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Let M be a compact 3-manifold and I' = =, (M). Work by Thurston and Culler-Shalen
established the SL,(C) character variety X(I') as fundamental tool in the study of the
geometry and topology of M. This is particularly the case when M is the exterior of
a hyperbolic knot K in S%. The main goals of this paper are to bring to bear tools
from algebraic and arithmetic geometry to understand algebraic and number theoretic
properties of the so-called canonical component of X(I'), as well as distinguished points
on the canonical component, when I' is a knot group. In particular, we study how the
theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic
information about Dehn surgeries, and perhaps of most interest, to construct new knot

invariants that lie in the Brauer groups of curves over number fields.

1 Introduction

Let I be a finitely generated group and let X(I') denote the SL,(C) character variety
of I (see §2). When I' is the fundamental group of a compact 3-manifold M, seminal
work by Thurston and Culler-Shalen established X(I") as a powerful tool in the study
of the geometry and topology of M. The aim of this paper is to bring to bear tools

from algebraic and arithmetic geometry to understand algebraic and number theoretic
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properties of certain components of X(I') for arbitrary finitely generated I', as well as
distinguished points on these components. In particular, we study how the theory of
quaternion Azumaya algebras (see §3) can be used to obtain algebraic and arithmetic
information about Dehn surgeries on 1-cusped hyperbolic 3-manifolds. This leads, in
particular, to new knot invariants that lie in the Brauer groups of curves over number
fields.

Our approach is two-fold. First, we apply results on Azumaya algebras, classical
and recent, to prove results about invariants of Dehn surgeries on hyperbolic knots.
Second, we show how conditions from 3-manifold topology, for example, arithmetic
properties of the Alexander polynomial of a knot, help prove the existence of an Azumaya
algebra over certain curves defined over a number field. In the remainder of the
introduction, we expand on this theme and state a number of the results we will prove.

Let I" be as above, and suppose that p : I' - SL,(C) is an absolutely irreducible
representation. If x, is the character of p, let k, be the field generated over Q by the
values of Xp- Then the kp-span of p(I') defines a kp-quaternion subalgebra A, C My(©)
(cf. [39, Thm. 3.2.1]). When p(T") is a discrete subgroup of SL,(C) of finite co-volume, the
field k, and the algebra A, are important geometric and topological invariants of the
hyperbolic 3-manifold M, = H3/p(I') that are closely related to the lengths of closed
geodesics and the spectrum of the Laplace-Beltrami operator on M, (see [8]).

Suppose that I' = 7,(S® \ K) is the fundamental group of a hyperbolic knot
complement and p : I' — SL,(C) is the discrete representation associated with a
hyperbolic Dehn surgery on S\ K. One can then ask if and how the invariants k,and A,
of M, = H3/p(I') depend on K. Our work was partially motivated by giving a theoretical

explanation for the following examples.

Examples. Using the program Snap [12], one can determine the so-called invariants

of the algebra A, , where p : T — SL,(C) is the representation associated with a

hyperbolic Dehn spurgery on S® \ K with sufficiently small surgery coefficient. The non-
trivial invariants are a finite list of real and finite places of the trace field kp, which
is also called the ramification set for A,. For the knot 4,, the figure-eight knot, every
finite place that appears in the ramification set has residue characteristic 2, that is,
the associated prime ideal of the ring of integers Op of k, divides 20y . For other
knots, the invariants behave much more wildly: for the knot 5, one sees invariants with
residue characteristics including 5, 13, and 181, and for the (-2, 3, 7)-pretzel knot one
sees non-trivial invariants with residue characteristics 3, 5, 13, 31, 149, 211, 487, 563,

and 34, 543.
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Understanding the local invariants of the algebras A , turns out to be linked with
the problem of extending this association of a quaternion algebra A , with the character
of an absolutely irreducible representation to an Azumaya algebra over normalizations
of various subschemes of X(I"). To explain this we need some further notation.

In §2.1 we recall a result from [16] showing that there is a canonical model XM
of X(I') whose affine ring is the Q-algebra generated by the trace functions associated
with explicit words in the chosen generators for I'. This choice of generators then fixes
an embedding of X(T') into an affine space A where the indeterminates generating the
affine ring of Af correspond to the trace functions associated with the given words in
the fixed generating set.

Suppose € is an integral complex curve that is a closed subscheme of X(I"), and
suppose there is a point of €(C) that corresponds to the character of an irreducible
representation. By [33, Ch. 3] there is a unique minimal subfield k¥ ¢ C such that the
ideal I corresponding to the resulting embedding ¢ C A{ is generated by polynomials
with coefficients in k. This field k is called the field of definition of ¢ in [37].

Choosing generators for I that have coefficients in k, we arrive at a geometrically
integral curve C over k that is a closed subscheme of X(I"); = XM ®Qk such that C®; C
is isomorphic to € over C. Since C is geometrically integral, k is the field of constants of
C, that is, k is algebraically closed in the function field k(C) [47, Rem. 9.5.7]. Note that
this notion of k being a field of definition depends on the realization of ¢ as a closed
subscheme of X(TI"), in contrast with other notions [18]. It is shown in [37, Prop. 3.1] that
k and the isomorphism type of C over k do not depend on the choice of generators for I
used to define character function generators for the affine ring of X(I')q.

We now suppose that, in addition to the above, k C C is a number field. This will
be the case, for example, if € is an irreducible component of X(I') = X(Mg ®qg C. Let ct
be the normalization of C and C be the unique smooth projective curve over k containing
C* that has the same function field k(C) as C and C*. There is a field F containing k(C)
and an (absolutely) irreducible representation P, : I' — SL,(F) whose character defines
the generic point of C. This representation is called the tautological representation by
Culler-Shalen [16]. The starting point for us is the following result, which we prove in
§3.3 using the work by Culler-Shalen, Harari [25], and Rumely [51], along with some

classical results about Azumaya algebras.

Theorem 1.1. Suppose that I' is a finitely generated group with SL,(C) character
variety X(I') = X(I')g ®g C. Let k c C be a number field, and suppose that C is a
geometrically integral curve on X(I'), = X(I')g®gk such that € = C®; C C X(I') has field
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of definition k. Let C* be the normalization of C and C be the smooth projective closure

of C*. Suppose that ¢ contains the character of an irreducible representation of I'.

1. Taking the k(C)-span of P,(I') defines a k(C)-quaternion algebra
Ajc) C M, (F) for some finite extension F of k(C).

2. For z € C* let w = w(2) be the image of z on C and p,, be a complex
representation with character w. Fix an embedding of the residue field k(w)
into C extending our fixed embedding of k. Then k ow k(w) C k(2), and k(w)
is generated by k and kpw. If w is a smooth point of C then k(z) = k(w).

3. Suppose there is no Azumaya algebra Az over C with generic fiber isomorphic
to Ag)- Then there is no finite set S of places of Q with the following
property: the k(w)-quaternion algebra 4, ®k, k(w) is unramified outside the
places of k(w) over S for all but finitely many smooth points w € C(Q) for
which p = p,, is absolutely irreducible.

4. Suppose thereis an Azumaya algebra A; over C with generic fiber isomorphic
to Ay, Then there is a finite set S of places of Q such that the k(2)-
quaternion algebra 4 ®k, k(z) is unramified outside the places of k(z) over
S for all points z € C*(Q) such that p = Pw(z) is absolutely irreducible.

5. If A; exists, then its class in the Brauer group Br(C) is determined by the

isomorphism class of Ay, as a quaternion algebra over k(C).

In the remainder of the introduction we discuss the case of the most interest
to us, namely, where K C S°® is a hyperbolic knot with complement M = S <\ K and
I’ = 7, (M). Work of Thurston [56] (see also [16]) shows that X(I") contains a distinguished
curve ¢, a so-called canonical component. This is an irreducible component of X(T")
containing the character of a discrete and faithful representation associated with the
complete hyperbolic structure on M. See §2 for further discussion. As noted above, since
¢, is an irreducible component of X(I"), the field of constants of ¢;; is a number field k,
and there is a geometrically integral curve C;; C X(I'); whose base change to C is €;;. We
will refer to Cy; as the canonical component of X(I');. Let C;; denote the normalization
of a projective closure of Cy,, so Cy, is a smooth projective curve over k.

Among the results we prove in this paper, we will produce various sufficient
conditions for Az to exist. For example, in the case of hyperbolic knot complements,
the existence of these Azumaya algebras is closely related to arithmetic properties of
the Alexander polynomial of K. Recall that the Alexander polynomial is a generator of
the Fitting ideal for the conjugation action of a meridian on the commutator subgroup

of the knot group (e.g., see [42]). A primary theme of this paper is that the obstruction
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to Az, existing is related to points on E’M associated with characters of nonabelian
reducible representations. In particular, it is a classical fact that nonabelian reducible
representations of knot groups into SL,(C) are closely related to roots of A (t); see §2.6

for a precise discussion. We prove the following in §4.

Theorem 1.2. Let K be a hyperbolic knot with I' = 7,(S® \ K), and suppose that its

Alexander polynomial Ag(t) satisfies the following:

(x) for any root z of Ag(t) in an algebraic closure Q of Q and w a square root of z, we

have an equality of fields Q(w) = Q(w + w™1).

Then A, exists for the canonical component Cp; C X(I')y.

Remark 1.3. While we only state Theorem 1.2 for the canonical component, our
techniques can apply to give Azumaya algebras over other irreducible curve components
of the SL, (C) character variety. Indeed, many of the facts about the canonical component
used in the proof apply to other components, like the so-called norm curves that
appear in Boyer and Zhang's proof of the finite filling conjecture [6]. As our primary
applications of Theorem 1.2 are to points on the canonical component, we leave it to the
motivated reader to make the necessary adjustments for producing Azumaya algebras

over other components.

Theorem 1.2 obviously applies to any knot with trivial Alexander polynomial,
and moreover to infinitely many other hyperbolic knots with non-trivial Alexander
polynomial, including the figure-eight knot. Indeed, we are able to construct infinite
families of both fibered and non-fibered hyperbolic knots for which condition (x) holds,
and infinitely many for which it fails. See §6 for further discussion.

Furthermore, we prove a partial converse to Theorem 1.2. For example, if ¢, is
the unique component of X(I') containing the character of an irreducible representation,
Ag(t) has no multiple roots, and Az, exists, then condition (x) of Theorem 1.2 holds
for every root of Ag(t). See §4.4 for a precise discussion. The converse may also
hold when Ag(t) has a multiple root, for example, when the associated point on the
character variety is a smooth point. In order to remove the multiple root condition and
understand if and when the full converse holds, one must better understand the nature
of singularities of C arising from roots of high multiplicity.

A particularly interesting infinite family of points on C; are those that arise
from performing hyperbolic Dehn surgery on M. Suppose that N is a closed hyperbolic
3-manifold obtained from Dehn surgery on M and let x, be the character of the repre-

sentation of ' = x; (M) obtained by composition of the Dehn surgery homomorphism
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and the faithful discrete representation of | (V). If ky is the trace field of NV, it is a well-
known consequence of local rigidity that k, is a number field. As mentioned briefly
above, there is a ky-quaternion algebra A, associated with this point on Cy,.

When Theorem 1.2 applies to show that we obtain an Azumaya algebra over Z’M,
Theorem 1.1 then places considerable restrictions on the invariants of the algebras Ay;.
For the sake of simplicity, we state our results here for the case where C,; has field of
constants k = Q. In fact, we do not know an example of a knot for which Cy;; has field of
constants not equal to Q, and we will prove in Lemma 4.7 that k = Q when X(I') has a

unique component containing the character of an irreducible representation.

Theorem 1.4. Let K be a hyperbolic knot in S® whose Alexander polynomial satisfies
condition (x) of Theorem 1.2, and suppose that the canonical component C;; has field
of constants Q. Then there exists a finite set S of rational primes such that for any
hyperbolic Dehn surgery N on K with trace field ky, the ky-quaternion algebra Ay can

only ramify at real places of k, and finite places of kj lying over primes in Sg.

We now study effective upper bounds on the set S in Theorem 1.4 using an
integral version of Theorem 1.2. Recall that by [34] (see also [7] and [36]), there is a
regular projective model of C,; over the ring of integers O, of k. Such a model need
not be unique, but there are relatively minimal models. If E’M has positive genus, then
all relatively minimal models are isomorphic. One can take the base change of these
models to Dedekind subrings of k that contain Oy, for example, rings of S-integers Oy g,

in order to arrive at regular projective models over these subrings.

Theorem 1.5. Suppose that Az = exists for the canonical component Cp; C X(I');, and

let S be a finite set of rational primes for which the following is true:

(x;) Let £ be a prime not in S. Suppose that z is a root of Ag(t) in an algebraic closure F,

of IF,. If w is a square root of z, then we have an equality of fields F,(w) = F,(w + w™b.

For any such S, let Oy 5 be the ring of S-integers of k and let Cg be a regular projective
integral model of C,,; over Ok,s- There is an extension Ag, of Ay, to an Azumaya
algebra over Cg, and the class of A,  in Br(Cg) is determined by the isomorphism class

of Ak(C)'

One can check (see Remark 5.11) that if condition (x) of Theorem 1.2 holds, there
will always be a finite set of primes S as in Theorem 1.5. In short, Theorem 1.5 says that
ramification of the quaternion algebras associated with hyperbolic Dehn surgeries on

K is governed by the arithmetic of the Alexander polynomial of K. A particular corollary
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of Theorems 1.4 and 1.5 is the following, noting that (»,) holds for all primes ¢ when
Agp(t) =1.

Corollary 1.6. Let K C S® be a hyperbolic knot with canonical component C;; having
field of constants k = Q.

(1) Suppose that Az exists for Z‘M. For any hyperbolic Dehn surgery N on K
with trace field kj, the ky-quaternion algebra A, can only ramify at real
places of kjy and finite places lying over primes in the set S provided by
Theorem 1.5.

(2) Suppose that Ag(t) = 1, and let N be a closed hyperbolic 3-manifold
obtained by Dehn surgery on K. Then the quaternion algebra A, can only

ramify at real places of the trace field k.

As an example of Theorem 1.5, we show in §6 that for the figure-eight knot
complement, where E’M is known to be an elliptic curve over k = Q with good reduction
outside 2 and 5, that the set S in Theorem 1.5 can be taken to be {2}. This leads to
the following consequence, which confirms the experimental observations described

above.

Theorem 1.7. Let K C S°® denote the figure-eight knot, M = S% \ K, and C,,; be the

canonical component.

(1) The quaternion algebra Ay, extends to a quaternion Azumaya algebra Az, .

(2) The class of Az, in Br(Cy) is the unique non-trivial class of order 2 having
trivial specialization at infinity that becomes trivial in Br(Cy, ®g Q@) after
tensoring over Q with Q(7).

(3) Suppose that N is a closed hyperbolic 3-manifold obtained by Dehn surgery
on the figure-eight knot. Then the quaternion algebra Ay can only ramify at

real or dyadic places of the trace field k.

Another direction of interest is how our results are related to the existence of
characters of SU(2) representations. The study of SU(2) representations of knot groups
saw a great deal of activity motivated by an approach to Property P via the Casson
invariant (see [1] and [31]). In particular, if ¥ is an integral homology 3-sphere that is
obtained by Dehn surgery on a knot K whose symmetrized Alexander polynomial Ag(%)
satisfies A% (1) # 0, then 7,(X) admits a non-trivial homomorphism to SU(2), and so

K satisfies Property P. It was subsequently shown in [32] that every non-trivial knot
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admits a curve of characters of irreducible SU(2)-representations. Our work connects to

this as follows (see §5 for more detail).

