the radial basis function (RBF) kernel, which is a squared
exponential covariance function such that

k(x,x′) = σ
2 exp

{︃
−1

2
(x− x′)2

ℓ2

}︃
, (2)

with lengthscale ℓ ≥ 0 and variance σ2 ≥ 0. This allows us to
easily adjust the complexity of the problem by changing ℓ and
σ2. Large ℓ values lead to smooth functions, whereas small val-
ues result in a more complex function. Generating new design
problems is equivalent to sampling functions from the Gaussian
process. The sampled function is not known to the reinforce-
ment learning agent, but is used to evaluate the performance at
the chosen design points.

Assumption 3 (Variations of objective function complex-
ities). In this study, we examine the transferability of optimal
heuristics for one objective function to another with different
complexity. We increase the objective function’s complexity
by reducing ℓ and changing σ2. The three different complexi-
ties used in the simulation study are: (i) low complexity [ℓ = 5,
σ2 = 4], (ii) medium complexity [ℓ = 3, σ2 = 3], and (iii) high
complexity [ℓ = 1.5, σ2 = 5]. A sample of these three function
complexities is shown in Figure 3.

Assumption 4 (No noise in the output, yi). We assume that
there is no measurement error in design evaluations, such that
yi = f (xi)+ εm and εm = 0.

Assumption 5 (Single information source). Typically in
a sequential decision making process, design evaluations yi are
performed using multiple information sources with different un-

certainties and costs. Here, we use a single information source
with fixed cost cm.

These assumptions limit the scope of applicability of the re-
sults from the experimental study to the specific scenario. How-
ever, the overall approach described in this paper and decision
models in the next section are general and can be applied in the
future to more complex design problems, with higher dimention-
ality, more information sources, and added noise.

4 Formulation of the Reinforcement Learning
Models for the Sub-Problems
In this section, we describe the alternative heuristics that

can be used for making decisions in the three sub-problems
(Sections 4.1 through 4.3), and the formulation of the reinforce-
ment learning problem (Section 4.4). The heuristics used in the
RL framework are inspired from engineering design, cognitive
psychology, and human behavior literature. For the first sub-
problem, we use rule-based and similarity-based heuristics in or-
der to learn the mapping between design parameters and perfor-
mance [24, 25]. For choosing the next design point and deciding
whether to stop, we utilize two main classes of heuristics: sim-
ple heuristics and heuristics close to the expected utility (EU)
theory. Simple heuristic models include random selection (RS),
upper confidence bound (UCB) [26], and fixed remaining budget
(FRB) [17], in which the latter two use cues from the environ-
ment such as predictive mean, variance, and remaining budget.
On the other hand, models closer to the EU theory portray ratio-
nal decisions and are based on expected improvement (EI) [27].
A summary of the heuristics used for each sub problem is listed
in Table 1.

4.1 Sub-Problem 1: Learning the mapping between the de-
sign space and the performance space

We utilize two main approaches for learning the space of
problems in this study: rule-based and similarity-based models.
Both approaches have been used frequently in modeling how
people learn about functional relationships between continuous
variables (i.e., mapping inputs onto outputs) [28, 29, 30, 24, 25,
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FIGURE 3: Samples of the three objective function complexities used in this study.

31].
Rule-based models are one of the earliest models used for

human function learning [28]. They assume that function learn-
ing is based on learning explicitly represented functions, for ex-
ample linear, polynomial, or exponential functions. In engineer-
ing design, using such representations allows for the extrapo-
lation beyond the observed values, covering the continuous de-
sign space. Conversely, similarity-based approaches assume that
function learning occurs by forming associations between ob-
served input-output pairs and extend it based on the similarity
of new inputs to old ones [25]. For example, if observed input xi
has output yi, then inputs similar to xi should have outputs sim-
ilar to yi. One common similarity-based approach is using GPs
for functional learning [24, 25].

