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Residual finiteness for central extensions of lattices in
PU(n, 1) and negatively curved projective varieties
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Abstract: We study residual finiteness for cyclic central exten-
sions of cocompact arithmetic lattices I' < PU(n,1) of simple
type. We prove that the preimage of I' in any connected cover
of PU(n, 1), in particular the universal cover, is residually finite.
This follows from a more general theorem on residual finiteness of
extensions whose characteristic class is contained in the span in
H?*(T',7Z) of the Poincaré duals to totally geodesic divisors on the
ball quotient T'\B™. For n > 4, if T is a congruence lattice, we
prove residual finiteness of the central extension associated with
any element of H%(T,7Z).

Our main application is to existence of cyclic covers of ball quo-
tients branched over totally geodesic divisors. This gives exam-
ples of smooth projective varieties admitting a metric of negative
sectional curvature that are not homotopy equivalent to a locally
symmetric manifold. The existence of such examples is new for all
dimensions n > 4.

1. Introduction

It is a classical result that if I < PSLy(R) = PU(1,1) is a lattice and T
denotes its preimage in the universal covering group @Q(R) ~ f’\ﬁ(l, 1),
then T is residually finite. In fact, [ is a linear group, i.e., it admits a faithful
representation into GLy(R) for some N, even though its ambient Lie group
PSLy(R) is not a linear Lie group. See [9, §IV.48] for an account of several
closely-related perspectives on how one can prove these results. In the other

direction, following work of Deligne [10], one can use the congruence subgroup
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property to build many lattices in nonlinear Lie groups that are not linear
or residually finite, e.g., the preimage of Sp,,(Z) in the universal cover of
Span (R) for n > 2.

These examples illustrate the interest in studying linearity of lattices
in nonlinear Lie groups. Particularly interesting are the universal covering
groups PU(n, 1) of PU(n, 1), n > 2. In recent work [24], we developed tools
for proving residual finiteness of preimages of lattices in PU(n, 1) in PU(n, 1),
each inspired by a variant of the proof for PU(1,1), and found the first ex-
amples of residually finite lattices in 1/3\13(27 1). One purpose of this paper is
to vastly improve upon the class of examples with this property. Recall that
arithmetic lattices in PU(n, 1) can be classified using hermitian forms on D",
where D is a certain central simple division algebra with involution of second
kind. In this paper we consider those of simple type, namely those constructed
using hermitian forms over number fields; see §3.1 for a precise description.
We will prove:

Theorem 1.1. Let I' < PU(n, 1) be a cocompact arithmetic lattice of simple
type. Then the preimage of ' in PU(n,1) is residually finite. In fact, the
preimage of I' in any connected cover of PU(n, 1) is residually finite.

This answers [24, Qu. 1] for these lattices. Moreover, the method of proof
completely answers [24, Qu. 2]. While completing this manuscript, we learned
that Richard Hill also very recently proved Theorem 1.1 using related but ul-
timately quite different methods [14]. The proof of Theorem 1.1 is in §4, where
we prove the following much more general result about residual finiteness of
central extensions of lattices in PU(n, 1).

Theorem 1.2. Suppose that T'\B" is a smooth compact ball quotient with T’
a congruence arithmetic lattice of simple type. Let I' be the central extension
of T' by Z with characteristic class ¢ € H*(T,Z).

1. If n > 4, then liz's residually finite.
2. If n < 4, then T is residually finite under the following additional as-
sumptions:

(a) If n =3, assume that ¢ € HH(I\B?,C) N H*(T'\B?,Z).
(b) If n = 2, assume that ¢ is contained in the span of the Poincaré

duals to the totally geodesic divisors on I'\B2.

Moreover, if ¢ € H*(T,Z/d) is the reduction modulo d of any class ¢ in
H?(T',Z) satisfying the above hypotheses, then the central extension of T by
Z/d associated with ¢ is residually finite.
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We now describe why Theorem 1.1 is a consequence of Theorem 1.2.
Residual finiteness is a commensurability invariant, so it suffices to assume
that I' is a torsion-free congruence arithmetic lattice. Then, the canonical
class 1 (I'\B") € H?(I'\B", Z) is the characteristic class associated with the
preimage I of T' in f’ﬁ(n, 1), and similarly the reduction 'y of ' modulo d
is isomorphic to the preimage of ' in the d-fold connected cover of PU(n, 1).
Under our hypotheses, ¢;(I"'\B") is contained in the span of the Poincaré
duals to the totally geodesic divisors on I'\B"; see Theorem 3.3. The proof
uses Kudla—Millson theory [18], following an analogous argument of Bergeron,
Li, Millson, and Moeglin for orthogonal Shimura varieties [4, Cor. 8.4]. Thus
c1(T'\B") satisfies the hypotheses of Theorem 1.2, and Theorem 1.1 follows.

The proof of Theorem 1.2 begins by using work of Bergeron, Millson,
and Moeglin [5] to show that for any class satisfying the hypotheses of the
theorem, there is a congruence subgroup I'' < T" so that the pullback of ¢
to TY\B" is in the image of the cup product from A? H*(I"\B",C); this is
Theorem 3.4. Our previous work [24, Thm. 5.1], stated in slightly different
language as Theorem 2.16 below, then implies that the associated central
extension I' of I' by Z has a two-step nilpotent quotient that is injective on
the center of I'. The claims regarding residual finiteness of T and Ty follow
from results in [24, §2] that we recall in §2.2 below.

Remark 1.3. As in [24], we also obtain that every extension considered in
Theorem 1.2 is linear. Our proofs of residual finiteness proceed by constructing
a nilpotent quotient of the extension group that is injective on the center.
Using linearity of finitely generated nilpotent groups we easily get linearity
of the extension. We state only the weaker results because residual finiteness
is the property of interest to us for our applications.

Taking the special case in Theorem 1.2 where ¢ is the Poincaré dual to a
codimension one totally geodesic subvariety, we have the following.

Corollary 1.4. Let M = T'\B"™ be a closed complex hyperbolic n-manifold
with T' a congruence arithmetic lattice. If D C M is a smooth embedded
codimension one totally geodesic subvariety, O(D) is the line bundle over M
associated with D, and O(D)* C O(D) is the complement of the zero section,
then m (O(D)*) is residually finite.