Theorem 1.8. Suppose K is a hyperbolic knot with Ag(t) = 1. Let C C X(I'); be the
canonical component and C be the smooth projective model of C, where k is the constant
field of the function field of C. Then A; extends to an Azumaya algebra A over every
regular integral model C of C over the full ring of integers Oy of k. Let Cgy(5) be the subset
of the real points C(R) of C corresponding to the characters of SU(2) representations and
Csing be the (finite) singular locus of C.
1. The class [A] of A in Br(C) has an associated class B([.A]) in the relative Tate—
Shafarevich group III(k, Ok,PiCO(E')) defined by Stuhler in [55, Def. 1, page
149] (see §5.2).

2. The following conditions are equivalent:

i. The class B([A]) lies in the traditional Tate-Shafarevich group
LI(k, Pic®(C)) defined in Equation (2) of §5.2;

ii. Cgy(y) is contained in the finite set Cg;;, g

3. If any (hence both) of these conditions fail, then C(R) is a finite non-empty

disjoint union of real circles and Cgy(y) \ Cying

is a non-empty union of arcs
and circles in C(R).

4. If either (i) or (ii) of part 2 above holds and there is a point of C over k, then
B([A]) = 0 in III(k, Pic®(C)) if and only if the class of A in Br(C) is trivial. In
particular, this holds when C has no real points or when C(R) consists only

of real circles associated with SL,(R) representations.

For an example of a reducible representation that is a singular point of the
closure of the subscheme of irreducible representations on the character variety, see
[27, §6.2].

Theorem 1.8 illustrates an approach to producing characters of irreducible
SU(2)-representations on the canonical component, albeit under the hypothesis
Ag(t) = 1. Among the large number of examples we have computed, we find the

following conjecture reasonable (cf. [37, §5]):

Conjecture 1.9. Let K be a hyperbolic knot in S°. Then there is a real curve of SU(2)

characters contained in the canonical component of the SL,(C) character variety.

It would be very interesting if an approach via the techniques of this paper

could be used to give an alternate proof that knots groups have irreducible SU(2)
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representations, as opposed to the gauge-theoretical methods of [31, 32]. In contrast
with the discussion here, it is worth pointing out that there are constructions of 1-
cusped hyperbolic 3-manifolds for which the canonical component does not contain
any real characters (see e.g., [37]).

Furthermore, Theorem 1.8 also ties Conjecture 1.9 to the question as to which
curves can possibly be the canonical component of the SL,(C) character variety of a
hyperbolic knot. An immediate consequence of Theorem 1.8 is the following special case

of Conjecture 1.9.

Corollary 1.10. Let K be a hyperbolic knot with trivial Alexander polynomial. Let
C C X(I'); be the canonical component, where k is the field of constants of the function
field k(C). Suppose that C is a smooth projective model of C, C has a point over k, and
that Pic®(C) is the Jacobian of C. If the Tate-Shafarevich group II(k, Pic?(C)) of Pic®(C) is
trivial, then either Ay is isomorphic to M, (k(C)) or C contains infinitely many characters

of non-abelian SU(2) representations.

Our work also seems to suggest a connection between hyperbolic knot com-
plements whose canonical components satisfy the conclusion of Theorem 1.2, L-space
knots, and knots whose complements have bi-orderable fundamental group. We discuss
this in more detail in 86, but in rough terms we do not know of an example of a
hyperbolic L-space knot that satisfies the conclusion of Theorem 1.2. In a similar
direction, in §6, we discuss some connections between our work, (non-)orderability of
hyperbolic knot groups, and fundamental groups of Dehn surgeries on knots. See [14]

for further work related to this connection.

2 Representation and Character Varieties

In this section, we recall some basic facts about SL,(C) representation and character

varieties.
2.1
Let I" be a finitely generated group, and consider the SL,(C) representation variety

R(I') = Hom(T", SL, (C)).

The embedding SL,(C) C M,(C) = C* with the obvious coordinates gives R(I")

the structure of an affine algebraic subset of C*". These coordinates show that the
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embedding R(I') ¢ C*" is the base change of an embedding R(M)g C Aa”, where R(I")
and R(I') are up to canonical isomorphism independent of the choice of a generating
set for I'. For all fields L of characteristic 0, we will denote R(M)g®g L by R(I);.

Two elements p,, p, € R(I') are called equivalent if there is some g € GL,(C) such
that p, = gp;g!. A representation p € R(I') is called reducible if p(I') is conjugate into
the subgroup of upper-triangular matrices and is called irreducible if it is not reducible.

Let x, : ' - C denote the character of a representation p. For each y € T,

consider the regular function 7, : R(I') — C defined by evaluating the character of

paty:
7, () = x,(y) =tr(p(y))

Since the trace is a conjugacy invariant, t, is constant on equivalence classes of

¥
representations. The subring T of the ring of regular functions on R(I") generated by
{Ty}yer is finitely generated [16, Prop. 1.4.1]. Therefore, we can fix y,,...,y, € I" such
that {‘L'yi};;l generates T.

Define t : R(I') —» C" by

t(p) = (7, (p), -, 7, () € C".

Note that if p;,p, are equivalent representations, then t(p;) = t(p,). The SL,(C)

character variety of I is
X() =t(R(T)) cC",

and every irreducible component of X(I') containing the character of an irreducible
representation is a closed affine algebraic variety [16, Prop. 1.4.4]. For y € I', we also

define the rational function

L(x,) = x,(¥),

on X(I') induced by the class function 7, on R(I") defined above.

To be more precise, [16] shows that X(I') has affine coordinate ring
Clx,,...,x,]/J, where J is the ideal of all polynomials that vanish on X(I') under the
identification x; = 7,,. Changing the generating set gives an isomorphic affine set, so
X(T") is well defined up to isomorphism. It is also shown in [16] that X(I") is defined over
Q in the sense that J is generated by polynomials in the variables x; with coefficients
in Q. We will use X(I')) to denote the affine scheme over Q whose ring is the image of
Qlx;,...,x.]in Clx,,...,x,]/J. The irreducible components of X(Mg then have constant

field a number field.
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If F is an arbitrary field of characteristic zero, then a representation
p : I' — SL,(F) is absolutely irreducible if it remains irreducible over an algebraic
closure F of F. A representation p : I' — SL,(F) with non-abelian image is absolutely
irreducible over an algebraic closure of F if and only if p is irreducible [16, Lem. 1.2.1].

Two irreducible representations of I' are equivalent if and only if they have the
same character [16, Prop. 1.5.2]. In particular, if x € X(I') is a point such that x = t(p) for
some irreducible representation p € R(I'"), then t~!(x) is exactly the equivalence class of
p. Furthermore, the reducible representations in R(I') are of the form ¢~!(V) for some
closed algebraic subset V of X(I") [16, Prop. 1.4.2].

We now record the following from [16, Lem. 1.2.1].

Lemma 2.1. In the above notation, if x 0 is the character of a reducible representation
and ¢ € [, '], then I.(x,) = 2.

Proof. A reducible representation of I' into SL,(C) can be conjugated to have image
contained in the group of upper-triangular matrices. Since the commutator of two upper-

triangular matrices has 1s on the diagonal, the lemma follows. |

Remark 2.2. The converse of Lemma 2.1 also holds. See [16, Lem. 1.2.1]. Indeed, this

holds for representations to SL, (F) for an arbitrary algebraically closed field F.

Notation: In the case when I is the fundamental group of the complement S \ K of
a knot K in the 3-sphere S%, we denote the representation variety by R(K) and the
character variety by X(K).

2.2

Throughout in what follows by an affine or projective curve, we shall always mean an
irreducible affine or projective curve.

Suppose that C is an affine curve with field of constants the number field k.
For us, C will generally be a closed subscheme of R(I'); or X(I');. Let c* denote the
normalization of the reduction €% of C. Thus if C = Spec(A) we have cred — Spec(Ared)
and C* = Spec(A*), where A™? is the quotient of A by its nilradical and A* is the
normalization of A™? in the function field k(C) of C. The natural morphism ¢* — C
is finite, and C* is connected since C is irreducible.

Denote the smooth projective completion of C* by C, so C is a smooth projective

curve birationally equivalent to C that contains C* as an open dense subset. The ideal

2202 J8qWBAON gz Uo Jasn Aselqi [0oyog meT AlsiaAiun sjdwa | Aq 9/006S/6961/./2202/101e/uiwl/woo dnoolwepese//:sdiy wol) papeojumod



4980 T. Chinburg et al.

points of C are C ~ C*¥, which are the points at which the birational map C — C is
not defined. We denote the set of ideal points by Z(C). Notice that a non-zero regular
function C ®; C — C induces a map [% ®; C— IP’(IC whose poles are at points in Z(C).

The following is a generalization of a fact implicit in Culler—Shalen [16] in the

case where C is an irreducible curve component of X(I").

Lemma 2.3. The morphism R(T");,, — X (I'),, is surjective. Suppose that 7. is the generic
point of an irreducible curve C C X(I');. Then there is an irreducible curve D C R(I');
such that t(np) = n; and t(D) C C, where nj denotes the generic point of D. The function
field k(D) of D is a finite extension of the function field k(C) of C. Further, there exists a
representation P, : I' — SL,(k(D)) such that

xp.(V)(P) = x,(¥)

for any representation p € D and y € I'. In other words, evaluating the function

Xp,(v) € k(D) at the point p gives the value of the character x, at y.

Proof. By Exercises 11.3.18 and II.3.19 in [26], the image of the morphism
R(T), — X('), is constructible, so it is the finite disjoint union of locally closed
subsets of X(I');. Therefore, t : R(I');, — X(I'); is surjective as a map of affine schemes,

since the base change
R(I") =R ®; C - X(I') = X(I), ®; C

is surjective on closed points by [16, page 117]. Therefore, the fiber t~1(.) of t over n. is
a non-empty scheme over the residue field k(5;) = k(C). It therefore has a closed point
np as a scheme over the field k(n;). Now, k() is a finite extension of k(n;) and the
Zariksi closure D of np in R(I");, is a curve in R, such that ¢t(D) C C.

We let the representation P, be the one produced by 7. Specifically, we arrive

at a so-called tautological representation P, : ' — SL,(k(D)), which we denote by

Ik
Pe(y) = '
T

where f)f'j € k(D) is the function such that f)f"j (p) is the (i,j)-entry of p(y). The character
of P visibly has the property that xp.(y)(p) = X, (y) for all p € D and y € I'. This proves

the lemma. u
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Given the representation P, described above, we record the following basic
lemma that follows from the reasoning used in the proof of Lemma 2.3 (also see [16,
Lem. 1.3.1]).

Lemma 2.4. In the above notation, if C contains the character of an irreducible

representation, then the representation P, from Lemma 2.3 is (absolutely) irreducible.

Notation: We recall the following notation. Let C be a possibly singular projective curve
with smooth projective model € and P € C. Then for o = f/g € k(C), with f,g € kIC]

regular functions, we set

ordp(a) = ordp(f) — ordp(g),

where ordy(f) (resp. ordp(g)) is the order of vanishing of f (resp. g) at P. Then ord, can
be used to define a valuation of k(C) at P for which the local ring at P will be denoted
by Op and consists of those o with ordy(«) > 0, and its unique maximal ideal, denoted
by mp, consists of those « with ordy(«) > 0. The residue field of the point P is given by
k(P) = Op/mp.

We introduce the following additional notation. Note that any function on C
in the ring of functions generated by the character functions I, extends to a rational

function € — P!. For y €T, let Ty : C — P! be the rational function induced by
L(x,) = x,),

where x, € C. Recall that I, is the function on C induced by the class function r,, on R(T")

¥
defined above. We will also frequently consider the related function

f,(x,) =tr(p()?* —4=1,(x,)* — 4,

which vanishes precisely when p(y) is either unipotent or central.

With C and D as in the previous discussion, we obtain a finite morphism
7:D — C. The ideal points on D are the inverse images of the ideal points of C under
this map.

For a point p € D with (p) = q, we have an associated local ring O, If y €T,

then as shown in [16, Thm. 2.2.1], the following conditions are equivalent:

i. every P(y) C SLy(F) is GL,(F)-conjugate to an element of SLZ((’)p);

ii. Ty does not have a pole at g.
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Since the functions 7}, over all y € I' generate the ring of regular functions on X(I'), for
any x € Z(C), we can find a non-trivial y € I' such that Ty has a pole at x.

We now prove a slight strengthening of part (2) of Theorem 1.1.

Lemma 2.5. LetX(I')q be the model of X(T") over Q discussed in the paragraph prior to
Theorem 1.1 of the introduction. Suppose that k is a subfield of C and C is an irreducible
curve over k that is a closed subscheme of the base change X(Mg ®q k of X()g to k.
For any z € Cf = C < Z(0), let w = w(z) be the image of z on C, let p,, be a complex
representation associated with w and an embedding over k of the residue field k(w)
into C, and let k, Dbe the trace field of p,,. Then

k,, € kw) C k),

k(z) = k(w) if w is a smooth point of C, and k(w) is generated by k and k,, .

Proof. By [16], the affine ring of X(I')q is generated as a Q-algebra by trace functions
associated to elements of I'. Therefore, when we view w = w(z) as a closed point of
X(TM)g ®q k, the residue field k(w) is generated by k and polynomial expressions in the
values of trace functions at w. This shows that k(w) is generated by k and k, , and the

rest of the assertions in the statement of the lemma are clear. [ |

2.3 One-cusped hyperbolic 3-manifolds

We now specialize some of the above discussion to the case of the most interest to us,
namely hyperbolic 3-manifolds. Throughout this paper, a hyperbolic 3-manifold will
always mean a connected, oriented, and complete manifold M of the form H3/ I', where
I' = 7, (M) is a torsion-free discrete subgroup of Isom™' (H®) = PSL,(C).

If M is finite volume but not compact, then M is the interior of a compact,
irreducible, 3-manifold whose boundary is a finite union of incompressible tori. In
this case there is a discrete and faithful representation p, : I' - PSL,(C) coming from
the holonomy of the complete structure on M, and local rigidity implies that any other
discrete and faithful representation of I into PSL,(C) is equivalent to p,, so we can
speak of “the” discrete and faithful representation of I'. Thurston showed that p, lifts to
a representation p, : I' — SL,(C) [16, Prop. 3.1.1]. In general, there will be several lifts
of py, even up to equivalence, however for us it will not matter which lift we consider,

and similarly for a character x, .
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Define a canonical component X,(I') C X(I") to be an irreducible component of
X (') containing some x, . In particular, X,(I') is an affine algebraic variety with field
of constants a number field. When M is a non-compact hyperbolic 3-manifold of finite
volume with d ends homeomorphic to T? x [0, c0) (where T? is the 2-torus), Thurston
showed that X,(I") has complex dimension exactly d [16, Prop. 3.2.1]. We summarize the

above discussion in the following result.

Theorem 2.6. Let M be a non-compact hyperbolic 3-manifold of finite volume with
d ends and set I' = 7;(M). Then any canonical component X,(I") is a d-dimensional
affine algebraic variety with field of constants a number field. In particular, when M is

a one-cusped hyperbolic 3-manifold, the canonical component X,(I') is an affine curve.

We have the following important lemma regarding the tautological representa-

tion in the case of a canonical component.

Lemma 2.7. Let M be a 1-cusped hyperbolic 3-manifold and C the canonical compo-

nent. Then the tautological representation P is faithful.

