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Abstract 12 

In light of shifting precipitation patterns induced by climate change, communities are seeking to 13 

build resiliency in urban drainage systems through interventions such as green stormwater 14 

infrastructure (GSI). Bioretention cells are one of the most commonly implemented forms of GSI 15 

for their ability to reduce peak discharge, retain runoff, and filter pollutants. However, they may 16 

be at risk of reduced function in the future due to deviations from historic precipitation frequency 17 

and intensity patterns which are essential to their design. Further, changes in future function are 18 

likely to vary regionally as the magnitude of future climate changes will differ across the globe. 19 

To explore the range of impacts to future bioretention function, an ensemble of 10 regional 20 

climate models at 17 locations across the contiguous United States were evaluated to provide the 21 

widest range of potential future outcomes using a probabilistic approach to capture the uncertain 22 

nature of climate change. Bioretention cells were modeled using 23 

Management Model (SWMM) to compare existing and future performance under a range of 24 

climate change projections. Median annual rainfall and 99th percentile rainfall event depths and 25 

intensities were projected to increase across all 17 locations while antecedent dry period (i.e., the 26 

time between consecutive rain events) was projected to increase for 11 locations. 27 

Correspondingly, bioretention cell hydrologic performance decreased across all 17 locations 28 
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under future scenarios: relative to performance under current climate conditions, annual volumes 29 

of infiltration decreased between 4.0-24.0% across all 17 locations while overflow increased 30 

between 0.4-19.6% for 15 locations. Results suggest that bioretention cells in the southern 31 

United States are at significant risk of reduced function in the future while those in the Midwest 32 

and Northeast are at moderate risk. Bioretention cells in the Northwest/West performed the best 33 

under future climate scenarios; that is, they showed similar function in the future to that of the 34 

present. Findings demonstrate that most, if not all, bioretention cells across the contiguous 35 

United States will require some degree of modification to maintain existing function under future 36 

conditions. 37 
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1.0 Introduction 50 

The increased likelihood of extreme weather events (e.g., frequent floods, drought 51 

conditions, record-breaking temperatures) associated with anthropogenic activities has been well 52 

documented (Masson-Delmotte et al., 2018). For example, Bishop et al. (2019) found a 40% 53 

increase in fall precipitation for the period 1895-2018 in the southeastern United States, with 54 

nearly all of the added precipitation occurring with an increased intensity. Similarly, using 55 

datasets from 182 stations across the contiguous United States, Karl and Knight (1998) noted a 56 

10% increase in precipitation over the twentieth century primarily due to heavy and extreme 57 

precipitation events with 53% of the added precipitation attributable to the upper 10% of the 58 

precipitation distribution. According to Prudhomme et al. (2014), if anthropogenic activities and 59 

emissions continue to increase at the current rate, then Southern Europe, the Middle East, the 60 

Southeast United States, Chile, and South West Australia are at significant risk of experiencing 61 

droughts and water security issues by the year 2100. 62 

At the same time, the rapid urbanization across the planet has led to a greater percentage 63 

of urban areas becoming covered by impervious surfaces that prevent soil infiltration (Shuster et 64 

al., 2005). These shifts result in increased runoff and flooding (Du et al., 2012), increased 65 

, 2010), and a suite of degraded conditions in 66 

receiving waters referred to as the urban stream syndrome (Walsh et al., 2005). The combination 67 

of climate change and rapid urbanization poses serious risks for public health and safety. Zhang 68 

et al. (2018) showed that the extreme flooding caused by Hurricane Harvey in August 2017 was 69 

intensified due to both anthropogenic-induced climate change and the effects of increased 70 

urbanization in Houston, Texas, USA. Similarly, Yang et al. (2021) found that the extreme 71 

rainfall and flooding in Western Europe during July 2021 was exacerbated due to urbanization 72 
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and urban-induced rainfall anomalies. Such extreme precipitation events have provoked efforts 73 

to mitigate the worsening effects of climate change. 74 

Stormwater management systems, which are typically broken into two categories, gray 75 

and green, represent critical infrastructure components which are directly threatened by climate 76 

change. Green stormwater infrastructure (GSI) is increasingly utilized in urban areas to assist and 77 

supplant existing gray stormwater infrastructure and enhance the resilience of urban drainage 78 

networks to climate change (Eckart et al., 2017; Huang et al., 2018). One of the most commonly 79 

implemented and studied types of GSI is the bioretention cell, which consists of layers of gravel, 80 

soil, sand, organic matter, and plants (TDEC, 2014). Bioretention cells provide effective removal 81 

of total suspended solids (TSS) and pollutants (e.g., TN, TP) (Davis et al., 2001) while reducing 82 

runoff volume and peak discharge (Dietz, 2007; Winston et al., 2016; Davis 2008).  83 

Despite research showing the benefits of bioretention under existing climate regimes, the 84 

use of these systems for climate change mitigation and environmental sustainability is 85 

underpinned by their ability to function under future climate scenarios, which is effectively the 86 

climate resiliency of bioretention (Hettiarachchi et al., 2022b). Historically, hydrologic 87 

engineering designs (including bioretention) have relied on the stationarity of rainfall patterns. 88 