If I' < PU(n,1) is an arithmetic lattice so that I"'\B"™ contains an em-
bedded codimension one totally geodesic submanifold, then I' is of simple
type. See Proposition 3.2, which generalizes an argument from work of Méller
and Toledo [19]. All known nonarithmetic ball quotients of dimension n > 2
are well known to be commensurable with quotients of the ball by complex
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reflection groups, which implies that they contain codimension one totally
geodesic subvarieties (e.g., see [22, Thm. 1.3, where the proof works verba-
tim in all dimensions). Thus residual finiteness of 71 (O(D)*) is relevant, and
remains open, for nonarithmetic lattices. We note for contrast that arithmetic
ball quotients of simple type contain infinitely many distinct immersed codi-
mension one totally geodesic subvarieties, but recent work of Bader—Fisher—
Miller-Stover [1] and, independently, Baldi-Ullmo [2] proves that nonarith-
metic ball quotients only contain finitely many immersed codimension one
totally geodesic subvarieties (and, more generally, only finitely many of any
positive dimension that are maximal with respect to inclusion).

Our final application of Theorem 1.2 is to the existence of covers of ball
quotients branched over totally geodesic divisors, answering a question raised
to the second author by Gromov over 40 years ago. Existence of these covers
allows us to prove the following in §5.

Theorem 1.5. For all n > 2, there are n-dimensional smooth complex pro-
jective varieties admitting a Kdhler metric of strongly negative curvature, thus
a Riemannian metric of strictly negative sectional curvature, that are not ho-
motopy equivalent to a locally symmetric manifold.

Strongly negative curvature is in the sense defined by Siu [21, §2]. Ex-
amples for n = 2 are due to Mostow—Siu [20], and further examples were
produced by Zheng [27, 28]. Deraux gave examples for n = 3 [11]. We con-
tribute a wealth of new examples for n = 2, 3 and the first examples for n > 4.
Our examples are cyclic covers of ball quotients branched over smooth (but
possibly disconnected) totally geodesic divisors. Existence of these covers fol-
lows from Corollary 1.4. The fact that they admit a strongly negatively curved
Kéhler metric is a theorem of Zheng [27, Thm. 1] that generalizes the famous
work of Mostow and Siu [20]. Zheng notes in [27, p. 135 & 151] that exis-
tence of branched covers was a primary obstruction to proving Theorem 1.5
in higher dimensions.

Finally we must prove that these covers are not homotopy equivalent to a
locally symmetric space. This was shown for the previous examples by com-
puting Chern numbers. This becomes delicate in higher dimensions, so we
provide a proof of a different kind. Assuming our branched cover is homotopy
equivalent to a locally symmetric manifold, hyperbolicity of the fundamen-
tal group, work of Carlson and Toledo [8], and Siu rigidity [21] allows us
to conclude that the manifold is in fact biholomorphic to a ball quotient.
We then study the normal bundle to the branch locus to derive a contradic-
tion.
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2. Residual finiteness, central extensions, and branched
covers

2.1. Basic objects

We review the connections among the following objects. Suppose:

1. X is a smooth aspherical manifold with I' = 71 (X);

2. p: L — X is a complex line bundle over X, L is L with its zero section
removed, and I' = 7y (L*);

3. s: X — L is a section of L transverse to the zero section.

The homotopy sequence of the fibration p : L* — X with fiber C* gives a
central extension

07— —T —1

connecting the above fundamental groups. The zero set
Z(s)={x e X :s(x) =0}

of s is a smooth real codimension two submanifold of X with normal bundle
isomorphic to | Z(s), Where L is viewed as an R2-bundle.

2.1.1. Group of central extensions It is well known that for a given
group [ and fixed Abelian group A the isomorphism classes of central exten-
sions

E:0—A—T—T—1

form a group in natural bijection with H?(I", A), where the correspondence is
given by the characteristic class x(E) of the extension E; e.g., see [7, §VI.3].
Briefly, x(E) is represented by the following Eilenberg—-MacLane cocycle ¢
whose cohomology class uniquely determines E: choose a set theoretic section
s:T =T, let c(y1,7) = s(72)s(7172) "ts(71). This is equivalent to writing T
as the product I' x A with the multiplication

(71, a1) (72, a2) = (1172, a1 + az + (1, 72)).

This correspondence is functorial in both of the variables I and A and the
resulting operations on extensions are best defined in terms of y(F). Two
common examples: given an injection ¢ : A — I', then the restriction ¢*(E) of
E to A has characteristic class ¢*(x(F)). Similarly, if p : A — B is surjective
and p.(F) denotes the extension of I" obtained by dividing A and T" by the

kernel of p, then x(p«(E)) = p«(x(E)).
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Remark 2.1. Note that the word “extension” is used in two (closely related)
meanings: the exact sequence E above, or just the middle group I'. We will
refer to I' as the group of the extension E. Given « : A — T' as above, the
group A of the extension ¢*(£) is then the preimage of A in I' for the natural
projection I' — T".

2.1.2. Group of line bundles It is also well known that given a space X,
the isomorphism classes of complex line bundles over X form a group under
tensor product that is isomorphic to H?(X,Z), with isomorphism given by
the Chern class ¢1(L). The isomorphism is natural with respect to smooth
maps f:Y — X, namely ¢1(f*L) = f*(c1(L)).

2.1.3. Comparison of characteristic classes Suppose that we are in the
above situation: X is a smooth aspherical manifold and I' = 7;(X), hence
H*(X) = H*(I') (meaning that there is an isomorphism of cohomology with
any coefficients). In order to compare the two characteristic classes defined
above, we need a functorial isomorphism between the two cohomologies. More
precisely, we need a natural isomorphism between cohomology of the com-
plex C*(T', Z) of Eilenberg—-MacLane cochains on I" and the cohomology of a
topologically defined complex C*(X,Z) of cochains on X, where one could
choose either singular or Cech cochains on X. There is a well known method
for establishing a natural correspondence between the cohomologies of these
two complexes by embedding both in the bicomplex @, , C*(T, Cq()~( ,2)) of
Eilenberg-MacLane cochains on I' with coefficients in the (singular or Cech)
cochains on the universal cover X with its action of I'. Standard arguments
give natural isomorphisms from the two cohomologies in question to that of
the total complex of the bicomplex. The isomorphism thus obtained will give
a functorial isomorphism between H*(I',Z) and H?*(X,Z).

Thus, in our situation of a complex line bundle L over a smooth aspherical
manifold X we have three cohomology classes in H?(X,Z) = H?*(T',Z):

1. The characteristic class x(E) € H?(T,Z) of the extension
(1) E:0—Z—T—D—1,

where T' = 7 (LX).