4.1.1 Bayesian Linear Regression models. We utilize
Bayesian linear regression (BLR) to map xi to yi, where xi ∈
X are the inputs and yi ∈ y are the outputs [32, Chapter 3]. First,
we consider a simple example of learning a function f from a set
of observations D = [xn,yn]. In a one-dimensional case, a linear
regression model assumes that outputs, yi are a linear function of
the input xi with additive Gaussian noise ε ∼ N (0,σ2) on each
observation such that

yi = f (xi)+ ε. (3)
This can be written as a linear combination of weights, w, and
basis functions, φ(xi):

yi = wT
φ(xi)+ ε. (4)

These basis functions enable learning of non-linear problems by
transforming the input space into feature space. However, this
makes an assumption about the class of function being learned,
thus leading to poor functional learning if there is a mismatch be-
tween the objective function and the selected basis function [33].

This can be extended to the Bayesian framework by assum-
ing a Gaussian prior over the weights, p(w) = N (w|m0,S0),
and a Gaussian likelihood such that the Gaussian posterior is:

p(w|x1:n,y1:n,σ ,α) = N (w|m,S) , (5)

where S =
(︁
σ−2ΦTΦ+αI

)︁−1
, m = σ−2SΦTy1:n, and αi are

hyperparameters governing the prior variance of each unknown
coefficient [32, Chapter 3].

In our study, we utilize three BLR models with distinct ba-
sis functions as different heuristic rules for functional learning:

Linear, Quadratic, and Cubic basis functions. The hyperparame-
ters of the BLR models are estimated using Automatic Relevance
Determination Regression (ARD) [34].

4.1.2 Gaussian Process model. A GP is a non-
parametric regression method and it is completely defined by
its mean, µ(x), and covariance function, or kernel, k(x,x′) [35,
Chapter 2]. It defines a distribution over functions f : X → R
that maps inputs, xi, to outputs yi as a random draw from a Gaus-
sian distribution:

f ∼ GP(µn,kn), (6)
where µn and kn are the posterior mean and covariance functions
after n observations, respectively.

Since GPs provide a flexible approach to prediction, we uti-
lize a GP with a RBF kernel (see Eq. ??) to associate which in-
puts xi are likely to have similar outputs yi.

4.2 Sub-Problem 2: Deciding what Information to Acquire
– Selecting the Next Design Point

In choosing the next design point, three main strategies are
used: random selection, upper confidence bound [26], and ex-
pected improvement [27]. In the latter two, a GP(0,kRBF) is used
to learn the objective function and predict the mean and vari-
ance at every x ∈ X based on the observed input-output pairs,
x1:n and y1:n. The best design to pick is the one that maximizes
output of the decision model.

4.2.1 Random selection. The random selection model
selects the next design point as a uniform random sample from
X \ xn. This gives each xi an equal chance of selection. RS is
one of the simplest heuristics to apply in engineering problems,
and it is practical to use in some engineering tasks [36].

4.2.2 Upper confidence bound. The upper confidence
bound model is defined as:

UCBi(x) = µi(x)+ψσi(x), (7)
where ψ ≥ 0 is the exploration parameter, and µi(x) and

σi(x) are the predictive mean and standard deviation, respec-
tively [26]. Higher values of ψ emphasize exploration, while
ψ = 0 represents a pure exploitation strategy.

4.2.3 Expected improvement. The expected improve-
ment model computes the expectation of improvement for each
xi ∈ X relative to the currently best observed point, u∗i [27].
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EIi(x) =
µi(x)−u∗i

σi(x)
Φ

(︃
µi(x)−u∗i

σi(x)

)︃
+σi(x)φ

(︃
µi(x)−u∗i

σi(x)

)︃
(8)

4.3 Sub-Problem 3: Stopping the Information Acquisition

The decision about whether to stop is dependant on both
the designer and the resources available to them. We assume that
the designer has control over saving or consuming their entire
resources, such as their Budget, B. Below are the two simple-
heuristic and EU-based stopping strategies used in this study.

4.3.1 Fixed remaining budget. In this stopping strat-
egy, design evaluations are stopped when the remaining budget,
Br = B− icm, reduces to a fixed value set by the designer.

4.3.2 Relative expected improvement. In this model,
design evaluations are stopped when the maximum EI value of
the next design point is below a fixed threshold relative to the
initial EI value. These EI values are calculated in the same man-
ner as shown in Eq. (??).