However, recent research has shown that this can no longer be assumed with a shift towards 89 

increasingly frequent and more intense storm events (Milly et al., 2008; Pryor et al., 2009; Cook 90 

et al., 2020; Rosenberg et al., 2010). Wasko and Sharma (2015) and Hettiarachchi et al. (2018) 91 

also found that warming temperatures associated with future climate regimes could increase the 92 

variability of storm temporal patterns, further stressing stormwater infrastructure. Thus, a 93 

number of studies have begun to use projections from regional climate models (RCMs) and 94 

general circulation models (GCMs) to understand potential shifts in hydrologic processes and the 95 
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resulting effects on critical infrastructure (Arnbjerg-Nielsen, 2012; Cook et al., 2019; Sarkar et 96 

al., 2018). 97 

Recent studies have implemented a similar approach to investigate the future function of 98 

bioretention cells under climate change. Hathaway et al. (2014) evaluated future performance of 99 

four bioretention cells in Rocky Mountain and Nashville, North Carolina, USA, using one RCM 100 

and two representative concentration pathways (RCPs). Comparing historic (2001-2004) with 101 

projected (2055-2058) performance, results showed that the frequency and volume of overflow 102 

could increase significantly for projected scenarios, requiring an additional storage of between 9 103 

and 31cm to limit increases in annual overflow under future conditions. Zhang et al. (2019) 104 

evaluated a range of design configurations for a bioretention cell in Melbourne, Australia, using 105 

eight GCMs and one RCP. Comparing historic (1995-2004) with projected (2040-2049) 106 

performance, results suggested that larger bioretention cells should be prioritized due to the 107 

variability of future GCM scenarios. Similarly, Tirpak et al. (2021) evaluated a range of design 108 

configurations for a bioretention cell in Knoxville, Tennessee, USA, using 10 RCMs, two RCPs, 109 

and three underlying soil types with infiltration rates ranging from 0.13 cm/hr to 2.5 cm/hr. 110 

Comparing historic (2010-2014) with projected (2040-2044) performance, results showed that 111 

even the most significant retrofit configurations led to overflow increases in 67.4% to 71.1% of 112 

simulations  with underlying soil type having minimal effect on overflow  indicating the 113 

significant impact of shifting precipitation patterns. Wang et al. (2019a) performed a similar 114 

study by evaluating a range of bioretention cell surface areas in Guangzhou, China, using 11 115 

GCMs, four RCPs, and six design storms. Results showed that future bioretention cells could 116 

maintain existing function for small, short-duration storms by increasing surface area, but 117 

function will diminish as storm size and duration increase regardless of increases in surface area. 118 
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Highlighting regional differences in future climate, Winston (2016) evaluated future 119 

performance of bioretention cells located 25 km apart in northeast Ohio, USA, using one GCM 120 

and two RCPs. Comparing historic (2001-2004) with projected (2055-2059) performance, results 121 

showed that bioretention cells mitigated 5-9% less runoff in one location while mitigating 4-6% 122 

more runoff in the other location. 123 

 As such, while some research has been performed investigating the performance of a 124 

single bioretention cell under future precipitation patterns, almost no research has been 125 

performed comparing multiple locations across the United States or the globe, for that matter. 126 

There is a need to explore the geographic variability in the effects of climate change on existing 127 

GSI to better understand the regional adaptations that may be required to prepare for these 128 

impacts. To address this knowledge gap, this study explores changes in bioretention performance 129 

under future climate change scenarios in 17 locations across the United States selected based off 130 

their unique hydrologic region. Ten Regional Climate Models (RCMs) were selected from the 131 

North American Coordinated Regional Downscaling Experiment (NA-CORDEX) to provide a 132 

wide range of potential future precipitation outcomes at each location (Mearns et al., 2017). The 133 

objective of this effort was to identify shifts in bioretention performance from historical to future 134 

conditions and to better understand the geographic variability of impacts to future performance. 135 

Results from this work can be used to identify locations where bioretention cells may be most 136 

adversely affected by climate change, and thus may require modifications to ensure their desired 137 

performance persists in the future. 138 
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2.0 Data Collection and Methodology 139 

2.1 Data Collection 140 

Observed climate data were acquired from the National Oceanic and Atmospheric 141 

Administration (NOAA) National Centers for Environmental Information (NCEI) data archive to 142 

allow for bias-correction of climate model outputs and characterization of historical bioretention 143 

function (NOAA, 2016). Simulated historic and future climate data were acquired from the 144 

North American Coordinated Regional Downscaling Experiment (NA-CORDEX) data archive 145 

(Mearns et al., 2017). Climate data were acquired for 17 locations across the US (Table 1), which 146 

were selected based on their unique hydrologic region defined by the Bukovsky climate map 147 

(Bukovsky et al., 2019). The Bukovsky climate map groups regions by hydrologic similarity, 148 

accounting for average temperature and rainfall as well as seasonal occurrences such as the 149 

North American monsoon (Bukovsky, 2011). Using the same cities as Cook et al. (2019), each 150 

climate region in the contiguous US was represented by at least one city in the analysis.151 
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Observed daily temperature (maximum and minimum) and hourly precipitation data from 155 