2. The Chern class ¢;(L) € H*(X,Z).

3. The Poincaré dual [Z(s)]Y of the homology class [Z(s)] € H,_2(X,Z)
of the zero set Z(s) of the section s.

Lemma 2.2. The three cohomology classes defined in 1-8 above are equal,
(except possibly up to a factor of £1 arising from sign conventions).
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Proof. The equivalence of (2) and (3) is standard; e.g., see [6, Prop. 6.24] or
[13, Ch. 1, Prop. 1]. The proof of the equivalence of (1) and (2) should also
be standard. Since we could not find a reference we give a quick sketch.

We start from the fact that the group-cochain analogue of the standard
Cech cochain representative of ¢;(L) gives its representative in group coho-
mology. Namely, let p : X — X be the universal cover, with I' acting on X
by covering transformations. Since p* L™ is trivial, it has a nowhere vanishing
section s. For each v € I" define a function a., : X — C* by v*s = a~s. There
exist functions £, : X = C, unique up to integral additive constant, such
that exp(27il,) = a., and these define ¢ € C'(I', C'(X,Z)) as above. Then
the Eilenberg—MacLane coboundary &¢ given by

60(71,72) = L(72) — L(m172) + 2 l(n)

is a Z-valued cocycle representing ¢; (L) € H*(I',Z) = H*(X,Z).

To show the equivalence of (1) and (2) it suffices to show that 6¢ is a
cocycle for the extension in Equation (1). To do this we represent I' as the
Deck transformation group of the universal cover L* =~ X x C. Writing r
set-theoretically as ' X Z, we see that (y,n) € ' x Z acts on (z,t) € X x C
by

(v, n)(x, t) = (yo, t +n+ Ly (2)).

From this it is straightforward to deduce that the cocycle giving the set I X Z
the group structure of I" is §4. O

2.1.4. The same considerations over projective varieties Now sup-
pose, in addition to the above assumptions, that X is a smooth projective
variety. Let D = Dy U---U Dy, where Dy, ..., Dy are smooth and connected
codimension one subvarieties of X that are pairwise disjoint, i.e., D;ND; = @
if © # j. We will not distinguish the smooth codimension one subvariety D
from the smooth divisor D = D; + -+ + Dy,.

Definition 2.3. A pair (X, D) consisting of a smooth projective variety X
and a divisor D satisfying the above conditions will be called a good pair.

We can assign a holomorphic line bundle O(D) — X to D with the
property that it has a holomorphic section s with zero set Z(s) = D and
vanishing to first order on D, meaning that, in local coordinates on X and
O(D), the differential d,s is nonzero for any x € D. These properties define
O(D) uniquely, and its section s uniquely up to a nonzero multiplicative
constant, i.e., we can replace s by As for any A\ € C*. Transversality of s
implies that O(D)|p is isomorphic to the normal bundle N(D) of D in X.
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Let d > 1 be an integer and suppose that O(D) is divisible by d in the
group of holomorphic line bundles on X. That is, suppose that there is a
holomorphic line bundle p : L — X with L& = O(D). We have a natural d*
power map L — L®" defined by

d factors

—_———
vt =1® - Q0.

Definition 2.4. Suppose (X, D) is a good pair and p : L — X a line bundle
with L®' = O(D) as above. Then the space Y defined by

Y = {U eL:vl= s(p(v))}

will be called a cyclic d-fold branched cover of X branched along D.

More precisely, Y could be called the cyclic branched cover associated
with L. Note the following properties of Y:

Lemma 2.5. Given a good pair (X, D) and L a line bundle so L*" =~ O(D),
the cyclic branched cover 'Y branched along D satisfies:

1. As a subset of L, Y is a smooth projective subvariety stable under the
multiplication maps v — Cv where  is a primitive d* root of unity,
which define an action of the cyclic group Z/d on'Y with quotient X .
The projection p 1 Y — X is d-to-1 over X ~ D and 1-to-1 over D.

3. If O denotes the zero section of L, then

o

plyo:Y~O—=X~\D

is a Z/d covering space.

Proof. By writing local equations for Y at each point y € Y C L it is clear
that Y is a smooth subvariety. Since L is a quasiprojective variety, sois Y, and
Y is finite over X, hence compact, so Y is projective. The defining equation
of Y is invariant under the Z/d-action, which is free on L \ O and fixes O
point-wise. This makes the remaining statements clear. O

For the existence of branched covers as in Definition 2.4 we have:

Proposition 2.6. Suppose (X, D) is a good pair and d > 1 is an integer.
With notation as in §2.1.1, the following are equivalent:

1. There exists a holomorphic line bundle p : L — X with L®" = O(D).
2. There exists o € H*(X,Z) with ¢1(O(D)) =d - a.
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3. There exits v € H*(T,Z) such that x(E) = d -, where T = m(X),
I = 7 (O(D)*), and E is the extension in Equation (1).

4. There exists z € Hap—o(X,Z) with d- z = [D], where n = dimc(X) and
[D] is the homology class of D.

5. The class (rq)«(c1(O(D))) € H*(X,Z/d) vanishes, where

(ra)« : H*(X,Z) — H*(X,Z/d)

is the map induced by the coefficient homomorphism rq : Z — Z/d.
6. The class x((rq)«(E)) € H*(,Z/d) vanishes, where (rq).(E) is the
extension

0—2Z)d—Tyg—T —1
for Ty= f/dZ obtained from E by dividing by the kernel of rq.

If any one of these conditions holds, then there exists a cyclic d-fold branched
cover Y — X branched along D (associated with L) as in Definition 2.4.

Proof. Clearly (1) implies (2) with a = ¢;(L), and (2) and (4) are equivalent
by Poincaré duality and Lemma 2.2. Also (2) and (5) are seen to be equivalent
by looking at the Bockstein long exact sequence associated with the coefficient
sequence 0 — Z — Z — Z/d — 0. The equivalence of (2) and (3), and
similarly (5) and (6), follow from Lemma 2.2. The only subtle point is to
prove that (2) implies (1). We refer to [15, §7] for a simple proof based on the
exponential sequence 0 -+ Z — O — O* — 1. O

2.2. Residual finiteness

Recall that a finitely generated group I' is residually finite if, for every non-
trivial v € I', there exists a homomorphism p : I' — F from I' to a finite
group F' so that p(y) is nontrivial. This property is a commensurability in-
variant of groups. In particular, if A < I' is a subgroup of finite index, then
A is residually finite if and only if I is residually finite.

