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Let M be a compact 3-manifold and � = π1(M). Work by Thurston and Culler–Shalen

established the SL2(C) character variety X(�) as fundamental tool in the study of the

geometry and topology of M. This is particularly the case when M is the exterior of

a hyperbolic knot K in S3. The main goals of this paper are to bring to bear tools

from algebraic and arithmetic geometry to understand algebraic and number theoretic

properties of the so-called canonical component of X(�), as well as distinguished points

on the canonical component, when � is a knot group. In particular, we study how the

theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic

information about Dehn surgeries, and perhaps of most interest, to construct new knot

invariants that lie in the Brauer groups of curves over number fields.

1 Introduction

Let � be a finitely generated group and let X(�) denote the SL2(C) character variety

of � (see §2). When � is the fundamental group of a compact 3-manifold M, seminal

work by Thurston and Culler–Shalen established X(�) as a powerful tool in the study

of the geometry and topology of M. The aim of this paper is to bring to bear tools

from algebraic and arithmetic geometry to understand algebraic and number theoretic
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4970 T. Chinburg et al.

properties of certain components of X(�) for arbitrary finitely generated �, as well as

distinguished points on these components. In particular, we study how the theory of

quaternion Azumaya algebras (see §3) can be used to obtain algebraic and arithmetic

information about Dehn surgeries on 1-cusped hyperbolic 3-manifolds. This leads, in

particular, to new knot invariants that lie in the Brauer groups of curves over number

fields.

Our approach is two-fold. First, we apply results on Azumaya algebras, classical

and recent, to prove results about invariants of Dehn surgeries on hyperbolic knots.

Second, we show how conditions from 3-manifold topology, for example, arithmetic

properties of the Alexander polynomial of a knot, help prove the existence of an Azumaya

algebra over certain curves defined over a number field. In the remainder of the

introduction, we expand on this theme and state a number of the results we will prove.

Let � be as above, and suppose that ρ : � → SL2(C) is an absolutely irreducible

representation. If χρ is the character of ρ, let kρ be the field generated over Q by the

values of χρ . Then the kρ-span of ρ(�) defines a kρ-quaternion subalgebra Aρ ⊂ M2(C)

(cf. [39, Thm. 3.2.1]). When ρ(�) is a discrete subgroup of SL2(C) of finite co-volume, the

field kρ and the algebra Aρ are important geometric and topological invariants of the

hyperbolic 3-manifold Mρ = H3/ρ(�) that are closely related to the lengths of closed

geodesics and the spectrum of the Laplace–Beltrami operator on Mρ (see [8]).

Suppose that � = π1(S3 � K) is the fundamental group of a hyperbolic knot

complement and ρ : � → SL2(C) is the discrete representation associated with a

hyperbolic Dehn surgery on S3�K. One can then ask if and how the invariants kρ and Aρ

of Mρ = H3/ρ(�) depend on K. Our work was partially motivated by giving a theoretical

explanation for the following examples.

Examples. Using the program Snap [12], one can determine the so-called invariants

of the algebra Aρ , where ρ : � → SL2(C) is the representation associated with a

hyperbolic Dehn surgery on S3 �K with sufficiently small surgery coefficient. The non-

trivial invariants are a finite list of real and finite places of the trace field kρ , which

is also called the ramification set for Aρ . For the knot 41, the figure-eight knot, every

finite place that appears in the ramification set has residue characteristic 2, that is,

the associated prime ideal of the ring of integers Okρ
of kρ divides 2Okρ

. For other

knots, the invariants behave much more wildly: for the knot 52 one sees invariants with

residue characteristics including 5, 13, and 181, and for the (−2, 3, 7)-pretzel knot one

sees non-trivial invariants with residue characteristics 3, 5, 13, 31, 149, 211, 487, 563,

and 34, 543.
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Azumaya Algebras and Canonical Components 4971

Understanding the local invariants of the algebras Aρ turns out to be linked with

the problem of extending this association of a quaternion algebra Aρ with the character

of an absolutely irreducible representation to an Azumaya algebra over normalizations

of various subschemes of X(�). To explain this we need some further notation.

In §2.1 we recall a result from [16] showing that there is a canonical model X(�)Q

of X(�) whose affine ring is the Q-algebra generated by the trace functions associated

with explicit words in the chosen generators for �. This choice of generators then fixes

an embedding of X(�) into an affine space An
C

where the indeterminates generating the

affine ring of An
C

correspond to the trace functions associated with the given words in

the fixed generating set.

Suppose C is an integral complex curve that is a closed subscheme of X(�), and

suppose there is a point of C(C) that corresponds to the character of an irreducible

representation. By [33, Ch. 3] there is a unique minimal subfield k ⊂ C such that the

ideal I corresponding to the resulting embedding C ⊂ An
C

is generated by polynomials

with coefficients in k. This field k is called the field of definition of C in [37].

Choosing generators for I that have coefficients in k, we arrive at a geometrically

integral curve C over k that is a closed subscheme of X(�)k = X(�)Q⊗Qk such that C⊗kC

is isomorphic to C over C. Since C is geometrically integral, k is the field of constants of

C, that is, k is algebraically closed in the function field k(C) [47, Rem. 9.5.7]. Note that

this notion of k being a field of definition depends on the realization of C as a closed

subscheme of X(�), in contrast with other notions [18]. It is shown in [37, Prop. 3.1] that

k and the isomorphism type of C over k do not depend on the choice of generators for �

used to define character function generators for the affine ring of X(�)Q.

We now suppose that, in addition to the above, k ⊂ C is a number field. This will

be the case, for example, if C is an irreducible component of X(�) = X(�)Q ⊗Q C. Let C�

be the normalization of C and C̃ be the unique smooth projective curve over k containing

C� that has the same function field k(C) as C and C�. There is a field F containing k(C)

and an (absolutely) irreducible representation PC : � → SL2(F) whose character defines

the generic point of C. This representation is called the tautological representation by

Culler–Shalen [16]. The starting point for us is the following result, which we prove in

§3.3 using the work by Culler–Shalen, Harari [25], and Rumely [51], along with some

classical results about Azumaya algebras.

Theorem 1.1. Suppose that � is a finitely generated group with SL2(C) character

variety X(�) = X(�)Q ⊗Q C. Let k ⊂ C be a number field, and suppose that C is a

geometrically integral curve on X(�)k = X(�)Q⊗Qk such that C = C⊗kC ⊂ X(�) has field
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4972 T. Chinburg et al.

of definition k. Let C� be the normalization of C and C̃ be the smooth projective closure

of C�. Suppose that C contains the character of an irreducible representation of �.

1. Taking the k(C)-span of PC(�) defines a k(C)-quaternion algebra

Ak(C) ⊂ M2(F) for some finite extension F of k(C).

2. For z ∈ C�, let w = w(z) be the image of z on C and ρw be a complex

representation with character w. Fix an embedding of the residue field k(w)

into C extending our fixed embedding of k. Then kρw
⊆ k(w) ⊆ k(z), and k(w)

is generated by k and kρw
. If w is a smooth point of C then k(z) = k(w).

3. Suppose there is no Azumaya algebra AC̃ over C̃ with generic fiber isomorphic

to Ak(C). Then there is no finite set S of places of Q with the following

property: the k(w)-quaternion algebra Aρ ⊗kρ
k(w) is unramified outside the

places of k(w) over S for all but finitely many smooth points w ∈ C(Q) for

which ρ = ρw is absolutely irreducible.

4. Suppose there is an Azumaya algebra AC̃ over C̃ with generic fiber isomorphic

to Ak(C). Then there is a finite set S of places of Q such that the k(z)-

quaternion algebra Aρ ⊗kρ
k(z) is unramified outside the places of k(z) over

S for all points z ∈ C�(Q) such that ρ = ρw(z) is absolutely irreducible.

5. If AC̃ exists, then its class in the Brauer group Br(C̃) is determined by the

isomorphism class of Ak(C) as a quaternion algebra over k(C).

In the remainder of the introduction we discuss the case of the most interest

to us, namely, where K ⊂ S3 is a hyperbolic knot with complement M = S3 � K and

� = π1(M). Work of Thurston [56] (see also [16]) shows that X(�) contains a distinguished

curve CM , a so-called canonical component. This is an irreducible component of X(�)

containing the character of a discrete and faithful representation associated with the

complete hyperbolic structure on M. See §2 for further discussion. As noted above, since

CM is an irreducible component of X(�), the field of constants of CM is a number field k,

and there is a geometrically integral curve CM ⊂ X(�)k whose base change to C is CM . We

will refer to CM as the canonical component of X(�)k. Let C̃M denote the normalization

of a projective closure of CM , so C̃M is a smooth projective curve over k.

Among the results we prove in this paper, we will produce various sufficient

conditions for AC̃M
to exist. For example, in the case of hyperbolic knot complements,

the existence of these Azumaya algebras is closely related to arithmetic properties of

the Alexander polynomial of K. Recall that the Alexander polynomial is a generator of

the Fitting ideal for the conjugation action of a meridian on the commutator subgroup

of the knot group (e.g., see [42]). A primary theme of this paper is that the obstruction
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Azumaya Algebras and Canonical Components 4973

to AC̃M
existing is related to points on C̃M associated with characters of nonabelian

reducible representations. In particular, it is a classical fact that nonabelian reducible

representations of knot groups into SL2(C) are closely related to roots of �K(t); see §2.6

for a precise discussion. We prove the following in §4.

Theorem 1.2. Let K be a hyperbolic knot with � = π1(S3 � K), and suppose that its

Alexander polynomial �K(t) satisfies the following:

(�) for any root z of �K(t) in an algebraic closure Q of Q and w a square root of z, we

have an equality of fields Q(w) = Q(w + w−1).

Then AC̃M
exists for the canonical component CM ⊂ X(�)k.

Remark 1.3. While we only state Theorem 1.2 for the canonical component, our

techniques can apply to give Azumaya algebras over other irreducible curve components

of the SL2(C) character variety. Indeed, many of the facts about the canonical component

used in the proof apply to other components, like the so-called norm curves that

appear in Boyer and Zhang’s proof of the finite filling conjecture [6]. As our primary

applications of Theorem 1.2 are to points on the canonical component, we leave it to the

motivated reader to make the necessary adjustments for producing Azumaya algebras

over other components.

Theorem 1.2 obviously applies to any knot with trivial Alexander polynomial,

and moreover to infinitely many other hyperbolic knots with non-trivial Alexander

polynomial, including the figure-eight knot. Indeed, we are able to construct infinite

families of both fibered and non-fibered hyperbolic knots for which condition (�) holds,

and infinitely many for which it fails. See §6 for further discussion.

Furthermore, we prove a partial converse to Theorem 1.2. For example, if CM is

the unique component of X(�) containing the character of an irreducible representation,

�K(t) has no multiple roots, and AC̃M
exists, then condition (�) of Theorem 1.2 holds

for every root of �K(t). See §4.4 for a precise discussion. The converse may also

hold when �K(t) has a multiple root, for example, when the associated point on the

character variety is a smooth point. In order to remove the multiple root condition and

understand if and when the full converse holds, one must better understand the nature

of singularities of C arising from roots of high multiplicity.

A particularly interesting infinite family of points on CM are those that arise

from performing hyperbolic Dehn surgery on M. Suppose that N is a closed hyperbolic

3-manifold obtained from Dehn surgery on M and let χN be the character of the repre-

sentation of � = π1(M) obtained by composition of the Dehn surgery homomorphism
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and the faithful discrete representation of π1(N). If kN is the trace field of N, it is a well-

known consequence of local rigidity that kN is a number field. As mentioned briefly

above, there is a kN-quaternion algebra AN associated with this point on CM .

When Theorem 1.2 applies to show that we obtain an Azumaya algebra over C̃M ,

Theorem 1.1 then places considerable restrictions on the invariants of the algebras AN .

For the sake of simplicity, we state our results here for the case where CM has field of

constants k = Q. In fact, we do not know an example of a knot for which CM has field of

constants not equal to Q, and we will prove in Lemma 4.7 that k = Q when X(�)C has a

unique component containing the character of an irreducible representation.

Theorem 1.4. Let K be a hyperbolic knot in S3 whose Alexander polynomial satisfies

condition (�) of Theorem 1.2, and suppose that the canonical component CM has field

of constants Q. Then there exists a finite set SK of rational primes such that for any

hyperbolic Dehn surgery N on K with trace field kN , the kN-quaternion algebra AN can

only ramify at real places of kN and finite places of kN lying over primes in SK .

We now study effective upper bounds on the set SK in Theorem 1.4 using an

integral version of Theorem 1.2. Recall that by [34] (see also [7] and [36]), there is a

regular projective model of C̃M over the ring of integers Ok of k. Such a model need

not be unique, but there are relatively minimal models. If C̃M has positive genus, then

all relatively minimal models are isomorphic. One can take the base change of these

models to Dedekind subrings of k that contain Ok, for example, rings of S-integers Ok,S,

in order to arrive at regular projective models over these subrings.

Theorem 1.5. Suppose that AC̃M
exists for the canonical component CM ⊂ X(�)k, and

let S be a finite set of rational primes for which the following is true:

(�	) Let 	 be a prime not in S. Suppose that z is a root of �K(t) in an algebraic closure F	

of F	. If w is a square root of z, then we have an equality of fields F	(w) = F	(w + w−1).

For any such S, let Ok,S be the ring of S-integers of k and let CS be a regular projective

integral model of C̃M over Ok,S. There is an extension ACS
of Ak(C) to an Azumaya

algebra over CS, and the class of ACS
in Br(CS) is determined by the isomorphism class

of Ak(C).

One can check (see Remark 5.11) that if condition (�) of Theorem 1.2 holds, there

will always be a finite set of primes S as in Theorem 1.5. In short, Theorem 1.5 says that

ramification of the quaternion algebras associated with hyperbolic Dehn surgeries on

K is governed by the arithmetic of the Alexander polynomial of K. A particular corollary
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Azumaya Algebras and Canonical Components 4975

of Theorems 1.4 and 1.5 is the following, noting that (�	) holds for all primes 	 when

�K(t) = 1.

Corollary 1.6. Let K ⊂ S3 be a hyperbolic knot with canonical component CM having

field of constants k = Q.

(1) Suppose that AC̃M
exists for C̃M . For any hyperbolic Dehn surgery N on K

with trace field kN , the kN-quaternion algebra AN can only ramify at real

places of kN and finite places lying over primes in the set S provided by

Theorem 1.5.

(2) Suppose that �K(t) = 1, and let N be a closed hyperbolic 3-manifold

obtained by Dehn surgery on K. Then the quaternion algebra AN can only

ramify at real places of the trace field kN .

As an example of Theorem 1.5, we show in §6 that for the figure-eight knot

complement, where C̃M is known to be an elliptic curve over k = Q with good reduction

outside 2 and 5, that the set S in Theorem 1.5 can be taken to be {2}. This leads to

the following consequence, which confirms the experimental observations described

above.

Theorem 1.7. Let K ⊂ S3 denote the figure-eight knot, M = S3 � K, and CM be the

canonical component.

(1) The quaternion algebra Ak(C) extends to a quaternion Azumaya algebra AC̃M
.

(2) The class of AC̃M
in Br(C̃M) is the unique non-trivial class of order 2 having

trivial specialization at infinity that becomes trivial in Br(C̃M ⊗Q Q(i)) after

tensoring over Q with Q(i).

(3) Suppose that N is a closed hyperbolic 3-manifold obtained by Dehn surgery

on the figure-eight knot. Then the quaternion algebra AN can only ramify at

real or dyadic places of the trace field kN .

Another direction of interest is how our results are related to the existence of

characters of SU(2) representations. The study of SU(2) representations of knot groups

saw a great deal of activity motivated by an approach to Property P via the Casson

invariant (see [1] and [31]). In particular, if 
 is an integral homology 3-sphere that is

obtained by Dehn surgery on a knot K whose symmetrized Alexander polynomial �K(t)

satisfies �′′
K(1) 	= 0, then π1(
) admits a non-trivial homomorphism to SU(2), and so

K satisfies Property P. It was subsequently shown in [32] that every non-trivial knot
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4976 T. Chinburg et al.

admits a curve of characters of irreducible SU(2)-representations. Our work connects to

this as follows (see §5 for more detail).

Theorem 1.8. Suppose K is a hyperbolic knot with �K(t) = 1. Let C ⊂ X(�)k be the

canonical component and C̃ be the smooth projective model of C, where k is the constant

field of the function field of C. Then AC̃ extends to an Azumaya algebra A over every

regular integral model C of C̃ over the full ring of integers Ok of k. Let CSU(2) be the subset

of the real points C(R) of C corresponding to the characters of SU(2) representations and

Csing be the (finite) singular locus of C.

1. The class [A] of A in Br(C) has an associated class β([A]) in the relative Tate–

Shafarevich group X(k, Ok, Pic0(C̃)) defined by Stuhler in [55, Def. 1, page

149] (see §5.2).