January 1, 1999, to December 31, 2013, were gathered from the NOAA NCEI archive for all 17 156 

locations (NOAA, 2016). The 15-year period was selected to fully capture the year-to-year 157 

variability of recent precipitation and temperature patterns, subject to data availability. The 17 158 

NOAA NCEI stations shown in Table 1 were selected based off the availability of continuous 159 

climate data for the time range specified and their proximity to the selected cities.  160 

Covering the majority of North America, the NA-CORDEX data archive provides 161 

simulated climate data from a range of RCMs produced using boundary conditions from GCMs 162 

in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Mearns et al., 2017). As 163 

recommended by Bukovsky and Mearns (2020), all ten NA-CORDEX climate models with 164 

available hourly precipitation projections were used for this study to provide the most 165 

comprehensive range of potential future outcomes (Table 2). Due to the limited availability of 166 

hourly precipitation projections in the archive, only one RCP4.5 scenario (representing moderate 167 

population growth, moderate climate policy, and eventual decline and stabilization of 168 

anthropogenic emissions) was evaluated while nine RCP8.5 scenarios (representing high 169 

population growth, no climate policy, and rapid increase in anthropogenic emissions) were 170 

evaluated (van Vuuren et al., 2011). Both historic simulated climate data from January 1, 1999, 171 

to December 31, 2013, and future simulated climate data from January 1, 2035, to December 31, 172 

2049, were acquired to allow for bias-correction and SWMM modeling.  173 

Table 2. Characteristics of NA-CORDEX climate models used in this studya 174 
Model RCP GCM RCM Spatial Resolution 
1 4.5 CanESM2 CanRCM4 50km 
2 8.5 CanESM2 CanRCM4 50km 
3 8.5 GFDL-ESM2M WRF 25km 
4 8.5 GFDL-ESM2M WRF 50km 
5 8.5 HadGEM2-ES WRF 25km 
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6 8.5 HadGEM2-ES WRF 50km
7 8.5 MPI-ESM-LR RegCM4 25km 
8 8.5 MPI-ESM-LR RegCM4 50km 
9 8.5 MPI-ESM-LR WRF 25km 
10 8.5 MPI-ESM-LR WRF 50km 

aNA-CORDEX data provided by Mearns et al. (2017) 175 

2.2 Bias Correction 176 

Systematic bias was corrected in climate model outputs following data acquisition. Due 177 

to bias introduced during model formulation and the downscaling process, bias-correction 178 

procedures must be applied to more accurately align modeled climate data with observed climate 179 

data (Rosenberg et al., 2010). Stephens et al. (2010) compared five different weather prediction, 180 

181 

precipitation frequency by a factor of two while underproducing precipitation intensity compared 182 

with observed precipitation data. Bias-correction is, therefore, required prior to SWMM 183 

modeling to ensure that RCM inputs provide statistically accurate distributions. 184 

The kernel density distribution mapping (KDDM) bias-correction procedure was selected 185 

due to its accuracy, ease of implementation (McGinnis and Mearns, 2016; Tirpak et al., 2021), 186 

and overall performance compared with other bias-correction procedures (McGinnis et al., 187 

2015). KDDM applies a set of bias-correction steps to scale the distribution of climate 188 

projections to match that of observed climate data. Due to the frequent over-prediction of low 189 

intensity precipitation (Stephens et al., 2010), the excess drizzle  was first removed from 190 

projected rainfall by setting hourly precipitation volumes below a minimum threshold to zero in 191 

order to match the wet/dry ratio of timesteps in the observed precipitation data (McGinnis and 192 

Mearns, 2016).  193 

Following , nonparametric estimates of the underlying probability 194 

density functions (PDFs), similar to smooth, non-discrete histograms, were produced for the 195 
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observed and simulated precipitation datasets. The resulting PDFs were integrated using the 196 

trapezoidal rule to approximate cumulative distribution functions (CDFs). A transfer function 197 

was then created by fitting a spline between the corresponding quantiles for the inverse CDF of 198 

the observed precipitation data and the forward CDF of the simulated precipitation data 199 

(McGinnis et al., 2015). Lastly, the transfer function was applied to both the historic and future 200 

simulated precipitation data, yielding bias-corrected projections of future rainfall. KDDM bias-201 

correction of the simulated temperature data followed the same steps as the precipitation bias-202 

correction, with the exception of the d  step, and was performed on a monthly basis to 203 

account for seasonal variability (McGinnis et al., 2015). Bias-correction via KDDM was applied 204 

to all projections of precipitation and temperature records for each of the 17 cities of interest. 205 

In a single instance, extreme values were removed from observed climate data to improve 206 

bias-correction. The September 2013 floods in Boulder, CO, resulted in 231mm of rainfall 207 

recorded on September 12 (NOAA, 2016), nearly doubling the previous daily record of 122mm 208 

(Hamill, 2014). According to the NOAA National Weather Service Precipitation Frequency Data 209 

Server (NOAA, 2017), the 24-hr, 1000-year precipitation depth for Boulder, CO, is 207mm, 210 