We will be interested in residual finiteness for the groups T of central ex-
tensions 0 — Z — I — T — 1 of residually finite groups I' by Z. Throughout
this section ¢ will denote the projection I — T and o will be the image of 1
under the injection Z — T, hence the infinite cyclic group (o) is the kernel
of ¢.

Since I' is residually finite, to prove that [ is residually finite it suffices
to prove that for every i # 0 there exists a homomorphism from I to some
finite group that is nontrivial on o?. Indeed, for any v € T not in (¢), ¢(7)
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is nontrivial and, by assumption, there exists a homomorphism p : I' — F
for some finite group F' with p(g(7)) nontrivial. Thus po ¢ : ' - Fisa
homomorphism that is nontrivial on . Observe that a slight extension of this
reasoning gives:

Lemma 2.7 (Lem. 2.4 [24]). Let E be a central extension of a residually
finite group I' by Z with group I' as above, and let o € I' be the image of
1 € Z. If there is a homomorphism ¢ : I — H where H is residually finite
and ¢ is injective on (o), then T is residually finite.

For d € Z, d > 1, we will also be interested in the reductions modulo d
of the above extensions, namely:

(2) 0—Z/d—Tqg—T —1,

where f’g =T /dZ. Similar considerations apply with regard to residual finite-
ness of I'y. The following definition will turn out to be very useful:

Definition 2.8. Let I' be a residually finite group, F be an extension of I
by Z with group I as in Equation (1), and let o € T" be the image of 1 € Z.
We say that E satisfies condition N if there exists a nilpotent quotient A of
I under which the image of ¢ has infinite order. For a positive integer k we
say that E satisfies condition Ny, if there is a nilpotent quotient N of I with
step size at most k in which the image of ¢ has infinite order.

Lemma 2.9. Let E be a central extension of a residually finite group I' by Z
with group r. If E satisfies condition N, then I' is residually finite.

Proof. Since finitely generated nilpotent groups are residually finite, this is
an immediate consequence of Lemma 2.7. O

First we need to know how residual finiteness behaves under the two
basic operations of restriction (or pullback) and reduction (push-forward) of
extensions defined in §2.1.1.

Lemma 2.10. Let T' be a residually finite group and E denote the central
extension 0 — Z — ' — I’ — 1. If d is an integer > 1, let rq : Z — 7Z/d
denote reduction mod d and let Eq denote the central extension (rq).(E).

1. Let A < T be a subgroup of finite index and v : A — I' be the inclusion
map. If/~\ denotes the group of the central extension (*(E), then A is
residually finite if and only if T' is residually finite.

2. The group U'q = T'/(dZ) is residually finite for infinitely many d > 1 if
and only if ' is residually finite.
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3. Suppose E satisfies condition N of Definition 2.8. Then the group Ty of
(ra)«(E) is residually finite for all d > 1.

Proof.

1. Since A is a finite index subgroup of f, this equivalence is a standard
property of residual finiteness.

2. As explained before the statement of Lemma 2.7, to prove residual
finiteness of I" we only need to separate nontrivial elements of the ker-
nel of ¢, i.e., the infinite cyclic group (o), from the identity. Consider
an element o, i € Z ~ {0}, and choose any integer d > |i| so that Ty
is residually finite. Then (rq).(c") is nontrivial in Iy and there is a ho-
momorphism ¢ : 'y — F for some finite group F' with gb(gi) nontrivial.
Then ¢ o (rg) : I' = F has ¢ o (r4)(c*) nontrivial, hence T is residually
finite. N
For the converse, given any ¢ > 0 there is a finite quotient ¢ : I' — F;
so ¢(c') is nontrivial. Let d(i) be the order of ¢(o’). Then ¢ factors
through I'y(;), and it follows from the mod d(i) analogue of Lemma 2.7
that l:d(,-) is residually finite. Since d(i) is greater than or equal to the
largest prime divisor of i, Z@ d(i) = oo, which proves the converse.

3. The statement is more technical, so is the proof. See [24, Lem. 2.6]. O
2.3. Application of condition N

We will need the following useful fact about residually finite Z/d-extensions.

Proposition 2.11. Suppose the group Ty of an extension E of a group T’
by Z/d as in Equation (2) is residually finite. Then there is a finite index
subgroup A < T' such that *(FE) is the trivial extension, where v : A — T is
the inclusion. Equivalently, if o € H*(T',Z/d), then there exists 1 : A < T of
finite index so that .*(o) € H*(A,Z/d) vanishes.

Proof. The first conclusion is a restatement of [24, Lem. 2.2]. The second
statement is the reformulation in terms of characteristic classes. O

Theorem 2.12. Suppose the extension E of I' by Z with group r satisfies
condition N of Definition 2.8 and that T is residually finite. Let n € H*(T,Z)
denote the characteristic class of E. Then for each integer d > 1 there exists a
subgroup A < T' of finite index, depending on d, such that all of the following
equivalent conditions hold:

1. The extension 1*((rq)«(E)) : 0 — Z/d — Ag — A — 1 (that is, the
restriction to A of the reduction of E modulo d), is the trivial extension.
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2. The class t*((rq)«(n)) = (ra)«(t*(n)) € HX(A,Z/d) is trivial.
3. The restriction 1*(n) is divisible by d in H*(A,Z), that is, there exists
a € H3(A,Z) withn =d - «.

Proof. Since E satisfies condition N, the third statement of Lemma 2.10
gives us that =T /dZ is residually finite. Proposition 2.11 gives us the first
statement. The second and third statements are equivalent formulations in
terms of characteristic classes. U

2.4. Existence of branched covers

Let (X, D) be a good pair in the sense of Definition 2.3 and I' = m1(X).
We want to construct cyclic d-fold branched covers, branched along D, in the
sense of Definition 2.4. Proposition 2.6 gives a number of equivalent conditions
for the existence of such a cover, for example, when ¢;(O(D)) divisible by d
in H2(T', Z).

Given (X, D) and d, it may be very difficult to check this divisibility
condition. However, there are situations where the following weaker statement
is already interesting: within a given class of good pairs {(X, D)} prove that
there exist many members for which the divisibility condition holds. The class
of pairs (X, D) of interest to us is that of arithmetic ball quotients X of simple
type and D a totally geodesic divisor on X. By “many members” we mean
that any (X, D) in the class has a finite unramified cover p : X’ — X so that
(X', p*(D)) satisfies the above divisibility condition. Here p*(D) means the
divisor on X’ with support p~!(D) such that all connected components have
multiplicity one. We record the following simple but necessary fact:

Lemma 2.13. Suppose (X, D) is a good pair and p : X' — X is a finite
unramified cover. Then (X', p*(D)) is a good pair. If s is the canonical section

of O(D), then p*(s) is the canonical section of O(p*(D)) = p*(O(D)).