2. The following conditions are equivalent:

i. The class β([A]) lies in the traditional Tate–Shafarevich group

X(k, Pic0(C̃)) defined in Equation (2) of §5.2;

ii. CSU(2) is contained in the finite set Csing.

3. If any (hence both) of these conditions fail, then C̃(R) is a finite non-empty

disjoint union of real circles and CSU(2) � Csing is a non-empty union of arcs

and circles in C̃(R).

4. If either (i) or (ii) of part 2 above holds and there is a point of C̃ over k, then

β([A]) = 0 in X(k, Pic0(C̃)) if and only if the class of A in Br(C) is trivial. In

particular, this holds when C̃ has no real points or when C̃(R) consists only

of real circles associated with SL2(R) representations.

For an example of a reducible representation that is a singular point of the

closure of the subscheme of irreducible representations on the character variety, see

[27, §6.2].

Theorem 1.8 illustrates an approach to producing characters of irreducible

SU(2)-representations on the canonical component, albeit under the hypothesis

�K(t) = 1. Among the large number of examples we have computed, we find the

following conjecture reasonable (cf. [37, §5]):

Conjecture 1.9. Let K be a hyperbolic knot in S3. Then there is a real curve of SU(2)

characters contained in the canonical component of the SL2(C) character variety.

It would be very interesting if an approach via the techniques of this paper

could be used to give an alternate proof that knots groups have irreducible SU(2)
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Azumaya Algebras and Canonical Components 4977

representations, as opposed to the gauge-theoretical methods of [31, 32]. In contrast

with the discussion here, it is worth pointing out that there are constructions of 1-

cusped hyperbolic 3-manifolds for which the canonical component does not contain

any real characters (see e.g., [37]).

Furthermore, Theorem 1.8 also ties Conjecture 1.9 to the question as to which

curves can possibly be the canonical component of the SL2(C) character variety of a

hyperbolic knot. An immediate consequence of Theorem 1.8 is the following special case

of Conjecture 1.9.

Corollary 1.10. Let K be a hyperbolic knot with trivial Alexander polynomial. Let

C ⊂ X(�)k be the canonical component, where k is the field of constants of the function

field k(C). Suppose that C̃ is a smooth projective model of C, C̃ has a point over k, and

that Pic0(C̃) is the Jacobian of C̃. If the Tate–Shafarevich group X(k, Pic0(C̃)) of Pic0(C̃) is

trivial, then either AC̃ is isomorphic to M2(k(C)) or C contains infinitely many characters

of non-abelian SU(2) representations.

Our work also seems to suggest a connection between hyperbolic knot com-

plements whose canonical components satisfy the conclusion of Theorem 1.2, L-space

knots, and knots whose complements have bi-orderable fundamental group. We discuss

this in more detail in §6, but in rough terms we do not know of an example of a

hyperbolic L-space knot that satisfies the conclusion of Theorem 1.2. In a similar

direction, in §6, we discuss some connections between our work, (non-)orderability of

hyperbolic knot groups, and fundamental groups of Dehn surgeries on knots. See [14]

for further work related to this connection.

2 Representation and Character Varieties

In this section, we recall some basic facts about SL2(C) representation and character

varieties.

2.1

Let � be a finitely generated group, and consider the SL2(C) representation variety

R(�) = Hom(�, SL2(C)).

The embedding SL2(C) ⊂ M2(C) ∼= C4 with the obvious coordinates gives R(�)

the structure of an affine algebraic subset of C4n. These coordinates show that the
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embedding R(�) ⊂ C4n is the base change of an embedding R(�)Q ⊂ A4n
Q

, where R(�)

and R(�)Q are up to canonical isomorphism independent of the choice of a generating

set for �. For all fields L of characteristic 0, we will denote R(�)Q ⊗Q L by R(�)L.

Two elements ρ1, ρ2 ∈ R(�) are called equivalent if there is some g ∈ GL2(C) such

that ρ2 = gρ1g−1. A representation ρ ∈ R(�) is called reducible if ρ(�) is conjugate into

the subgroup of upper-triangular matrices and is called irreducible if it is not reducible.

Let χρ : � → C denote the character of a representation ρ. For each γ ∈ �,

consider the regular function τγ : R(�) → C defined by evaluating the character of

ρ at γ :

τγ (ρ) = χρ(γ ) = tr(ρ(γ ))

Since the trace is a conjugacy invariant, τγ is constant on equivalence classes of

representations. The subring T of the ring of regular functions on R(�) generated by

{τγ }γ∈� is finitely generated [16, Prop. 1.4.1]. Therefore, we can fix γ1, . . . , γr ∈ � such

that {τγi
}r
i=1 generates T.

Define t : R(�) → Cr by

t(ρ) = (
τγ1

(ρ), . . . , τγr
(ρ)

) ∈ Cr.

Note that if ρ1, ρ2 are equivalent representations, then t(ρ1) = t(ρ2). The SL2(C)

character variety of � is

X(�) = t(R(�)) ⊆ Cr,

and every irreducible component of X(�) containing the character of an irreducible

representation is a closed affine algebraic variety [16, Prop. 1.4.4]. For γ ∈ �, we also

define the rational function

Iγ (χρ) = χρ(γ ),

on X(�) induced by the class function τγ on R(�) defined above.

To be more precise, [16] shows that X(�) has affine coordinate ring

C[x1, . . . , xr]/J, where J is the ideal of all polynomials that vanish on X(�) under the

identification xi = τγi
. Changing the generating set gives an isomorphic affine set, so

X(�) is well defined up to isomorphism. It is also shown in [16] that X(�) is defined over

Q in the sense that J is generated by polynomials in the variables xi with coefficients

in Q. We will use X(�)Q to denote the affine scheme over Q whose ring is the image of

Q[x1, . . . , xr] in C[x1, . . . , xr]/J. The irreducible components of X(�)Q then have constant

field a number field.
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Azumaya Algebras and Canonical Components 4979

If F is an arbitrary field of characteristic zero, then a representation

ρ : � → SL2(F) is absolutely irreducible if it remains irreducible over an algebraic

closure F of F. A representation ρ : � → SL2(F) with non-abelian image is absolutely

irreducible over an algebraic closure of F if and only if ρ is irreducible [16, Lem. 1.2.1].

Two irreducible representations of � are equivalent if and only if they have the

same character [16, Prop. 1.5.2]. In particular, if x ∈ X(�) is a point such that x = t(ρ) for

some irreducible representation ρ ∈ R(�), then t−1(x) is exactly the equivalence class of

ρ. Furthermore, the reducible representations in R(�) are of the form t−1(V) for some

closed algebraic subset V of X(�) [16, Prop. 1.4.2].

We now record the following from [16, Lem. 1.2.1].

Lemma 2.1. In the above notation, if χρ is the character of a reducible representation

and c ∈ [�, �], then Ic(χρ) = 2.

Proof. A reducible representation of � into SL2(C) can be conjugated to have image

contained in the group of upper-triangular matrices. Since the commutator of two upper-

triangular matrices has 1s on the diagonal, the lemma follows. �

Remark 2.2. The converse of Lemma 2.1 also holds. See [16, Lem. 1.2.1]. Indeed, this

holds for representations to SL2(F) for an arbitrary algebraically closed field F.

Notation: In the case when � is the fundamental group of the complement S3 � K of

a knot K in the 3-sphere S3, we denote the representation variety by R(K) and the

character variety by X(K).

2.2

Throughout in what follows by an affine or projective curve, we shall always mean an

irreducible affine or projective curve.

Suppose that C is an affine curve with field of constants the number field k.

For us, C will generally be a closed subscheme of R(�)k or X(�)k. Let C# denote the

normalization of the reduction Cred of C. Thus if C = Spec(A) we have Cred = Spec(Ared)

and C# = Spec(A#), where Ared is the quotient of A by its nilradical and A# is the

normalization of Ared in the function field k(C) of C. The natural morphism C# → C

is finite, and C# is connected since C is irreducible.

Denote the smooth projective completion of C# by C̃, so C̃ is a smooth projective

curve birationally equivalent to C that contains C# as an open dense subset. The ideal
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4980 T. Chinburg et al.

points of C̃ are C̃ � C#, which are the points at which the birational map C̃ → C is

not defined. We denote the set of ideal points by I(C̃). Notice that a non-zero regular

function C ⊗k C → C induces a map C̃ ⊗k C → P1
C

whose poles are at points in I(C̃).

The following is a generalization of a fact implicit in Culler–Shalen [16] in the

case where C is an irreducible curve component of X(�).

Lemma 2.3. The morphism R(�)k → X(�)k is surjective. Suppose that ηC is the generic

point of an irreducible curve C ⊂ X(�)k. Then there is an irreducible curve D ⊂ R(�)k

such that t(ηD) = ηC and t(D) ⊂ C, where ηD denotes the generic point of D. The function

field k(D) of D is a finite extension of the function field k(C) of C. Further, there exists a

representation PC : � → SL2(k(D)) such that

χPC
(γ )(ρ) = χρ(γ )

for any representation ρ ∈ D and γ ∈ �. In other words, evaluating the function

χPC
(γ ) ∈ k(D) at the point ρ gives the value of the character χρ at γ .

Proof. By Exercises II.3.18 and II.3.19 in [26], the image of the morphism

R(�)k → X(�)k is constructible, so it is the finite disjoint union of locally closed

subsets of X(�)k. Therefore, t : R(�)k → X(�)k is surjective as a map of affine schemes,

since the base change

R(�) = R(�)k ⊗k C → X(�) = X(�)k ⊗k C

is surjective on closed points by [16, page 117]. Therefore, the fiber t−1(ηC) of t over ηC is

a non-empty scheme over the residue field k(ηC) = k(C). It therefore has a closed point

ηD as a scheme over the field k(ηC). Now, k(ηD) is a finite extension of k(ηC) and the

Zariksi closure D of ηD in R(�)k is a curve in Rk such that t(D) ⊂ C.

We let the representation PC be the one produced by ηD. Specifically, we arrive

at a so-called tautological representation PC : � → SL2(k(D)), which we denote by

PC(γ ) =

⎛⎜⎜⎝
f 1,1
γ f 1,2

γ

f 2,1
γ f 2,2

γ

⎞⎟⎟⎠ ,

where f i,j
γ ∈ k(D) is the function such that f i,j

γ (ρ) is the (i, j)-entry of ρ(γ ). The character

of PC visibly has the property that χPC
(γ )(ρ) = χρ(γ ) for all ρ ∈ D and γ ∈ �. This proves

the lemma. �
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Azumaya Algebras and Canonical Components 4981

Given the representation PC described above, we record the following basic

lemma that follows from the reasoning used in the proof of Lemma 2.3 (also see [16,

Lem. 1.3.1]).

Lemma 2.4. In the above notation, if C contains the character of an irreducible

representation, then the representation PC from Lemma 2.3 is (absolutely) irreducible.

Notation: We recall the following notation. Let C be a possibly singular projective curve

with smooth projective model C̃ and P ∈ C̃. Then for α = f /g ∈ k(C), with f , g ∈ k[C]

regular functions, we set

ordP(α) = ordP(f ) − ordP(g),

where ordP(f ) (resp. ordP(g)) is the order of vanishing of f (resp. g) at P. Then ordP can

be used to define a valuation of k(C) at P for which the local ring at P will be denoted

by OP and consists of those α with ordP(α) ≥ 0, and its unique maximal ideal, denoted

by mP, consists of those α with ordP(α) > 0. The residue field of the point P is given by

k(P) = OP/mP.

We introduce the following additional notation. Note that any function on C

in the ring of functions generated by the character functions Iγ extends to a rational

function C̃ → P1. For γ ∈ �, let Ĩγ : C̃ → P1 be the rational function induced by

Iγ (χρ) = χρ(γ ),

where χρ ∈ C. Recall that Iγ is the function on C induced by the class function τγ on R(�)

defined above. We will also frequently consider the related function

fγ (χρ) = tr(ρ(γ ))2 − 4 = Iγ (χρ)2 − 4,

which vanishes precisely when ρ(γ ) is either unipotent or central.

With C and D as in the previous discussion, we obtain a finite morphism

t̃ : D̃ → C̃. The ideal points on D̃ are the inverse images of the ideal points of C̃ under

this map.

For a point p ∈ D̃ with t̃(p) = q, we have an associated local ring Op. If γ ∈ �,

then as shown in [16, Thm. 2.2.1], the following conditions are equivalent:

i. every PC(γ ) ⊂ SL2(F) is GL2(F)-conjugate to an element of SL2(Op);

ii. Ĩγ does not have a pole at q.
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4982 T. Chinburg et al.

Since the functions Ĩγ over all γ ∈ � generate the ring of regular functions on X(�), for

any x ∈ I(C̃), we can find a non-trivial γ ∈ � such that Ĩγ has a pole at x.

We now prove a slight strengthening of part (2) of Theorem 1.1.

Lemma 2.5. Let X(�)Q be the model of X(�) over Q discussed in the paragraph prior to

Theorem 1.1 of the introduction. Suppose that k is a subfield of C and C is an irreducible

curve over k that is a closed subscheme of the base change X(�)Q ⊗Q k of X(�)Q to k.

For any z ∈ C� = C̃ � I(C̃), let w = w(z) be the image of z on C, let ρw be a complex

representation associated with w and an embedding over k of the residue field k(w)

into C, and let kρw
be the trace field of ρw. Then

kρw
⊆ k(w) ⊆ k(z),

k(z) = k(w) if w is a smooth point of C, and k(w) is generated by k and kρw
.

Proof. By [16], the affine ring of X(�)Q is generated as a Q-algebra by trace functions

associated to elements of �. Therefore, when we view w = w(z) as a closed point of

X(�)Q ⊗Q k, the residue field k(w) is generated by k and polynomial expressions in the

values of trace functions at w. This shows that k(w) is generated by k and kρw
, and the

rest of the assertions in the statement of the lemma are clear. �

2.3 One-cusped hyperbolic 3-manifolds

We now specialize some of the above discussion to the case of the most interest to us,

namely hyperbolic 3-manifolds. Throughout this paper, a hyperbolic 3-manifold will

always mean a connected, oriented, and complete manifold M of the form H3/�, where

� ∼= π1(M) is a torsion-free discrete subgroup of Isom+(H3) ∼= PSL2(C).

If M is finite volume but not compact, then M is the interior of a compact,

irreducible, 3-manifold whose boundary is a finite union of incompressible tori. In

this case there is a discrete and faithful representation ρ0 : � → PSL2(C) coming from

the holonomy of the complete structure on M, and local rigidity implies that any other

discrete and faithful representation of � into PSL2(C) is equivalent to ρ0, so we can

speak of “the” discrete and faithful representation of �. Thurston showed that ρ0 lifts to

a representation ρ̂0 : � → SL2(C) [16, Prop. 3.1.1]. In general, there will be several lifts

of ρ0, even up to equivalence, however for us it will not matter which lift we consider,

and similarly for a character χρ0
.
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Azumaya Algebras and Canonical Components 4983

Define a canonical component X0(�) ⊂ X(�) to be an irreducible component of

X(�) containing some χρ0
. In particular, X0(�) is an affine algebraic variety with field

of constants a number field. When M is a non-compact hyperbolic 3-manifold of finite

volume with d ends homeomorphic to T2 × [0, ∞) (where T2 is the 2-torus), Thurston

showed that X0(�) has complex dimension exactly d [16, Prop. 3.2.1]. We summarize the

above discussion in the following result.

Theorem 2.6. Let M be a non-compact hyperbolic 3-manifold of finite volume with

d ends and set � = π1(M). Then any canonical component X0(�) is a d-dimensional

affine algebraic variety with field of constants a number field. In particular, when M is

a one-cusped hyperbolic 3-manifold, the canonical component X0(�) is an affine curve.

We have the following important lemma regarding the tautological representa-

tion in the case of a canonical component.

Lemma 2.7. Let M be a 1-cusped hyperbolic 3-manifold and C the canonical compo-

nent. Then the tautological representation PC is faithful.

Proof. Suppose that PC is not faithful. Then there exists a non-trivial γ ∈ π1(M) such

that PC(γ ) = I. In particular, this means that χρ(γ ) = 2 for all χρ ∈ C. Since C is a

canonical curve, the only non-trivial elements of π1(M) with trace 2 under a faithful

discrete representation are peripheral elements, hence γ is peripheral. However, [15,

Prop. 1.1.1] implies that the function Iγ is non-constant on C when γ is a non-trivial

peripheral element, and this is a contradiction. �

2.4

Given a non-elementary subgroup H of SL2(C) we can associate a field and quaternion

algebra as follows (see [39, Ch. 3]). The trace field of H is the field kH = Q(tr(γ ) : γ ∈ H)

and the quaternion algebra is

AH =
{

n∑
i=1

αiγi αi ∈ kH , γi ∈ H

}
,

that is, the kH-span of H in M2(C).