Proof. Suppose that P, is not faithful. Then there exists a non-trivial y € =; (M) such
that P;(y) = I. In particular, this means that Xp,(v) = 2 for all X, € C. Since C is a
canonical curve, the only non-trivial elements of 7, (M) with trace 2 under a faithful
discrete representation are peripheral elements, hence y is peripheral. However, [15,
Prop. 1.1.1] implies that the function I, is non-constant on C when y is a non-trivial

peripheral element, and this is a contradiction. |

24

Given a non-elementary subgroup H of SL,(C) we can associate a field and quaternion
algebra as follows (see [39, Ch. 3]). The trace field of H is the field k; = Q(tr(y) : y € H)

and the quaternion algebra is

n
Apg = [Zam a; € kg, GH],

i=1

that is, the ky-span of H in M, (C).
If H is a Kleinian group of finite co-volume then kj is a number field. Let H®?
denote the (finite index) subgroup of H generated by the squares of all elements in H;

this is the kernel of the homomorphism from H onto its maximal elementary 2-abelian
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quotient. The invariant trace field and quaternion algebra associated with a finitely
generated non-elementary subgroup are kH = k) and AH = Ay« . These are invariants
of the commensurability class of H in PSL,(C), and kT is also equal to tr(Ad(I")). When
H,(H,F,) = {0} or when H is the fundamental group of a knot complement in an integral
homology sphere, the invariant trace field and quaternion algebra coincide with the
trace field and the algebra Ay. See [39, §4.2].

A Hilbert symbol (see [39, page 78] for the definition) for Ay is readily described
using a pair of non-commuting elements as follows. Suppose that g and & are hyperbolic
elements of H with [g,h] # 1. Then, following [39, §3.6], a Hilbert symbol for Ay is
given by

(tr2 (9) — 4, tr(lg, h]) — 2)
ky ’

2.5

We now define the quaternion algebra Ay, over the function field k(C) of C that will be
the central object of study in this paper.

We begin with some general comments in setting finitely generated groups. Let
" be a finitely generated group and C a geometrically irreducible curve over a number
field k that is a closed subscheme of X(I");, and suppose that C contains the character of
an irreducible representation. As in Lemma 2.3, fix an irreducible curve D C R(I'); such
that ¢(D) = C and the function field F = k(D) of D is a finite extension of the function
field k(C) of C. As above, we have the tautological representation P, : I' — SL,(F).

Since C contains the character of an irreducible representation, we know from
Lemma 2.4 that P; is absolutely irreducible. We can then define Ay, to be the k(C)-
subalgebra of M, (F) generated by the elements of P,(T"). That is,

n
A = [Z“il’c(%‘) o; € k(C),y; € F] .

i=1

Exactly as in the proof of Lemma 2.3, Ay, has the structure of a quaternion algebra over
k(C). We refer to Ay, as the canonical quaternion algebra. It will be helpful to record
part of the proof of this, namely that Ay, is four-dimensional over k(C), by identifying

certain elements of I' whose images under P, provide a k(C)-basis.

Lemma 2.8. In the notation above, there exists a pair of elements g, h € I" so that the

regular functions Ig2 — 4 and Ijy ) — 2 are not identically zero on C. More specifically,
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given any g € I so that I, is not constant with value £2 on C, there is an element h € T

so that Ij; ;) — 2 is not identically zero on C.

Proof. Since P, is irreducible it has non-abelian image, so there exists g € I' so that
P.(g9) # £I. As argued in [16, Lem. 1.5.1], we can find k € I" so that P, restricted to the
subgroup H generated by g and h is irreducible and x,(h) # £2 for all x, € C.

It follows from irreducibility that iy ) — 2 # 0. Indeed, by assumption, we can

conjugate P;(g) over the algebraic closure of k(C) to be the diagonal matrix

u 0
Pc(g9) =
0 1/u
for some function u # +1. Then,
a b
Pc(h) =
c d

for functions a, b, c,d in the algebraic closure of k(C). Computing tr([P,(g), P;(h)]) and

setting this equal to 2 we obtain the equation
bc(2—(u+1/u)) =0.

It follows that bc = 0. However, this cannot be the case, as it would then follow that the
restriction of P, to H is either upper- or lower-triangular, that is, reducible on H, which
is a contradiction. This proves the 1st part of the lemma.

The 2nd part follows the same line of argument after noticing that I;, not being
constant with value £2 implies that P;(h) # *I. |

When the tautological representation P, is (absolutely) irreducible, using
Lemma 2.8 and following [39, §3.6], we see that there exist elements {g,h} € T so
that {1, P;(9), Pc(h), Pc(gh)} is a basis for Ay ., over k(C). With this one can describe a
Hilbert symbol (cf. §2.4).

Corollary 2.9. Let I" be a finitely generated group and C be a geometrically integral

curve over k that is a closed subscheme of X(I');. Assume that C contains the character
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of an irreducible representation, and let g, h € I" be two elements such that there exists
a representation p € R(I") with character x , € Cfor which the restriction of p to (g, h)

is irreducible. Then the canonical quaternion algebra Ay, is described by the Hilbert

Ig —4, Iy — 2
k(C) ’

In §3, we will describe how the quaternion algebra Ay, can be described

symbol

instead as an Azumaya algebra over k(C). This will provide the correct context for the

above discussion to be applied to prove our main results.

2.6 Knot complements

We now specialize some of the previous discussion to hyperbolic knot complements. We
fix the following notation for the remainder of this paper. If K c S® is a non-trivial
knot, E(K) will denote the exterior of K. We fix a standard pair of preferred generators
for =, (0E(K)), namely (u,)) where p is a meridian of the knot K and A a longitude
(chosen to be null homologous in E(K)). Elements of I' conjugate into {(u,A) are called
peripheral elements. The Alexander polynomial of K will be denoted by Ag(t). Recall
from the discussion in the introduction that the Alexander polynomial is a generator of
the Fitting ideal for the conjugation action of a meridian on the commutator subgroup of
the knot group. See [42] for further background on the Alexander polynomial sufficient
to understand the results in this paper.

For much of the rest of this paper, we will be interested in character varieties of
hyperbolic knot complements, and in particular their canonical components. We point
out that it is known from [32] that if K is any non-trivial knot, then the character variety
contains a curve of characters of irreducible representations. However, our focus is on
hyperbolic knots.

Thus, let K C S® be a hyperbolic knot. As remarked upon in §2.1, characters of
reducible representations of I' = JTI(SS \ K) form an algebraic subset of X(K). Denote
this subset by X;(K). We will use the following fact.

Lemma 2.10. Let @ C X(K) be the canonical component over the complex numbers. In

the above notation, Xz (K) N € can consist of only finitely many points.

Proof. As above, let A denote a longitude of K. Since A € [[', '], Lemma 2.1 shows that

Lix,) = 2 for any reducible representation p. Since € is a curve, if € contained the
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characters of infinitely many reducible representations, it would follow that I, (x,) = 2
for all X € ¢. However, this is impossible, since the functions I, are non-constant for

all non-trivial peripheral elements « by [15, Prop. 1.1.1]. |

We can say more about the finitely many characters of reducible representations
that lie on €. The following can be found in [11, §6].

Proposition 2.11. Let K C S° be a hyperbolic knot with Alexander polynomial Ag(t)
and let ¢ C X(K) be a canonical component. If p : ' — SL,(C) is a reducible
representation with x, € ¢, then the following hold.

(1) There is a representation p’ with non-abelian image such that x p =Xy €C.
(2) If 4 is a meridian of K, then p(u) has an eigenvalue z for which z? is a root
of Ag ().

In fact, all one needs for Proposition 2.11(1) to hold is for € to contain the
character of an irreducible representation. The key point is that if ¢t : R(K) - X(K)
is the map from the representation variety to the character variety defined in §2.1 and
if x is the character of an irreducible representation, then ¢! (x) is three-dimensional.
On the other hand, if P is the character of an abelian representation, then t‘l(x p) is
two-dimensional.

To prove part (2) of Proposition 2.11, it is shown in §6 of [11] (following de Rham
[17]) thatif u,, ..., u, is a collection of meridional generators for I', then the non-abelian
representation p’ stated in Proposition 2.11 can be described as follows. Recall that

meridians in the knot group are are all conjugate, and hence have the same character

values for all representations. Given this, there exist w e Cand t; e Cfori=1,...,n
so that
(1) =
0 w!

One then shows using the action of I" on its commutator subgroup (e.g., see [42, Ch. IV])
that w? = z is a root of Ag(t).

One consequence of Proposition 2.11 is the following, where a parabolic repre-
sentation means a non-trivial representation p : I' — SL,(C) all of whose non-trivial
elements are parabolic. Note that this is equivalent to the statement that p is a non-

trivial representation for which x,(y) = +2forally € I'.
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Corollary 2.12. In the above notation, ¢ does not contain the character of a parabolic

representation.

Proof. We first show that if p is a parabolic representation, then p is abelian. To see
see this, suppose that @ and b are distinct meridians of K for which p(a) and p(b) do not

commute. The parabolic assumption allows us to conjugate p such that

1 x 1 0
pla) = and p(b) =
0 1 y 1
Then tr(p(la,bl)) = 2 + x?y?. We assumed this commutator is non-trivial and it is

parabolic, and hence it has trace +2.

When the trace is 2, one of x or y is 0, that is, one of p(a) or p(b) is the identity.
This contradicts the assumption that p(a) and p(b) do not commute. When the trace
is —2, we have x?y? = —4. Conjugating by a diagonal matrix so x = 1, it follows
that the product p(ab) then has trace 2 + 2i, and hence is not parabolic, which is
again a contradiction. Therefore, under any parabolic representation, we deduce that
all meridians must map to a common parabolic subgroup of SL,(C), and it follows that
the image is abelian as required.

An abelian representation is reducible, so Proposition 2.11 implies that there is
anon-abelian representation p’ with X, € Cand x, = x,,. Thus, x,(y) = £2forally € T,
that is, p’ is also a parabolic representation, and hence p’ is abelian. This contradiction

proves the corollary. ]

We record the following refinement of Lemma 2.8 that will be helpful in the case
where I' = 7, (S® \ K) for K a hyperbolic knot.

Lemma 2.13. Let g and h be distinct meridians of K and x, € € be such that the
restriction of p to (g, h) is infinite and irreducible for some (hence any) representation
p with character x,. If x,(lg, h]) = £2, then p([g, h]) is a non-trivial parabolic element of
SL,(C).

Proof. Since g and h are meridians, they are conjugate in I'. In particular, x,(9) =
xp(h) for any p € R(I'). Suppose that X9, hl) = £2 but p(lg, hl) is not parabolic,
in which case either p(g) and p(h) commute or p([g, hl) is the negative of the identity

matrix.
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If p(g) and p(h) commute, we can conjugate p such that

@) = u 1
rg) = 0 u-l!
0
p(h)=(” . )
Z U

One can then explicitly calculate p(lg, h]) and see that the commutator is trivial if and
only if z = 0 and u = +1. However, I" is normally generated by h, so the image of p is
either trivial or order 2, and hence is not irreducible, which is a contradiction.

When p(lg, hl) is the negative of the identity matrix, we similarly see that z = 2

and u = =+i. This is conjugate to the representation

") = i 0
PO=\ o
0 -1
p’(h)=( )
1 0

where (g, h) visibly has finite image. This contradiction completes the proof of the

lemma. u

3 Azumaya Quaternion Algebras and Brauer Groups of Curves

In this section, we recall some material concerning Azumaya algebras and Brauer

groups of curves. Most of what we discuss is contained in Milne [41].

3.1

Informally, an Azumaya algebra is a generalization of a central simple algebra over a
field k. To make this notion precise, we begin with the setting of an Azumaya algebra
over a commutative local ring R with residue field k. An algebra A over R is an Azumaya
algebra if A is free of finite rank r > 1 as an R-module and A ® k is a central simple
algebra over k.

To define an Azumaya algebra over a curve we recall some additional terminol-
ogy. Let X be a Noetherian scheme. Recall that the structure sheaf of X is the sheaf of

rings Oy such that for any open subset U C X, Ox(U) is the ring of regular functions on U.
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For each point x € X, the stalk of Oy, denoted OX'X, is its local ring, that is, the direct
limit of O (U) over all open sets U containing x. We denote the residue class field of
Ox x by k(x).

A coherent sheaf of Oy modules F is a sheaf of abelian groups on X such that,
for any open subset U C X, F(U) is a finitely generated module over Ox(U) for which the
module structure is compatible with restriction maps. The stalk of F at a point x € X,
denoted F,, is the direct limit of F(U) over those open sets U containing x. One says
that 7 is locally free if 7, is finitely generated and free over Oy , for all x € X.

An Azumaya algebra A on X is a locally free sheaf of Oy algebras such that A,
is an Azumaya algebra over the local ring Oy , for every x € X. Of particular interest
to us are quaternion Azumaya algebras, that is, Azumaya algebras that are rank 4 as

locally free Ox-modules.

3.2

Two Azumaya algebras A and B are equivalent if there exist locally free sheaves of
Ox-modules £ and F such that

A®p, Endp, (£) = B®p, Endg, (F),

where Endp, (H) is the sheaf of Ox-module endomorphisms of an Oy module #H. This
is an equivalence relation, and the group of equivalence classes of Azumaya algebras is
called the Brauer group of X, denoted by Br(X).

We now recall some basic results concerning Azumaya algebras and Br(X). For
simplicity, we restrict to X that have properties of the kind that arise in our applications.
For an abelian group D and n > 1 in Z, let D[n] be the subgroup of elements with order

dividing n. The following is an encyclopedia of classical facts about Azumaya algebras.

Theorem 3.1. Suppose X is a regular integral scheme of dimension at most 2 with

function field K that is quasi-projective over a field or a Dedekind ring.

(1) Descent theory gives a bijection between the set of isomorphism classes of
Azumaya algebras Ay, of rank n? over X and the elements of the étale Cech
cohomology group H ét(X ,PGL,)). Similarly, there is an isomorphism between
isomorphism classes of rank n locally free Ox-modules E and elements of
H}(X,GL)).
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There is an exact sequence of étale sheaves of groups
l1-G,, -GL,—PGL, — 1
on X. The cohomology of this sequence gives an exact sequence

A}.(X,GL,) — H} (X,PGL,) — H%(X,G

m)

where
H2(X,G,,) = HA(X, G,,) = Br(X).

With the notation of part (1), the isomorphism class of E in I:Iélt(X, GL,) is
identified in the above sequence with the class of End,, (E) in ﬁét(X, PGL,).
The isomorphism class of Ay in I:I;t(X, PGL,) is sent to the class [Ay] of Ay
in Br(X).

Every element of Br(X) has finite order.

If c is a class in H%(X,G,,) of order n, then c is represented by an Azumaya
algebra A of rank n? over X.

The natural homomorphism Br(X) — Br(K) is injective. An Azumaya algebra
Ay over K is determined up to isomorphism by its image in Br(K).

Let x be a codimension one point of X, so R = Oy, is a discrete valuation
ring with fraction field K. One says that an Azumaya algebra Ay over K
extends over x when there is an Azumaya algebra Ay over R such that Ay is
isomorphic to Az ®z K. This is the case for all codimension one points x of
X if and only if Ay extends to an Azumaya algebra A over X.

Suppose that K has characteristic not equal to 2. Every quaternion Azumaya

algebra Ay over K is of the form
Ay = Spangll,1,J,1J],
where I and J are indeterminants for which there exist «,8 € K* such

that I? = «, J? = B, and IJ = —JI. In other words, Ay is the algebra with
Hilbert symbol

(%) € H*(Spec(K), {£1}) = H*(Spec(K), G,,)[2]

= Br(K)[2].
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(8) Let x be a codimension one point of X and let Ay be a quaternion Azumaya

algebra over K. The tame symbol {«, 8}, of Ag at x is the class of

(— 1)ordx(a)ordx(ﬂ)ﬂordx(a)/aordx(ﬂ)

in k(x)*/(k(x)*)2. If k(x) has characteristic different from 2, this symbol is

trivial if and only if A, extends over x.