4.4 Reinforcement Learning Model

In the multi-armed bandit (MAB) problem, the agent is
given a choice among k different actions (or arms). After tak-
ing action a at time step t, denoted by At , the agent receives a
corresponding reward Rt . The goal of the agent is to maximize
the reward signal by choosing the best action for each situation.
Generally, each action has a value, or an expected reward, asso-
ciated with it. For any arbitrary action a in action space A with
na actions, the expected reward is given by:

q∗(a) =̇ E[Rt |At = a]. (9)
Since the value of actions is not known with certainty, one

can compute an estimate of value of an action a at time step t
as Qt(a). In the MAB problem, one often assumes that Qt(a)
is close to q∗(a) and these estimates are used to select actions.
However, we implement the Gradient Bandit Algorithm (see
Ref. [37, Chapter 2]) in this study. Instead of estimating re-
wards for each action, the agent learns a numerical preference,
Ht(a), which reflects its belief about which actions will maxi-
mize rewards. The higher the relative preference of one action
over another, the more that action is selected. The probability of
taking action a at time step t, denoted by πt(a), is determined by
a soft-max distribution as shown:

Pr{At = a} =̇ eHt (a)

∑
k
b=1 eHt (b)

=̇ πt(a), (10)

and the action preferences, Ht(a), are updated as follows:
Ht+1(a) = Ht(a)+ γ(Rt −Rt¯ )(1a=At −πt(a)), (11)

where γ ≥ 0 is the step-size parameter, and Rt¯ is the mean of all
rewards up to time t, which provides a baseline for all rewards
Rt .

The Gradient MAB algorithm enables learning of optimal
strategies for different variations of each sub-problem. They rep-

resent the task as learning which heuristics to choose in order to
maximize the reward signals. The reward signal is the only feed-
back the agent receives, thus, it is instrumental to define one that
correctly reflects the main objective of the task [37, Chapeter 1].

In our study, the arms correspond to alternate heuristic rules
for the sub-problems (see Table 1). For example, the arms avail-
able to the agent in sub-problem 1 are: Linear, Quadratic, Cu-
bic, or GP models. At each time step t ≤ T , where T is a fixed
number of steps, the agent takes an action (i.e., selects a heuris-
tic) and updates its action preferences (probabilistic map) after
receiving R j,t corresponding to the jth sub-problem during time
step t. When t = T , the simulation, or run, terminates and the
agent resets their action preference. This reinforcement learning
loop is shown in Figure 4. It is important to note that a new f
and set of observations D are generated at each t.

In order to fully define our MAB problem, we formulate the
reward signal, R j,t , for the three sub-problems such that actions
taken by the agent are evaluated according to a performance cri-
terion [20]. The two main goals for all three sub-problems are (i)
having high design performance, and (ii) low the computational
cost, Ct . In our study, Ct is calculated based on the computa-
tional time taken to perform each action. Below are the formula-
tions of the three reward signals, which increase as performance
improves (or error reduces, in the case of sub-problem 1) and
decrease as Ct increases.

For sub-problem 1, the reward is formulated with the goal
of reducing error and cost as follows:

R1,t =−(we∆+wcCt), (12)
where ∆ is the mean squared error (MSE) between test points
[xtest ,ytest ] and predicted points [xtest ,ypred ], we is the weight for
MSE, and wc serve as the weight for computational cost Ct of
function learning. Simple models for function learning, such as
linear regression require a lower computational cost than more
sophisticated models such as the GP model.

The reward function for sub-problem 2, pick next design
point, is dependent on the design performance and cost if design
evaluation, such that:

R2,t = wv p−wcCt , (13)
where wv is a variable weight valuing the improvement in perfor-
mance, p, which is calculated as follows:

p(yi) =

⎧⎨⎩
yi −max(y1:n)

fmax − fmin
, yi ≥ max(y1:n)

0, otherwise
(14)

where fmax and fmin are the true maximum and minimum of the
objective function, respectively.

The reward formulation for the third sub-problem is similar
to previous one with the addition of remaining budget Br,

R3,t = wv p−wcCt +Br. (15)
This adds a preference to strategies that save budget, especially
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TABLE 1: Heuristic Strategies for the three sub-problems in engineering design.

Decision model Underlying strategy

1. Choice of function learning model

Linear Bayesian linear regression with linear basis functions.

Quadratic Bayesian linear regression with second-degree polynomials as basis functions.