If H is a Kleinian group of finite co-volume then kH is a number field. Let H(2)

denote the (finite index) subgroup of H generated by the squares of all elements in H;

this is the kernel of the homomorphism from H onto its maximal elementary 2-abelian
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4984 T. Chinburg et al.

quotient. The invariant trace field and quaternion algebra associated with a finitely

generated non-elementary subgroup are kH = kH(2) and AH = AH(2) . These are invariants

of the commensurability class of H in PSL2(C), and k� is also equal to tr(Ad(�)). When

H1(H,F2) = {0} or when H is the fundamental group of a knot complement in an integral

homology sphere, the invariant trace field and quaternion algebra coincide with the

trace field and the algebra AH . See [39, §4.2].

A Hilbert symbol (see [39, page 78] for the definition) for AH is readily described

using a pair of non-commuting elements as follows. Suppose that g and h are hyperbolic

elements of H with [g, h] 	= 1. Then, following [39, §3.6], a Hilbert symbol for AH is

given by

(
tr2(g) − 4, tr([g, h]) − 2

kH

)
.

2.5

We now define the quaternion algebra Ak(C) over the function field k(C) of C that will be

the central object of study in this paper.

We begin with some general comments in setting finitely generated groups. Let

� be a finitely generated group and C a geometrically irreducible curve over a number

field k that is a closed subscheme of X(�)k, and suppose that C contains the character of

an irreducible representation. As in Lemma 2.3, fix an irreducible curve D ⊂ R(�)k such

that t(D) = C and the function field F = k(D) of D is a finite extension of the function

field k(C) of C. As above, we have the tautological representation PC : � → SL2(F).

Since C contains the character of an irreducible representation, we know from

Lemma 2.4 that PC is absolutely irreducible. We can then define Ak(C) to be the k(C)-

subalgebra of M2(F) generated by the elements of PC(�). That is,

Ak(C) =
{

n∑
i=1

αiPC(γi) αi ∈ k(C), γi ∈ �

}
.

Exactly as in the proof of Lemma 2.3, Ak(C) has the structure of a quaternion algebra over

k(C). We refer to Ak(C) as the canonical quaternion algebra. It will be helpful to record

part of the proof of this, namely that Ak(C) is four-dimensional over k(C), by identifying

certain elements of � whose images under PC provide a k(C)-basis.

Lemma 2.8. In the notation above, there exists a pair of elements g, h ∈ � so that the

regular functions I2
g − 4 and I[g,h] − 2 are not identically zero on C̃. More specifically,
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Azumaya Algebras and Canonical Components 4985

given any g ∈ � so that Ig is not constant with value ±2 on C̃, there is an element h ∈ �

so that I[g,h] − 2 is not identically zero on C̃.

Proof. Since PC is irreducible it has non-abelian image, so there exists g ∈ � so that

PC(g) 	= ±I. As argued in [16, Lem. 1.5.1], we can find h ∈ � so that PC restricted to the

subgroup H generated by g and h is irreducible and χρ(h) 	= ±2 for all χρ ∈ C.

It follows from irreducibility that I[g,h] − 2 	= 0. Indeed, by assumption, we can

conjugate PC(g) over the algebraic closure of k(C) to be the diagonal matrix

PC(g) =

⎛⎜⎜⎝
u 0

0 1/u

⎞⎟⎟⎠
for some function u 	= ±1. Then,

PC(h) =

⎛⎜⎜⎝
a b

c d

⎞⎟⎟⎠
for functions a, b, c, d in the algebraic closure of k(C). Computing tr([PC(g), PC(h)]) and

setting this equal to 2 we obtain the equation

bc(2 − (u + 1/u)) = 0.

It follows that bc = 0. However, this cannot be the case, as it would then follow that the

restriction of PC to H is either upper- or lower-triangular, that is, reducible on H, which

is a contradiction. This proves the 1st part of the lemma.

The 2nd part follows the same line of argument after noticing that Ih not being

constant with value ±2 implies that PC(h) 	= ±I. �

When the tautological representation PC is (absolutely) irreducible, using

Lemma 2.8 and following [39, §3.6], we see that there exist elements {g, h} ∈ � so

that {1, PC(g), PC(h), PC(gh)} is a basis for Ak(C) over k(C). With this one can describe a

Hilbert symbol (cf. §2.4).

Corollary 2.9. Let � be a finitely generated group and C be a geometrically integral

curve over k that is a closed subscheme of X(�)k. Assume that C contains the character
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of an irreducible representation, and let g, h ∈ � be two elements such that there exists

a representation ρ ∈ R(�) with character χρ ∈ C for which the restriction of ρ to 〈g, h〉
is irreducible. Then the canonical quaternion algebra Ak(C) is described by the Hilbert

symbol (
I2
g − 4 , I[g,h] − 2

k(C)

)
.

In §3, we will describe how the quaternion algebra Ak(C) can be described

instead as an Azumaya algebra over k(C). This will provide the correct context for the

above discussion to be applied to prove our main results.

2.6 Knot complements

We now specialize some of the previous discussion to hyperbolic knot complements. We

fix the following notation for the remainder of this paper. If K ⊂ S3 is a non-trivial

knot, E(K) will denote the exterior of K. We fix a standard pair of preferred generators

for π1(∂E(K)), namely 〈μ, λ〉 where μ is a meridian of the knot K and λ a longitude

(chosen to be null homologous in E(K)). Elements of � conjugate into 〈μ, λ〉 are called

peripheral elements. The Alexander polynomial of K will be denoted by �K(t). Recall

from the discussion in the introduction that the Alexander polynomial is a generator of

the Fitting ideal for the conjugation action of a meridian on the commutator subgroup of

the knot group. See [42] for further background on the Alexander polynomial sufficient

to understand the results in this paper.

For much of the rest of this paper, we will be interested in character varieties of

hyperbolic knot complements, and in particular their canonical components. We point

out that it is known from [32] that if K is any non-trivial knot, then the character variety

contains a curve of characters of irreducible representations. However, our focus is on

hyperbolic knots.

Thus, let K ⊂ S3 be a hyperbolic knot. As remarked upon in §2.1, characters of

reducible representations of � = π1(S3 � K) form an algebraic subset of X(K). Denote

this subset by XR(K). We will use the following fact.

Lemma 2.10. Let C ⊂ X(K) be the canonical component over the complex numbers. In

the above notation, XR(K) ∩ C can consist of only finitely many points.

Proof. As above, let λ denote a longitude of K. Since λ ∈ [�, �], Lemma 2.1 shows that

Iλ(χρ) = 2 for any reducible representation ρ. Since C is a curve, if C contained the
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characters of infinitely many reducible representations, it would follow that Iλ(χρ) = 2

for all χρ ∈ C. However, this is impossible, since the functions Iα are non-constant for

all non-trivial peripheral elements α by [15, Prop. 1.1.1]. �

We can say more about the finitely many characters of reducible representations

that lie on C. The following can be found in [11, §6].

Proposition 2.11. Let K ⊂ S3 be a hyperbolic knot with Alexander polynomial �K(t)

and let C ⊂ X(K) be a canonical component. If ρ : � → SL2(C) is a reducible

representation with χρ ∈ C, then the following hold.

(1) There is a representation ρ′ with non-abelian image such that χρ = χρ′ ∈ C.

(2) If μ is a meridian of K, then ρ(μ) has an eigenvalue z for which z2 is a root

of �K(t).

In fact, all one needs for Proposition 2.11(1) to hold is for C to contain the

character of an irreducible representation. The key point is that if t : R(K) → X(K)

is the map from the representation variety to the character variety defined in §2.1 and

if χ is the character of an irreducible representation, then t−1(χ) is three-dimensional.

On the other hand, if χρ is the character of an abelian representation, then t−1(χρ) is

two-dimensional.

To prove part (2) of Proposition 2.11, it is shown in §6 of [11] (following de Rham

[17]) that if μ1, . . . , μn is a collection of meridional generators for �, then the non-abelian

representation ρ′ stated in Proposition 2.11 can be described as follows. Recall that

meridians in the knot group are are all conjugate, and hence have the same character

values for all representations. Given this, there exist w ∈ C and ti ∈ C for i = 1, . . . , n

so that

ρ′(μi) =

⎛⎜⎜⎝
w ti

0 w−1

⎞⎟⎟⎠ .

One then shows using the action of � on its commutator subgroup (e.g., see [42, Ch. IV])

that w2 = z is a root of �K(t).

One consequence of Proposition 2.11 is the following, where a parabolic repre-

sentation means a non-trivial representation ρ : � → SL2(C) all of whose non-trivial

elements are parabolic. Note that this is equivalent to the statement that ρ is a non-

trivial representation for which χρ(γ ) = ±2 for all γ ∈ �.
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Corollary 2.12. In the above notation, C does not contain the character of a parabolic

representation.

Proof. We first show that if ρ is a parabolic representation, then ρ is abelian. To see

see this, suppose that a and b are distinct meridians of K for which ρ(a) and ρ(b) do not

commute. The parabolic assumption allows us to conjugate ρ such that

ρ(a) =

⎛⎜⎜⎝
1 x

0 1

⎞⎟⎟⎠ and ρ(b) =

⎛⎜⎜⎝
1 0

y 1

⎞⎟⎟⎠ .

Then tr(ρ([a, b])) = 2 + x2y2. We assumed this commutator is non-trivial and it is

parabolic, and hence it has trace ±2.

When the trace is 2, one of x or y is 0, that is, one of ρ(a) or ρ(b) is the identity.

This contradicts the assumption that ρ(a) and ρ(b) do not commute. When the trace

is −2, we have x2y2 = −4. Conjugating by a diagonal matrix so x = 1, it follows

that the product ρ(ab) then has trace 2 ± 2i, and hence is not parabolic, which is

again a contradiction. Therefore, under any parabolic representation, we deduce that

all meridians must map to a common parabolic subgroup of SL2(C), and it follows that

the image is abelian as required.

An abelian representation is reducible, so Proposition 2.11 implies that there is

a non-abelian representation ρ′ with χρ′ ∈ C and χρ = χρ′ . Thus, χρ′(γ ) = ±2 for all γ ∈ �,

that is, ρ′ is also a parabolic representation, and hence ρ′ is abelian. This contradiction

proves the corollary. �

We record the following refinement of Lemma 2.8 that will be helpful in the case

where � = π1(S3 � K) for K a hyperbolic knot.

Lemma 2.13. Let g and h be distinct meridians of K and χρ ∈ C be such that the

restriction of ρ to 〈g, h〉 is infinite and irreducible for some (hence any) representation

ρ with character χρ . If χρ([g, h]) = ±2, then ρ([g, h]) is a non-trivial parabolic element of

SL2(C).

Proof. Since g and h are meridians, they are conjugate in �. In particular, χρ(g) =
χρ(h) for any ρ ∈ R(�). Suppose that χρ([g, h]) = ±2 but ρ([g, h]) is not parabolic,

in which case either ρ(g) and ρ(h) commute or ρ([g, h]) is the negative of the identity

matrix.
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If ρ(g) and ρ(h) commute, we can conjugate ρ such that

ρ(g) =
(

u 1

0 u−1

)

ρ(h) =
(

u 0

z u−1

)
.

One can then explicitly calculate ρ([g, h]) and see that the commutator is trivial if and

only if z = 0 and u = ±1. However, � is normally generated by h, so the image of ρ is

either trivial or order 2, and hence is not irreducible, which is a contradiction.

When ρ([g, h]) is the negative of the identity matrix, we similarly see that z = 2

and u = ±i. This is conjugate to the representation

ρ′(g) =
(

i 0

0 −i

)

ρ′(h) =
(

0 −1

1 0

)
,

where 〈g, h〉 visibly has finite image. This contradiction completes the proof of the

lemma. �

3 Azumaya Quaternion Algebras and Brauer Groups of Curves

In this section, we recall some material concerning Azumaya algebras and Brauer

groups of curves. Most of what we discuss is contained in Milne [41].

3.1

Informally, an Azumaya algebra is a generalization of a central simple algebra over a

field k. To make this notion precise, we begin with the setting of an Azumaya algebra

over a commutative local ring R with residue field k. An algebra A over R is an Azumaya

algebra if A is free of finite rank r ≥ 1 as an R-module and A ⊗ k is a central simple

algebra over k.

To define an Azumaya algebra over a curve we recall some additional terminol-

ogy. Let X be a Noetherian scheme. Recall that the structure sheaf of X is the sheaf of

rings OX such that for any open subset U ⊂X, OX(U) is the ring of regular functions on U.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/7/4969/5900765 by Tem
ple U

niversity Law
 School Library user on 28 N

ovem
ber 2022



4990 T. Chinburg et al.

For each point x ∈ X, the stalk of OX , denoted OX,x, is its local ring, that is, the direct

limit of OX(U) over all open sets U containing x. We denote the residue class field of

OX,x by k(x).

A coherent sheaf of OX modules F is a sheaf of abelian groups on X such that,

for any open subset U ⊂ X, F(U) is a finitely generated module over OX(U) for which the

module structure is compatible with restriction maps. The stalk of F at a point x ∈ X,

denoted Fx, is the direct limit of F(U) over those open sets U containing x. One says

that F is locally free if Fx is finitely generated and free over OX,x for all x ∈ X.

An Azumaya algebra A on X is a locally free sheaf of OX algebras such that Ax

is an Azumaya algebra over the local ring OX,x for every x ∈ X. Of particular interest

to us are quaternion Azumaya algebras, that is, Azumaya algebras that are rank 4 as

locally free OX-modules.

3.2

Two Azumaya algebras A and B are equivalent if there exist locally free sheaves of

OX-modules E and F such that

A ⊗OX
EndOX

(E) ∼= B ⊗OX
EndOX

(F),

where EndOX
(H) is the sheaf of OX-module endomorphisms of an OX module H. This

is an equivalence relation, and the group of equivalence classes of Azumaya algebras is

called the Brauer group of X, denoted by Br(X).

We now recall some basic results concerning Azumaya algebras and Br(X). For

simplicity, we restrict to X that have properties of the kind that arise in our applications.

For an abelian group D and n ≥ 1 in Z, let D[n] be the subgroup of elements with order

dividing n. The following is an encyclopedia of classical facts about Azumaya algebras.

Theorem 3.1. Suppose X is a regular integral scheme of dimension at most 2 with

function field K that is quasi-projective over a field or a Dedekind ring.

(1) Descent theory gives a bijection between the set of isomorphism classes of

Azumaya algebras AX of rank n2 over X and the elements of the étale Čech

cohomology group Ĥ1
ét(X, PGLn). Similarly, there is an isomorphism between

isomorphism classes of rank n locally free OX-modules E and elements of

Ĥ1
ét(X, GLn).
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Azumaya Algebras and Canonical Components 4991

(2) There is an exact sequence of étale sheaves of groups

1 → Gm → GLn → PGLn → 1

on X. The cohomology of this sequence gives an exact sequence

Ĥ1
ét(X, GLn) → Ĥ1

ét(X, PGLn) → Ĥ2
ét(X,Gm)

where

Ĥ2
ét(X,Gm) = H2(X,Gm) = Br(X).

With the notation of part (1), the isomorphism class of E in Ĥ1
ét(X, GLn) is

identified in the above sequence with the class of EndOX
(E) in Ĥ1

ét(X, PGLn).

The isomorphism class of AX in Ĥ1
ét(X, PGLn) is sent to the class [AX ] of AX

in Br(X).

(3) Every element of Br(X) has finite order.

(4) If c is a class in H2(X,Gm) of order n, then c is represented by an Azumaya

algebra A of rank n2 over X.

(5) The natural homomorphism Br(X) → Br(K) is injective. An Azumaya algebra

AK over K is determined up to isomorphism by its image in Br(K).

(6) Let x be a codimension one point of X, so R = OX,x is a discrete valuation

ring with fraction field K. One says that an Azumaya algebra AK over K

extends over x when there is an Azumaya algebra AR over R such that AK is

isomorphic to AR ⊗R K. This is the case for all codimension one points x of

X if and only if AK extends to an Azumaya algebra A over X.

(7) Suppose that K has characteristic not equal to 2. Every quaternion Azumaya

algebra AK over K is of the form

AK = SpanK [1, I, J, IJ],

where I and J are indeterminants for which there exist α, β ∈ K∗ such

that I2 = α, J2 = β, and IJ = −JI. In other words, AK is the algebra with

Hilbert symbol

(
α, β

K

)
∈ H2(Spec(K), {±1}) = H2(Spec(K),Gm)[2]

= Br(K)[2].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/7/4969/5900765 by Tem
ple U

niversity Law
 School Library user on 28 N

ovem
ber 2022



4992 T. Chinburg et al.

(8) Let x be a codimension one point of X and let AK be a quaternion Azumaya

algebra over K. The tame symbol {α, β}x of AK at x is the class of

(−1)ordx(α)ordx(β)βordx(α)/αordx(β)

in k(x)∗/(k(x)∗)2. If k(x) has characteristic different from 2, this symbol is

trivial if and only if AK extends over x.