Proof. Smoothness of p~!(D) and vanishing to first order of p*(s) on p~1(D)
are both clear from the fact that p : X’ — X is locally a biholomorphism. [

Theorem 2.14. Let (X, D) be a good pair, let d > 1 be an integer, and let:

1. T'=m(X) and T = m(O(D)*);
22E:0—=2Z —T =T — 1 be the extension given by the homotopy
sequence of the fibration O(D)* — O(D).

Suppose that E satisfies condition N of Definition 2.8. Then there is a finite
unramified cover p : X' — X so that c1(p*(D)) is divisible by d in H*(X',Z).
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Proof. This is an immediate consequence of Theorem 2.12, by defining X’ to
be the covering space of X associated with the subgroup A < T O

Corollary 2.15. Let (X, D) be a good pair and suppose the extension
0—7Z— m(O(D)") — m(O(D)) —1

satisfies condition N. Then there is a finite unramified cover p : X' — X
such that there exists a cyclic d-fold cover Y — X' branched along p*(D).

Finally, we give a sufficient condition for certain extensions that occur
very frequently to satisfy condition /N. More precisely, we look at a class
of extensions for which we can characterize those that satisfy the stronger
condition Ny of Definition 2.8. The following theorem was stated in [24] under
an unnecessary assumption. We remove this assumption and give essentially
the same proof, partially incorporating some suggestions from the referee.

Theorem 2.16 (Thm. 5.1 [24]). Let X be a closed aspherical manifold with
Jundamental group T' and let L — X be a complex line bundle with Chern
class w € H*(X,Z). Equivalently, let T = m(L*) and let E be the extension
as in Equation (1) with group I and characteristic class w € H*(T',Z). Let
wg denote the image of w in H*(L,Q). Then, E satisfies condition Ny of
Definition 2.8 if and only if wq is in the image of the map

2
cg: \"H'(X,Q) — H*(X,Q)
giwen by evaluation of the cup product.

Proof. Let pr : T — I'® be the projection of I to its abelianization. Since
prt s H\(, Q) — H'(T, Q)

is an isomorphism and H2(I'*, Q) = A? HY(I'*, Q), we see that wg is in the
image of cg if and only if it is in the image of pr* : H*(T'**, Q) — H?(T, Q),
that is, if and only if there exists Wg € H2(T'®, Q) such that pr*(&g) = wo.
Let T'e be the group of the extension of I'% by Q with characteristic class
@g. Thus the original extension with characteristic class w € H?*(T,Z) maps
to the extension with characteristic class &g € H2(I', Q):

0 7 r r 1
0 Q [ab Tab 1
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The group 1::17’, as a central extension of an abelian group, is nilpotent of
step size at most two, and the central Z in r maps injectively to the center
of T, Thus the image of I' in Tab is a nilpotent quotient of I' satisfying
Definition 2.8, and so the extension [ satisfies condition N>. Note that r
satisfies condition /V; if and only if wg = 0.

Before proving the converse, it is useful to write down some consequences
of the Gysin sequence for the fibration p : L* — X stated in terms of the in-
duced map on fundamental groups p : [ — I'. We use Q coefficients through-
out. The sequence

0 — HY(D) 25 HNT) 25 HO(D) 2% HA(T) 25 H2(D)

~

shows that if wg # 0, then p* : HY(I',Q) — H'(T',Q) is an isomorphism,
equivalently, p, : [ab /Tor =, [ab /Tor is an isomorphism, where T'or denotes
the respective torsion subgroup, and the kernel of p* : H?(I', Q) — H? (f, Q)
is the subspace Quwg of H(T, Q).

Using this information to compare the kernels K, K and the images

I, I+ of the cup-product maps c&, 0(5 we have:

N

0 Kr A2HY(T,Q) — Iy —S H(I,Q)
(3) J”* Jp* . ip* Jp*
0 Kz A2 HY(T,Q) — I —< H¥(T,Q)

Since the second vertical arrow is an isomorphism, it follows that the third
vertical arrow is surjective: [z = p*(Ir). Since the kernel of the last vertical
arrow is Q wg, it follows that

(4) P ]p/([p N @w(@) — [f

is an isomorphism.

Now we can prove the converse statement. Suppose our extension E satis-
fies condition Nj. Let N(I'), N (F) denote the maximal 2-step nilpotent quo-
tients of F,f’ respectively. Then Z < I must inject into N ( ). These two
nilpotent quotients are related as follows, where Z(—) denotes the center of
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the respective groups:

0 —— Z(I') — N(I) [ 0
[FS P
0 —— Z(I') —— N(I) [ab 0

Since the central Z in T’ maps trivially to T', it has trivial image in N (T).
Moreover, since the last vertical arrow is an isomorphism modulo torsion, a
subgroup of finite index in Z maps trivially to I'** hence this infinite cyclic
subgroup of Z injects into Z(I') but maps trivially to Z(I'). Therefore the
rank of Z(I") is strictly larger than the rank of Z(T").
Algebraic topology tells us that there are canonical isomorphisms

Hom(Z(I"), Q) = Kr Hom(Z(T'), Q) = K
where Kr, K5 are the kernels of the cup product maps in Equation (3) (e.g.,
see [25, 3]). Letting lower case letters denote the dimensions of the corre-
sponding Q-vector spaces in Equation (3), we see that kr + ir = kg + i,
hence

il"_i’f:k’f_kl“-

Since Equation (4) tells us that

ip — i~ =

1 ifwe lp,
r

0 otherwise.

we get, in particular, that if the rank of Z (f ) is strictly larger than the rank
Z(I"), then wg is in the image of the cup product, as desired. O

3. Arithmetic lattices in PU(n,1)
3.1. Congruence arithmetic lattices of simple type

The arithmetic lattices under consideration in this paper are those that are
cocompact of simple type. These are constructed as follows, where we gen-
erally follow the notation established in [5, §6]. Let E/F be a totally imag-
inary quadratic extension of a totally real field with [F : Q] = d > 2, let
Ti,...,7q . £ — C be representatives for the complex conjugate pairs of em-
beddings of E, and let  — T be the Galois involution of E/F', which extends
to complex conjugation under any complex embedding of F.
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Fix a nondegenerate hermitian vector space V over E of dimension n+ 1,
and let V,, = C™*! be the completion of V with respect to the complex
embedding 7; of E. We assume that V;, has signature (n,1) and that V;, is
definite for 7 > 2. The assumption that d > 2 implies that there is at least
one completion where V' is a definite hermitian space. It follows that V is
anisotropic.