Cubic Bayesian linear regression with third-degree polynomials as basis functions.

Gaussian Process (GP) GP with zero mean and a radial basis function (RBF) kernel.

2. Decision to choose next design

Random Selection (RS) Randomly select a design point without replacement.

Upper confidence bound (UCB) Explore design space during initial iterations while exploit during later iterations.

Expected improvement (EI) Selection probability proportional to EI value.

3. Decision to stop

Fixed remaining budget (FRB) Stop after a fixed amount of budget is remaining.

Relative expected improvement (REI)
Stop after expected improvement (EI) is below a fixed value relative to the EI value
from first iteration.

FIGURE 4: Reinforcement learning loop for the gradient multi-armed bandit algorithm.

when there is no significant improvement in performance.

5 Results from a Simulation Study
We present the modeling results of the three multi-arm ban-

dit problems outlined in Section 3.3. For all RL simulations, we
used γ = 0.5, T = 150, and ran the model for 1000 runs (50 sam-
ples of 20 runs). We varied the number of observation points, n=
4 : 10, the performance-cost ratio ( we

wc
for Experiment 1, and wv

wc
for Experiments 2 and 3), and the complexities of the objective
functions (see Figure 3). The ranges for the performance-cost
ratios were selected based on the reward signals, such that there
is a balance between improving performance and lowering cost
within the range. For testing the effect of these ratios, we used
the high complexity objective function [ℓ = 1.5, σ2 = 5]. Ad-

ditionally, we estimated the computational cost Ct for decision
models with fixed number of operations by running each for 104

iterations to reduce the effect of variable power and memory al-
location of the computer. The Ct values are shown in Table 2.

5.1 Experiment 1: Choosing Function Learning Model

At the beginning of each run, the RL agent chooses one of
the four arms (function learning models) with an equal probabil-
ity. Throughout the simulation, their action is evaluated using the
reward function, R1,t (see Eq. ??), where ∆ is calculated using 10
test points, separate from the observed points. We hypothesized
that more expensive models, such as GPs, outperform their less
expensive counterparts (linear models), when there is an empha-
sis on accuracy. Comparing the models’ performance results in
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TABLE 2: Ct values for different heuristics (in milliseconds).

Time required to run the heuristic models once

Observations
Number (n) Linear Quadratic Cubic GP RS UCB EI

4 1.76 2.42 2.68 5.58 0.37 6.48 6.83

10 1.76 2.46 2.78 5.81 0.37 6.57 6.93

Figure 5, the bar plots show a similar trend in which the least ex-
pensive model had a higher probability of selection (POS) when
there was a greater emphasis on cost. Conversely, the GP model,
with the highest Ct , had higher POS when more weight was put
on accuracy, consistent with our hypothesis.

(a) n = 4

(b) n = 10

FIGURE 5: Performance of regression models at different we
wc

val-
ues for different number of observations.

Looking at how different regression models perform at dif-

ferent objective function complexities for we
wc

= 10−3, BLR mod-
els outperform the GP model when the complexity is low. In-
terestingly, the variance and difference in POS among all four
models is significantly lower when n is increased to 10, as shown
in Figures 5b and 6b. This is due to the increase of POS of both
the Quadratic and Cubic models, suggesting that both polyno-
mial models were underfitting when given 4 observation points.

(a) n = 4

(b) n = 10

FIGURE 6: Performance of regression models for different ob-
jective function complexities and number of observations.
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5.2 Experiment 2: Choosing Next Design Point

Experiment 2 used a GP to learn the objective functions for
both the UCB and EI decision models, increasing their Ct by an
order of magnitude from that of the RS model. Being correlated
to reward functions, the POS for the RS model was consistently
above 90% at low wv

wc
values, while dropping below 10% at higher

values, as shown in Figure 7. Increasing the number of observed
points did not affect this trend, however. Consistent with results
from Experiment 1, the model with the highest Ct , which is the
EI model here, performed best at high wv

wc
values. This corrob-

orates our hypothesis that EU-based models perform well when
the designer prioritizes quality over cost of design evaluations.

(a) n = 4

(b) n = 10

FIGURE 7: Performance of decision to choose next x models at
different wv

wc
values for different number of observations.