Proof. For statements (1)–(6), see Thm. IV.2.5, Thm. III.2.17, Prop. IV.2.7, Thm. IV.2.16,

Cor. IV.2.6, and Remark IV.2.18(b) in [41], respectively. Statement (7) is shown in

[4, Prop. 4, §19.3]. Statement (8) is proven in the 1st four paragraphs of [10, §2]. �

3.3 The proof of Theorem 1.1

We now give the proof of Theorem 1.1. First, we recall our assumptions. Let � be a

finitely generated group. Suppose that k is a number field realized as a subfield of C

under a fixed embedding and that C is a geometrically irreducible curve over k that

is a closed subscheme of X(�)k = X(�)Q ⊗Q k such that C(C) contains the character

of an irreducible representation. As in the statement of the theorem, C� denotes the

normalization of C and C̃ is the unique smooth projective curve over k birational to C.

Let k(C) be the common function field of C, C�, and C̃.

From Lemma 2.8 and Corollary 2.9, we can find elements g, h ∈ � such that the

canonical quaternion algebra Ak(C) over k(C) is well defined and has Hilbert symbol(
I2
g − 4 , I[g,h] − 2

k(C)

)
. (1)

This gives Theorem 1.1(1). Theorem 1.1(2) follows from Lemma 2.5.

To prove part (3) of Theorem 1.1, suppose that Ak(C) does not extend to define an

Azumaya algebra over all C̃. We can find an open affine subset U of smooth points of

C ⊂ C̃ over which Ak(C) extends to an Azumaya algebra AU having Hilbert symbol as in

Equation (1) at every point. In view of Lemma 2.4, we can furthermore require that the

points of U correspond to absolutely irreducible representations of � and that U avoids

any prescribed finite set of closed points.

For each place v of k, let sv : U(kv) → Br(kv) be the map defined by specializing

AU at a point of U(kv). By a theorem of Harari [25, Thm. 2.1.1], there are infinitely many

places v of k such that s(xv) is non-trivial for some xv ∈ U(kv). By continuity of Hilbert

symbols, we can then find a v-adic disk Bv of positive radius around xv in U(kv) such

that sv is non-trivial at all elements of Bv.
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Azumaya Algebras and Canonical Components 4993

It is a theorem of Rumely [51, Thm. 0.3] that there are infinitely many algebraic

points w in U(k) that have all of their conjugates over k contained in Bv. The

specialization of AU at such a w is thus a quaternion algebra over k(w) whose local

invariants at places of k(w) over v are non-trivial. This proves Theorem 1.1(3).

We now prove Theorem 1.1(4). For this, suppose that Ak(C) extends to an Azumaya

algebra AC̃ over all of C̃. Suppose z ∈ C�(k) and that w = w(z) ∈ C(k) corresponds to

the character of an absolutely irreducible representation ρ = ρw of �. By the “résultat

classique” mentioned in the 2nd remark after the statement of [25, Thm. 2.1.1], it will

suffice to show that the specialization AC̃ ⊗ k(z) of AC̃ at z has the same class in the

Brauer group Br(k(z)) as Aρ ⊗kρ
k(z).

Recall that w ∈ C(k) implies that all of the character functions defining

the embedding of C into X(�)k are regular at w. By Lemma 2.4, the tautological

representation PC : � → SL2(k(D)) has image contained in the k(D)-span of four

elements {PC(gj)}4
j=1 that are linearly independent over k(D). For an arbitrary γ ∈ �,

we can determine the coefficients aj ∈ k(D) such that PC(γ ) = ∑
j ajPC(gj) from the

equations

Tr(PC(giγ )) =
4∑

j=1

ajTr(PC(gigj)),

since the trace gives a non-degenerate pairing from M2(k(D)) to k(D).

Now, using the fact that Tr(τ ) lies in the local ring OC,w for all τ ∈ �, we see that

the OC,w-subalgebra Aw of M2(k(D)) generated by PC(�) is finitely generated over OC,w.

Furthermore, Aw ⊗OC,w
k(C) = Ak(C) and Aw ⊗OC,w

k(w) = Aρ . Since Aρ is a quaternion

algebra, this means by definition that Aw is a quaternion Azumaya algebra over OC,w.

We conclude that Az = Aw ⊗OC,w
OC�,z is a quaternion Azumaya algebra over OC�,z with

generic fiber Ak(C�)
∼= Ak(C). The localization AC̃,z of AC̃ at z is also such an Azumaya

algebra, so Az and AC̃,z have the same class in the Brauer group Br(OC�,z) since this

Brauer group injects into Br(k(C)) by Theorem 3.1(5). Therefore, Az ⊗ k(z) = Aρ ⊗kρ
k(z)

and AC̃ ⊗ k(z) have the same class in Br(k(z)), as required.

Part (5) follows from parts (1), (2), and (5) of Theorem 3.1.

4 Azumaya Algebras and Canonical Components

We now specialize the above to the case of most interest to us. Let M = H3/� be a

1-cusped finite volume hyperbolic 3-manifold and C ⊂ X(�) be a canonical component

over the complex numbers. Define k to be the the field of constants of C ⊂ X(�), and
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4994 T. Chinburg et al.

let C ⊂ X(�)k be the the canonical component over k, and note that k is a number

field. We will be particularly interested in the case when M = S3 � K for K a hyper-

bolic knot.

4.1

When C is the canonical component, that Ak(C) is a quaternion algebra follows from

Lemma 2.7. Indeed, Lemma 2.7 implies that we can apply Corollary 2.9 to C to describe

a Hilbert symbol for Ak(C). The challenge is to now determine when Ak(C) can be extended

globally to define a quaternion Azumaya algebra AC̃ on the smooth projective model C̃ of

C. To that end, the remainder of this section aims at understanding when this happens,

in particular proving Theorem 1.2.

For emphasis, in the remainder of this section, we have the following:

Assumptions: We fix M = S3 � K, where K is a hyperbolic knot, � = π1(S3 � K) and

C ⊂ X(K)k the canonical component with field of constants k.

In the next two subsections, we prove the following results. Taken together, these will

complete the proof of Theorem 1.2. In §4.4, we consider the converse.

Proposition 4.1. The quaternion algebra Ak(C) extends to an Azumaya algebra over the

(Zariski open) set of points χ ∈ C̃ where:

(1) χ = χρ is the character of an irreducible representation of �;

(2) χ ∈ I(C̃) is an ideal point.

To be precise, we say that χ ∈ C̃ is irreducible (resp. reducible) if the image of χ

on C under the rational map C̃ → C described in §2.2 has image of the character of an

irreducible (resp. reducible) representation. Recall that the ideal points I(C̃) are the set

of points on C̃ where this rational map is not well defined.

Lemma 4.2. Suppose that the Alexander polynomial �K(t) satisfies property (�) of

Theorem 1.2. Then at any point χρ ∈ C̃ that is the character of a reducible representation

ρ we have that Ak(C) extends over χρ .

4.2 Proof of Proposition 4.1

Lemmas 2.8 and 2.13 along with Corollary 2.9 imply that we can choose a pair of non-

commuting meridians g, h in �, so that the functions fg = I2
g − 4 and I[g,h] − 2 can be used
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Azumaya Algebras and Canonical Components 4995

to describe a Hilbert symbol for Ak(C). Note that I[g,h] − 2 cannot be identically 0 on C

since it is non-zero at the character of the discrete and faithful representation.

Notation: For f ∈ k(C), let Z(f ) denote the set of zeroes of f in C̃.

Let W ⊆ C̃ be I(C̃) together with Z = Z(fg) ∪ Z(I[g,h] − 2) on C̃. By Lemma 2.10, W

is a finite collection of points that includes the set CR of reducible characters on C̃. Note

also that any poles of fg and I[g,h] − 2 occur at points in I(C̃) ⊆ W.

Given this, for any point in the Zariski open set U = C̃ � W, we have that

ordP(fg) = ordP(I[g,h] − 2) = 0. It follows that the tame symbol {fg, I[g,h] − 2}P is trivial,

and therefore Ak(C) can be extended over U.

To see this directly from the definition, let V ⊂ C̃� I(C̃) be the points associated

with characters of irreducible representations. For any P ∈ V � CR with image on C

the character χρ of an irreducible representation ρ, we can choose g′ and h′ in � such

that the elements {1, ρ(g′), ρ(h′), ρ(g′h′)} form a kρ-basis for Aρ for some (hence any)

representation with character χρ . Then, {1, PC(g′), PC(h′), PC(g′h′)} is a basis for Ak(C).

Moreover, if OP is the local ring of P, the OP-span of this basis defines an Azumaya

algebra AP over OP. Indeed, the reduction of AP modulo the maximal ideal of OP is the

given basis for the quaternion algebra Aρ (note that the residue field of the point P is

generated by kρ and the field of constants k by Lemma 2.5), so AP ⊗ k(P) is a central

simple algebra. Thus, Ak(C) extends over P by Theorem 3.1(6).

We now show how one extends the Azumaya algebra Ak(C) over points in I(C̃).

Fix P ∈ I(C̃) and denote the local ring at P by OP and its maximal ideal by mP. Note that,

from the discussion at the end of §2.2, if Ĩg is in OP for all g in �, then P ∈ C#. Since P

is an ideal point, we can find g ∈ � such that Ĩg /∈ OP. Note that the element g need not

be a meridian in this case, nor even a peripheral element; by [16] we can take g to be

peripheral when the incompressible surface detected by the ideal point is not closed.

Regardless, Lemma 2.8 allows us to use g as part of a basis for Ak(C). As before,

since C is the canonical component, Lemma 2.10 shows that there are only finitely many

characters of reducible representations on C, and only finitely many places where f̃g

takes on the value 0, since Ĩg is non-constant by assumption. Thus, we can take f̃g as one

term in a Hilbert symbol (
f̃g, β

k(C)

)

for the canonical quaternion algebra Ak(C), where β ∈ k(C) is constructed using

Lemma 2.8.
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4996 T. Chinburg et al.

We assumed that the order ordP (̃fg) is negative. Since changing a term in a

Hilbert symbol by the square of an element of k(C) does not change the resulting

quaternion algebra, the element

αg = f̃g

I2
g

defines another Hilbert symbol

(
αg, β

k(C)

)
for Ak(C) as a quaternion algebra over k(C). Note that αg is a unit in OP, and the image

of αg in the residue field k(P) = OP/mP of P is 1. To see this observe that

αg = I2
g − 4

I2
g

= 1 − 4

I2
g

,

and then the rest is clear from ordP(4/I2
g ) = −2 ordP(Ig) > 0.

To determine whether Ak(C) extends to an Azumaya algebra at P, we need to show

that the tame symbol {αg, β}P is trivial. To prove this, let

s = ordP(αg)

r = ordP(β).

Then the tame symbol {αg, β}P is the image in k(P)∗/(k(P)∗)2 of

(−1)rs
αr

g

βs .

However, we saw that s = 0, so this simplifies to just the image in k(P)∗ of αr
g. Since αg

has image 1 in k(P)∗, the tame symbol is therefore trivial and we can extend Ak(C) over

the ideal point P. This proves that AC̃ is also defined at points of I(C̃) as required, and

hence completes the proof of Proposition 4.1.

Remark 4.3. The careful reader will notice that, when P ∈ C̃ lies over a singular point

on the affine curve C, we must calculate in the discrete valuation ring OP for “ordP” to

even make sense. When x is a smooth point of C, one has that Ox
∼= OP and there is no

difference. When x is a singular point, OP might be a bigger ring, but if we can extend
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Azumaya Algebras and Canonical Components 4997

our Azumaya algebra on C over x, then we can certainly extend it over P. However, the

converse is not necessarily true: it is possible that the Azumaya algebra does not extend

over a singular point on the affine curve, but does extend over any point above it on the

smooth projective model. This subtlety will arise in our converse to Theorem 1.2 in §4.4.

4.3

We now give the proof of Lemma 4.2. This, with Proposition 4.1, completes the proof of

Theorem 1.2.

We begin with some preliminary comments. Let P ∈ C̃ lie above χρ ∈ C for ρ a

reducible representation. We can assume that ρ is non-abelian by Proposition 2.11, and

hence it is conjugate into the group of upper-triangular matrices but is not parabolic.

Indeed, recall from the discussion after Proposition 2.11 that if μ1, . . . , μn is a collection

of meridional generators for � then

ρ(μi) =

⎛⎜⎜⎝
w ti

0 w−1

⎞⎟⎟⎠ ,

where w2 = z is a root of �K(t), ti ∈ C for i = 1, . . . , n. From condition (�),

we have Q(w) = Q(w + w−1). If k is the field of constants of C, then we also

have that k(w) = k(w + w−1). In particular, the residue field k(P) of P satisfies

k(P) = k(w + w−1) = k(w).

Assume by way of contradiction that Ak(C) does not extend to an Azumaya

algebra AC̃ at P. Using Lemma 2.13 we can choose meridians μ and ν so that Ak(C) is

defined by the Hilbert symbol

(
a, b

k(C)

)
,

where a = fμ, b = I[μ,ν]−2. Since we assumed that Ak(C) does not extend, the tame symbol

{a, b}P must be non-trivial.

Corollary 2.12 implies that ordP(a) = 0, and ordP(b) > 0 by Lemma 2.1. If ordP(b)

is even, then the tame symbol is trivial, and since we are assuming this is not the

case we have that ordP(b) is odd. Furthermore, after dividing b by a square in k(C),

we can assume that ordP(b) = 1. Therefore, the tame symbol is just the class a′ of a in

k(P)∗/(k(P)∗)2, and in particular a′ cannot be a square in k(P).
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4998 T. Chinburg et al.

On the other hand, evaluating at P, a′ is the class of

(w + w−1)2 − 4 = (w − w−1)2,

since w ∈ k(w + w−1) by assumption. In particular, a′ is a square in the residue class

field k(P), which implies that the tame symbol is trivial. This contradiction proves

Lemma 4.2.

Remark 4.4. Note that the arguments of §4.2 apply more generally. In particular, if Y is

a closed orientable 3-manifold and K ⊂ Y is a knot with hyperbolic complement, trivial

Alexander polynomial, and H1(Y � K,Z) ∼= Z, then the canonical quaternion algebra

can be used to define an Azumaya algebra over all points of the smooth model of the

canonical component. Note that [27, §4] describes a generalization of De Rham’s result

on characters of reducible representations, and in particular, triviality of the Alexander

polynomial excludes there being non-abelian reducible representations to consider.

We now discuss the extent to which condition (�) is almost an if and only if

statement.

4.4 The converse to Theorem 1.2

The primary goal of this section is to prove the following proposition.

Proposition 4.5. Let K be a hyperbolic knot in S3. Let C ⊂ X(K)k be a canonical

component over the number field k. Suppose that χρ is a smooth point on C for each

character χρ ∈ C of a non-abelian reducible representation. Then Ak(C) extends to define

an Azumaya algebra on C̃ if and only if k(w) equals k(w + w−1) for every square root w

of a root of �K(t) associated with a non-abelian character on C̃.

When k = Q, note that the condition k(w) = k(w + w−1) just becomes condition

(�) from Theorem 1.2. According to work of Heusener–Porti–Suárez Peiró [27, Thm. 1.1],

the point χρ is always smooth when the associated root z of the Alexander polynomial

is simple, that is, has multiplicity one. In particular, we see that the full converse

to Theorem 1.2 is quite often also true. We will prove the following after we prove

Proposition 4.5.

Theorem 4.6. Let K be a hyperbolic knot and let C ⊂ X(K)k be a canonical component

of its SL2 character variety. Assume that the inverse image C′ of C in X(K)C is the unique
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Azumaya Algebras and Canonical Components 4999

component of X(K)C containing the character of an irreducible representation. If all

roots of the Alexander polynomial �K(t) are simple, then Ak(C) extends to define an

Azumaya algebra over the entire smooth projective model of C if and only if condition

(�) of Theorem 1.2 holds for every root of �K(t).

We also briefly note that large families of knots, like all twist knots, have

Alexander polynomial with only simple roots (see §6).

Proof of Proposition 4.5. Let P = χρ ∈ C be the character of a non-abelian reducible

representation ρ, z be the associated root of the Alexander polynomial, and w be a

square root of z. Recall that we have non-commuting elements g, h ∈ � such that our

Azumaya algebra Ak(C) over the function field k(C) of C has Hilbert symbol

Ak(C) =
(

I2
g − 4 , I[g,h] − 2

k(C)

)
.

Assuming that k(w) is not equal to k(w +w−1) for this root of the Alexander polynomial

we will prove that that Ak(C) does not extend over P. The converse was already proved in

Theorem 1.2, so this suffices to prove the proposition.