The unitary group U(V) is a reductive algebraic group over F', and let
G1 = RespigU(V) be the restriction of scalars from F to Q. The above
assumptions on the signature of V' at the various complex embeddings of F
imply that

Gi(R) 2 U(n,1) x [JU(n +1).
j>2

We can identify the ball B” with G1(R)/K, where

Koo = (U(n) x UQ1)) x [JU(n+1)

Jj=2

is a chosen maximal compact subgroup of G1(R).

Similarly, G will denote the restriction of scalars from F' to Q of the group
of unitary similitudes of V. If Ag denotes the adeles of Q and A{é the finite
adeles, for each prime p choose an open compact subgroup K, < G(Q,), and
set K =[] K, < G(A{é). If the K, are chosen so that K is open in G(Aé),
we then obtain a Shimura variety

S(K) = G\ (B" x G(A)) /K.

As described in [5, §6.4], S(K) is a finite disjoint union of connected compo-
nents S(I';) = I';\B", where

[ < Gaa(R) 2 PU(n,1) x [[PU(n+1)

Jj=2

is a cocompact lattice. We will call lattices I'; of this kind congruence arith-
metic lattices of simple type. If we choose K sufficiently small (e.g., neat) then
each I'; is torsion-free and the ball quotient S(I';) is both a manifold and a
smooth projective variety. From this point forward, all K are assumed to be
sufficiently small in this sense.

Remark 3.1. Strictly speaking, we have only defined the cocompact arith-
metic lattices of simple type. One also obtains nonuniform lattices by taking
' = @Q in the above construction. For n = 2, these are the classical Picard
modular groups.
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3.2. Cohomology of Shimura varieties

In the notation from §3.1, if K’ < K < G(Aé), then there is a finite map
S(K'") — S(K) with pullback

H*(S(K),R) — H"(S(K'), R)
for any coefficient ring R. This allows us to define

H(Sh(G), R) = limy H*(S(K)., R).
K

See [5, §6.6] for further details. For each K, we also have the Chern form
c1(S(K)) € H?(S(K),Z), which of course behaves well with respect to pull-
back. In particular, we obtain a limiting class ¢; € H?(Sh(G),Z).

3.3. Totally geodesic hypersurfaces

We start with the following, which justifies restricting to lattices of simple
type when considering arithmetic ball quotients containing a totally geodesic
hypersurface. The case n = 2 is found in [19, §1].

Proposition 3.2. Forn > 2, let I' < PU(n, 1) be an arithmetic lattice so
that T\B"™ contains a totally geodesic codimension one subvariety. Then I' is
of simple type.

Sketch. Suppose I' < PU(n, 1) is arithmetic. Then there exists a totally imag-
inary quadratic field E, a central simple division algebra D over E of degree
d with involution o of the second kind, and a o-hermitian form A on D" so
that the algebraic group G associated with I' is the projective unitary group
of h. Note that n+ 1 = dr. The case where I has simple type is precisely the
cased=1 (i.e, D=F)and r=n+ 1.

If T\B" contains a totally geodesic subvariety of the form A\B"™!, it
is well known that A is also arithmetic. Then there is a totally imaginary
subfield Ey of E, a subalgebra Dy C D over Ej of degree dy dividing d, and
an embedding of D° in D" so that dyrg = n and the restriction of h to the
image of D(° is the algebraic group associated with A. The fact that G is
noncompact at exactly one place of E forces g = E. Now, dg divides n and
n + 1, which forces dg = 1. Then ro = n, but 1o < r <n+1,s0risn or
n + 1. However, n > 2 and r divides n + 1, so r = n + 1, hence d = 1, which
proves the proposition. O]
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One often classifies the immersed totally geodesic complex codimension
one subvarieties of arithmetic ball quotients I'\B" by I'-orbits of lines ¢ C V'
so that the restriction of the hermitian form to ¢ is positive under ¢ — V,
or, dually, by codimension one subspaces W C V so that W, has signature
(n —1,1). We instead follow the notation of Kudla-Millson [18, §2& 9] and
Bergeron—-Millson-Moeglin [5, §8], since it will be used for the proof of our
main results.

For each d x d hermitian matrix 5 € My(E) that is positive definite at
71, Kudla and Millson define a special cycle Cg. This is a locally finite cycle
consisting of totally geodesic subvarieties of (complex) codimension d [18,
p. 132]. Moreover, all immersed totally geodesic subvarieties are contained in
the support of some Cz. See the above references for further technical details,
since they will not concern us in this paper. As pointed out to us by Nicolas
Bergeron, the following result has the exact same proof as [4, Cor. 8.4], except
that paper covers the orthogonal case. We give the argument for completeness.

Theorem 3.3. Let X = I'\B™ be a smooth compact ball quotient, n > 2,
with I' a congruence arithmetic lattice of simple type, and let ¢c1 be the Chern
form on X, considered as an element of H*(X,C). Then c; is contained in
the span of the collection of all Poincaré duals to codimension one totally
geodesic subvarieties of X.

Proof. Suppose not. Then there exists € H?(X,C)* = H*» (X, C) such
that:

/ nAhc #0
X
/ n=20 for all totally geodesic C of codimension 1
C

In other words, the periods of 1 over all codimension 1 geodesic subvarieties
are zero.

Following, [18, p. 126], let £(¢) be the space of hermitian 1 x 1 matrices of
rank t < 1 over the ring of integers O of the totally imaginary field £ from the
definition of the arithmetic lattice I. Then £(1) is the ring of integers Op of
the maximal totally real subfield F' of E and £(0) = {0}. For each 5 € L(t),
we have the totally geodesic cycle Cg of codimension ¢t in X, where Cy = X
and for /8 in the nonzero elements O of Op we have C of codimension 1.

For 3 € £(1) and ¢ € CIF*Y_ following [18, p. 125], define

[(F:Q]
e«(BC) = H exp(7i tre/r(75(8))Cr ),

Jj=1
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where the product is over the places {7;} of E and the coordinates of ¢ are
labelled accordingly. Note that e, (0() = 1 for all (. As on [18, p. 127] we then
have that

Pen =3 X ([ and) e

t=0 BeL(t)

=e*(0C)/XnAC1+ > e*(ﬁé)/cﬁn

BeO;
= / nAc
X

is a constant function of ¢ with value [y n A ¢; # 0, since fcﬁ n =0 for all 8
by hypothesis.