To better understand the effect of complexity in design eval-
uations, we fixed the performance-cost ratio and varied the ob-
jective functions complexities. The wv

wc
ratio was fixed at 10−1

because the POS for all three models were closest for this ratio.

Remarkably, the RS model underperformed similarly performing
UCB and EI models at low complexities, specifically at n = 10
(see Figure 8). However, at higher complexities and low num-
ber of observations, the RS model outperforms, suggesting that
a random search can be an effective strategy when little informa-
tion is available and low cost is desired.

(a) n = 4

(b) n = 10

FIGURE 8: Performance of decision to choose next x models for
different objective function complexities and number of observa-
tions.

5.3 Experiment 3: Choosing Whether to Stop

For each time step in a run, the agent decides whether to
stop after picking a new design point and is rewarded according
to R3,t (Eq. ??). The decision to pick the next xi was fixed to us-
ing EI, while the budget was set to B = 1, and the cost of design
evaluation was c = 0.1. Some model parameters for both stop-
ping strategies were also fixed in this experiment. Specifically,
Br was fixed to 0.5 (i.e., the FRB model evaluates five additional
design points and saves half the budget), and the threshold for
the REI model was set to 0.1 (i.e., the model stops design evalu-
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ations when the maximum EI value of next design point is below
10% of that of the first design evaluation).

Looking first at the results for n = 4 (Figure 9a), the FRB
model had a higher POS than the REI one when reducing the
computational cost was highly weighed (low wv

wc
values). On the

other hand, both models had similar POS when design perfor-
mance was emphasized. Since both models used EI for design
evaluations, it can be assumed that the Ct values are comparable
for same number of evaluations. This suggests that the average
design evaluation of the REI model were greater than five, giving
an edge to the FRB model at low wv

wc
values and a slight edge to

the REI at high wv
wc

values.
For higher number of observation points, the POS of the

REI model was higher for all wv
wc

values, specifically for low wv
wc

values, as shown in Figure 9b. This shows that, on average,
the REI model stopped the design process earlier than the FRB
model, saving more of the budget. Also, the additional design
evaluations of the FRB did not significantly improve its POS at
higher wv

wc
values, indicating that the value of the best design point

of each model was close to, or at, fmax. Thus, the results from
Experiment 3 closely align with the results from Experiment 2.
They suggest that during the early stages of the design process
(low n), a random search, or other simple-heuristic strategy, per-
forms well, especially when total cost is to be minimized. During
the later stages of the process (high n), EU-based decisions may
lead to higher improvement in performance.

6 Conclusion
In this paper, we present a reinforcement learning-based ap-

proach for analyzing heuristics in engineering design processes.
Our results indicate that the proposed framework can determine
the effectiveness of different heuristics under different resource
constraints and preferences set by the designer. For example,
choosing a similarity-based approach for function learning, such
as a Gaussian process with a RBF kernel, showed to be best when
seeking high accuracy and little information is available. This
choice also eliminates the need to know the class of objective
functions, which is essential for Bayesian linear regression mod-
els [33]. During the new design evaluation sub-problem, we ob-
served that a random selection model was most effective when
(1) little information is provided, (2) the design problem was
more complex, and (3) reducing cost was emphasized. However,
for low complexity tasks or when seeking higher improvement in
design, both simple-heuristic and EU-based models that utilize
prior information are preferred. Again, results from Experiment
3 showed that the expensive EU-based decision was preferred
over its simple-heuristic counterpart when high performance is
needed. The results suggest that a random search is an effec-
tive design evaluation strategy early on in complex engineering
design tasks. However, when more information is available and
during the later stages of design process, utilizing expensive EU-
based models may lead to higher performance improvement.

(a) n = 4

(b) n = 10

FIGURE 9: Performance of decision to stop models at different
wv
wc

values for different number of observations.

Although the results are specific to the preferences and con-
straints we set in defining the sub-problems, designer researchers
can utilize this framework to understand how their own prefer-
ences and resource constraints affect the goodness of different
heuristics, and map the two together. This framework could also
be extended in future studies using higher dimensionality design
tasks. Additionally, some of the simplifying assumptions made
in the RL models used in this paper can be relaxed in the future
to account for the nuances of real engineering design processes.
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