Define α = I2
g − 4. Taking g to be a meridian of our knot, we claim that α(P) 	= 0.

Indeed, since ρ is reducible, it is conjugate into upper-triangular matrices and since � is

generated by meridians, if α(P) = 0 one sees that ρ is a parabolic representation where

the image of each meridian has trace 2. Corollary 2.12 implies that ρ is not parabolic,

hence Ig cannot take the value ±2 at P, and so α cannot be zero at P. This proves

the claim.

In other words, ordP(α) = 0. Since ρ is reducible, (I[g,h] − 2)(P) = 0, that is,

ordP(I[g,h] − 2) > 0. Scaling by squares in k(C), we can replace I[g,h] − 2 with a function

β ∈ k(C) such that ordP(β) ∈ {0, 1}. This means that the tame symbol for Ak(C) at P

becomes

{α, β}P = αordP(β).

We must prove that the tame symbol is non-trivial. In other words, we must show that

α is not a square in k(P) and ordP(β) = 1.

Since k(w) clearly has degree either one or two over k(w+w−1), we conclude that

k(w)/k(w + w−1) is degree exactly two. Note that k(P) is a number field. In fact, Lemma

2.5 implies that k(P) is the subfield of C generated over k by the values of the character

χρ . From the discussion following Proposition 2.11, we see that k(P) = k(w + w−1).
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5000 T. Chinburg et al.

Let IP be a square root of α(P) ∈ k(P)∗. We claim that k(P)(IP) equals k(w). Indeed,

IP is a square root of

(w + w−1)2 − 4 = w2 + w−2 − 2 = (w − w−1)2,

which does not lie in k(w + w−1) by our assumption that k(w) is degree two over

k(w + w−1). Therefore, k(P)(IP) is a quadratic extension of k(P) and so α is not a square

in k(P)∗ as claimed.

We now must show that ordP(β) = 1. Assuming that the root of the Alexander

polynomial associated with P is a simple root, the proof of [27, Lem. 5.7] proves that

−β/α is a local coordinate in a sufficiently small analytic neighborhood of the smooth

point P. Since ordP(α) = 0, this implies that ordP(β) = 1, as desired. This completes the

proof. �

We will show that Theorem 4.6 is a consequence of Proposition 4.5 and the

following lemma.

Lemma 4.7. Let K be a hyperbolic knot and let C ⊂ X(K)k be a canonical component of

its SL2 character variety. Assume that the inverse image C′ of C in X(K)C is the unique

component of X(K)C containing the character of an irreducible representation. Then C

has field of constants Q.

Proof. Let π : X(K)k → X(K)Q be the projection. Then π(C) is an irreducible subscheme

of X(K)Q with some field of constants k0. The inverse image of π(C) under the natural

projection X(K)C → X(K)Q contains [k0 : Q] conjugates of C′ under the action of Gal(C/Q)

on the 2nd factor of X(K)C = X(K)Q ⊗Q C. Indeed, if B is a k0-algebra, then B ⊗Q C is a

direct sum of B ⊗k0,σ C over all embeddings σ of k0 into C.

The representations associated with points on these conjugates of C′ are

Gal(C/Q)-conjugates of representations associated with points on C′. In particular, all

conjugates of C′ contain the character of an irreducible representation. Since C′ is the

only component of X(K)C containing the character of an irreducible representation, we

must have [k0 : Q] = 1, that is, k0 = Q, as claimed. �

Proof of Theorem 4.6. As discussed above, it suffices by Proposition 4.5 to show that

the canonical component has field of constants Q. By hypothesis, this follows from

Lemma 4.7. �
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Azumaya Algebras and Canonical Components 5001

5 Integral Models and Theorems 1.5 and 1.8

The purpose of this section is to prove Theorems 1.5 and 1.8. The proof of Theorem 1.5

requires revisiting some of our previous calculations in the case where the residue

class fields are finite, which introduces particular difficulties in characteristic 2. The

framework that allows us to do this is that of integral models, and we refer the reader

to [7], [34], and [36] for further details. The proof of Theorem 1.8 uses Theorem 1.5 as

well as the Tate–Shafarevich group and a relative version of it due to Stuhler (see [55]

for further details).

5.1 Ramification at codimension one points

Suppose that O is a Dedekind ring of characteristic 0 with fraction field k and that C

is a regular projective curve over k. By enlarging k if necessary we can assume that C

is geometrically irreducible over k. In other words, by passing to a certain extension

and taking an irreducible component, we can assume that C remains irreducible in an

algebraic closure of k. The theory of integral models implies that there is a regular

projective curve C over O such that C is isomorphic to C ⊗O k.

Such C are not unique. However, there are always C that are relatively minimal in

the sense that any proper morphism C → C′ to another regular projective model C′ of C

must be an isomorphism. If C has positive genus, then all relatively minimal models are

isomorphic. Finally, suppose D is any regular projective scheme over O whose function

field k(D) is isomorphic to k(C). Then the general fiber D ⊗O k is a regular projective

curve over k with function field k(C). This forces D ⊗O k to be isomorphic to C over k.

Let Ak(C) be a quaternion algebra over the function field k(C) of C. Theorem 3.1(6)

implies that Ak(C) extends to an Azumaya algebra AC over C if and only if it extends over

every codimension one point P of C. The latter condition means that there is an Azumaya

algebra AP over the local ring OP = OC,P of P such that AP ⊗OP
k(C) ∼= Ak(C). Here OP is a

discrete valuation ring and the residue field k(P) is a global field, since C is a scheme of

dimension 2. Let ÔP be the completion of OP and k(C)P be the fraction field of ÔP.

The next result follows from [45, Lem. 3.4]. For convenience, we note that our

k(C), OP, and Ak(C) correspond to their k, R, and D, respectively.

Lemma 5.1. The quaternion algebra Ak(C) extends over P if and only if the quaternion

algebra Ak(C)P
= Ak(C) ⊗k(C) k(C)P over k(C)P extends over the maximal ideal P̂ of ÔP, that

is, there is an Azumaya algebra D over ÔP so that D⊗ÔP
k(C)P determines the same class

as Ak(C) in the Brauer group of k(C)P.
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5002 T. Chinburg et al.

We will also need the following weak sufficient criterion for Ak(C) to extend

over P. Note that in the present situation we allow for the possibility that k(C) has

characteristic zero (so 2 	= 0), but the residue class fields can be finite (and in particular

characteristic 2). As before, we use ordP to denote the order of a zero or pole.

Proposition 5.2. Let α, β ∈ k(C) define a Hilbert symbol {α, β} for Ak(C) for some

α, β ∈ k(C). For a given P ∈ C assume that

ordP(1 − α) > 2 ordP(2).

Then Ak(C) extends over P.

Proof. By Lemma 5.1, it is sufficient to show that the Hilbert symbol defined by {α, β}
over k(C)P defines a matrix algebra. The result then follows from Hensel’s lemma, since

α is a square in ÔP when

ordP(y2 − α) > ordP((2y)2) = 2 ordP(2y)

for some y ∈ k(C)P, and our assumption allows us to take y = 1. �

In the complete local case, we also need the following result concerning the

structure of maximal orders in quaternion division algebras.

Proposition 5.3. Suppose that O is a complete discrete valuation ring with fraction

field F of characteristic 0. Let A be a quaternion algebra over F that does not extend to

an Azumaya algebra over O, and let n : A → F be the reduced norm.

i. Any such A is a division ring, and the set D of elements α ∈ A such that

n(α) ∈ O is the unique maximal O-order in A.

ii. There is an element λ ∈ D such that J = Dλ is the unique maximal two-sided

ideal of D. All non-zero two-sided ideals of D are powers of J.

iii. Let π be a uniformizer in O. Then J2 = Dπ and D/J is a quadratic extension

field of the residue field k = O/Oπ of O.

iv. Suppose z ∈ D has n(z) = 1. Let z̃ be the image of z in D/J, and suppose that

z̃ is quadratic over k, so k(z̃) = D/J. Then k(z̃) is separable over k, J/J2 is a

one-dimensional k(z̃)-vector space, and the conjugation action of z on this
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Azumaya Algebras and Canonical Components 5003

space is given by left multiplication by z̃2. The conjugation action of z on

D/J is trivial.

Proof. We know A is a division algebra because otherwise, A is isomorphic to M2(F)

and the Azumaya algebra M2(O) would extend A. Statements (i) and (ii) follow from [48,

§12.8, §13.2].

The ramification degree of D is defined to be the integer e ≥ 1 such that

Je = Dπ . It is shown in [48, §13.3, §14.3] that D/J is a division algebra of dimension

f over K = O/Oπ for an integer f such that ef = 4. If e = 1 then J = Dπ and D/Dπ is a

central simple algebra. However, D is an Azumaya algebra over O extending A, and we

supposed that no such Azumaya algebra exists. Thus, e = 2 or e = 4.

If e = 4 then J4 = Dλ4 = Dπ . Then λ4/π would be a unit of D, implying that

n(λ)4/n(π) = n(λ)4/π2 is a unit of O, which is impossible because n(λ) ∈ O and π is a

uniformizer in O. Therefore, e = f = 2, which proves (iii).

Finally, suppose z and z̃ are as in (iv). Then F(z) ⊂ A must be a quadratic

extension of F. If k(z̃)/k is not separable, the characteristic of k must be 2 and z̃2 ∈ k.

However, then

n(z) = NormF(z)/F(z) = 1

has image

1 = Normk(z̃)/k(z̃) = z̃2

in D/J = k(z̃). Since k has characteristic 2, we get z̃ = 1, contradicting the assumption

that k(z̃)/k has degree 2. Thus, k(z̃)/k is separable.

Since F has characteristic 0, we can find some d with d2 = α ∈ F and F(z) = F(d).

Then A is a two-dimensional left vector space over F(d) and the conjugation action of d

on A defines a non-trivial F(d)-linear automorphism of order 2. It follows from splitting

A into the ±1 eigenspaces for this automorphism that

A ∼= F(z) ⊕ F(z)w

for some non-zero w ∈ A with dwd−1 = −w, hence conjugation by d carries the

quadratic extension F(w) of F to itself. Since −w is a conjugate of w over F, we see

that w2 ∈ F, and in fact {d2, w2} is a Hilbert symbol for A over F.
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5004 T. Chinburg et al.

Write z = a + bd for some a, b ∈ F with b 	= 0. Then

wzw−1 = a − bd

is the conjugate of z over k in k(z). Since z has norm 1, we must have wzw−1 = z−1. Thus

zwz−1 = zwwzw−1 = z2w,

since w2 ∈ F. Therefore, the characteristic polynomial in F(z)[t] for the conjugation

action of z on A as a two-dimensional left F(z)-vector space is (t−1)(t−z2). The extension

F(z) is quadratic and unramified over F with ring of integers O′ = O[z] since k(z̃) is a

separable quadratic extension of k.

Then D is a rank two O′-module inside the two-dimensional F(z)-vector space

A, and D is preserved by conjugation by z. It follows that (t − 1)(t − z2) is also the

characteristic polynomial for the left O′-linear automorphism of D given by conjugation

by z. Since D is free of rank two over O′, we see that the characteristic polynomial for

the conjugation action of z on D/Dπ is (t − 1)(t − z̃2). This action preserves the one-

dimensional k(z)-subspace J/Dπ of D/Dπ and induces the trivial action on D/J = k(z̃).

Therefore, we conclude that conjugation by z must induce left multiplication by z̃2 on

J/Dπ = J/J2. This proves (iv). �

5.2 Tate–Shafarevich groups

In this subsection, we assume the notation of §5.1. In particular, we assume that C is

a regular projective curve. One should keep in mind that the canonical component in

Theorem 1.8 is affine and generally singular, so the results of this section apply to the

non-singular projective model of the canonical component rather than to the canonical

component itself.

Let O be the ring of S-integers Ok,S of a number field k for some finite set S of

finite places of k. We begin by recalling some results of Stuhler [55] and Demeyer–Knus

[19] concerning Brauer groups and Tate–Shafarevich groups.

Let k be an algebraic closure of k and let J(C) be the Jacobian of C. The group

J(C)(k) is, by definition, Pic0(C)(k). Let V(k) be the set of all places of k. For v ∈ V(k),

let kv be an algebraic closure of the completion kv that contains k. We can identify

Gal(kv/kv) with a decomposition subgroup of Gal(k/k), and there is a restriction map

rv : H1(Gal(k/k), Pic0(C)(k)) → H1(Gal(kv/kv), Pic0(C)(kv)).
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Azumaya Algebras and Canonical Components 5005

See [41, Ch. III].

In [55, Def. 1], the Tate–Shafarevich group of C relative to Ok,S is defined to be

X(k, Ok,S, Pic0(C)) =
⋂

v∈Vf (S)

Ker(rv),

where Vf (S) is the set of finite places of k not in S. The usual definition of the Tate–

Shafarevich group of Pic0(C) is

X(k, Pic0(C)) =
⋂

v∈V(k)

Ker(rv). (2)

These two definitions are thus related by

X(k, Pic0(C)) =
⋂

v∈Vreal(k)∪S

Ker(rv|X(k,Ok,S,Pic0(C))
), (3)

where Vreal(k) is the set of real places of k. The following result follows from the proofs

of [55, Thm. 1, Thm. 2, Thm. 3]:

Theorem 5.4 (Stuhler). There is a complex

Br(Ok,S) → Br(C) → X(k, Ok,S, Pic0(C)) (4)

in which Br(Ok,S) → Br(C) is f ∗ for f : C → Spec(Ok,S) the structure morphism. This

complex is a short exact sequence if there is a section s : Spec(Ok,S) → C of f . Since C is

projective, such a section exists if and only if C has a point defined over k.

Corollary 5.5. Suppose s is a section of f in Theorem 5.4. If Br0
s (C) is the kernel of

s∗ : Br(C) → Br(Ok,S), then Br0
s (C) is isomorphic to X(k, Ok,S, Pic0(C)).

We also need the following result, which was proven by Demeyer and Knus in

[19, page 228–9]. They remark that this result goes back to work of E. Witt.

Theorem 5.6 (Demeyer–Knus, Witt). Suppose that Y is a complete non-singular irre-

ducible curve over the real numbers R and let {Yi}m
i=1 be the set of connected components

of the topological space Y(R) of real points of Y.

(1) Each Yi is topologically isomorphic to a real circle.
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5006 T. Chinburg et al.

(2) For each Yi pick a point yi ∈ Yi. If A is an Azumaya algebra on Y, then

A ⊗Y k(yi) is an Azumaya algebra over R.

(3) Assuming (2), let ci(A) be the class of A ⊗Y k(yi) in the Brauer group

Br(k(yi))
∼= Br(R) ∼= Z/2.

This does not depend on the choice of the point yi on Yi and the map

Br(Y) →
m∏

i=1

Br(Yi)
∼= (Z/2)m

sending the class of A in Br(Y) to (ci(A))m
i=1 is an isomorphism.

The following records what we will use to prove our results.

Corollary 5.7. Suppose S = ∅ in Corollary 5.5, that is, Ok,S = Ok. Let [A] be an element

of Br(C) represented by a quaternion Azumaya algebra over C. Then:

(1) The class [A] has order 1 or 2.

(2) The image of [A] in X(k, Ok,S, Pic0(C)) defines an element in the subgroup

X(k, Pic0(C)) if and only if for every real place v ∈ Vreal(k), the pullback Av

of A to an Azumaya algebra on C ⊗k kv is trivial.

(3) The conclusion of (2) holds if and only if for every point y of C(R) the

restriction of A to y defines the matrix algebra M2(k(y)) ∼= M2(R) rather

than the real quaternions HR over k(y) ∼= R.

5.3 Proof of Theorem 1.5

As before, let M = S3�K be a hyperbolic knot K in S3, and let � = π1(M). Let C ⊂ X(K) be

the canonical curve of M over C, and let k be the associated field of constants. Let C = CM

be a canonical component in X(K)k, with C̃ be the the normalization of a projective

closure of C. Then C̃ is a smooth geometrically irreducible curve over k.

Let CS be a regular projective integral model of C̃ over the ring Ok,S of S-integers

of k for some finite set of finite places S of k. We have a canonical quaternion algebra

Ak(C) over the function field

k(C) ∼= k(C̃) ∼= k(CS).
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Azumaya Algebras and Canonical Components 5007

This algebra was constructed as the k(C) subalgebra of M2(F) generated by the image

of a representation ρ : � → SL2(F) whose character χρ defines the generic point of C,

where F is a sufficiently large finite extension of k(C).

We now need the following lemma, which should be compared with

Proposition 4.1(2). Indeed, the proof proceeds exactly as before until the last step.