24mm less than the rainfall on September 12, 2013, further illustrating the rarity of the 211 

precipitation event. Cook (2018) reported that extreme values in observed data used to bias-212 

correct simulated data may lead to inaccurate annual maximum values obtained through KDDM 213 

bias-correction. As such, observed hourly precipitation data from September 9, 2013, through 214 

September 16, 2013, for Boulder, CO, were replaced with the median precipitation depth for that 215 

time period using the previous 14-year record. Removal of these extreme values resulted in bias-216 

corrected simulated precipitation data that more accurately reflected the distribution of the 217 

observed precipitation data. 218 
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KDDM bias-correction of the simulated hourly precipitation and daily temperature data 219 

was performed using the R package (McGinnis, 2018; R Core Team, 2020). Similar to 220 

analysis in Tirpak et al. (2021), the Wilcoxon rank sum test was used to confirm the statistical 221 

similarities between the distributions of observed and bias-corrected climate data for all 10 222 

models across all 17 locations. Based on these results, the bias-corrected future climate data was 223 

determined to be suitable for subsequent SWMM modeling. Following bias-correction, an 224 

implausibly high precipitation depth was noted in the bias-corrected future dataset in El Paso 225 

using Model 6 (9615mm in 4 hours). The precipitation amount was removed and set to 0mm for 226 

the 4-hour time period, subsequently producing future precipitation statistics in line with the 227 

other nine models. 228 

2.3 SWMM Modeling 229 

The USEPA Storm Water Management Model (SWMM) version 5.1 was used in this 230 

study for its ability to provide dynamic rainfall-runoff relationships for long-term simulations 231 

(Gironás et al., 2009) and capacity to directly model bioretention cells using the LID Control 232 

Editor (Rossman, 2015). The SWMM model was designed to simulate a hypothetical 0.4-hectare 233 

(4,000 m2) subcatchment, a bioretention cell, a rain gage, and an outlet. Detailed design 234 

characteristics for the subcatchment are shown in Table 3. The subcatchment was designed with 235 

100% impervious cover to represent a common impervious surface in a city such as a parking 236 

lot. A 237 

hydraulic efficiency of the subcatchment (Arcement and Schneider, 1989). All runoff from the 238 

subcatchment was routed directly to the bioretention cell. 239 

Table 3. Subcatchment design characteristics 240 
Parameter Description Value Unit 
Area Area of subcatchment 0.4 hectare 
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Width Width of overland flow path for sheet flow runoff 76.2 m
% Slope Average surface slope 1 % 
% Imperv Percent impervious area 100 % 
N-Imperv Manning's n for overland flow across impervious area 0.01 - 

Dstore-Imperv Depression storage depth for impervious area 0 cm 
%Zero-Imperv Percent impervious area with zero depression storage 100 % 
Subarea Routing All runoff flows directly to outlet OUTLET - 

 241 

While bioretention cell design guidelines vary by region, the same bioretention cell 242 

characteristics were used for all locations and models to ensure the only independent variable 243 

was climate (observed and bias-corrected future), allowing for relative changes in bioretention 244 

cell performance to be assessed. Bioretention cell design characteristics were based off the 245 

Baseline design scenario used by Tirpak et al. (2021), which incorporated design 246 

recommendations from the Tennessee Department of Conservation (TDEC, 2014), the 247 

Minnesota Stormwater Steering Committee (MSSC, 2006), the Knox County Tennessee 248 

Stormwater Management Manual (County, 2008), and the SWMM version 5.1 249 

(Rossman, 2015). This design was considered to be comparable to design standards in most 250 

locations (Aiona et al., 2020; LDEQ, 2010; MassDEP, 2008; NCDEQ, 2020; PWSA, 2022; 251 

SARA 2019).  252 

Bioretention cell design characteristics used in the SWMM model are shown in Table 4. 253 

The surface area (534.2 m2) and surface layer depth (15.2 cm) were sized to enable the 254 

bioretention cell to store the water quality storm event for the southeastern United States 255 

(Deletic, 1998; Pitt, 1999), which is typically the surface runoff generated from a 25.4-mm storm 256 

event. The soil layer was composed of a mixture of coarse sand, topsoil, and organic matter to 257 

filter pollutants while promoting flow through high hydraulic conductivity (5.1 cm/hr). The 258 

storage layer underlying the media was composed of ASTM #57 stone (nominal size of 4.75 to 259 

25mm) with a high void ratio (0.4) to allow for water storage or seepage (1.3 cm/hr) into the 260 
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native soil (ASTM, 2003). Lastly, the bottom of the underdrain pipe was placed at the top of the 261 

storage layer to allow the storage layer to completely fill prior to draining (Rossman, 2015). 262 
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The Rainfall/Runoff process model accounted for surface runoff from the subcatchment 267 

into the bioretention cell. The Green-Ampt infiltration model was used to represent soil 268 

infiltration using fundamental soil properties (i.e., initial soil moisture deficit, saturated hydraulic 269 

conductivity, and suction head at the wetting front) (Green and Ampt, 1911). Dynamic wave 270 

routing was used to solve the one-dimensional Saint-Venant equations and incorporate both the 271 

continuity and momentum equations (Rossman, 2015). 272 

Data File inputs included observed hourly precipitation data (1999-2013) and bias-273 

corrected future hourly precipitation data (2035-2049). The Climatology Editor was used to input 274 