Proof. For statements (1)-(6), see Thm. IV.2.5, Thm. I111.2.17, Prop. IV.2.7, Thm. IV.2.16,
Cor. IV.2.6, and Remark IV.2.18(b) in [41], respectively. Statement (7) is shown in
[4, Prop. 4, §19.3]. Statement (8) is proven in the 1st four paragraphs of [10, §2]. |

3.3 The proof of Theorem 1.1

We now give the proof of Theorem 1.1. First, we recall our assumptions. Let I" be a
finitely generated group. Suppose that k is a number field realized as a subfield of C
under a fixed embedding and that C is a geometrically irreducible curve over k that
is a closed subscheme of X(I');, = XM g k such that C(C) contains the character
of an irreducible representation. As in the statement of the theorem, C? denotes the
normalization of C and C is the unique smooth projective curve over k birational to C.
Let k(C) be the common function field of C, C*, and C.

From Lemma 2.8 and Corollary 2.9, we can find elements g, h € I" such that the

canonical quaternion algebra Ay, over k(C) is well defined and has Hilbert symbol

I’-4,1 ,,—2
(B ten=?)
k(C)

This gives Theorem 1.1(1). Theorem 1.1(2) follows from Lemma 2.5.

To prove part (3) of Theorem 1.1, suppose that Ay, does not extend to define an
Azumaya algebra over all C. We can find an open affine subset U of smooth points of
C c C over which Ajc) extends to an Azumaya algebra Ay having Hilbert symbol as in
Equation (1) at every point. In view of Lemma 2.4, we can furthermore require that the
points of U correspond to absolutely irreducible representations of I' and that U avoids
any prescribed finite set of closed points.

For each place v of k, let s, : U(k,) — Br(k,) be the map defined by specializing
Ay at a point of U(k,). By a theorem of Harari [25, Thm. 2.1.1], there are infinitely many
places v of k such that s(x,,) is non-trivial for some x,, € U(k,). By continuity of Hilbert
symbols, we can then find a v-adic disk B, of positive radius around x,, in U(k,) such

that s, is non-trivial at all elements of B,,.
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It is a theorem of Rumely [51, Thm. 0.3] that there are infinitely many algebraic
points w in U(k) that have all of their conjugates over k contained in B,. The
specialization of A at such a w is thus a quaternion algebra over k(w) whose local
invariants at places of k(w) over v are non-trivial. This proves Theorem 1.1(3).

We now prove Theorem 1.1(4). For this, suppose that A ., extends to an Azumaya
algebra Ag over all of C. Suppose z € C%(k) and that w = w(z) € C(k) corresponds to
the character of an absolutely irreducible representation p = p,, of I'. By the “résultat
classique” mentioned in the 2nd remark after the statement of [25, Thm. 2.1.1], it will
suffice to show that the specialization Az ® k(2) of Az at z has the same class in the
Brauer group Br(k(z)) as A, ®x, k(z).

Recall that w € C(k) implies that all of the character functions defining
the embedding of C into X(I'), are regular at w. By Lemma 2.4, the tautological
representation P, : I' — SL,(k(D)) has image contained in the k(D)-span of four
elements {Pc(g]-)};.*:1 that are linearly independent over k(D). For an arbitrary y € T,
we can determine the coefficients a; € k(D) such that P.(y) = ZJ- a;P¢(g;) from the
equations

4
Tr(P¢(g;¥)) = D a,Tr(Pp(g,9;),
j=1

since the trace gives a non-degenerate pairing from M, (k(D)) to k(D).

Now, using the fact that Tr(z) lies in the local ring Ocw for all T € ', we see that
the O ,,-subalgebra A, of M,(k(D)) generated by P (T") is finitely generated over O .
Furthermore, 4,, ®¢, , k(C) = Ay and A, ®¢,  k(w) = A,. Since A, is a quaternion
algebra, this means by definition that A, is a quaternion Azumaya algebra over O .
We conclude that A, = A, ®¢, , Oc: , is a quaternion Azumaya algebra over O¢: , with
generic fiber Ay = Ay The localization Az, of Az at z is also such an Azumaya
algebra, so A, and Ag, have the same class in the Brauer group Br(Og: ,) since this
Brauer group injects into Br(k(C)) by Theorem 3.1(5). Therefore, A, ® k(z) = A, ®k, k(z)
and Az ® k(z) have the same class in Br(k(2)), as required.

Part (5) follows from parts (1), (2), and (5) of Theorem 3.1.

4 Azumaya Algebras and Canonical Components

We now specialize the above to the case of most interest to us. Let M = H3/T be a
1-cusped finite volume hyperbolic 3-manifold and € ¢ X(I') be a canonical component

over the complex numbers. Define k to be the the field of constants of € ¢ X(I'), and
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let C ¢ X(I'); be the the canonical component over k, and note that k is a number
field. We will be particularly interested in the case when M = S® \ K for K a hyper-
bolic knot.

4.1

When C is the canonical component, that Ay, is a quaternion algebra follows from
Lemma 2.7. Indeed, Lemma 2.7 implies that we can apply Corollary 2.9 to C to describe
a Hilbert symbol for A ¢,. The challenge is to now determine when A ) can be extended
globally to define a quaternion Azumaya algebra A on the smooth projective model C of
C. To that end, the remainder of this section aims at understanding when this happens,
in particular proving Theorem 1.2.

For emphasis, in the remainder of this section, we have the following:

Assumptions: We fix M = S® \ K, where K is a hyperbolic knot, I' = 7,(S® \ K) and

C C X(K); the canonical component with field of constants k.

In the next two subsections, we prove the following results. Taken together, these will

complete the proof of Theorem 1.2. In §4.4, we consider the converse.

Proposition 4.1. The quaternion algebra Ay ., extends to an Azumaya algebra over the

(Zariski open) set of points x € C where:

(1) x=x 0 is the character of an irreducible representation of I';

(2) x € Z(C) is an ideal point.

To be precise, we say that x € C is irreducible (resp. reducible) if the image of x
on C under the rational map C — C described in §2.2 has image of the character of an
irreducible (resp. reducible) representation. Recall that the ideal points Z(C) are the set

of points on C where this rational map is not well defined.

Lemma 4.2. Suppose that the Alexander polynomial Ay (t) satisfies property (») of
Theorem 1.2. Then at any point x, € C that is the character of a reducible representation

p we have that Ay, extends over .

4.2 Proof of Proposition 4.1

Lemmas 2.8 and 2.13 along with Corollary 2.9 imply that we can choose a pair of non-

commuting meridians g,k in I', so that the functions fg = Ig2 —4 and Iigp — 2 can be used
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to describe a Hilbert symbol for Ay ,. Note that I, ;) — 2 cannot be identically 0 on C

since it is non-zero at the character of the discrete and faithful representation.
Notation: For f € k(C), let Z(f) denote the set of zeroes of f in C.

Let W € C be Z(C) together with Z = Z(fg) UZ(Iigp — 2) on C. By Lemma 2.10, W
is a finite collection of points that includes the set Cy of reducible characters on C. Note
also that any poles offg and Ij, ,) — 2 occur at points in Z(C) C W.

Given this, for any point in the Zariski open set U = C ~ W, we have that
ordp(fy) = ordp(jyp — 2) = 0. It follows that the tame symbol {f,, Ii; ) — 2}p is trivial,
and therefore Ay, can be extended over U.

To see this directly from the definition, let V C C~Z(C) be the points associated
with characters of irreducible representations. For any P € V \ Cy with image on C
the character x, of an irreducible representation p, we can choose g and k/ in T such
that the elements {1, p(g"), o(R'), p(g’'h)} form a k,-basis for A, for some (hence any)
representation with character x,. Then, {1,Pc(g), Pc(W), Pc(g'h)} is a basis for Ay .
Moreover, if Op is the local ring of P, the Op-span of this basis defines an Azumaya
algebra A, over Op. Indeed, the reduction of A, modulo the maximal ideal of Oy is the
given basis for the quaternion algebra A, (note that the residue field of the point P is
generated by k, and the field of constants k by Lemma 2.5), so Ap ® k(P) is a central
simple algebra. Thus, Ay, extends over P by Theorem 3.1(6).

We now show how one extends the Azumaya algebra Ay, over points in Z(C).
Fix P € Z(C) and denote the local ring at P by O, and its maximal ideal by mp. Note that,
from the discussion at the end of §2.2, if Tg isin Op forallgin T, then P c*. Since P
is an ideal point, we can find g € I such that I, ¢ Op. Note that the element g need not
be a meridian in this case, nor even a peripheral element; by [16] we can take g to be
peripheral when the incompressible surface detected by the ideal point is not closed.

Regardless, Lemma 2.8 allows us to use g as part of a basis for Ak As before,
since C is the canonical component, Lemma 2.10 shows that there are only finitely many
characters of reducible representations on C, and only finitely many places where fg

takes on the value 0, since Tg is non-constant by assumption. Thus, we can take fg as one

for B
k(C)

for the canonical quaternion algebra Ay ), where g € k(C) is constructed using

term in a Hilbert symbol

Lemma 2.8.
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We assumed that the order ordp(fg) is negative. Since changing a term in a
Hilbert symbol by the square of an element of k(C) does not change the resulting

quaternion algebra, the element

defines another Hilbert symbol

Ag,

k(C)
for Ay, as a quaternion algebra over k(C). Note that o is a unit in Op, and the image
of o, in the residue field k(P) = Op/mp of P is 1. To see this observe that

and then the rest is clear from ordp(4/Ig2) = -2 ordP(Ig) > 0.
To determine whether A ., extends to an Azumaya algebra at P, we need to show

that the tame symbol {ag, Blp is trivial. To prove this, let

s = ordp(ag)

r = ordp(B).
Then the tame symbol {ag, Blp is the image in k(P)*/(k(P)*)? of

r
(_I)Y'Sa_g

B

However, we saw that s = 0, so this simplifies to just the image in k(P)* of ag. Since ag
has image 1 in k(P)*, the tame symbol is therefore trivial and we can extend A, over
the ideal point P. This proves that Az is also defined at points of Z(C) as required, and

hence completes the proof of Proposition 4.1.

Remark 4.3. The careful reader will notice that, when P € C lies over a singular point
on the affine curve C, we must calculate in the discrete valuation ring O, for “ord,” to
even make sense. When x is a smooth point of C, one has that O, = O and there is no

difference. When x is a singular point, Op might be a bigger ring, but if we can extend
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our Azumaya algebra on C over x, then we can certainly extend it over P. However, the
converse is not necessarily true: it is possible that the Azumaya algebra does not extend
over a singular point on the affine curve, but does extend over any point above it on the

smooth projective model. This subtlety will arise in our converse to Theorem 1.2 in §4.4.

4.3

We now give the proof of Lemma 4.2. This, with Proposition 4.1, completes the proof of
Theorem 1.2.

We begin with some preliminary comments. Let P € C lie above X, € Cfor pa
reducible representation. We can assume that p is non-abelian by Proposition 2.11, and
hence it is conjugate into the group of upper-triangular matrices but is not parabolic.
Indeed, recall from the discussion after Proposition 2.11 that if u,,..., u,, is a collection

of meridional generators for I' then

w ti
0 w!
where w? = 2z is a root of Ag@®), t; € C for i = 1,...,n. From condition (x),

we have Q(w) = Qw + w1). If k is the field of constants of C, then we also
have that k(w) = k(w + w~1). In particular, the residue field k(P) of P satisfies
k(P) = k(w + w™1) = k(w).

Assume by way of contradiction that Ay, does not extend to an Azumaya
algebra Az at P. Using Lemma 2.13 we can choose meridians x and v so that Ay, is

defined by the Hilbert symbol
ab
kcC))'

wherea = f,, b =1, ,—2. Since we assumed that A, does not extend, the tame symbol
{a, b}p must be non-trivial.

Corollary 2.12 implies that ord,(a) = 0, and ord,(b) > 0 by Lemma 2.1. If ord,(b)
is even, then the tame symbol is trivial, and since we are assuming this is not the
case we have that ordp(b) is odd. Furthermore, after dividing b by a square in k(C),
we can assume that ordp(b) = 1. Therefore, the tame symbol is just the class a’ of a in

k(P)*/(k(P)*)?, and in particular a’ cannot be a square in k(P).
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On the other hand, evaluating at P, a’ is the class of

w+whHZ—a=w-w13?,
since w € k(w + w™!) by assumption. In particular, a’ is a square in the residue class
field k(P), which implies that the tame symbol is trivial. This contradiction proves

Lemma 4.2.

Remark 4.4. Note that the arguments of §4.2 apply more generally. In particular, if Y is
a closed orientable 3-manifold and K C Y is a knot with hyperbolic complement, trivial
Alexander polynomial, and H,(Y \ K,Z) = Z, then the canonical quaternion algebra
can be used to define an Azumaya algebra over all points of the smooth model of the
canonical component. Note that [27, §4] describes a generalization of De Rham's result
on characters of reducible representations, and in particular, triviality of the Alexander

polynomial excludes there being non-abelian reducible representations to consider.

We now discuss the extent to which condition (x) is almost an if and only if

statement.

4.4 The converse to Theorem 1.2

The primary goal of this section is to prove the following proposition.

Proposition 4.5. Let K be a hyperbolic knot in S%. Let C C X(K); be a canonical
component over the number field k. Suppose that x, is a smooth point on C for each
character yx, € C of a non-abelian reducible representation. Then A, extends to define
an Azumaya algebra on C if and only if k(w) equals k(w + w™!) for every square root w

of a root of Ax(t) associated with a non-abelian character on C.

When k = Q, note that the condition k(w) = k(w + w~!) just becomes condition
(%) from Theorem 1.2. According to work of Heusener-Porti-Suarez Peir6 [27, Thm. 1.1],
the point x, is always smooth when the associated root z of the Alexander polynomial
is simple, that is, has multiplicity one. In particular, we see that the full converse
to Theorem 1.2 is quite often also true. We will prove the following after we prove

Proposition 4.5.

Theorem 4.6. Let K be a hyperbolic knot and let C C X(K); be a canonical component

of its SL, character variety. Assume that the inverse image C’ of C in X(K) is the unique
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component of X(K)q containing the character of an irreducible representation. If all
roots of the Alexander polynomial Ag(t) are simple, then Ay, extends to define an
Azumaya algebra over the entire smooth projective model of C if and only if condition

(x) of Theorem 1.2 holds for every root of Ag(t).

We also briefly note that large families of knots, like all twist knots, have

Alexander polynomial with only simple roots (see §6).

Proof of Proposition 4.5. Let P = x, € C be the character of a non-abelian reducible
representation p, z be the associated root of the Alexander polynomial, and w be a
square root of z. Recall that we have non-commuting elements g,h € I' such that our

Azumaya algebra Ay, over the function field k(C) of C has Hilbert symbol

2
PR Ll Y
KO k(©)

Assuming that k(w) is not equal to k(w +w™!) for this root of the Alexander polynomial
we will prove that that Ay, does not extend over P. The converse was already proved in
Theorem 1.2, so this suffices to prove the proposition.

Define o = Ig2 — 4. Taking g to be a meridian of our knot, we claim that «(P) # 0.
Indeed, since p is reducible, it is conjugate into upper-triangular matrices and since I' is
generated by meridians, if «(P) = 0 one sees that p is a parabolic representation where
the image of each meridian has trace 2. Corollary 2.12 implies that p is not parabolic,
hence Ig cannot take the value +2 at P, and so o cannot be zero at P. This proves
the claim.