Lemma 5.8. Suppose P is a codimension one point of CS such that Ak(C) does not extend

over P. Then P is not a point at infinity in the sense that the trace χρ(γ ) lies in the local

ring OP = OCS,P of P on CS for all group elements γ ∈ �.

Proof. Recall that the algebra Ak(C) must be a division algebra over k(C), since

otherwise it would trivially extend over P. As in the proof Proposition 4.1(2), suppose

for a contradiction that we can find γ ∈ � with χρ(γ ) 	∈ OP and a Hilbert symbol for

Ak(C) over k(C) of the form {α′, β} with α′ = χρ(γ )2 − 4 and β ∈ k(C). Since χρ(γ ) 	∈ OP,

χρ(γ ) 	= 0.

As before, we can multiply α′ by χρ(γ )−2 to give another Hilbert symbol {α, β} for

Ak(C) with

α = 1 − 4

χρ(γ )2 .

We now finish the proof by noting that

ordP

(
4

χρ(γ )2

)
= 2 ordP(2) − 2 ordP(χρ(γ )) > 2 ordP(2).

Indeed, Proposition 5.2 implies that Ak(C) extends over P, contrary to our hypothesis. �

Now we can prove the main technical theorem that connects the set S in

Theorems 1.4 and 1.5 to the reduction of the Alexander polynomial modulo rational

primes.

Theorem 5.9. Suppose that P is a codimension one point of CS over which Ak(C) does

not extend. Let k(P) be the residue field of the local ring OP. Then there is an element z̃

of an algebraic closure k(P) of k(P) with the following properties:

i. The extension k(P)(z̃) is separable and quadratic over k(P) and z̃ has norm 1

to k(P).
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5008 T. Chinburg et al.

ii. Considering the Alexander polynomial �K(t) of K as an element of

k(P)[t, t−1], we have that �K(z̃2) = 0.

Proof. Lemma 5.8 implies that P is not a point at infinity, in the sense that χρ(γ ) lies

in OP for all γ ∈ �. Non-degeneracy of the quadratic form associated with the trace

tr : Ak(C) → k(C) now shows that the OP subalgebra of M2(F) generated by the image of

ρ : � → SL2(F) is contained in a finitely generated OP submodule of Ak(C). Therefore,

this subalgebra is an OP order D0 in Ak(C) that has rank 4 as a free OP-module.

Let ÔP be the completion of OP and F̂ be the fraction field of ÔP. Then

Â = Ak(C) ⊗OP
F̂ is a quaternion algebra over F̂. This quaternion algebra cannot be

extended to an Azumaya algebra over ÔP, since otherwise Ak(C) could be extended over

P by Lemma 5.1. We can then pick a maximal ÔP-order D in Â containing D0. Since ρ has

image in SL2, we conclude that ρ gives an injective homomorphism ρ : � → D1 to the

multiplicative group of units in D with reduced norm 1.

We now let J be the unique maximal two-sided ideal of D described in

Proposition 5.3. For s ≥ 1, let Us be the image of D1 in D/Js and Ws be the image of

ρ(�) in Us. Since D/J is a quadratic field extension of k(P), we know that W1 is abelian.

There is an exact sequence

1 → Es+1 → Us+1 → Us → 1,

where Us+1 → Us is reduction modulo Js and Es+1 is the subgroup of elements of

(1 + Js)/(1 + Js+1) sent to 1 under the reduced norm.

Let s be the largest integer such that the group Ws is abelian. Since � embeds

into D1 and � is not abelian, we know that s ≥ 1 and that s must be finite. Note that Ws

is in fact cyclic, since � has cyclic abelianization.

We now have an exact sequence

1 → (Es+1 ∩ Ws+1) → Ws+1 → Ws → 1,

where Ws+1 is not abelian and Ws is cyclic. Then Es+1 ∩ Ws+1 = Qs is abelian, since it is

a subgroup of (1 + Js)/(1 + Js+1). The action of Ws on (1 + Js)/(1 + Js+1) by conjugation

factors through the reduction map Ws → W1. Thus, Ws is cyclic and Ws+1 is not abelian,

so we conclude that W1 is not contained in k(P) and the action of W1 on Qs = Es+1 ∩Ws+1

is not trivial. In particular, the action of U1 = (D/J)1 on (1 + Js)/(1 + Js+1) must be

non-trivial.
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Azumaya Algebras and Canonical Components 5009

We now choose a generator g for � modulo its commutator subgroup �′ = [�, �].

Let z = ρ(g) ∈ D1 and z̃ be the image of z in (D/J)1. Then z̃ generates W1 and, since W1 is

not contained in k(P), the quadratic extension D/J of k(P) must be generated over k(P)

by z̃. Proposition 5.3 then implies that k(P)(z̃) is a separable quadratic extension of k(P).

For any s ≥ 1 we have an isomorphism of groups

(1 + Js)/(1 + Js+1) = Js/Js+1

respecting the conjugation action of z. Then J2 = DπP, where πP is a uniformizer in OP

and πP commutes with z. Since W1 acts non-trivially on Qs ⊂ (1+Js)/(1+Js+1) = Js/Js+1,

we conclude from Proposition 5.3(iv) that s must be odd. Furthermore, the action of

z̃ ∈ W1 corresponds to conjugation by z, which in turn corresponds to left multiplication

by z̃2 on the one-dimensional k(P)(z̃)-vector space Js/Js+1.

Choose a non-trivial element

h ∈ Qs ⊂ (1 + Js)/(1 + Js+1) = Js/Js+1.

We can define a map ν : Qs → k(P)(z̃) by h′ = ν(h′) · h with respect to the

structure of Js/Js+1 as a one-dimensional vector space over k(P)(z̃). Then ν is a group

homomorphism. The commutator subgroup

�′ = [�, �]

has trivial image in Ws, since Ws is an abelian quotient of �. Therefore, the homomor-

phism � → Ws+1 sends �′ to Qs.

Restricting ν to the image of �′ gives a homomorphism r : �′ → k(P)(z̃). Here

r must be non-trivial, since Ws+1 is not abelian. We have shown that under r, the

conjugation action of z on �′ corresponds to left multiplication by z̃2 on k(P)(z̃). Since

k(P)(z̃) is abelian, r factors through a non-trivial homomorphism r : V → k(P)(z̃), where

V = �′/[�′, �′].
Now recall that V is a finitely generated torsion module for the group ring

Z[�/�′] = Z[t, t−1].

The Alexander polynomial �K(t) ∈ Z[t, t−1] is a generator of the 0th Fitting ideal of V.

General properties of Fitting ideals (e.g., see [20, page 671]) imply that the image of
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5010 T. Chinburg et al.

�K(t) in k(P)(z̃)[t, t−1] is a generator for the 0th Fitting ideal of V ⊗Z k(P)(z̃) as a module

for k(P)(z̃)[t, t−1]. Since V ⊗Z k(P)(z̃) is a finitely generated torsion module for the pid

k(P)(z̃)[t, t−1], we conclude V is finite dimensional over k(P)(z̃) and the 0th Fitting ideal

is generated by the characteristic polynomial associated with the action of the generator

g of �/�′.
Here z = ρ(g) ∈ D1 shows that the action of g comes from conjugation by z. We

showed that conjugation by z on V corresponds to left multiplication by z̃2 on k(P)(z̃)

under the non-trivial homomorphism

r : V = �′/[�′, �′] → k(P)(z̃).

It follows that z̃2 must be a root of the characteristic polynomial for the action of g on

V, so z̃2 is a root in k(P) of �K(t). This completes the proof of the theorem. �

Corollary 5.10. With the hypotheses and notation of Theorem 5.9, let F be the prime

subfield of k(P), so either F = Q or F = F	 for some prime 	, and let F be an algebraic

closure of F. Then there is an element u of F such that u2 is a root of �K(t) in F and F(u)

is a separable quadratic extension of F(u + u−1).

Proof. Consider the element z̃ of k(P). We showed in Theorem 5.9 that z̃2 is a root of

�K(t) ∈ Z[t, t−1] in k(P). Since �K(t) has coefficients in Z, this implies that z̃2 is algebraic

over F, so u = z̃ lies in F. Since z̃ has norm 1 to k(P) and z̃ is quadratic and separable

over k(P), we know that z̃−1 is the other conjugate of z̃ over k(P).

Therefore,

u + u−1 = z̃ + z̃−1 ∈ k(P),

and so F(u) is at most quadratic over F(u + u−1). If F(u) = F(u + u−1), then

k(P)(u) = k(P)(u + u−1) = k(P),

which contradicts the fact that k(P)(u) = k(P)(z̃) is quadratic over k(P). Therefore,

F(u)/F(u + u−1) is quadratic, and this extension is separable because F is a prime

field. �

We are now prepared for the following:
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Azumaya Algebras and Canonical Components 5011

Completion of the proof of Theorem 1.5. Let S be a finite set of rational primes with

the properties stated in the theorem, and suppose 	 is a prime not in S. Corollary 5.10

implies that Ak(C) extends over every codimension one point P of CS that lies in the fiber

of CS over 	. With the assumptions of Theorem 1.5, Ak(C) extends over every codimension

one point on the general fiber C̃M of CS, which implies that Ak(C) extends over all

of CS. �

Remarks 5.11.

(1) Since P in Corollary 5.10 can have characteristic 0, the same argument gives

a different proof of the criterion in Theorem 1.2 for the Azumaya algebra

Ak(C) over the function field k(C) = k(CS) to extend to the general fiber C̃ of

CS. Recall that the proof of Theorem 1.2 used the tame symbol, which is not

available in characteristic two, so that argument does not suffice to prove

the results in this section. However, we make use of the tame symbol for

several other consequences of Theorem 1.2, hence we make non-trivial use

of each of the two arguments.

(2) Conversely, suppose that condition (�) in Theorem 1.2 holds. Let S0 be a

sufficiently large set of rational primes so that the leading coefficient of

�K(t) ∈ Z[t, t−1] is a unit outside of S0. Then the roots of �K(t) in Q are

integral outside of S0. Furthermore, if 	 is a prime not in S0 and w is a

root of �(t) in (Z/	), then w is the reduction modulo a prime over 	 of a

root w of �K(t) in the ring of all algebraic numbers integral outside of S0.

The hypothesis that Q(w) = Q(w + w−1) implies that, by possibly making a

finite enlargement of S0, we can assume that each such w is an S0-integral

combination of powers of w + w−1. This forces there to be a finite set of

primes S with the properties stated in Theorem 1.5.

5.4 Proof of Theorem 1.8

We assume the notation and hypotheses from the statement of the theorem. Since the

Alexander polynomial �K(t) is assumed to be 1, we can let S be the empty set in

Theorem 1.5. Then Theorem 1.5 shows that there is an extension A of Ak(C̃) over all of C
for any regular projective model C of C̃ over the ring of integers Ok of k.

Statement (1) of Theorem 1.8 is now a consequence of Theorem 5.4. In order for

the class β([A]) to lie in X(k, Pic0(C̃)), it is necessary and sufficient by Corollary 5.7 that

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/7/4969/5900765 by Tem
ple U

niversity Law
 School Library user on 28 N

ovem
ber 2022



5012 T. Chinburg et al.

the restriction

Ay = A ⊗OC k(y)

of A to y be isomorphic to M2(R) rather than the real quaternions HR for every real

point y ∈ C̃(R). Corollary 5.7 also shows that C̃(R) is a finite (possibly empty) union of

real circles, and that the isomorphism type of Ay is constant as y varies over each of

these circles.

Since C̃ is the normalization of a projective closure of C, there is a finite closed

subset T ⊂ C̃ such that C̃ � T = C � Csing is the complement of the (finite) singular locus

Csing of C. We conclude that if Ay is isomorphic to HR for any point y ∈ C̃(R), then this

is true for a non-empty union of real circles of such y as well as for a subset T of C(R),

which is the complement of a finite set inside a non-empty union of real circles. Since

the multiplicative group H1
R

of quaternions of reduced norm 1 is isomorphic to SU(2), we

find in this case that the points of T correspond to characters of SU(2) representations

of our knot group.

On the other hand, suppose there is no y ∈ C̃(R) such that Ay is isomorphic

to HR and y′ ∈ C(R) corresponds to an SU(2) representation. Regarding SU(2) as H1
R

,

we see that the R-algebra Aρ generated by any representation ρ with character y′ is a

subalgebra of HR. If Aρ is not HR then ρ must be reducible. However, Proposition 2.11

shows that we can take ρ to be a reducible non-abelian representation associated with a

zero of the Alexander polynomial of K. Since we assumed that the Alexander polynomial

is trivial, there are no such zeros, hence Aρ = HR and y′ must lie in Csing(R) since we are

supposing no such point exists in the smooth locus. This completes the proof of part (2)

of Theorem 1.8.

Finally, the hypotheses of part (3) of Theorem 1.8 are that C̃ has no real points

but that there is a point P of C̃ defined over the field of constants k of C. The Zariski

closure of P gives a section of C → Spec(Ok), so Theorem 5.4 implies that we have an

exact sequence

Br(Ok) → Br(C) → X(k, Ok, Pic0(C)). (5)

Suppose that [A] ∈ Br(C) has trivial image in X(k, Ok, Pic0(C)).

Exactness of (5) now shows that [A] is the pull-back to C of a class σ in Br(Ok).

Such a σ can only be non-trivial at the real places of k. If σ is non-trivial at some

real place, then, since we assumed that C̃ has a point over k, there will be a point y
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Azumaya Algebras and Canonical Components 5013

of C(R) where Ay is isomorphic to HR. This implies that there would be a curve of

SU(2) characters on C by the above arguments, contrary to the hypothesis of part (3)

of Theorem 1.8. Therefore, [A] = 0 in Br(C) as claimed in part (3). This completes the

proof of the non-trivial assertion in part (3) of Theorem 1.5.

Remark 5.12. Theorem 5.6 shows that every real circle on C̃(R) containing the

character of an irreducible SU(2) representation contains only characters of SU(2)

representations. In particular, this is the case via Theorem 5.6 whenever there is the

character of an irreducible SU(2) representation on the canonical component C and it is

known that Ak(C) extends to an Azumaya algebra over C̃. An instance of this is when (2)

fails in Theorem 1.8. However, for the character variety of an arbitrary knot group, it is

not always the case that real arcs consist only of characters of representations into a

fixed real algebraic subgroup of SL2(C).

For example, in [27, Cor. 1.4(ii)], the authors show that if λ is the square root

of a root of the Alexander polynomial (i.e., λ of [27] is our w) and |λ| = 1, then there

is a real arc parametrized by {χt}, t ∈ (−ε, ε), with χt the character of an irreducible

SU(2) representation for t > 0 and the character of an irreducible SU(1, 1) ∼= SL(2,R)

representation for t < 0. If λ = ±1, then the representation is parabolic and hence

cannot lie on the canonical component by Corollary 2.12. In particular, if C contains

a non-abelian reducible representation of the kind described in the paragraph above,

then Theorem 5.6 shows that Ak(C) cannot extend to an Azumaya algebra over C̃. Note

also that if λ /∈ R, then λ + 1/λ is real, and hence condition (�) fails.

6 Examples

We begin with some general discussion about the examples to follow. For convenience,

we introduce the following notation. Let p(t) be a polynomial with integer coefficients.

We say p(t) is Azumaya positive if condition (�) of Theorem 1.2 holds for any

root z of p(t), and say that p(t) is Azumaya negative if condition (�) fails for some root

z of p(t). Call a knot K Azumaya positive (resp. Azumaya negative) if �K(t) is Azumaya

positive (resp. negative). Note that if the knot K has trivial Alexander polynomial, it is

certainly Azumaya positive. The challenge is to understand when knots are Azumaya

positive or negative in the case when the Alexander polynomial is non-trivial (e.g., when

the knot is fibered).

It is worth remarking that if the knot is Azumaya positive, then our construction

produces an Azumaya algebra over the smooth projective model of the canonical
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5014 T. Chinburg et al.

component. However, if the knot is Azumaya negative, the Azumaya algebra may well

extend over the smooth projective model of the canonical component, since �K(t) may

be reducible and the canonical component may not contain any characters of reducible

representations, or only characters of reducible representations for which (�) does not

hold.

Certifying that our construction cannot extend to give an Azumaya algebra over

the smooth projective model of the canonical component is more subtle, especially when

the natural affine model has singular points. However, if the canonical component is

the unique component containing characters of absolutely irreducible representations

and the points associated with reducible representations are smooth points, then

Theorem 4.6 implies that Azumaya negativity does indeed certify that our construction

does not provide an Azumaya algebra over the smooth projective model.

In this section, we will highlight a number of examples, most of which we

summarize in the following theorem.

Theorem 6.1.

(1) There are infinitely many fibered hyperbolic knots Kn ⊂ S3 that are Azumaya

positive.

(2) There are infinitely many fibered hyperbolic knots Jn ⊂ S3 that are Azumaya

negative.