However, by [18, Thm. 3], the function P((,n) of ¢ is a holomorphic mod-
ular form of weight n + 1 for a suitable congruence subgroup of the group of
O-points of a certain form of U(1,1) over F'. Since a nonzero constant func-
tion is not a holomorphic modular form of higher weight, this contradiction
proves the theorem. O

3.4. The cup product and special cycles

The purpose of this section is to prove the following theorem, whose proof
was communicated to us by Nicolas Bergeron.

Theorem 3.4. Let X = T'\B" be a compact congruence arithmetic ball quo-
tient of simple type and SC'(X) C H?*(X,C) be the span of the Poincaré
duals to the totally geodesic codimension one subvarieties of X. Then:

1. For any class o € SC'(X), there is a congruence cover p: X' — X so
that p* (o) € SCY(X') is in the image of the cup product map

c: N H\(X',C) — H2(X',C).

2. Ifn > 3, then for every ¢ € HY1(X,C) we can find a congruence cover
p: X' — X so that p*(¢) is contained in the image of c.

3. If n > 4, then for all ¢ € H*(X,C) we can find a congruence cover
p: X' — X so that p*(¢) is in the image of c.

Proof. Let G be the Q-algebraic group associated with X and I" asin §3.1, and
suppose that X is a connected component of the Shimura variety S(K). The
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theorem follows fairly directly from deep structural results on cohomology
arising from the theta correspondence; see [5, §7] for a precise definition.

Taking ¢ = 1 and the appropriate values of (a,b) in [5, Cor. 7.3], we
see that H'(X,C) is generated by the classes of theta lifts for all n > 2,
HYM(X,C) is generated by theta lifts when n > 3, and all of H*(X,C) is
generated by the theta correspondence for n > 4. For n > 2, Kudla and
Millson proved that the Poincaré duals to codimension 1 geodesic subvarieties
are contained in the subspace generated by theta lifts and Poincaré duals to
special cycles span the subspace generated by theta lifts [16, 17, 18] (also see
[5, p. 9]).

Now, suppose that ¢ € H?(X,C) is contained in the subspace generated
by theta lifts. The above discussion implies that this is the case for every class
satisfying one of the three conditions from the statement of the theorem. Let

5 € H*(Sh(G),C) = lim H(S(K),C)
K

be the image of o in H?(Sh(G),C) as in §3.2. Using [5, Prop. 5.4 & 5.19),
arguing almost verbatim as in the proof of [5, Thm. 9.3] (the only change
being the degrees of the forms under consideration), we have that & is in the
image of the cup product map

N’ H'(Sh(G),C) — H*(Sh(G),C).
This implies that there is a congruence cover p : X’ — X so that
p(o) e m (\" H'(X',C) — HX(X',C)),

which completes the proof of the theorem. O

Remark 3.5. By the universal coefficients theorem, Theorem 3.4 is also true
with coefficients in any subfield of C. In particular, it holds over Q.

Theorem 3.3 and Theorem 3.4 combine with Remark 3.5 to give the fol-
lowing.

Corollary 3.6. Let X be a smooth compact congruence arithmetic ball quo-
tient of simple type with dimension n > 2. Suppose that ¢ € H*(X,7Z) is one
of the following classes:

1. Cl(X>,'
2. c¢1(D) for D C X a reduced effective divisor with support a union of
totally geodesic subvarieties, or any linear combination of such classes;
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3. any class in HYY(X,Q) N H*(X,Z) ifn > 3;
4. an arbitrary element of H*(X,7Z) if n > 4.

Then there is a congruence cover p : X' — X so that the image of p*(¢) in
H?(X' Q) is contained in the image of the cup product map

co: N\ H\(X',Q) — HY(X',Q).

Remark 3.7. Passage to a finite cover in Corollary 3.6 is necessary. For
example, let X be the Cartwright—Steger surface. Then X is the quotient of
B? by a congruence arithmetic lattice of simple type (e.g., see [23, p. 90]). Then
HY(X,7Z) = 72, so the image of the cup product in H?(X,Z) is generated by
the primitive element o A 3, where o and 3 span H'(X,Z). Since ¢1(X)? # 0
but (aAB)? = 0, we see that ¢;(X) cannot be in the image of the cup product
map. As shown by Dzambic and Roulleau [12], the Stover surface, a 21-fold
étale cover of X with fundamental group a congruence arithmetic lattice,
satisfies the conclusion of Corollary 3.6.

4. Proofs of Theorems 1.1 and 1.2

We begin by proving Theorem 1.2, then use it to prove Theorem 1.1 as
sketched in the introduction.

Proof of Theorem 1.2. Suppose that I' < PU(n,1), ¢ € H*(I'\B",Z), and T
satisfy the hypotheses of the theorem. By §2.1.1 (in particular Remark 2.1)
and Lemma 2.2, if I < T' is a finite index subgroup, then the preimage I
of I” in T is the central extension of I with characteristic class p*(¢), where
p: I\B" — I'\B" is the associated cover. Thus I” is a finite index subgroup
of T, and by Lemma 2.10 it suffices to prove that I and the associated
reductions I, of I’ modulo d are residually finite.

By Corollary 3.6, we can choose I to be a congruence subgroup of I' such
that

. 2
p'(¢) € m (N H (X', Q) — H(X',Q)),
where X’ = I"\B". By Theorem 2.16, the extension with group I satisfies
condition Nj. Since IV < PU(n, 1) is residually finite, I is residually finite

by Lemma 2.9 and Ty is residually finite by Lemma 2.10. Thus [ and [y are
also residually finite, and this completes the proof of the theorem. O

We now deduce Theorem 1.1 from Theorem 1.2.
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Proof of Theorem 1.1. Let I' < PU(n, 1) be a cocompact arithmetic lattice
of simple type and T its preimage in ﬁv}(m 1). If n = 1, then it is classical
that T' is residually finite; see the introduction to [24] for discussion. If n > 2,
first note that if A is commensurable with I', then the preimage A of A in
PU(n, 1) is commensurable with I" (cf. Remark 2.1). Therefore I' is residually
finite if and only if A is residually finite, hence we can assume without loss of
generality that I' is a torsion-free congruence arithmetic lattice.