In other words, ordp(«) = 0. Since p is reducible, (g — 2)(P) = 0, that is,
ordp(Igp — 2) > 0. Scaling by squares in k(C), we can replace I, ;) — 2 with a function
B € k(C) such that ordp(8) € {0,1}. This means that the tame symbol for Ak at P

becomes

(@, lp = o P,

We must prove that the tame symbol is non-trivial. In other words, we must show that
« is not a square in k(P) and ordp(B) = 1.

Since k(w) clearly has degree either one or two over k(w+w~!), we conclude that
k(w)/k(w +w™1!) is degree exactly two. Note that k(P) is a number field. In fact, Lemma
2.5 implies that k(P) is the subfield of C generated over k by the values of the character

X, From the discussion following Proposition 2.11, we see that k(P) = k(w +w™!).
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Let I be a square root of «(P) € k(P)*. We claim that k(P)(Ip) equals k(w). Indeed,

Ip is a square root of

w+wHZ2 a=w?t+w?-2=w-wl?

which does not lie in k(w + w™!) by our assumption that k(w) is degree two over
k(w + w™1). Therefore, k(P)(Ip) is a quadratic extension of k(P) and so « is not a square
in k(P)* as claimed.

We now must show that ordp(8) = 1. Assuming that the root of the Alexander
polynomial associated with P is a simple root, the proof of [27, Lem. 5.7] proves that
—pB/a is a local coordinate in a sufficiently small analytic neighborhood of the smooth
point P. Since ordp(e) = 0, this implies that ordy(8) = 1, as desired. This completes the
proof. |

We will show that Theorem 4.6 is a consequence of Proposition 4.5 and the

following lemma.

Lemma 4.7. Let K be a hyperbolic knot and let C C X(K); be a canonical component of
its SL, character variety. Assume that the inverse image C’ of C in X(K)( is the unique
component of X(K), containing the character of an irreducible representation. Then C
has field of constants Q.

Proof. Letr : X(K), — X(K)g be the projection. Then 7 (C) is an irreducible subscheme
of X(K)qp with some field of constants k. The inverse image of 7(C) under the natural
projection X(K) — X(K)q contains [k, : Q] conjugates of C’ under the action of Gal(C/Q)
on the 2nd factor of X(K)¢ = X(K)g ®q C. Indeed, if B is a kj-algebra, then B ®yCisa
direct sum of B ®,, , C over all embeddings o of k; into C.

The representations associated with points on these conjugates of C' are
Gal(C/Q)-conjugates of representations associated with points on C'. In particular, all
conjugates of C’' contain the character of an irreducible representation. Since C’ is the
only component of X(K) containing the character of an irreducible representation, we
must have [k, : Q] = 1, that is, ky = Q, as claimed. [ |

Proof of Theorem 4.6. As discussed above, it suffices by Proposition 4.5 to show that
the canonical component has field of constants Q. By hypothesis, this follows from
Lemma 4.7. n
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5 Integral Models and Theorems 1.5 and 1.8

The purpose of this section is to prove Theorems 1.5 and 1.8. The proof of Theorem 1.5
requires revisiting some of our previous calculations in the case where the residue
class fields are finite, which introduces particular difficulties in characteristic 2. The
framework that allows us to do this is that of integral models, and we refer the reader
to [7], [34], and [36] for further details. The proof of Theorem 1.8 uses Theorem 1.5 as
well as the Tate-Shafarevich group and a relative version of it due to Stuhler (see [55]
for further details).

5.1 Ramification at codimension one points

Suppose that O is a Dedekind ring of characteristic 0 with fraction field k and that C
is a regular projective curve over k. By enlarging k if necessary we can assume that C
is geometrically irreducible over k. In other words, by passing to a certain extension
and taking an irreducible component, we can assume that C remains irreducible in an
algebraic closure of k. The theory of integral models implies that there is a regular
projective curve C over O such that C is isomorphic to C ®, k.

Such C are not unique. However, there are always C that are relatively minimal in
the sense that any proper morphism C — C’ to another regular projective model C’ of C
must be an isomorphism. If C has positive genus, then all relatively minimal models are
isomorphic. Finally, suppose D is any regular projective scheme over O whose function
field k(D) is isomorphic to k(C). Then the general fiber D ®, k is a regular projective
curve over k with function field k(C). This forces D ®, k to be isomorphic to C over k.

Let Ay, be a quaternion algebra over the function field k(C) of C. Theorem 3.1(6)
implies that Ay, extends to an Azumaya algebra A; over C if and only if it extends over
every codimension one point P of C. The latter condition means that there is an Azumaya
algebra Ap over the local ring Op = O p of P such that Ap ®(, k(C) = Ay . Here Op is a
discrete valuation ring and the residue field k(P) is a global field, since C is a scheme of
dimension 2. Let Op be the completion of O, and k(C), be the fraction field of Op.

The next result follows from [45, Lem. 3.4]. For convenience, we note that our

k(C), Op, and Ak correspond to their k, R, and D, respectively.

Lemma 5.1. The quaternion algebra Ay ., extends over P if and only if the quaternion
algebra Ay ), = Agc) ®(c) k(C)p over k(C)p extends over the maximal ideal P of Op, that
is, there is an Azumaya algebra D over Op so that D ®p, k(C)p determines the same class

as Ay c) in the Brauer group of k(C)p.
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We will also need the following weak sufficient criterion for A, to extend
over P. Note that in the present situation we allow for the possibility that k(C) has
characteristic zero (so 2 # 0), but the residue class fields can be finite (and in particular

characteristic 2). As before, we use ord, to denote the order of a zero or pole.

Proposition 5.2. Let «,8 € k(C) define a Hilbert symbol {e, B} for Ay, for some

a, B € k(C). For a given P € C assume that

ordp(l — o) > 2ordp(2).

Then Ay ¢, extends over P.

Proof. By Lemma 5.1, it is sufficient to show that the Hilbert symbol defined by {«, 8}
over k(C)p defines a matrix algebra. The result then follows from Hensel's lemma, since

« is a square in Op when

ordp(y? — &) > ordp((2y)?) = 2 ord,p(2y)

for some y € k(C)p, and our assumption allows us to take y = 1. |

In the complete local case, we also need the following result concerning the

structure of maximal orders in quaternion division algebras.

Proposition 5.3. Suppose that O is a complete discrete valuation ring with fraction
field F of characteristic 0. Let A be a quaternion algebra over F that does not extend to

an Azumaya algebra over O, and let n : A — F be the reduced norm.

i. Any such A is a division ring, and the set D of elements « € A such that

n(a) € O is the unique maximal O-order in A.

ii. There is an element A € D such that J = D2 is the unique maximal two-sided
ideal of D. All non-zero two-sided ideals of D are powers of J.

iii. Let 7 be a uniformizer in 0. Then J? = D and D/J is a quadratic extension
field of the residue field kK = O/Ox of O.

iv. Suppose z € D has n(z) = 1. Let z be the image of z in D/J, and suppose that
Z is quadratic over k, so k(z) = D/J. Then k(Z) is separable over k, J/J? is a

one-dimensional k(Z)-vector space, and the conjugation action of z on this
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space is given by left multiplication by Z?. The conjugation action of z on
D/J is trivial.

Proof. We know A is a division algebra because otherwise, A is isomorphic to M, (F)
and the Azumaya algebra M, (0) would extend A. Statements (i) and (ii) follow from [48,
§12.8, §13.2].

The ramification degree of D is defined to be the integer e > 1 such that
J¢ = Drr. It is shown in [48, §13.3, §14.3] that D/J is a division algebra of dimension
f over K = O/Or for an integer f such that ef = 4.If e = 1 then J = D and D/Dr is a
central simple algebra. However, D is an Azumaya algebra over O extending A, and we
supposed that no such Azumaya algebra exists. Thus, e =2 ore = 4.

If e = 4 then J* = DA* = Dn. Then A*/7 would be a unit of D, implying that
n(M)*/n(r) = n(x)*/7? is a unit of 0, which is impossible because n(1) € O and r is a
uniformizer in O. Therefore, e = f = 2, which proves (iii).

Finally, suppose z and z are as in (iv). Then F(z) € A must be a quadratic
extension of F. If k(2)/k is not separable, the characteristic of k must be 2 and z? € k.

However, then
n(z) = NormF(Z)/F(z) =1
has image
1 = Normy; (2) = 72

in D/J = k(2). Since k has characteristic 2, we get Z = 1, contradicting the assumption
that k(z)/k has degree 2. Thus, k(z)/k is separable.

Since F has characteristic 0, we can find some d with d? = « € F and F(z) = F(d).
Then A is a two-dimensional left vector space over F(d) and the conjugation action of d
on A defines a non-trivial F(d)-linear automorphism of order 2. It follows from splitting

A into the +1 eigenspaces for this automorphism that
AZEF(@2) ®Faw
for some non-zero w € A with dwd~! = —w, hence conjugation by d carries the

quadratic extension F(w) of F to itself. Since —w is a conjugate of w over F, we see

that w? € F, and in fact {d?, w?} is a Hilbert symbol for A over F.
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Write z = a + bd for some a, b € F with b # 0. Then
wzw ! =a—bd

is the conjugate of z over k in k(z). Since z has norm 1, we must have wzw ! = z~!. Thus

zwz ! = zwwzw ! = zzw,

since w?

€ F. Therefore, the characteristic polynomial in F(z)[t] for the conjugation
action of z on A as a two-dimensional left F(z)-vector space is (t—1)(t—z?). The extension
F(z) is quadratic and unramified over F with ring of integers O’ = Olz] since k(2) is a
separable quadratic extension of k.

Then D is a rank two O'-module inside the two-dimensional F(z)-vector space
A, and D is preserved by conjugation by z. It follows that (t — 1)(t — z%) is also the
characteristic polynomial for the left O’-linear automorphism of D given by conjugation
by z. Since D is free of rank two over O’, we see that the characteristic polynomial for
the conjugation action of z on D/Dx is (t — 1)(t — Z%). This action preserves the one-
dimensional k(z)-subspace J/Dx of D/Dn and induces the trivial action on D/J = k(2).
Therefore, we conclude that conjugation by z must induce left multiplication by Zz? on
J/Dr = J/J?. This proves (iv). [ |

5.2 Tate-Shafarevich groups

In this subsection, we assume the notation of §5.1. In particular, we assume that C is
a regular projective curve. One should keep in mind that the canonical component in
Theorem 1.8 is affine and generally singular, so the results of this section apply to the
non-singular projective model of the canonical component rather than to the canonical
component itself.

Let O be the ring of S-integers Oy s of a number field k for some finite set S of
finite places of k. We begin by recalling some results of Stuhler [55] and Demeyer-Knus
[19] concerning Brauer groups and Tate-Shafarevich groups.

Let k be an algebraic closure of k and let J(C) be the Jacobian of C. The group
J(C) (k) is, by definition, Pic®(C)(k). Let V(k) be the set of all places of k. For v € V(k),
let EV be an algebraic closure of the completion k, that contains k. We can identify

Gal(EV/kV) with a decomposition subgroup of Gal(k/k), and there is a restriction map

r, : H'(Gal(k/k), Pic®(C)(k)) — H'(Gal(k,/k,), Pic®(C)(k,)).
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See [41, Ch. III].
In [55, Def. 1], the Tate-Shafarevich group of C relative to Oy s is defined to be

II(k, Oy 5, Pic®(C) = (| Ker(r,),
veVr(S)

where V;(S) is the set of finite places of k not in S. The usual definition of the Tate-
Shafarevich group of Pic®(C) is

II(k, Pic’(€)) = (] Ker(r,). (2)
veV(k)

These two definitions are thus related by

MI(k, Pic®(C)) = ﬂ Ker(ry |1k, 0, 5, picd(c))” (3)
VEVieq(k)US

where V,,,; (k) is the set of real places of k. The following result follows from the proofs
of [65, Thm. 1, Thm. 2, Thm. 3]:

Theorem 5.4 (Stuhler). There is a complex
Br(0y ) — Br(C) — 1II(k, Oy g, Pic®(C)) (4)

in which Br(Oy ) — Br(C) is f* for f : C — Spec(Oy ) the structure morphism. This
complex is a short exact sequence if there is a section s : Spec(Oy 5) — C of f. Since C is

projective, such a section exists if and only if C has a point defined over k.

Corollary 5.5. Suppose s is a section of f in Theorem 5.4. If Br2(C) is the kernel of
s* : Br(C) — Br(Oy ), then Brg(C) is isomorphic to III(k, Oy g, Pic?(C)).

We also need the following result, which was proven by Demeyer and Knus in
[19, page 228-9]. They remark that this result goes back to work of E. Witt.

Theorem 5.6 (Demeyer-Knus, Witt). Suppose that Y is a complete non-singular irre-
ducible curve over the real numbers R and let {Y;}!" | be the set of connected components

of the topological space Y(R) of real points of Y.

(1) Each Y; is topologically isomorphic to a real circle.
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(2) For each Y; pick a point y; € Y;. If A is an Azumaya algebra on Y, then
A ®y k(y;) is an Azumaya algebra over R.
(3) Assuming (2), let c;(A) be the class of A ®y k(y;) in the Brauer group

Br(k(y;)) = Br(R) = Z/2.

This does not depend on the choice of the point y; on Y; and the map

Br(Y) — HBr(Yi) ~ (Z/2)™

i=1

sending the class of A in Br(Y) to (¢;(4))", is an isomorphism.

The following records what we will use to prove our results.

Corollary 5.7. Suppose S = § in Corollary 5.5, that is, O ¢ = Oy. Let [A] be an element

of Br(C) represented by a quaternion Azumaya algebra over C. Then:

(1) The class [Al has order 1 or 2.

(2) The image of [A] in III(k, Ok,S,PiCO(C)) defines an element in the subgroup
I1(k, Pic®(C)) if and only if for every real place v € V,,(k), the pullback A,
of A to an Azumaya algebra on C ®; k,, is trivial.

(3) The conclusion of (2) holds if and only if for every point y of C(R) the
restriction of A to y defines the matrix algebra M,(k(y)) = M,(R) rather

than the real quaternions Hy over k(y) = R.

5.3 Proof of Theorem 1.5

As before, let M = S®\ K be a hyperbolic knot K in S%, and let I' = 7, (M). Let € C X(K) be
the canonical curve of M over C, and let k be the associated field of constants. Let C = Cy,
be a canonical component in X(K);, with C be the the normalization of a projective
closure of C. Then C is a smooth geometrically irreducible curve over k.

Let Cg be a regular projective integral model of C over the ring Ok s of S-integers
of k for some finite set of finite places S of k. We have a canonical quaternion algebra

A over the function field

k(C) = k(C) = k(Cy).
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This algebra was constructed as the k(C) subalgebra of M,(F) generated by the image
of a representation p : I' — SL,(F) whose character x, defines the generic point of C,
where F is a sufficiently large finite extension of k(C).

We now need the following lemma, which should be compared with

Proposition 4.1(2). Indeed, the proof proceeds exactly as before until the last step.

Lemma 5.8. Suppose P is a codimension one point of Cg such that Ay, does not extend
over P. Then P is not a point at infinity in the sense that the trace x,(y) lies in the local

ring Op = O, p of P on Cg for all group elements y € I'.

Proof. Recall that the algebra Ay must be a division algebra over k(C), since
otherwise it would trivially extend over P. As in the proof Proposition 4.1(2), suppose
for a contradiction that we can find y € I with x,(y) ¢ Op and a Hilbert symbol for
A over k(C) of the form {o/, B} with o/ = )(p(y)2 —4 and B € k(C). Since X,(v) & Op,
X, () # 0.