(3) Let Tm be the twist knot with m ≥ 1 half twists. Then Tm is Azumaya positive

if and only if m = 2	 is even and 	 is either a square or the product of two

consecutive integers.

It is shown in [38] that for a twist knot Tm the canonical component X0 is

the unique component containing the character of an irreducible representation. When

m = 2	 is even and 	 is either a square or the product of two consecutive integers,

there is a finite set S of places of Q such that, for all points χ ∈ X0 corresponding to

characters of absolutely irreducible representations ρ, the quaternion algebra Aρ over

kρ is unramified outside of the finite places of kρ over S. In particular, this applies

to the points on X0 associated with Dehn surgeries. Furthermore, since the Alexander

polynomial of a twist knot is a quadratic polynomial without a double root, the points

on X0 associated with non-abelian reducible representations are smooth points by [27].

It follows from Theorem 4.6 that whether or not our Azumaya algebra extends over the

smooth projective model is completely unambiguous.
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Azumaya Algebras and Canonical Components 5015

6.1 Some polynomials that are Azumaya positive or negative

For convenience we describe some families of polynomials that are Azumaya positive

or negative. All the polynomials will be the Alexander polynomial of some hyperbolic

knot. Recall that if K is a fibered knot it is known that �K(t) is a monic reciprocal

polynomial. Moreover, any monic reciprocal polynomial is the Alexander polynomial of

a fibered hyperbolic knot; see [54, Thm. 3.1].

A particularly interesting class of reciprocal polynomials are those arising as

the irreducible polynomial of a Salem number, that is, a real algebraic integer λ > 1

such that 1/λ is a Galois conjugate of λ and all other Galois conjugates lie on the unit

circle. Denote the irreducible polynomial of a Salem number λ by pλ(t). We will always

assume that there is at least one Galois conjugate on the unit circle, so that the degree

of pλ(t) is strictly greater than 2.

We now prove the following two lemmas.

Lemma 6.2.

(1) Let λ be a n-th root of unity for n ≥ 3 and �n(t) the n-th cyclotomic

polynomial. Then �n(t) is Azumaya negative.

(2) Let λ be a Salem number. Then pλ(t) and pλ(−t) are Azumaya negative.

(3) Let m ≥ 1 be an odd integer and set

qm(t) = m + 1

2
t2 − mt + m + 1

2
.

Then qm(t) is irreducible, has both roots imaginary, and is Azumaya

negative.

Lemma 6.3.

(1) For any integer a ≥ 7, the polynomial

fa(t) = t4 − at3 + (2a − 1)t2 − at + 1

is irreducible with all roots real and positive. In addition, fa(t) is Azumaya

positive when a has the form k2 + 2 for some k ≥ 3.

(2) Let m = 2	 > 0 be an even integer, and set

pm(t) = m

2
t2 − (m + 1)t + m

2
.
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5016 T. Chinburg et al.

Then pm(t) has both roots real and positive and is Azumaya positive if and

only if 	 is either a square or the product of two consecutive integers.

(3) The polynomial

f (t) = t8 − 3t7 + 5t6 − 7t5 + 9t4 − 7t3 + 5t2 − 3t + 1

is irreducible, has all roots imaginary, and is Azumaya positive.

Remark 6.4. In the notation of Lemma 6.3, the polynomials fa(t) can also be Azumaya

positive for other values of a, for example, when a = 7.

Proof of Lemma 6.2. To prove (1), since λ is an n-th root of unity and n ≥ 3, λ is not

real but λ+1/λ is real. Moreover, if λ is an n-th root of unity,
√

λ is a 2n-th root of unity.

These remarks quickly lead to the proof of (1).

To prove (2) we begin with some preliminary comments. If λ is a Salem number,

then, since we are assuming that λ has at least one non-real Galois conjugate, Q(λ) is

not totally real. Note that the field Q(λ+1/λ) is totally real. In addition, it is known that

λn is a Salem number for any integer n ≥ 2, and Q(λ) = Q(λn).

First assume that λ = u2n for some Salem number u ∈ Q(λ). In this case,

Q(
√

λ) = Q(
√

u2n) = Q(un) = Q(λ).

However, this is a proper extension of the totally real field Q(un + 1/un), so pλ(t) is

Azumaya negative.

Now assume that w = √
λ /∈ Q(λ). Then w satisfies a polynomial of degree 2

over Q(λ), hence the degree of the irreducible polynomial of w over Q is 2 deg(pλ(t)). The

Galois conjugates of w are ±w, ±1/w and the rest are non-real complex numbers on the

unit circle. Note that w is not a Salem number, as its minimal polynomial over Q has

four distinct real roots. Nevertheless, the field Q(w + 1/w) is still totally real, and so

again different from Q(w) as required.

Now consider pλ(−t). This has two real negative roots −λ and −1/λ, and all other

roots still lie on the unit circle. In this case, one readily sees that if w = √−λ, the field

Q(w) is totally imaginary, and the field Q(w + 1/w) has real embeddings arising from

the roots on the unit circle. Therefore, Q(w) 	= Q(w + 1/w), which completes (2).
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Azumaya Algebras and Canonical Components 5017

For (3), suppose m = 2	 + 1 is odd. Then the roots of qm(t) are

z = (2	 + 1) ± i
√

4	 + 3

2(	 + 1)
.

In particular, Q(z)/Q is always imaginary quadratic. This proves the 1st two claims in

(3). Note that 4	 + 3 is never a square, so Q(z) is never Q(i).

We also have that

z + z−1 = 2	 + 1

	 + 1
∈ Q.

Furthermore, notice that

(w + w−1)2 − 2 = w2 + w−2 = z + z−1,

so Q(w + w−1)/Q(z + z−1) = Q is either degree one or two. Then w is a root of the

equation

p(x) = x2 − (w + w−1)x + 1 ∈ Q(w + w−1)[x],

so Q(w)/Q(w + w−1) is degree one or two.

Since Q(z)/Q is quadratic and Q(w + w−1) is at most quadratic, it follows that

Q(w) = Q(w + w−1) if and only if

Q(w) = Q(w + w−1) = Q(z).

If Q(w) = Q(z), then

(2	 + 1) ± i
√

4	 + 3

2(	 + 1)
= (a + bi

√
4	 + 3)2

for some a, b ∈ Q, which gives

2ab = ± 1

2(	 + 1)

a2 − (4	 + 3)b2 = 2	 + 1

2(	 + 1)
.
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5018 T. Chinburg et al.

These two equations combine to give

a2 − 4	 + 3

16a2(	 + 1)2 = 2	 + 1

2(	 + 1)
,

which implies that

a2 ∈
{

4	 + 3

4(	 + 1)
, − 1

4(	 + 1)

}
.

However, (4	 + 3) and 4	 + 4 are coprime, so (4	 + 3)/(4	 + 4) is the square of a rational

number if and only if 4	+3 and 4	+4 are both squares, but 4	+3 is never a square. Also,

−1/(4	 + 4) is clearly not the square of a rational number. This proves that Q(w)/Q(z)

must be quadratic, and so this completes the proof that qm(t) is Azumaya negative. �

Remark 6.5. Note that the arguments used in the proofs of (1) and (2) above show the

following. If p(t) is any polynomial with integer coefficients that has a root λ lying on

the unit circle and λ 	= ±1, then condition (�) fails for λ. For if w = √
λ, then w still lies

on the unit circle and is not real, but w + 1/w is a real number.

Proof of Lemma 6.3. It is elementary to check that the polynomials fa(t) are

irreducible for a ≥ 7 (note that the polynomial is reducible when a = 6). Furthermore,

using sign changes of fa(t) evaluated at 0, 1/2, 1, 2, and a, the Intermediate Value

Theorem shows that for a ≥ 7, fa(t) = 0 has solutions in the intervals [0, 1/2], [1/2, 1],

[1, 2], and [2, a]. Thus, fa has four positive real roots.

We now check that for a = k2+2, k ≥ 3, that fa(t) is Azumaya positive. Set w2 = t,

then note that fk2+2(t) factors as

− (−1 − kw + w2 + kw3 − w4)(1 − kw − w2 + kw3 + w4).

Therefore, Q(w) = Q(t). It can be shown directly that the minimal polynomial for

w +1/w over Q is t4 − (6+k2)t2 + (9+4k2), that is, Q(w) = Q(w +1/w) as required. Note

that fk2+2(t) is reducible for k = 2, and when k = 1, the given polynomial for w + 1/w is

reducible, hence our assumption that k ≥ 3.

For the 2nd part, suppose that m = 2	 is even. The roots of pm(t) are

z = (2	 + 1) ± √
4	 + 1

2	
.
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Azumaya Algebras and Canonical Components 5019

As before, let w be a square root of z. We first notice that, as with qm(t), Q(z + z−1) is

again Q. Indeed,

z + z−1 = 2	 + 1

	
∈ Q.

Recall from the case when m is odd that we have Q(z + z−1) = Q and the extension

Q(w + w−1)/Q(z+z−1) is either degree one or two, as is the extension Q(w)/Q(w+w−1).

First, suppose that Q(w) is quartic over Q. Then, Q(w+w−1) is at most quadratic

over Q, and it follows that Q(w)/Q(w + w−1) must be quadratic. In particular, the two

fields are not equal and so the polynomial is Azumaya negative.

Now, we consider the opposite extreme, where the roots of pm(t) are rational.

This occurs if and only if 4	+1 is a square, and it is easy to check that 4	+1 is a square

if and only if 	 is the product of two consecutive integers. If 	 = q(q + 1), then

z ∈
{

q + 1

q
,

q

q + 1

}
.

We claim that Q(w)/Q is quadratic. Notice that q and q + 1 are coprime, so z is given

as a fraction in reduced form. Then, w ∈ Q if and only if q and q + 1 are both squares,

which is impossible. Then w+w−1 = (z+1)/w clearly cannot be a rational number, else

w would be rational, so Q(w) = Q(w + w−1).

Finally, suppose that Q(z) is quadratic over Q and Q(w) = Q(z). Note that 4	 + 1

is not a square. In other words, suppose that

z = (2	 + 1) ± √
4	 + 1

2	
=

(
a + b

√
4	 + 1

)2

for a, b ∈ Q. This happens if and only if

b = ± 1

4a	

a2 ∈
{

1

4	
,

4	 + 1

4	

}
.

However, (4	 + 1)/4	 is not a square of a rational number. Indeed, the numerator and

denominator are coprime and our assumption that z is quadratic over Q implies that

4	 + 1 is not a rational square. It follows that a2 = 1/4	, so 	 = q2 is necessarily a
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5020 T. Chinburg et al.

square and

w = ± 1

2q
(1 ± √

4	 + 1) ∈ Q(z)

are the square roots of z. Then

(
1 + √

4	 + 1

2q

)−1

= −1 + √
4	 + 1

2q
,

so it follows that

w + w−1 = ±1

q

√
4	 + 1 /∈ Q.

We then have that Q(w) = Q(w + w−1).

In summary, we showed that Q(w) = Q(w + w−1) for m = 2	 where 	 is either a

square or the product of two consecutive integers. This completes the proof of the 2nd

case. The 3rd part can be handled by direct computation. �

6.2 Applications to Alexander polynomials

We now discuss applications of the results in §6.1 to hyperbolic knot complements and

prove Theorem 6.1.

Twist knots:

Let Tm be the twist knot with m ≥ 1 half-twists. Other than the trefoil (i.e.,

m = 1), Tm is always a hyperbolic knot. Then

�Tm
(t) =

⎧⎨⎩qm(t) m odd

pm(t) m even
.

See [49]. Note that the case m = 2 is the figure-eight knot, and this is the only fibered

hyperbolic twist knot.

As noted previously, [38] shows that for a hyperbolic twist knot Tm, the canon-

ical component is the unique component containing the character of an irreducible

representation. Therefore, it has field of constants Q by Lemma 4.7 (this is also clear
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Azumaya Algebras and Canonical Components 5021

from [38]). Since each root of the Alexander polynomial has multiplicity one, the 2nd

part of Theorem 6.1 now follows directly from Lemmas 6.3 and 6.2.

Infinitely many fibered hyperbolic knots that are Azumaya positive

As remarked earlier, any monic reciprocal polynomial is the Alexander poly-

nomial of a fibered hyperbolic knot. In particular, for the polynomials fa(t) (with

a = k2 + 2) and f (t) of Lemma 6.3, fa(t) and f (t) are the Alexander polynomials of a

fibered hyperbolic knot, and so these knots will have canonical components that are

Azumaya positive. The construction [54] gives a method to produce arborescent knots

with the given Alexander polynomial; we will not reproduce this here. However, we do

note that by [29] these knots cannot be alternating. These are the knots Kn (n = k2 + 2)

referred to in Theorem 6.1(1).

As noted in the remark following the statement of Lemma 6.3, f7(t) is also

Azumaya positive. This polynomial is known to be the Alexander polynomial of the knot

812 (see [49]), which has hyperbolic volume 8.935856928 . . . and is the 2-bridge knot with

normal form (29/12). Using Mathematica, it can be shown that the canonical component

in this case is the unique component of the character variety containing the character of

an irreducible representation. This computation produces a plane curve of total degree

22, and using the algebraic packages in Magma [3], one can compute that the genus of

the smooth model is 20.

Infinitely many fibered hyperbolic knots that are Azumaya negative

Arguing as above using [54] with the irreducible polynomials pλ(t) of Lemma 6.2

we can easily construct infinitely many fibered hyperbolic knots whose Alexander

polynomials are Azumaya negative. It remains to ensure that this condition fails for

the canonical component. To arrange this, we will use the family of (−2, 3, n)-pretzel

knots where n ≥ 7 is odd and not divisible by 3. The following will complete the proof

of the existence of infinitely many fibered knots that are Azumaya negative.

Proposition 6.6. Let Kn be the (−2, 3, n)-pretzel knot where n ≥ 7 is odd and not

divisible by 3. Then:

(1) Kn is a fibered knot;

(2) X0(Kn) is the unique component of the character variety containing

the character of an irreducible representation, hence it has field of

constants Q;

(3) the Alexander polynomial �Kn
(t) is of the form pλ(−t) for some Salem

number λ.
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Proof. The 1st part follows from the work by Gabai [23]. The 2nd part follows

directly from Theorem 1.6 of [40] and Lemma 4.7. The Alexander polynomials of these

pretzel knots are computed for example in [28], where the polynomials in question are

described as

1 + 2t + t4 + t1+r − t3 − t3+r + t5 + t2+r + 2t5+r + t6+r

(1 + t)3 ,

which for r odd simplifies to

Pr(t) = t3+r − t2+r + tr − tr−1 + tr−2 − . . . − t4 + t3 − t + 1.

It is proved in [28] (using [22]) that Pr(−t) has a Salem number as a root. �

For the sake of concreteness, we provide some additional details for the case of

the (−2, 3, 7)-pretzel knot, K7 in the above notation. This knot is fibered of genus 5 with

�K7
(t) = L(−t) where L(t) is the famous Lehmer polynomial, the irreducible polynomial

of the Salem number of conjectured minimal Mahler measure > 1.

The canonical component X0(K7):

Using SnapPy [13], it can be shown that

� = π1(S3 �K7) =< a, b | aab−1aabbabb > .

Since we are considering only irreducible representations, we can conjugate in SL2(C)

so that

ρ(a) =
(

x 1

0 1/x

)

ρ(b) =
(

y 0

r 1/y

)

for r 	= 0.
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Using Mathematica, it is easy to compute the canonical component by evaluating

ρ on the relation, and converting to traces with coordinates

P = χρ(a),

Q = χρ(b)

R = χρ(ab)

we find that

P = Q

(Q2 − 1)

R = (1 − 2Q2)

Q2(Q2 − 1)
.

That is, X̃0(K7) is a rational curve with field of constants Q.

Then X̃0(K7) is Azumaya negative. As described in the introduction, in the light of

Theorem 1.1, one can perhaps suspect this on experimenting with Snap [12]. Namely, one

finds Dehn surgeries on K7 that are hyperbolic and have invariant quaternion algebras

with finite places of very different residue field characteristics in the ramification sets.

For example, we find places associated with primes of residue characteristic 3, 5, 13,

31, 149, 211, 487, 563, and 34, 543.

From Theorem 1.1, we conclude that there are points χρ ∈ C(Q̄) for which

Aρ has ramification at a prime of residue characteristic 	 for 	 ranging over a set

of rational primes with positive Dirichlet density. In this paper, we only claim that

this set is infinite, but Harari [25] furthermore argues that this set of primes has

positive density. However, we cannot conclude that these χρ are the characters of

hyperbolic Dehn surgeries on K7, though experiment suggests this may indeed be the

case. This indicates that much more fruit can be borne of a better understanding

of the arithmetic distribution on C(Q̄) of the characters of Dehn surgeries on hyper-

bolic knots.