External Climate Files containing observed daily temperature data (1999-2013) and bias-275 

corrected future daily temperature data (2035-2049). The temperature files were used as the 276 

Source of Evaporation Rates in the Evaporation tab of the Climatology Editor, which estimates 277 

daily evaporation rates from daily temperature values using the Hargreaves method (Hargreaves 278 

and Samani, 1985; Rossman, 2015).  279 

Following model setup, the model was run using the observed climate data (17 scenarios) 280 

from January 1, 1999, to December 31, 2013, and the bias-corrected future climate data (170 281 

scenarios, which included 10 projections for each of the 17 cities used herein) from January 1, 282 

2035, to December 31, 2049. Three bioretention cell outputs were compiled and assessed in this 283 

study (i.e., infiltration loss, underdrain outflow, and overflow). These three bioretention cell 284 

performance indices accounted for the majority of total inflow into the bioretention cell and 285 

provided quantitative measures for the efficacy of the bioretention cell.  The sum of all three 286 

performance indices (i.e., infiltration loss, underdrain outflow, and overflow) over the entire 287 

 288 
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Observed (1999-2013) and future (2035-2049) median average annual infiltration loss, 289 

underdrain outflow, and overflow volumes for all 17 locations were calculated for Figure 5. The 290 

values were calculated by dividing the median cumulative volume by the duration of the 291 

simulation period (i.e., 15 years) to yield an annual average. The sum of all three annualized 292 

performance indices (i.e., infiltration loss, underdrain outflow, and overflow) is hereafter referred 293 

underdrain outflow or 294 

overflow under the observed precipitation dataset, relative comparisons between observed and 295 

future datasets have been made in Figure 5 using changes in the percent of total annual volume 296 

attributed to each hydrologic pathway as opposed to using percent change. Relative percent 297 

change between the observed and future datasets was calculated using Eq. 1.  298 

    Eq. 1 299 

3.0 Results and Discussion 300 

3.1 Precipitation Statistics 301 

Due to the significant number of locations (17) and models (10), climate inputs were first 302 

analyzed to understand how precipitation varied based on both location and a given climate 303 

model. Comparison of observed and future datasets using both categories, location and model, 304 

provides context as to how assessments of climate change effects may yield variable results 305 

based on these factors. Bioretention cell performance was then assessed using three bioretention 306 

cell performance indices: infiltration loss, underdrain outflow, and overflow. 307 

Due to the range of locatio308 

hydrologic variability of the United States. The 17 locations can be separated into the following 309 

five regions: the Northeast (Boston and Pittsburgh), the Midwest (Chicago, Fargo, and St. 310 

Louis), the Southeast (Charlotte, Memphis, and New Orleans), the Southwest (Amarillo, El Paso, 311 
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Phoenix, and San Antonio), and the Northwest/West (Boise, Boulder, Portland, Missoula, and 312 

San Jose). The Northeast and Midwest are defined by humid continental climates with mild to 313 

hot summers and year-round precipitation; the Southeast is defined by a humid subtropical 314 

climate; the Southwest varies from cold semi-arid to hot desert climates; and the Northwest/West 315 

varies from cold semi-arid to humid continental to Mediterranean climates (Köppen, 1900). For 316 

example, in the eastern United States, Pittsburgh is between 550 and 950 km from Boston (776 317 

km), Charlotte (584 km), Chicago (674 km), and St. Louis (898 km), and in the western United 318 

States, El Paso is also between 550 and 950 km from Amarillo (577 km), Boulder (923 km), 319 

Phoenix (555 km), and San Antonio (808 km). However, while the observed mean annual 320 

rainfall for these five eastern US locations ranges between 912 mm in Chicago and 1072 mm in 321 

Boston, the observed mean annual rainfall for these five western US locations ranges between 322 

163 mm in Phoenix and 790 mm in San Antonio. Rainfall event depths also vary significantly by 323 

region, from 35 mm in Boise to 268 mm in New Orleans for observed 99.9th percentile rainfall 324 

event depths. 325 

Figure 1 displays the percent change between the observed (1999-2013) and future 326 

(2035-2049) datasets for mean annual rainfall, mean annual rain events, mean annual rainy days, 327 

and mean drying period for the 17 locations. Rainy days were counted as any day in which 328 

rainfall depth was greater than 0.0 mm between 00:00 and 23:59. A minimum inter-event time 329 

(MIT) of 6-hours was used to separate rain events in the datasets (Chin et al., 2016; Palynchuk 330 

and Guo, 2007). Any period without rainfall for 6 hours or more was accounted for in the mean 331 

drying period (i.e., the time between consecutive rain events). 332 
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 333 
Fig. 1. Percent change between observed (1999-2013) and future (2035-2049) mean annual 334 
rainfall, mean annual rain events, mean annual rainy days, and mean drying period for the 17 335 
locations. The solid red line marks zero percent change between observed and future values. 336 