As before, we can multiply o’ by )(p(y)_2 to give another Hilbert symbol {«, 8} for
Apc) With

We now finish the proof by noting that

ordp % = 20rdp(2) — 2ordp(x,(y)) > 20rdp(2).
Xo (V)

Indeed, Proposition 5.2 implies that Ay ., extends over P, contrary to our hypothesis. B

Now we can prove the main technical theorem that connects the set S in
Theorems 1.4 and 1.5 to the reduction of the Alexander polynomial modulo rational

primes.

Theorem 5.9. Suppose that P is a codimension one point of Cg over which A, does
not extend. Let k(P) be the residue field of the local ring Op. Then there is an element z

of an algebraic closure k(P) of k(P) with the following properties:

i. The extension k(P)(z) is separable and quadratic over k(P) and z has norm 1
to k(P).
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ii. Considering the Alexander polynomial Ag(t) of K as an element of
k(P)[t,t~'1, we have that A (%) = 0.

Proof. Lemma 5.8 implies that P is not a point at infinity, in the sense that x,(y) lies
in Op for all y € T'. Non-degeneracy of the quadratic form associated with the trace
tr: Ay — k(C) now shows that the Op subalgebra of M, (F) generated by the image of
p : T — SL,(F) is contained in a finitely generated Op submodule of Ay ,. Therefore,
this subalgebra is an Op order Dy in Ay, that has rank 4 as a free Op-module.

Let Op be the completion of Op and F be the fraction field of Op. Then
A = Akc) ®op F is a quaternion algebra over F. This quaternion algebra cannot be
extended to an Azumaya algebra over Op, since otherwise Ayc) could be extended over
P by Lemma 5.1. We can then pick a maximal @P—order DinA containing D,. Since p has
image in SL,, we conclude that p gives an injective homomorphism p : I' — D! to the
multiplicative group of units in D with reduced norm 1.

We now let J be the unique maximal two-sided ideal of D described in
Proposition 5.3. For s > 1, let U, be the image of D! in D/JS and W, be the image of
p(I') in U,. Since D/J is a quadratic field extension of k(P), we know that W, is abelian.

There is an exact sequence
1 —>ES+1 — USJrl - Us; — 1,

where Ug,; — U is reduction modulo J* and Eg,, is the subgroup of elements of
(14+J%/(1 +J%!) sent to 1 under the reduced norm.

Let s be the largest integer such that the group W, is abelian. Since I' embeds
into D! and I is not abelian, we know that s > 1 and that s must be finite. Note that Wy
is in fact cyclic, since I' has cyclic abelianization.

We now have an exact sequence
1 = (B N Wyy) = Weyy — Wy — 1,

where W, is not abelian and W; is cyclic. Then E; ; N W, ; = Q, is abelian, since it is
a subgroup of (1 + J%)/(1 + J5*1). The action of W, on (1 +J%)/(1 + J5*1) by conjugation
factors through the reduction map Wy — W;. Thus, Wy is cyclic and W, is not abelian,
so we conclude that W, is not contained in k(P) and the action of W; on Q; = E;, N W
is not trivial. In particular, the action of U; = (D/J)! on (1 + J%)/(1 + J°!) must be

non-trivial.
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We now choose a generator g for I' modulo its commutator subgroup I'" = [I", T'].
Let z = p(g) € D! and z be the image of z in (D/J)!. Then Z generates W, and, since W, is
not contained in k(P), the quadratic extension D/J of k(P) must be generated over k(P)
by z. Proposition 5.3 then implies that k(P)(2) is a separable quadratic extension of k(P).

For any s > 1 we have an isomorphism of groups
(1 +JS)/(1 +JS+1) =JS/JS+1

respecting the conjugation action of z. Then J? = Drp, where 7p is a uniformizer in Op
and 7, commutes with z. Since W, acts non-trivially on Qg C (1+J%)/(1+J5T!) = Js/J5+1,
we conclude from Proposition 5.3(iv) that s must be odd. Furthermore, the action of
z € W, corresponds to conjugation by z, which in turn corresponds to left multiplication
by z% on the one-dimensional k(P)(z)-vector space JS/J5*!.

Choose a non-trivial element
heQ,c(1+J%/1+J5h =J5/ g5+,

We can define a map v : Q; — k(P)(@ by " = v(h') - h with respect to the
structure of JS/J5*! as a one-dimensional vector space over k(P)(Z). Then v is a group

homomorphism. The commutator subgroup
I'=I[I,T]

has trivial image in W, since W; is an abelian quotient of I'. Therefore, the homomor-
phism I' — W, sends I'" to Q.

Restricting v to the image of I'' gives a homomorphism r : I' — k(P)(Z). Here
r must be non-trivial, since W, is not abelian. We have shown that under r, the
conjugation action of z on I'” corresponds to left multiplication by Z? on k(P)(Z). Since
k(P)(Z) is abelian, r factors through a non-trivial homomorphism 7 : V — k(P)(z), where
V=11

Now recall that V is a finitely generated torsion module for the group ring
ZIT/T'1 = ZIt, t71].

The Alexander polynomial A (t) € ZIt,t~'] is a generator of the 0" Fitting ideal of V.
General properties of Fitting ideals (e.g., see [20, page 671]) imply that the image of
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Ag(t) in k(P)(2)[t, t~!] is a generator for the 0™ Fitting ideal of V ®, k(P)(Z) as a module
for k(P)(z)[t, t~!]. Since V ®, k(P)(2) is a finitely generated torsion module for the pid
k(P)(2)[t,t 1], we conclude V is finite dimensional over k(P)(Z) and the 0" Fitting ideal
is generated by the characteristic polynomial associated with the action of the generator
gofI'/T.

Here z = p(g) € D! shows that the action of g comes from conjugation by z. We
showed that conjugation by z on V corresponds to left multiplication by Z? on k(P)(2)

under the non-trivial homomorphism
7V =TII",T'l = k(P)(Z).

It follows that z* must be a root of the characteristic polynomial for the action of g on

V, so 22 is a root in k(P) of Ag (). This completes the proof of the theorem. [ |

Corollary 5.10. With the hypotheses and notation of Theorem 5.9, let F be the prime
subfield of k(P), so either F = Q or F = F, for some prime ¢, and let F be an algebraic
closure of F. Then there is an element u of F such that u? is a root of Ag(t) in F and F(u)

is a separable quadratic extension of F(u + u™1).

Proof. Consider the element Z of k(P). We showed in Theorem 5.9 that Z2 is a root of
Ag(t) € ZIt, t711in k(P). Since Ag(t) has coefficients in Z, this implies that 7% is algebraic
over FF, so u = Z lies in F. Since Z has norm 1 to k(P) and Z is quadratic and separable

over k(P), we know that z~! is the other conjugate of Z over k(P).

Therefore,
u+ul=z+z"'ck®),
and so F(u) is at most quadratic over F(u + u~!). If F(u) = F(u 4+ u™!), then
k(P)(w) = k®)(u+u™") =k(P),
which contradicts the fact that k(P)(u) = k(P)(z) is quadratic over k(P). Therefore,

F(u)/F(u + u~1) is quadratic, and this extension is separable because F is a prime
field. u

We are now prepared for the following:
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Completion of the proof of Theorem 1.5. Let S be a finite set of rational primes with
the properties stated in the theorem, and suppose £ is a prime not in S. Corollary 5.10
implies that Ay ., extends over every codimension one point P of Cg that lies in the fiber
of Cg over ¢. With the assumptions of Theorem 1.5, Ay, extends over every codimension
one point on the gemeral fiber Cy; of Cg, which implies that Ay extends over all
of Cs. |

Remarks 5.11.

(1) Since P in Corollary 5.10 can have characteristic 0, the same argument gives
a different proof of the criterion in Theorem 1.2 for the Azumaya algebra
Ayc) over the function field k(C) = k(Cs) to extend to the general fiber C of
Cs. Recall that the proof of Theorem 1.2 used the tame symbol, which is not
available in characteristic two, so that argument does not suffice to prove
the results in this section. However, we make use of the tame symbol for
several other consequences of Theorem 1.2, hence we make non-trivial use
of each of the two arguments.

(2) Conversely, suppose that condition (x) in Theorem 1.2 holds. Let S, be a
sufficiently large set of rational primes so that the leading coefficient of
Ag(t) € ZIt,t7'] is a unit outside of S,. Then the roots of Ag(t) in Q are
integral outside of S,. Furthermore, if ¢ is a prime not in S; and W is a
root of A(t) in (Z/f), then W is the reduction modulo a prime over ¢ of a
root w of Ag(?) in the ring of all algebraic numbers integral outside of Sj,.
The hypothesis that Q(w) = Q(w + w~1) implies that, by possibly making a
finite enlargement of S;, we can assume that each such w is an Sj-integral
combination of powers of w + w~!. This forces there to be a finite set of

primes S with the properties stated in Theorem 1.5.

5.4 Proof of Theorem 1.8

We assume the notation and hypotheses from the statement of the theorem. Since the
Alexander polynomial Ag(t) is assumed to be 1, we can let S be the empty set in
Theorem 1.5. Then Theorem 1.5 shows that there is an extension A of Ay over all of C
for any regular projective model C of C over the ring of integers Oy, of k.

Statement (1) of Theorem 1.8 is now a consequence of Theorem 5.4. In order for
the class B([A]) to lie in I1I(k, Pic®(C)), it is necessary and sufficient by Corollary 5.7 that
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the restriction
AY = A ®OC k(y)

of A to y be isomorphic to M,(R) rather than the real quaternions Hy for every real
point y € C(R). Corollary 5.7 also shows that C(R) is a finite (possibly empty) union of
real circles, and that the isomorphism type of A, is constant as y varies over each of
these circles.

Since C is the normalization of a projective closure of C, there is a finite closed
subset T C C such that C~ T = C ~ C
Csing

is true for a non-empty union of real circles of such y as well as for a subset T of C(R),

ing 18 the complement of the (finite) singular locus

of C. We conclude that if A, is isomorphic to Hp for any point y € C(R), then this

which is the complement of a finite set inside a non-empty union of real circles. Since
the multiplicative group IHI]E of quaternions of reduced norm 1 is isomorphic to SU(2), we
find in this case that the points of T correspond to characters of SU(2) representations
of our knot group.

On the other hand, suppose there is no y € C(R) such that Ay is isomorphic
to Hy and y’ € C(R) corresponds to an SU(2) representation. Regarding SU(2) as HL,
we see that the R-algebra A, generated by any representation p with character y’ is a
subalgebra of Hy. If A, is not Hy then p must be reducible. However, Proposition 2.11
shows that we can take p to be a reducible non-abelian representation associated with a
zero of the Alexander polynomial of K. Since we assumed that the Alexander polynomial

is trivial, there are no such zeros, hence A, =Hy and y’ must lie in C,., . (R) since we are

sin,
supposing no such point exists in the smooth locus. This completes theg proof of part (2)
of Theorem 1.8.

Finally, the hypotheses of part (3) of Theorem 1.8 are that C has no real points
but that there is a point P of C defined over the field of constants k of C. The Zariski
closure of P gives a section of C — Spec(0;), so Theorem 5.4 implies that we have an

exact sequence
Br(0y) — Br(C) — III(k, Oy, Pic’(C)). (5)

Suppose that [A] € Br(C) has trivial image in III(k, Oy, Pic%(C)).
Exactness of (5) now shows that [A] is the pull-back to C of a class ¢ in Br(0y).
Such a o can only be non-trivial at the real places of k. If ¢ is non-trivial at some

real place, then, since we assumed that C has a point over k, there will be a point y
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of C(R) where A, is isomorphic to Hy. This implies that there would be a curve of
SU(2) characters on C by the above arguments, contrary to the hypothesis of part (3)
of Theorem 1.8. Therefore, [A] = 0 in Br(C) as claimed in part (3). This completes the

proof of the non-trivial assertion in part (3) of Theorem 1.5.

Remark 5.12. Theorem 5.6 shows that every real circle on C(R) containing the
character of an irreducible SU(2) representation contains only characters of SU(2)
representations. In particular, this is the case via Theorem 5.6 whenever there is the
character of an irreducible SU(2) representation on the canonical component C and it is
known that Ay, extends to an Azumaya algebra over C. An instance of this is when (2)
fails in Theorem 1.8. However, for the character variety of an arbitrary knot group, it is
not always the case that real arcs consist only of characters of representations into a
fixed real algebraic subgroup of SL,(C).

For example, in [27, Cor. 1.4(ii)], the authors show that if A is the square root
of a root of the Alexander polynomial (i.e., A of [27] is our w) and |A| = 1, then there
is a real arc parametrized by {x;}, t € (—¢,€), with x, the character of an irreducible
SU(2) representation for ¢ > 0 and the character of an irreducible SU(1,1) = SL(2,R)
representation for t < 0. If A = +1, then the representation is parabolic and hence
cannot lie on the canonical component by Corollary 2.12. In particular, if C contains
a non-abelian reducible representation of the kind described in the paragraph above,
then Theorem 5.6 shows that Ay, cannot extend to an Azumaya algebra over C. Note
also that if A ¢ R, then A + 1/ is real, and hence condition (x) fails.

6 Examples

We begin with some general discussion about the examples to follow. For convenience,
we introduce the following notation. Let p(t) be a polynomial with integer coefficients.

We say p(t) is Azumaya positive if condition (x) of Theorem 1.2 holds for any
root z of p(t), and say that p(t) is Azumaya negative if condition (x) fails for some root
z of p(t). Call a knot K Azumaya positive (resp. Azumaya negative) if Ag(t) is Azumaya
positive (resp. negative). Note that if the knot K has trivial Alexander polynomial, it is
certainly Azumaya positive. The challenge is to understand when knots are Azumaya
positive or negative in the case when the Alexander polynomial is non-trivial (e.g., when
the knot is fibered).

It is worth remarking that if the knot is Azumaya positive, then our construction

produces an Azumaya algebra over the smooth projective model of the canonical
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component. However, if the knot is Azumaya negative, the Azumaya algebra may well
extend over the smooth projective model of the canonical component, since Ag(t) may
be reducible and the canonical component may not contain any characters of reducible
representations, or only characters of reducible representations for which (x) does not
hold.

Certifying that our construction cannot extend to give an Azumaya algebra over
the smooth projective model of the canonical component is more subtle, especially when
the natural affine model has singular points. However, if the canonical component is
the unique component containing characters of absolutely irreducible representations
and the points associated with reducible representations are smooth points, then
Theorem 4.6 implies that Azumaya negativity does indeed certify that our construction
does not provide an Azumaya algebra over the smooth projective model.

In this section, we will highlight a number of examples, most of which we

summarize in the following theorem.

Theorem 6.1.

(1) There are infinitely many fibered hyperbolic knots K,, C S° that are Azumaya
positive.

(2) There are infinitely many fibered hyperbolic knots .J,, C S that are Azumaya
negative.

(3) LetT,, bethe twist knot with m > 1 half twists. Then T,, is Azumaya positive
if and only if m = 2¢ is even and ¢ is either a square or the product of two

consecutive integers.

It is shown in [38] that for a twist knot T,, the canonical component X, is
the unique component containing the character of an irreducible representation. When
m = 2¢ is even and /¢ is either a square or the product of two consecutive integers,
there is a finite set S of places of Q@ such that, for all points x € X, corresponding to
characters of absolutely irreducible representations p, the quaternion algebra A, over
k, is unramified outside of the finite places of k, over S. In particular, this applies
to the points on X, associated with Dehn surgeries. Furthermore, since the Alexander
polynomial of a twist knot is a quadratic polynomial without a double root, the points
on X, associated with non-abelian reducible representations are smooth points by [27].
It follows from Theorem 4.6 that whether or not our Azumaya algebra extends over the

smooth projective model is completely unambiguous.