Now, I' is the central extension of I' with characteristic class c;(I'\B").
Moreover, the reduction I'y of I' modulo d is isomorphic to the preimage of
I' in the d-fold connected cover of PU(n,1). By Theorem 3.3, we have that
c1(I'\B") is contained in the span of the Poincaré duals to the totally geodesic
cycles on I'\B", so Theorem 1.2 applies to give residual finiteness of I and I'y.
This completes the proof. O

5. Branched covers of ball quotients

We begin with the key application of our main results, which provides exis-
tence of the branched covers used to prove Theorem 1.5.

Proposition 5.1. Fiz d > 2. Let X = T'\B" be a smooth compact complex
hyperbolic n-manifold, n > 2, with I' a congruence arithmetic lattice of simple
type. Then we can pass to a congruence cover X' = I"\B" so that X' contains
a totally geodesic divisor D' such that:

1. (X', D) is a good pair in the sense of Definition 2.3, and

2. there exists a smooth projective variety Y and a cyclic branched cover
f Y — X' with branch divisor D' and branching of degree d along
each irreducible component of D’.

Proof. As described in §3.3, it is well known that X contains an immersed
totally geodesic codimension one ball quotient D. It is a standard fact that
we can replace X with a finite congruence cover and assume that D is in
fact embedded, hence (X, D) is a good pair in the sense of Definition 2.3.
Corollary 3.6 and Theorem 2.16 imply that condition N, is satisfied by the
central extension of I' by Z associated with 71 (O(D)*) as in §2.1. Therefore,
by Corollary 2.15 there is a further finite cover p : X’ — X so that there exists
a cyclic d-fold branched cover Y — X', branched over the totally geodesic
divisor D’ = p*(D), with Y smooth. O

We will apply the following theorem of Zheng [27], where we restate
Zheng’s notion of a “good cover” with smooth totally geodesic branch divisor
in our language. His condition negative definite complex curvature operator
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is the same as Siu’s very strong negative curvature, which implies strong
negative curvature, which in turn implies negative sectional curvature. See

21, §2).

Theorem 5.2 (Thm. 1 [27]). Let f : Y — X be a d-fold cyclic branched cover
of a smooth compact ball quotient X with branch divisor D a disjoint union of
smooth totally geodesic codimension one subvarieties and branching of order d
along each component. Then Y admits a Kdahler metric with negative definite
complex curvature operator. In fact, the metric on Y is strongly negative in
the sense of Situ, hence Y is strongly rigid.

We now prove Theorem 1.5.

Proof of Theorem 1.5. Let Y be one of the smooth projective varieties pro-
vided by Proposition 5.1. Then Y admits a metric of strongly negative cur-
vature by Theorem 5.2, so to complete the proof we must show that Y is
not homotopy equivalent to a locally symmetric manifold. Since Y is a closed
manifold admitting a complete metric of negative curvature, it is well known
that m1(Y") cannot contain a free abelian subgroup of rank r > 2. A cocom-
pact lattice in a semisimple Lie group of real rank r contains a subgroup
isomorphic to Z" by a theorem of Wolf [26, Thm. 4.2], hence we only need
to rule out the possibility that 71 (Y") is isomorphic to a lattice in an adjoint
simple Lie group of real rank one.

Let Z be a rank one locally symmetric space homotopy equivalent to Y.
We can exclude Z being real, quaternionic, or Cayley hyperbolic by a result of
Carlson and Toledo [8, Cor. 3.3]: since Y is a compact Kéahler manifold, it can-
not be homotopy equivalent to a locally symmetric space Z unless Z is locally
Hermitian symmetric. This and real rank one implies that Z is a ball quotient.
Considering cohomological dimension we see that dim(Y') = dim(Z).

If f:Y — Z = A\B” is a homotopy equivalence, and g : Z — Y a
homotopy inverse to f, since both Y and Z have strongly negative curvature,
Siu rigidity [21, Thm. 1] implies that we can assume that both f and g are
holomorphic maps. Thus fog and go f are holomorphic self maps of Z and Y,
respectively, that are homotopic to the identity, hence they are the identity.
It follows that f is a biholomorphism and g = f~. See also [21, Thm. 2].

By definition of a branched cover, Z/d acts on Y by holomorphic auto-
morphisms with quotient the ball quotient X’ from the statement of Proposi-
tion 5.1. Let p € Aut(Y') be a generator for this action and D’ be the branch
locus, which we recall is a disjoint union of smooth totally geodesic subvari-
eties of X’. If D denotes the preimage of D’ on Y, then D is a divisor with
support a disjoint union of smooth subvarieties of Y, each isomorphic to a
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smooth totally geodesic subvariety D; C X’. The fixed point set of p is D,
and the cyclic group generated by p acts freely on Y \ D.
Consider the holomorphic automorphism

O'I(fopof_l):Z—)Z

of period d fixing the divisor f(D). Since automorphisms of Z are isometries
for its Bergman metric and fixed sets of isometries are totally geodesic, it
follows that f(D) is a totally geodesic divisor on Z and the support of f(D)
consists of a disjoint union of smooth subvarieties of Z isomorphic to the ball
quotient D;. In particular, each D; is isometric to a smooth totally geodesic
subvariety of both X’ and Z. Moreover, since f is a biholomorphism, the
normal bundle to D; in Z is isomorphic to the normal bundle of D; in Y. We
use this to derive a contradiction.

If X is an n-dimensional ball quotient and D; a smooth totally geodesic
subvariety of codimension one, then the normal bundle to D; in X has first
Chern class v satisfying nv = c;(D;) in H%(D;, Q). One way to see this is
to use the principle of proportionality in dual symmetric spaces: any relation
between characteristic classes with Q coefficients that holds in one element of
a dual pair must also hold in the other. For P"~! C P" this equality is easily
checked. Indeed, the normal bundle is the bundle v = O(1) with ¢;(v) = =z,
where x is a positive generator of H2(P"~1, Z), while ¢; (P"!) = nz, thus the
equivalent equality must also hold for a geodesic divisor in a ball quotient.

In particular, the first Chern class of the normal bundle to D; is completely
independent of the ambient ball quotient. Applying this to X’ and considering
the branched cover Y — X', the normal bundle to D; in Y has first Chern
class

dv € H*(D;,Q),

hence the same holds for the normal bundle to D; in Z. This implies that
c1(D;) = dei(D;), but d # 1 and ¢;(D;) is nontrivial, hence we arrive at a
contradiction. This proves that Y cannot be homotopy equivalent to a ball
quotient, which completes the proof of the theorem. O
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