The boxplots for each location consist of the percent change between the observed and 337 

future datasets for all 10 models (i.e., 10 values per boxplot). Out of the 170 total future model-338 

location combinations, annual rainfall increased in 135 combinations (79.4%), annual rain events 339 

decreased in 110 combinations (64.7%), annual rainy days decreased in 103 combinations 340 

(60.6%), and mean drying period increased in 107 combinations (62.9%). Median annual rainfall 341 

(shown as the solid black line inside each boxplot in Figure 1) increased for all 17 locations 342 

while the median number of annual rain events and rainy days decreased for nine locations with 343 

an additional three locations observing decreases in one of these two precipitation characteristics.  344 

Across all locations, mean annual rainfall depth increased by 9.9% (71mm) while mean annual 345 

rain events and rainy days decreased 6.2% (6.5 days) and 3.9% (3.7 days), respectively. The 346 

greatest percent change in mean annual rainfall (with an increase of 18.7%, corresponding to an 347 

additional 278mm of rainfall) occurred in New Orleans, while the lowest percent change 348 

occurred in Portland with an increase of 4.3% (38mm). These trends are consistent with the 349 
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understanding that while the total amount of rainfall may be higher in many locations in the 350 

future, extreme rainfall will also increase in a significant number of locations due to climate 351 

change.  352 

Coupled with an anticipated reduction in the number of rainfall events, climate change is 353 

expected to bring larger drying periods between storms (Zhang et al., 2019), further increasing 354 

the vulnerability of water scarce environments (Hettiarachchi et al., 2022a). Median drying 355 

period increased for 11 locations, but Portland was the only location where all 10 models 356 

projected increased annual dry days (i.e., a decrease in the average number of rainy days per 357 

year). The Northwest/West was the only region in which all locations (i.e., Boise, Boulder, 358 

Portland, Missoula, and San Jose) showed increases in median drying period, and excluding 359 

Missoula, account for four of the five largest percent increases in median drying period. As 360 

documented by Manka et al. (2016), the significant increase in median drying period in the 361 

Northwest/West could reduce the efficacy of biological processes present in bioretention cells 362 

resulting in nutrient export and the subsequent degradation of nearby waterways. Combining all 363 

locations, mean drying period increased by 10.5% (0.5 days) with the greatest percent change in 364 

mean drying period occurring in New Orleans (mean increase of 37.8% or 1.2 days), while no 365 

change occurred in St. Louis. Jhong and Tung (2018) also observed increases in the duration of 366 

future dry periods in Taiwan and suggested that occurrences of floods and droughts could occur 367 

more frequently due to the combination of increased precipitation event volumes and drying 368 

periods.  369 

Figure 2 displays the percent change between observed (1999-2013) and future (2035-370 

2049) precipitation depths for 50th, 90th, 99th, and 99.9th percentile rainfall event depths for the 17 371 

locations. Out of the 170 total future model-location combinations, 50th percentile events 372 
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increased in 62 combinations (36.5%), 90th percentile events increased in 118 combinations 373 

(69.4%), 99th percentile events increased in 165 combinations (97.1%), and 99.9th percentile 374 

events increased in 147 combinations (86.5%). While median 50th percentile events only 375 

increased in seven locations, the higher percentile events were consistently predicted to increase 376 

in size, with median 90th percentile events increasing in 12 locations, median 99th percentile 377 

events increasing in all 17 locations, and median 99.9th percentile events increasing in 16 378 

locations. Rainfall intensities were projected to increase for an even greater number of locations 379 

and percentiles, with median 50th percentile rainfall intensities predicted to increase in 11 380 

locations, median 90th percentile rainfall intensities predicted to increase in 15 locations, median 381 

99th percentile rainfall intensities predicted to increase in all 17 locations, and median 99.9th 382 

percentile rainfall intensities predicted to increase in 15 locations. 383 

 384 
Fig. 2. Percent change between observed (1999-2013) and future (2035-2049) precipitation 385 
depths for 50th, 90th, 99th, and 99.9th percentile rainfall event depths for the 17 locations. The 386 
solid red line marks zero percent change between observed and future values. 387 
*Note: An extreme outlier for 99.9th percentile events in El Paso is not shown in the figure 388 
(843%). 389 
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The trend in upper-percentile precipitation events and rainfall intensities ( 90th) coupled 390 

with minimal changes to moderate precipitation events (i.e., 50th percentile) supports findings in 391 

existing literature and again points to anticipated increases in severe rainfall in the future (Karl 392 

and Knight, 1998; Olsson et al., 2009). Since bioretention cells are most effective during small, 393 

lower-intensity precipitation events, the increase in the frequency of large, higher-intensity 394 

precipitation events is particularly concerning for future bioretention cell performance (Wang et 395 

al., 2018). The significant outliers in the 50th (Boulder) and 99.9th percentiles (El Paso) indicate 396 

that, as expected, climate change will not affect regional or even local precipitation equally. For 397 

example, the four locations (i.e., Boulder, Missoula, Portland, and San Jose) with the greatest 398 

increases in median 50th percentile precipitation events occurred in the Northwest/West, while no 399 

location in the Southwest or Southeast showed an increase in median 50th percentile precipitation 400 

events. Additionally, while those four locations (i.e., Boulder, Missoula, Portland, and San Jose) 401 

showed all 10 models projecting either increases or no change in 50th percentile precipitation 402 

events, six locations (i.e., Amarillo, Charlotte, El Paso, Memphis, San Antonio, and St. Louis) 403 

showed all 10 models projecting either decreases or no change in 50th percentile precipitation 404 

events  demonstrating the variability of future climate. Winston (2016) found similar variability 405 

in future precipitation when comparing locations only 25 km apart in northeast Ohio, USA. 406 