2202 J8qWBAON gz Uo Jasn Aselqi [0oyog meT AlsiaAiun sjdwa | Aq 9/006S/6961/./2202/101e/uiwl/woo dnoolwepese//:sdiy wol) papeojumod



Azumaya Algebras and Canonical Components 5015
6.1 Some polynomials that are Azumaya positive or negative

For convenience we describe some families of polynomials that are Azumaya positive
or negative. All the polynomials will be the Alexander polynomial of some hyperbolic
knot. Recall that if K is a fibered knot it is known that Ag(t) is a monic reciprocal
polynomial. Moreover, any monic reciprocal polynomial is the Alexander polynomial of
a fibered hyperbolic knot; see [54, Thm. 3.1].

A particularly interesting class of reciprocal polynomials are those arising as
the irreducible polynomial of a Salem number, that is, a real algebraic integer » > 1
such that 1/X is a Galois conjugate of A and all other Galois conjugates lie on the unit
circle. Denote the irreducible polynomial of a Salem number A by p, (t). We will always
assume that there is at least one Galois conjugate on the unit circle, so that the degree
of p, (t) is strictly greater than 2.

We now prove the following two lemmas.

Lemma 6.2.

(1) Let 1 be a n-th root of unity for n > 3 and ®,(t) the n-th cyclotomic
polynomial. Then ®,,(¢) is Azumaya negative.
(2) Let A be a Salem number. Then p, (¢) and p, (—t) are Azumaya negative.

(3) Let m > 1 be an odd integer and set

m+1 m+1
> —mt+ )
2 2

qp (1) =

Then gq,,(t) is irreducible, has both roots imaginary, and is Azumaya

negative.

Lemma 6.3.

(1) For any integer a > 7, the polynomial
0 =t*—at* +2a—-1t* —at+1

is irreducible with all roots real and positive. In addition, f,(¢) is Azumaya
positive when a has the form k% + 2 for some k > 3.

(2) Let m = 2¢ > 0 be an even integer, and set

m
42

Pn(®) =7

m
—(m+Dt+ oR
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Then p,,(t) has both roots real and positive and is Azumaya positive if and
only if ¢ is either a square or the product of two consecutive integers.

(3) The polynomial

f®) =18 —3¢t" +5°—7¢° +9¢* — 7¢3 + 5¢* - 3t + 1

is irreducible, has all roots imaginary, and is Azumaya positive.

Remark 6.4. In the notation of Lemma 6.3, the polynomials f,(t) can also be Azumaya

positive for other values of a, for example, when a = 7.

Proof of Lemma 6.2. To prove (1), since A is an n-th root of unity and n > 3, A is not
real but A + 1/ is real. Moreover, if A is an n-th root of unity, +/2 is a 2n-th root of unity.
These remarks quickly lead to the proof of (1).

To prove (2) we begin with some preliminary comments. If A is a Salem number,
then, since we are assuming that A has at least one non-real Galois conjugate, Q(}) is
not totally real. Note that the field Q(A» + 1/A) is totally real. In addition, it is known that
A is a Salem number for any integer n > 2, and Q1) = Q(A"™).

First assume that » = u?” for some Salem number u € Q(%). In this case,

QW) = QW u?n) = QU™ = Q).

However, this is a proper extension of the totally real field Q(u"™ + 1/u™), so p,(t) is
Azumaya negative.

Now assume that w = +/A ¢ Q(1). Then w satisfies a polynomial of degree 2
over Q(1), hence the degree of the irreducible polynomial of w over Q is 2 deg(p, (t)). The
Galois conjugates of w are +w, +1/w and the rest are non-real complex numbers on the
unit circle. Note that w is not a Salem number, as its minimal polynomial over Q has
four distinct real roots. Nevertheless, the field Q(w + 1/w) is still totally real, and so
again different from Q(w) as required.

Now consider p, (—t). This has two real negative roots —A and —1/, and all other
roots still lie on the unit circle. In this case, one readily sees that if w = /—2, the field
Q(w) is totally imaginary, and the field Q(w + 1/w) has real embeddings arising from
the roots on the unit circle. Therefore, Q(w) # Q(w + 1/w), which completes (2).
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For (3), suppose m = 2¢ + 1 is odd. Then the roots of q,,(t) are

L 20+ 1)+iJal + 3
- 200+ 1) '

In particular, Q(2)/Q is always imaginary quadratic. This proves the 1st two claims in
(3). Note that 4¢ + 3 is never a square, so Q(z) is never Q(3).
We also have that

piglo 2]

e Q.
Furthermore, notice that

2

wHwhH2 —2=w?4+wi=z+z",

so Qw + w1)/Q(z + z7!) = Q is either degree one or two. Then w is a root of the

equation
px)=x*—w+w Hx+1eQw+w Hix],
so Q(w)/Q(w + w!) is degree one or two.
Since Q(z)/Q is quadratic and Q(w + w™1) is at most quadratic, it follows that
Q(w) = Q(w + w1) if and only if

Qw) =Qw +w™ ) =Q(2).

If Q(w) = Q(2), then

(2¢ + 2;: +i«1/)4£ T3 _ (a4 bivAT T3

for some a,b € Q, which gives

1
26 +1)
20+1

200 +1)

2ab =+

a? — (4t +3)b% =

2202 J8qWBAON gz Uo Jasn Aselqi [0oyog meT AlsiaAiun sjdwa | Aq 9/006S/6961/./2202/101e/uiwl/woo dnoolwepese//:sdiy wol) papeojumod



5018 T. Chinburg et al.

These two equations combine to give

) 40 +3 20+ 1

a” — = ’
16a2(£+1)2 2(£+1)

which implies that

) [4e+3 1 }
a” € ;) — .
4¢+1) 4L +1)

However, (4¢ 4+ 3) and 4¢ + 4 are coprime, so (4¢ + 3)/(4¢ + 4) is the square of a rational
number if and only if 4¢+3 and 4¢+4 are both squares, but 4¢+3 is never a square. Also,
—1/(4¢ + 4) is clearly not the square of a rational number. This proves that Q(w)/Q(z)

must be quadratic, and so this completes the proof that g,,(¢) is Azumaya negative. N

Remark 6.5. Note that the arguments used in the proofs of (1) and (2) above show the
following. If p(¢) is any polynomial with integer coefficients that has a root A lying on
the unit circle and A # +1, then condition (») fails for A. For if w = /A, then w still lies

on the unit circle and is not real, but w + 1/w is a real number.

Proof of Lemma 6.3. It is elementary to check that the polynomials f,(t) are
irreducible for a > 7 (note that the polynomial is reducible when a = 6). Furthermore,
using sign changes of f,(t) evaluated at 0, 1/2, 1, 2, and a, the Intermediate Value
Theorem shows that for a > 7, f,(¢) = 0 has solutions in the intervals [0,1/2], [1/2, 1],
[1,2], and [2, al. Thus, f, has four positive real roots.

We now check that fora = k2+2, k > 3, that f,,(¢) is Azumaya positive. Set w2 =t,
then note that f;2  ,(?) factors as

— (=1 —kw+ w? + kw® — wH (A — kw — w? + kw?® + w?).

Therefore, Q(w) = Q(t). It can be shown directly that the minimal polynomial for
w+1/w over Q is t* — (6 + k?)t? + (9 + 4k?), that is, Q(w) = Q(w + 1/w) as required. Note
that fy2, 5 (%) is reducible for k = 2, and when k = 1, the given polynomial for w + 1/w is
reducible, hence our assumption that k > 3.

For the 2nd part, suppose that m = 2¢ is even. The roots of p,,(t) are

L (204+1)+ /40 +1
a 20 '
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As before, let w be a square root of z. We first notice that, as with q,,(t), Q(z + z 1l is

again Q. Indeed,

1 20+1
Z+z = 7

e Q.

Recall from the case when m is odd that we have Q(z + z~!) = Q and the extension
Q(w 4+ w1)/Q(z+z1) is either degree one or two, as is the extension Q(w)/Q(w+w™1).
First, suppose that Q(w) is quartic over Q. Then, Q(w+w1) is at most quadratic
over Q, and it follows that Q(w)/Q(w + w~!) must be quadratic. In particular, the two
fields are not equal and so the polynomial is Azumaya negative.
Now, we consider the opposite extreme, where the roots of p,,(t) are rational.
This occurs if and only if 4¢ + 1 is a square, and it is easy to check that 4¢+ 1 is a square

if and only if ¢ is the product of two consecutive integers. If £ = g(q + 1), then

zeiﬂ,il.
q 'q+1

We claim that Q(w)/Q is quadratic. Notice that g and g + 1 are coprime, so z is given
as a fraction in reduced form. Then, w € Q if and only if g and g + 1 are both squares,
which is impossible. Then w+w~! = (z+1)/w clearly cannot be a rational number, else
w would be rational, so Q(w) = Q(w + w™1).

Finally, suppose that Q(z) is quadratic over Q and Q(w) = Q(z). Note that 4¢ + 1

is not a square. In other words, suppose that

204+ 1) /40 +1 2
g 2EFD * = (a+bvar+1)
2¢
for a,b € Q. This happens if and only if
1
b=+—
4al
, [ 1 4+1
a‘e—, .
40 4L

However, (4¢ + 1)/4¢ is not a square of a rational number. Indeed, the numerator and
denominator are coprime and our assumption that z is quadratic over Q implies that

4¢ + 1 is not a rational square. It follows that a?> = 1/4¢, so £ = g° is necessarily a
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square and
1
w= iﬁ(l V404 1) € Q2)

are the square roots of z. Then

2q - '

-1
(1+\/4£+1) 14+
2q

so it follows that
1
w+w ! = :I:a\/élﬁ +1¢Q.

We then have that Q(w) = Q(w + w™1).
In summary, we showed that Q(w) = Q(w + w~!) for m = 2¢ where ¢ is either a
square or the product of two consecutive integers. This completes the proof of the 2nd

case. The 3rd part can be handled by direct computation. |

6.2 Applications to Alexander polynomials

We now discuss applications of the results in §6.1 to hyperbolic knot complements and

prove Theorem 6.1.

Twist knots:
Let T,, be the twist knot with m > 1 half-twists. Other than the trefoil (i.e.,
m = 1), T,, is always a hyperbolic knot. Then

t) modd
A, (t) = Im(®) )
Dy (t) meven

See [49]. Note that the case m = 2 is the figure-eight knot, and this is the only fibered
hyperbolic twist knot.

As noted previously, [38] shows that for a hyperbolic twist knot T,,, the canon-
ical component is the unique component containing the character of an irreducible

representation. Therefore, it has field of constants Q by Lemma 4.7 (this is also clear
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from [38]). Since each root of the Alexander polynomial has multiplicity one, the 2nd

part of Theorem 6.1 now follows directly from Lemmas 6.3 and 6.2.

Infinitely many fibered hyperbolic knots that are Azumaya positive

As remarked earlier, any monic reciprocal polynomial is the Alexander poly-
nomial of a fibered hyperbolic knot. In particular, for the polynomials f,(t) (with
a = k? + 2) and f(t) of Lemma 6.3, f,(®) and f(t) are the Alexander polynomials of a
fibered hyperbolic knot, and so these knots will have canonical components that are
Azumaya positive. The construction [54] gives a method to produce arborescent knots
with the given Alexander polynomial; we will not reproduce this here. However, we do
note that by [29] these knots cannot be alternating. These are the knots K,, (n = k? + 2)
referred to in Theorem 6.1(1).

As noted in the remark following the statement of Lemma 6.3, f;(t) is also
Azumaya positive. This polynomial is known to be the Alexander polynomial of the knot
8,5 (see [49]), which has hyperbolic volume 8.935856928 . .. and is the 2-bridge knot with
normal form (29/12). Using Mathematica, it can be shown that the canonical component
in this case is the unique component of the character variety containing the character of
an irreducible representation. This computation produces a plane curve of total degree
22, and using the algebraic packages in Magma [3], one can compute that the genus of
the smooth model is 20.

Infinitely many fibered hyperbolic knots that are Azumaya negative

Arguing as above using [54] with the irreducible polynomials p, (¢) of Lemma 6.2
we can easily construct infinitely many fibered hyperbolic knots whose Alexander
polynomials are Azumaya negative. It remains to ensure that this condition fails for
the canonical component. To arrange this, we will use the family of (-2, 3, n)-pretzel
knots where n > 7 is odd and not divisible by 3. The following will complete the proof

of the existence of infinitely many fibered knots that are Azumaya negative.

Proposition 6.6. Let K, be the (-2, 3,n)-pretzel knot where n > 7 is odd and not
divisible by 3. Then:

(1) K, is afibered knot;

(2) Xy(K,) is the unique component of the character variety containing
the character of an irreducible representation, hence it has field of
constants Q;

(3) the Alexander polynomial Ay (¢) is of the form p,(—t) for some Salem

number A.
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Proof. The 1st part follows from the work by Gabai [23]. The 2nd part follows
directly from Theorem 1.6 of [40] and Lemma 4.7. The Alexander polynomials of these
pretzel knots are computed for example in [28], where the polynomials in question are

described as

1+ 2t 4+t ¢4 — 13 — 6397 415 4 217 4 24547 4 (617

(1+1)3 '
which for r odd simplifies to
P)y=t3"" =t 4t -t -t -+ 1
It is proved in [28] (using [22]) that P,.(—t) has a Salem number as a root. |

For the sake of concreteness, we provide some additional details for the case of
the (-2, 3, 7)-pretzel knot, K; in the above notation. This knot is fibered of genus 5 with
Ag, (t) = L(—t) where L() is the famous Lehmer polynomial, the irreducible polynomial

of the Salem number of conjectured minimal Mahler measure > 1.
The canonical component X,(K):
Using SnapPy [13], it can be shown that

= 711(53 ~Ky)=<a,b]| aab 'aabbabb > .

Since we are considering only irreducible representations, we can conjugate in SL,(C)

so that
(@) = X 1
P = 0 1/x

0
p(b) =( Y )
r l/y

forr #£ 0.
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Using Mathematica, it is easy to compute the canonical component by evaluating

p on the relation, and converting to traces with coordinates

P=yx,(a),
Q= x,Db)

R = x,(ab)

we find that

o
Q@%-1
_(1-20%
T Q2a?-1)

P =

—~—

That is, X,(K;) is a rational curve with field of constants Q.

Then X/O_(\IG) is Azumaya negative. As described in the introduction, in the light of
Theorem 1.1, one can perhaps suspect this on experimenting with Snap [12]. Namely, one
finds Dehn surgeries on XC; that are hyperbolic and have invariant quaternion algebras
with finite places of very different residue field characteristics in the ramification sets.
For example, we find places associated with primes of residue characteristic 3, 5, 13,
31, 149, 211, 487, 563, and 34, 543.

From Theorem 1.1, we conclude that there are points X, € C(Q) for which
A, has ramification at a prime of residue characteristic ¢ for ¢ ranging over a set
of rational primes with positive Dirichlet density. In this paper, we only claim that
this set is infinite, but Harari [25] furthermore argues that this set of primes has
positive density. However, we cannot conclude that these x, are the characters of
hyperbolic Dehn surgeries on K, though experiment suggests this may indeed be the
case. This indicates that much more fruit can be borne of a better understanding
of the arithmetic distribution on C(Q) of the characters of Dehn surgeries on hyper-
bolic knots.

To that end we propose the following:

Conjecture 6.7. Let K be a hyperbolic knot in S® for which the canonical component is
Azumaya negative, and let S be the infinite set of rational primes p provided by Theorem
1.1(3). Then for p € S, there exists a hyperbolic Dehn surgery N of K, and a prime P of

the trace field ky such that the quaternion algebra Ay is ramified at P.
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The first evidence towards this conjecture is provided in recent work of N.
Rouse [50].