To that end we propose the following:

Conjecture 6.7. Let K be a hyperbolic knot in S3 for which the canonical component is

Azumaya negative, and let S be the infinite set of rational primes p provided by Theorem

1.1(3). Then for p ∈ S, there exists a hyperbolic Dehn surgery N of K, and a prime P of

the trace field kN such that the quaternion algebra AN is ramified at P.
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The first evidence towards this conjecture is provided in recent work of N.

Rouse [50].

6.3 L-space knots

We now make some comments on an apparent connection between our conditions of

Azumaya positive and negative, and a collection of knots that have been of interest

through Heegaard–Floer homology, so-called L-space knots.

Following Ozsvath–Szabo [44], an L-space is a rational homology 3-sphere M

for which its Heegaard–Floer homology ĤF(M) is as simple as possible, that is, is a

free abelian group of rank equal to |H1(M;Z)|. Examples of L-spaces are lens spaces

(excluding S2 × S1), other 3-manifolds covered by S3, as well as many Seifert fibered

spaces and hyperbolic manifolds. A knot K ⊂ S3 is called an L -space knot if S3 � K

admits a (positive) Dehn surgery giving an L-space.

Examples of L-space knots are the (−2, 3, n)-pretzel knots Kn (see [35, 44]), which

are Azumaya negative by Proposition 6.6. These along with the torus knots T(2, 2n + 1),

which are not hyperbolic, are the only L-space Montesinos knots [2, 35]. An important

result of Ni [43] shows that L-space knots are fibered, and in the context of this paper

we have.

Proposition 6.8. No Azumaya positive fibered knot in Theorem 6.1 is an L-space knot.

Proof. The knots Kn in Theorem 6.1(1) have Alexander polynomials fk2+2(t) (taking

n = k2 + 2). In particular, these have non-zero coefficients different from ±1. However,

if K is an L-space knot, Ozsvath–Szabo [44] proved that the symmetrized Alexander

polynomial of K is of the form

(−1)k +
k∑

j=1

(−1)k−j (
tnj + t−nj

)
,

and so all non-zero coefficients of �K(t) are ±1.

Similarly, the Alexander polynomial condition of [44] applies to show that a

fibered knot K (as in Lemma 6.3) with Alexander polynomial

�K(t) = t8 − 3t7 + 5t6 − 7t5 + 9t4 − 7t3 + 5t2 − 3t + 1

cannot be an L-space knot. �
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Based on this, we make the following conjecture.

Conjecture 6.9. Let K be a (fibered) hyperbolic knot for which the canonical compo-

nent is Azumaya positive. Then K is not an L-space knot.

Remark 6.10. One can view Conjecture 6.9 as another instance of Azumaya positivity

placing significant restrictions on the possible Dehn surgeries on a hyperbolic knot.

Indeed, just as Theorem 1.4 places severe restrictions on the arithmetic invariants

of hyperbolic Dehn surgeries on Azumaya positive knots, this conjecture implies

that an Azumaya positive knot is excluded from having certain rational homology

3-spheres arising from a Dehn surgery. That our results are entirely determined by

arithmetic properties of the Alexander polynomial, and that results of Ozsvath–Szabo

have Alexander polynomial ties of a very similar flavor, lead us to believe that such a

connection should exist.

We now give some evidence for this conjecture. The starting point is the

following:

Proposition 6.11. Let K be a hyperbolic knot and C ⊂ X(K) the canonical component.

Suppose that C has field of constants Q and contains the character of a non-abelian

reducible representation associated with a simple root of �K(t) on the unit circle. Then

Ak(C) does not extend to an Azumaya algebra over the smooth projective model of C.

Proof. This follows immediately from Theorem 4.6 and Remark 6.5. �

The relevance of this to L-space knots is the observation of Culler and Dunfield

[14] that if K is an L-space knot, one can apply the results of [30] to see that �K(t) has a

root on the unit circle.

Corollary 6.12. Suppose that K is a hyperbolic L-space knot for which the canonical

component C is the unique component of X(K) containing the character of an irreducible

representation. Then K is Azumaya negative.

Proof. Given the observation of Culler and Dunfield above, and the hypothesis on C,

the corollary follows from Proposition 6.11 and Lemma 4.7. �

Finally, one other piece of experimental evidence to support Conjecture 6.9

is that Culler and Dunfield [14] also remark that they were unable to find an
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L-space knot whose Alexander polynomial does not have a simple root on the unit

circle.

6.4 Bi-orderability

A group G is left-orderable if there is a strict total ordering < of its elements that is

invariant under multiplication on the left: g < h implies fg < fh for f , g, h ∈ G. It is easy

to see that G is left-orderable if and only if it is right-orderable. An ordering of G that

is invariant under multiplication on both sides will be called a bi-ordering. If such an

ordering exists we say that G is bi-orderable.

It is well known that all knot groups are left-orderable (since they are locally

indicable, [5]). However, admitting a bi-order is more subtle. It was shown by Perron

and Rolfsen [46] that if a fibered knot K has the property that all roots of �K(t) are real

and positive, then the knot group is bi-orderable. Clay and Rolfsen proved a partial

converse [9]: if K is a non-trivial fibered knot in S3 with bi-orderable fundamental

group, then �K(t) has at least one root that is real and positive (in fact, it has at

least two).

Orderability has recently seen connections to various aspects of the topology

of 3-manifolds, one compelling example being that it appears that Heegaard–Floer

homology is connected with left-orderability of the fundamental group of a closed

3-manifold. Another instance of this connection between L-spaces and orderability is

provided by the following result of Clay and Rolfsen [9, Thm. 1.2]: if K ⊂ S3 is a non-

trivial knot and π1(S3 �K) is bi-orderable, then K is not an L-space knot. In the context

of this paper, we have a “bi-ordered analogue” of Proposition 6.8.

Proposition 6.13. Every Azumaya positive fibered knot in Theorem 6.1(1) has bi-

orderable fundamental group.

Proof. The knots Kn of Theorem 6.1(1) have Alexander polynomials fk2+2(t) (taking

n = k2 + 2). From Lemma 6.3(1), all roots of these polynomials are real and positive.

Hence, the work of Clay and Rolfsen [9] described above implies that the knot groups

π1(S3 � Kn) (or indeed knot groups of all knots with Alexander polynomial fk2+2(t)) are

bi-orderable. �

Remark 6.14. Note also that in the remark following the statement of Lemma 6.3,

we observed f7(t) is Azumaya positive. This also has all roots real and positive, and so

if K is any fibered knot with �K(t) = f7(t) then we once again have from [9] that any
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associated knot group is bi-orderable. A particular example of such a knot is the knot

812 mentioned above.

Remark 6.15. Note that the polynomial of Lemma 6.3(3) has all roots imaginary and

so by [9], any knot K that has this as its Alexander polynomial has knot group that is

not bi-orderable, even though the knot will be Azumaya positive.

6.5 An example with trivial Alexander polynomial

We have been unable to find a knot with trivial Alexander polynomial whose canonical

component could be computed explicitly for us to record. However, given Remark 4.4,

we can content ourselves with an example of a knot in S2 × S1 that can be analyzed.

The example in question is a manifold from the census of cusped hyperbolic

3-manifolds that can be built from at most five tetrahedra. In the original version of

SnapPy, it is the manifold denoted m137. This manifold appeared in [21] and more

recently in [24], which points out that the Alexander polynomial is 1.

It is also shown in [24] that the canonical component X0 is a curve C in C2 with

field of constants Q as the vanishing locus of the polynomial:

p(s, t) = (−2 − 3s + s3)t4 + (4 + 4s − s2 − s3)t2 − 1,

where s and t are certain trace functions. Using Magma [3], it can be shown that the

genus of C̃ is 3 and that the curve is not hyperelliptic.

It is shown in [24] that there are both characters of irreducible SL2(R) represen-

tations and SU(2) representations on C. Indeed, there are six connected components

of real characters in total, two of which correspond to SU(2) representations. If A
denotes the Azumaya algebra over C, we deduce from Theorem 1.8(2) that the class

β(A) does not lie in the image of the Tate–Shafarevich group of the Jacobian of the

smooth projective model C̃ (we were not able to check whether or not X is trivial in

this case).

Experimenting with Snap [12] (as done in §1), one sees only ramification at the

real places. In particular, we see that [A] is indeed a non-trivial element of Br(C̃).

7 The Figure-Eight Knot

Recall that the 2nd part of Theorem 6.1 shows that the figure-eight knot is Azumaya

positive, which gives Theorem 1.7(1). In this section, we work out in detail which
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Azumaya algebra occurs (i.e., the element of the Brauer group of the canonical curve)

and use this to prove Theorem 1.7.

We begin by recalling the computation of X0 in this case. To that end, let � be

the figure-eight knot group. Then � has presentation:

� = 〈a, b | b = waw−1〉 w = [a−1, b] = a−1bab−1. (6)

As in the previous section, we can use computer algebra software like Mathematica to

compute a polynomial whose vanishing set defines the canonical component. In this

case, X0 is described in the affine plane C[T, R] as

RT2 − 2T2 − R2 + R + 1 = 0 (7)

T = χρ(a)

R = χρ(ab).

Note that a and b are conjugate, so we also have T = χρ(b). We can also change to the

affine plane C[y, z], where y = T(R − 2) and z = R − 1 and obtain the Weierstrass form

y2 = z3 − 2z + 1. (8)

In particular, since this curve is a non-singular plane cubic, we deduce that there is a

unique component containing the characters of absolutely irreducible representations,

and it hence coincides with X0. We start by proving part (3) of Theorem 1.7.

Proof of Theorem 1.7(3). Recall that, up to scaling, the figure-eight knot has

Alexander polynomial

�K(t) = t2 − 3t + 1.

The roots over Q are

z = 3 ± √
5

2
,

and z = (±w)2, where

w = 1 ± √
5

2
.
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Azumaya Algebras and Canonical Components 5029

Then w + 1/w = ±√
5, and we see explicitly that the figure-eight knot is Azumaya

positive.

Now let 	 be a prime, and let �K,	(t) denote �K(t) considered as an element of

F	[t]. The argument over Q applies mutatis mutandis to show that (�	) of Theorem 1.5

holds when 	 	∈ {2, 5}. When 	 = 5, x = −1 ∈ Z/5 is the only root of �K,5(t), and −1 has

square roots w = 2, 3 ∈ F5, so (�5) holds.

Finally, when 	 = 2, we have

�K,2(t) = t2 + t + 1

so if z is a root of �K,2(t), F2(z) ∼= F4 and z3 = 1, hence F2(z) contains the square root

w = 1/z of z. However,

w + 1/w = 1 ∈ F2,

so F2(w) 	= F2(w + 1/w), and hence (�2) fails. This proves that S = {2} is the minimal

set for which the conditions of Theorem 1.5 hold, and this completes the proof of

Theorem 1.7(3). �

We now explore the Azumaya algebra AE over the smooth projective model of E,

along with the algebra Ak(E) over the function field k(E) of E, in more detail. We will use

two affine patches of E. The 1st is the affine curve E0 defined by (8) in the (y, z) plane.

The 2nd is the affine curve E′
0 = X0 defined by (7) in the (T, R)-plane.

We begin by giving Hilbert symbols in our various coordinates.

Lemma 7.1. Over the function field k(E) of E, we have Hilbert symbols

Ak(E) =
(

T2 − 4, R − 3

k(E)

)
=

(
z3 − 4z2 + 6z − 3, z − 2

k(E)

)
.

The specialization of Ak(E) over (y, z) = (±1, 0) is a division algebra over Q, so Ak(E) (resp.

AE ) is a non-trivial Azumaya algebra over k(E) (resp. E).

Proof. For each point (T, R) on E′
0, we define

α = χρ(a)2 − 4

β = χρ([a, b]) − 2.
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Since � is generated by a and b, it is clear from the methods used in this paper that we

can use α, β to define a Hilbert symbol for AE over the function field k(E) of E.

A standard identity for traces of 2 × 2 matrices is

tr([A, B]) = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB) − 2,

which, at a point (T, R) on E′
0, allows us to define

α = α(T, R)

= T2 − 4

β = β(T, R)

= 2T2 + R2 − RT2 − 4

= R − 3

where the last equality comes from (7).

We also have

α′ = α(R − 2)2

= z3 − 4z2 + 6z − 3

and notice that β = z − 2. Then {α′, β} also gives a Hilbert symbol for Ak(E). The last

statement of the lemma follows from that fact that specializing at z = 0 gives the

quaternion algebra over Q with Hilbert symbol

(−3, −2

Q

)
.

This algebra ramifies over the real place and hence is non-trivial. The lemma follows.

�

We now give a minimal extension of k(E) that splits AE .

Lemma 7.2. The algebra AE splits over k(E)(i). In other words, AE ⊗k(E) k(E)(i) is

isomorphic to the 2 × 2 matrix algebra over k(E)(i). Consequently, given any point p ∈ E
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Azumaya Algebras and Canonical Components 5031

with associated quaternion algebra Ap over the residue field k(p) of p, we have

Ap ⊗k(p) k(p)(i) ∼= M2(k(p)(i)).

Proof. It suffices to split Ak(E) over k(E)(i). In the function field k(E)(i) = k(E) ⊗Q Q(i),

let

m1 = −2 − i + (1 + i)z

m2 = i

m3 = 1 − i − z

r = m1 + m2I + m3J

where I2 = α′ and J2 = β, with α′ and β as in the proof of Lemma 7.1. Then r has reduced

norm

m2
1 + α′ − m2

3β = 0,

so Ak(E) ⊗k(E) k(E)(i) must split. This proves the lemma. �

We now consider the behavior of AE at an ideal point. Using homogeneous

coordinates [W : Y : Z], so y = Y/W and z = Z/W, it is clear that E0 has a single

ideal point p∞ at [0 : 1 : 0]. Let E = E0 ∪ {p∞}. The elements

α∞ = 1

y2 α′ = z3 − 4z2 + 6z − 3

z3 − 2z + 1

β∞ = z2

y2 β = z3 − 2z2

z3 − 2z + 1

give a well-defined Hilbert symbol for AE , which specializes at p∞ to

(
1, 1

Q

)
∼= M2(Q).

This shows the following:

Lemma 7.3. The Q-quaternion algebra A∞ given by specialization of AE at the ideal

point p∞ splits.
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We now complete the proof of Theorem 1.7.

Proof of Theorem 1.7(2). The class [AE ] of AE in the Brauer group Br(E) is non-

trivial by Lemma 7.1. Lemma 7.3 then implies that [AE ] lies in the kernel Br0(E) of

the specialization map of Brauer groups Br(E) → Br(Q) associated with specialization

at p∞.

The argument of [57, Lem. 2.1] shows Br0(E) is isomorphic to the Galois

cohomology group H1(Q, E(Q)), since the hypothesis in [57] that the 2-torsion E[2] of

E(Q) is defined over Q is not needed for this conclusion. Lemma 7.2 shows [AE ] is in the

kernel of the homomorphism

Br0(E) → Br0(E ⊗Q Q(i))

induced by tensoring over Q with Q(i). Therefore, [AE ] is identified with an element of

H1(Gal(Q(i)/Q), E(Q(i)))

= Ker{H1(Q, E(Q)) → H1(Q(i), E(Q))}.

The latter equality is a consequence of the restriction-inflation sequence in group

cohomology; see [52, Chap. VII.6, Chap. X].

The points E(Q(i)) contain the (finite index) subgroup generated by the subgroup

E(Q) of points fixed by Gal(Q(i)/Q) along with the subgroup of those points sent to their

negatives by complex conjugation. The latter points correspond to rational points on the

quadratic twist

Ẽ : −y2 = z3 − 2z + 1.

The curves E and Ẽ are modular of conductors 40 and 80, respectively, and they each

have rank 0 over Q, which one can easily check in Sage [53]. It follows that E(Q(i)) is

finite. The 2-torsion of E over Q in (y, z) coordinates is

E(Q)[2] =
{

p∞ , (0, 1) ,

(
0,

−1 + √
5

2

)
,

(
0,

−1 − √
5

2

)}
.

It follows that E(Q(i))[2] has order 2, and so the 2-Sylow subgroup of the finite group

E(Q(i)) is a cyclic 2-group with an action of the group Gal(Q(i)/Q) of order 2.
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Then, H1(Gal(Q(i)/Q), E(Q(i))) is isomorphic to

H−1(Gal(Q(i)/Q), E(Q(i))),

and the latter is cyclic since E(Q(i)) is cyclic (see [52, VIII.4]). Since these cohomology

groups are annihilated by #Gal(Q(i)/Q) = 2 and Lemma 7.1 showed that [AE ] is

non-trivial, we conclude that [AE ] is the unique non-trivial element of the group

H1(Gal(Q(i)/Q), E(Q(i))). In particular, [AE ] is the unique non-trivial element in Br0(E)

that becomes trivial after tensoring over Q with Q(i). This completes the proof of

Theorem 1.7(2). �
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