Similarly, Gao et al. (2012) showed substantial variability in climate change effects on extreme 407 

weather across the eastern United States. 408 

3.2 Bioretention Cell Performance Statistics 409 

Figure 3 displays the percent change between observed (1999-2013) and future (2035-410 

2049) infiltration loss, underdrain outflow, and overflow from the modeled bioretention cell for 411 

all 17 locations. Due to a lack of overflow under the observed rainfall data (i.e., flow equal to 412 
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zero), boxplots for Boise, Missoula, Phoenix, Portland, and San Jose are excluded from Figure 3 413 

as percent change could not be calculated. Boise was the only location where both underdrain 414 

outflow and overflow did not occur under the observed rainfall data and also produced the lowest 415 

observed 99th and 99.9th percentile rainfall event depths out of all 17 locations, illustrating the 416 

relationship between bioretention performance and regional climate. While underdrain outflow 417 

and/or overflow box plots in Figure 3 could not be produced for these five locations (i.e., Boise, 418 

Missoula, Phoenix, Portland, and San Jose), underdrain outflow and overflow increased in all 419 

five locations under future scenarios, indicating even the best-performing bioretention cells may 420 

experience diminished performance under future climate change scenarios. These locations also 421 

produced five of the six lowest observed 99.9th percentile rainfall event depths and are the 422 

western-most out of all 17 locations, further illustrating the relationship between bioretention cell 423 

performance and regional climate. Additionally, overflow only occurred on two days (out of 15 424 

years) under the observed rainfall data for El Paso. As such, percent change between observed 425 

and future overflow in El Paso appears more extreme in part due to the low number of overflow 426 

days for the observed dataset. 427 

 428 
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Fig. 3. Percent change between observed (1999-2013) and future (2035-2049) infiltration loss, 429 
underdrain outflow, and overflow from modeled bioretention cell for 17 locations. The solid red 430 
line marks zero percent change between observed and future values. 431 
*Note: Second half of boxplot for El Paso is cut off from the figure (Q3 = 2487%; Max = 432 
5360%). 433 

Excluding the two locations with increased median infiltration loss, Boise (25.9%) and 434 

Fargo (1.7%), percent change in median infiltration loss ranged from -0.2% (Portland) to -18.3% 435 

(New Orleans) in the remaining 15 locations. Conversely, excluding the one location with an 436 

observed underdrain outflow value of zero (Boise), percent change in median underdrain outflow 437 

increased between 9.7% (San Antonio) and 393.2% (Phoenix) in the remaining 16 locations. 438 

Finally, five locations had an observed overflow value of zero (i.e., percent change could not be 439 

calculated), while extreme outlier values were observed in two locations, namely Boulder 440 

(median decrease of 8.6%) and El Paso (median increase of 1510.4%). In the remaining 10 441 

locations, the percent change in median overflow increased between 74.5% (Chicago) and 442 

509.7% (Boston). Additionally, all locations in the Northeast (i.e., Boston and Pittsburgh) and 443 

Southeast (i.e., Charlotte, Memphis, and New Orleans) showed all 10 models projecting 444 

increases in overflow  with a minimum increase in overflow of 140% across the five locations. 445 

New Orleans, Pittsburgh, and St. Louis also showed all 10 models projecting decreases in 446 

median infiltration loss, indicating a high likelihood of diminished performance regardless of the 447 

future climate change scenario. The projected significant increase in overflow in 11 locations is 448 

most concerning from a public health and safety perspective due to the increased risk of flooding 449 

in urban areas (Hou et al., 2020; Olsson et al., 2009) and degradation of waterways caused by 450 

overflow predominantly bypassing treatment and quickly proceeding to nearby conveyances 451 

(Hathaway et al., 2014; Walsh et al., 2005). 452 
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Out of the 170 total future model-location combinations, overflow increased in 151 453 

combinations (88.8%), underdrain outflow increased in 163 combinations (95.9%), and 454 

infiltration loss decreased in 121 combinations (71.2%). The increase in overflow and underdrain 455 

outflow combined with decreased infiltration loss indicate bioretention cells designed following 456 

current methods may be unable to accommodate the projected shift in precipitation patterns; 457 

specifically, surface infiltration rates may not be sufficient to avoid significant increases in 458 

overflow. While only a single underlying soil type (1.3 cm/hr) was evaluated in this study, 459 

results from Tirpak et al. (2021) indicate that underlying soil type has little effect on overflow. 460 

Thus, the primary benefits of bioretention cells (i.e., reducing peak runoff, groundwater recharge, 461 

and filtering pollutants) may be lessened under future climate change scenarios. 462 