6.3 L-space knots

We now make some comments on an apparent connection between our conditions of
Azumaya positive and negative, and a collection of knots that have been of interest
through Heegaard-Floer homology, so-called L-space knots.

Following Ozsvath-Szabo [44], an L-space is a rational homology 3-sphere M
for which its Heegaard-Floer homology HF(M) is as simple as possible, that is, is a
free abelian group of rank equal to |H;(M;Z)|. Examples of L-spaces are lens spaces
(excluding S? x S1), other 3-manifolds covered by S%, as well as many Seifert fibered
spaces and hyperbolic manifolds. A knot K c S° is called an L -space knot if S® < K
admits a (positive) Dehn surgery giving an L-space.

Examples of L-space knots are the (-2, 3, n)-pretzel knots K,, (see [35, 44]), which
are Azumaya negative by Proposition 6.6. These along with the torus knots T'(2,2n + 1),
which are not hyperbolic, are the only L-space Montesinos knots [2, 35]. An important
result of Ni [43] shows that L-space knots are fibered, and in the context of this paper

we have.
Proposition 6.8. No Azumaya positive fibered knot in Theorem 6.1 is an L-space knot.

Proof. The knots K,, in Theorem 6.1(1) have Alexander polynomials fj2_ ,(t) (taking
n=k?+2).In particular, these have non-zero coefficients different from +1. However,
if K is an L-space knot, Ozsvath-Szabo [44] proved that the symmetrized Alexander
polynomial of K is of the form
k
—DF+ D (=D (¢ +7),

j=1

and so all non-zero coefficients of A (t) are £1.
Similarly, the Alexander polynomial condition of [44] applies to show that a
fibered knot K (as in Lemma 6.3) with Alexander polynomial

Ap(t) =t® —3t7 +5t° — 75 + 9t* — 7¢> 4 5t — 3t + 1

cannot be an L-space knot. |
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Based on this, we make the following conjecture.

Conjecture 6.9. Let K be a (fibered) hyperbolic knot for which the canonical compo-

nent is Azumaya positive. Then K is not an L-space knot.

Remark 6.10. One can view Conjecture 6.9 as another instance of Azumaya positivity
placing significant restrictions on the possible Dehn surgeries on a hyperbolic knot.
Indeed, just as Theorem 1.4 places severe restrictions on the arithmetic invariants
of hyperbolic Dehn surgeries on Azumaya positive knots, this conjecture implies
that an Azumaya positive knot is excluded from having certain rational homology
3-spheres arising from a Dehn surgery. That our results are entirely determined by
arithmetic properties of the Alexander polynomial, and that results of Ozsvath-Szabo
have Alexander polynomial ties of a very similar flavor, lead us to believe that such a

connection should exist.

We now give some evidence for this conjecture. The starting point is the

following:

Proposition 6.11. Let K be a hyperbolic knot and C C X(XK) the canonical component.
Suppose that C has field of constants Q and contains the character of a non-abelian
reducible representation associated with a simple root of Ag(t) on the unit circle. Then

Aj(c) does not extend to an Azumaya algebra over the smooth projective model of C.

Proof. This follows immediately from Theorem 4.6 and Remark 6.5. ]

The relevance of this to L-space knots is the observation of Culler and Dunfield
[14] that if K is an L-space knot, one can apply the results of [30] to see that A (t) has a

root on the unit circle.

Corollary 6.12. Suppose that K is a hyperbolic L-space knot for which the canonical
component C is the unique component of X(K) containing the character of an irreducible

representation. Then K is Azumaya negative.

Proof. Given the observation of Culler and Dunfield above, and the hypothesis on C,

the corollary follows from Proposition 6.11 and Lemma 4.7. |

Finally, one other piece of experimental evidence to support Conjecture 6.9

is that Culler and Dunfield [14] also remark that they were unable to find an
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L-space knot whose Alexander polynomial does not have a simple root on the unit

circle.

6.4 Bi-orderability

A group G is left-orderable if there is a strict total ordering < of its elements that is
invariant under multiplication on the left: g < h implies fg < fh for f,g,h € G. It is easy
to see that G is left-orderable if and only if it is right-orderable. An ordering of G that
is invariant under multiplication on both sides will be called a bi-ordering. If such an
ordering exists we say that G is bi-orderable.

It is well known that all knot groups are left-orderable (since they are locally
indicable, [5]). However, admitting a bi-order is more subtle. It was shown by Perron
and Rolfsen [46] that if a fibered knot K has the property that all roots of Ag(t) are real
and positive, then the knot group is bi-orderable. Clay and Rolfsen proved a partial
converse [9]: if K is a non-trivial fibered knot in S® with bi-orderable fundamental
group, then Ag(t) has at least one root that is real and positive (in fact, it has at
least two).

Orderability has recently seen connections to various aspects of the topology
of 3-manifolds, one compelling example being that it appears that Heegaard-Floer
homology is connected with left-orderability of the fundamental group of a closed
3-manifold. Another instance of this connection between L-spaces and orderability is
provided by the following result of Clay and Rolfsen [9, Thm. 1.2]: if K C S° is a non-
trivial knot and m,(S® \ K) is bi-orderable, then K is not an L-space knot. In the context

of this paper, we have a “bi-ordered analogue” of Proposition 6.8.

Proposition 6.13. Every Azumaya positive fibered knot in Theorem 6.1(1) has bi-

orderable fundamental group.

Proof. The knots K,, of Theorem 6.1(1) have Alexander polynomials fj2,,(t) (taking
n = k? 4+ 2). From Lemma 6.3(1), all roots of these polynomials are real and positive.
Hence, the work of Clay and Rolfsen [9] described above implies that the knot groups
7,(S® N K,,) (or indeed knot groups of all knots with Alexander polynomial Sr242(t)) are
bi-orderable. |

Remark 6.14. Note also that in the remark following the statement of Lemma 6.3,
we observed f(t) is Azumaya positive. This also has all roots real and positive, and so

if K is any fibered knot with Ay (t) = f;(t) then we once again have from [9] that any
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associated knot group is bi-orderable. A particular example of such a knot is the knot

8,, mentioned above.

Remark 6.15. Note that the polynomial of Lemma 6.3(3) has all roots imaginary and
so by [9], any knot K that has this as its Alexander polynomial has knot group that is

not bi-orderable, even though the knot will be Azumaya positive.

6.5 An example with trivial Alexander polynomial

We have been unable to find a knot with trivial Alexander polynomial whose canonical
component could be computed explicitly for us to record. However, given Remark 4.4,
we can content ourselves with an example of a knot in S? x S! that can be analyzed.

The example in question is a manifold from the census of cusped hyperbolic
3-manifolds that can be built from at most five tetrahedra. In the original version of
SnapPy, it is the manifold denoted m137. This manifold appeared in [21] and more
recently in [24], which points out that the Alexander polynomial is 1.

It is also shown in [24] that the canonical component X, is a curve C in C? with

field of constants QQ as the vanishing locus of the polynomial:

p(s,t) =(—2—3s+ )t + @ +4s—s> —sHt? — 1,

where s and t are certain trace functions. Using Magma [3], it can be shown that the
genus of C is 3 and that the curve is not hyperelliptic.

It is shown in [24] that there are both characters of irreducible SL,(R) represen-
tations and SU(2) representations on C. Indeed, there are six connected components
of real characters in total, two of which correspond to SU(2) representations. If A
denotes the Azumaya algebra over C, we deduce from Theorem 1.8(2) that the class
B(A) does not lie in the image of the Tate-Shafarevich group of the Jacobian of the
smooth projective model C (we were not able to check whether or not III is trivial in
this case).

Experimenting with Snap [12] (as done in §1), one sees only ramification at the

real places. In particular, we see that [A] is indeed a non-trivial element of Br(C).

7 The Figure-Eight Knot

Recall that the 2nd part of Theorem 6.1 shows that the figure-eight knot is Azumaya

positive, which gives Theorem 1.7(1). In this section, we work out in detail which
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Azumaya algebra occurs (i.e., the element of the Brauer group of the canonical curve)
and use this to prove Theorem 1.7.

We begin by recalling the computation of X, in this case. To that end, let I" be
the figure-eight knot group. Then I" has presentation:

=(ab|b=waw™ ') w=I[a"},bl=a'bab™’. (6)

As in the previous section, we can use computer algebra software like Mathematica to
compute a polynomial whose vanishing set defines the canonical component. In this

case, X, is described in the affine plane C[T, R] as

RT?> -2T? - R’+R+1=0 (7)
T =y, (@)
R= xp(ab).

Note that a and b are conjugate, so we also have T = xp(b). We can also change to the

affine plane Cly, z], where y = T(R — 2) and z = R — 1 and obtain the Weierstrass form
y2=2-2z+1. (8)

In particular, since this curve is a non-singular plane cubic, we deduce that there is a
unique component containing the characters of absolutely irreducible representations,

and it hence coincides with X;. We start by proving part (3) of Theorem 1.7.

Proof of Theorem 1.7(3). Recall that, up to scaling, the figure-eight knot has

Alexander polynomial
Ag(t) =t* — 3t + 1.

The roots over Q are

3+45
z= ,
2
and z = (xw)?2, where
1+5
w = .
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Then w + 1/w = #+/5, and we see explicitly that the figure-eight knot is Azumaya
positive.

Now let £ be a prime, and let Ag ,(¢) denote Ag(t) considered as an element of
F,[t]. The argument over Q applies mutatis mutandis to show that (x,) of Theorem 1.5
holds when ¢ ¢ {2,5}. When £ =5, x = —1 € Z/5 is the only root of Ak 5(0), and —1 has
square roots w = 2,3 € Fg, so (x5) holds.

Finally, when ¢ = 2, we have
Ag,)=t*+t+1

so if z is a root of Ag ,(?), Fy(2) = F, and z% = 1, hence F,(2) contains the square root

w = 1/z of z. However,
w+l/w=1el,,

so F,(w) # F,(w + 1/w), and hence (x,) fails. This proves that S = {2} is the minimal
set for which the conditions of Theorem 1.5 hold, and this completes the proof of
Theorem 1.7(3). u

We now explore the Azumaya algebra A over the smooth projective model of E,
along with the algebra Ay g, over the function field k(E) of E, in more detail. We will use
two affine patches of E. The 1st is the affine curve E;, defined by (8) in the (y, z) plane.
The 2nd is the affine curve Ej = X, defined by (7) in the (T, R)-plane.

We begin by giving Hilbert symbols in our various coordinates.

Lemma 7.1. Over the function field k(E) of E, we have Hilbert symbols

A _(TP-4R-3\_ (7 -422+62-3,2z-2
KE) k(E) B k(E)

The specialization ofAk(E) over (y,z) = (£1,0) is a division algebra over Q, so Ay g, (resp.

Ap) is a non-trivial Azumaya algebra over k(E) (resp. E).
Proof. For each point (T, R) on E|,, we define

a=yx,(@)? -4
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Since I' is generated by a and b, it is clear from the methods used in this paper that we
can use «, 8 to define a Hilbert symbol for Ay over the function field k(E) of E.

A standard identity for traces of 2 x 2 matrices is

tr([A, B]) = tr(A)? + tr(B)? + tr(AB)? — tr(A)tr(B)tr(AB) — 2,

which, at a point (T, R) on E},, allows us to define

o =a(T,R)
=T>_4
B =pB(T,R)

=2T*+R?* - RT? -4
=R-3
where the last equality comes from (7).
We also have
o =a(R —2)?
=2z —42° +62z—3
and notice that § = z — 2. Then {o’, 8} also gives a Hilbert symbol for A g). The last

statement of the lemma follows from that fact that specializing at z = 0 gives the

quaternion algebra over Q with Hilbert symbol

(%)

) .
This algebra ramifies over the real place and hence is non-trivial. The lemma follows.
|

We now give a minimal extension of k(E) that splits Ag.

Lemma 7.2. The algebra Ay splits over k(E)(i). In other words, Ay ®g) k(E)(D) is

isomorphic to the 2 x 2 matrix algebra over k(E) (7). Consequently, given any point p € E
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with associated quaternion algebra A, over the residue field k(p) of p, we have
Ap Brp) k(D) (@) = My (k(p)(@)).

Proof. It suffices to split Ajg) over k(E)(@). In the function field k(E)(i) = k(E) ®q Q®),
let

m;=-2—-i+1+10z
my=1—-i—z
r=my; + myl +myJ

where I? = o’ and J? = 8, with o’ and B as in the proof of Lemma 7.1. Then r has reduced

norm
m2 +a —m38 =0,

80 Agg) ®kx) K(E) () must split. This proves the lemma. |

We now consider the behavior of A; at an ideal point. Using homogeneous

coordinates [W : Y : Z], soy = Y/W and z = Z/W, it is clear that E, has a single
ideal point p,, at [0:1:0]. Let E = E, U {p..}. The elements

1, z2-4z22+6z-3
o = —0 =
o y2 z3 —2z+1
5 —ZZ,B— 7% — 272
© T y2t T B8 2z 41

give a well-defined Hilbert symbol for Ay, which specializes at p, to

This shows the following:

Lemma 7.3. The Q-quaternion algebra A given by specialization of Ay at the ideal

point p, splits.
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We now complete the proof of Theorem 1.7.

Proof of Theorem 1.7(2). The class [Ag] of A; in the Brauer group Br(E) is non-
trivial by Lemma 7.1. Lemma 7.3 then implies that [Ag] lies in the kernel Br’(E) of
the specialization map of Brauer groups Br(E) — Br(Q) associated with specialization
at po..

The argument of [57, Lem. 2.1] shows Bro(E) is isomorphic to the Galois
cohomology group H!(Q, E(Q)), since the hypothesis in [57] that the 2-torsion E[2] of
E(Q) is defined over Q is not needed for this conclusion. Lemma 7.2 shows [Ag] is in the

kernel of the homomorphism
Br’(E) — BrY(E ®g Q)
induced by tensoring over Q with Q(i). Therefore, [Ag] is identified with an element of

H'(Gal(Q()/Q), E(Q®)))
= Ker{H'(Q, E(Q)) — H (Q(@), E(@Q))}.

The latter equality is a consequence of the restriction-inflation sequence in group
cohomology; see [52, Chap. VIIL.6, Chap. X].

The points E(Q(i)) contain the (finite index) subgroup generated by the subgroup
E(Q) of points fixed by Gal(Q(i)/Q) along with the subgroup of those points sent to their
negatives by complex conjugation. The latter points correspond to rational points on the
quadratic twist

E:—y?>=2"-2z+1.

The curves E and E are modular of conductors 40 and 80, respectively, and they each
have rank 0 over QQ, which one can easily check in Sage [53]. It follows that E(Q(7)) is

finite. The 2-torsion of E over Q in (y, z) coordinates is

E@)2] = [poo, ©,1), (0, 1 :‘/E) , (0, ! 5 ﬁ)] .

It follows that E(Q(i))[2] has order 2, and so the 2-Sylow subgroup of the finite group

E(Q()) is a cyclic 2-group with an action of the group Gal(Q(i)/Q) of order 2.
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Then, H!(Gal(Q(i)/Q), E(Q(i))) is isomorphic to

H1(Gal(Q()/Q), E(Q())),

and the latter is cyclic since E(Q(7)) is cyclic (see [52, VIII.4]). Since these cohomology
groups are annihilated by #Gal(Q(i)/Q) = 2 and Lemma 7.1 showed that [A] is
non-trivial, we conclude that [Ag] is the unique non-trivial element of the group
H'(Gal(Q(i)/Q), E(Q(i))). In particular, [Ag] is the unique non-trivial element in Bro(E)
that becomes trivial after tensoring over Q with Q(i). This completes the proof of
Theorem 1.7(2). n
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