Decreased infiltration loss under increased rainfall volumes has been documented in 463 

previous literature (Tirpak et al., 2021), but the root cause has not been investigated. This is 464 

important as different design modifications may be needed depending on the primary 465 

contributors to decreased infiltration. This phenomenon is most likely due to the bioretention cell 466 

surface layer filling too quickly, overwhelming surface infiltration rates (and subsequent 467 

infiltration loss), and contributing to immediate overflow. If the surface layer is filling too 468 

quickly to enable surface infiltration, then the surface layer depth could be increased to hold a 469 

greater runoff volume, providing additional time for surface infiltration to occur (Tirpak et al., 470 

2021). Real-time control (RTC) technologies could provide an additional option to decrease 471 

overflow and increase infiltration during moderate storm events through weather research and 472 

forecast (WRF) models and real-time sensors and controls (Klenzendorf et al., 2015), enabling 473 

bioretention cells to transition from passive stormwater management to active (Vijayaraghavan, 474 

et al., 2021). Compared to passive bioretention cells, Persaud et al. (2019) and Shen et al. (2020) 475 
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found that RTC technologies could provide both hydrologic and water quality improvements if 476 

retention time and storage are optimized for storm events. However, further research on the 477 

efficacy of RTC technologies for bioretention performance optimization is still required478 

unlikely that RTC technologies could significantly reduce overflow during extreme storm events. 479 

Figure 4 displays the percent change between observed (1999-2013) and future (2035-480 

2049) mean yearly overflow days, 50th percentile daily overflow volume, 90th percentile daily 481 

overflow volume, and 99th percentile daily overflow volume. Overflow days were counted as any 482 

day in which overflow volume was greater than 0.0 m3 between 00:00 and 23:59. Due to 483 

observed values of zero for overflow, Boise, Missoula, Phoenix, Portland, and San Jose are not 484 

shown in Figure 4 (i.e., percent change could not be calculated). Percent change in median yearly 485 

overflow days increased between 16.4% (New Orleans) and 347.5% (El Paso) for all 12 486 

locations shown. Of the 12 locations shown in Figure 4, median number of annual rainy days 487 

also decreased in six locations (i.e., Boston, Boulder, Chicago, El Paso, New Orleans, and 488 

Pittsburgh) and, excluding Boulder and St. Louis, median 90th percentile rainfall intensities also 489 

increased for the 10 remaining locations, again indicating increases in rainfall magnitude and 490 

intensity when events do occur. A particularly compelling example of this trend is found in New 491 

Orleans, where a relatively low increase in median yearly overflow days was observed, yet a 492 

significant increase in median annual precipitation (18.7%) and 99th percentile rainfall intensities 493 

(21.3%) and decrease in median annual rainy days (19.5%) were observed  the largest percent 494 

changes in all three precipitation statistics  suggesting more intense events will make up a 495 

greater percentage of the storms that do occur. Given that bioretention cells are most effective 496 

during small, lower-intensity precipitation events, the efficacy of bioretention cells as a 497 
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stormwater management practice in New Orleans may be questioned as large, higher-intensity 498 

precipitation events become the norm. 499 

 500 
Fig. 4. Percent change between observed (1999-2013) and future (2035-2049) overflow 501 
characteristics for 12 locations. The solid red line marks zero percent change between observed 502 
and future values. 503 
*Note: An outlier for Amarillo is cut off from the 90th percentile figure (Max = 722%), and the 504 
second half of the boxplot for El Paso is cut off from the 90th percentile figure (Q3 = 701%; Max 505 
= 1158%) and 99th percentile figure (Q3=1220%; Max = 4436%). 506 

Excluding Boulder and Chicago, median 50th, 90th, and 99th percentile daily overflow 507 

increased for the 10 remaining locations shown in Figure 4. Excluding the Northwest/West, the 508 

consistent increase across all overflow percentiles indicates that government agencies, city 509 

planners, and stormwater engineers across the country should expect higher volumes to bypass 510 

treatment when overflow occurs from bioretention cells. Locations in the Southeast (i.e., 511 

Charlotte, Memphis, and New Orleans) face the greatest likelihood of higher overflow volumes. 512 

All three locations experienced  increases for all three (50th, 90th, and 99th) median daily 513 

overflow percentiles, with all 10 climate models projecting increases in overflow compared with 514 

observed performance. Given the uniformity in predicted changes to a range of overflow 515 

volumes, adaptations to limit the environmental and public safety impacts of untreated bypass 516 

may be especially critical in these locations.  517 
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3.3 Regional Trends in Future Bioretention Cell Performance 518 

Observed (1999-2013) and future (2035-2049) median average annual infiltration loss, 519 

underdrain outflow, and overflow volumes for all 17 locations are presented in Figure 5. Results 520 

indicate that bioretention cells in the southern United States (i.e., Southeast and Southwest) are 521 

most at risk of performance impacts under future climate change scenarios. The seven southern-522 

most locations (i.e., Amarillo, Charlotte, El Paso, Memphis, New Orleans, Phoenix, and San 523 

Antonio) produced the highest relative percent increases in overflow, ranging from 7.0% to 524 

19.6%. With the exception of Memphis, these locations also produced six of the highest relative 525 

percent decreases in infiltration loss, ranging from 15.3% to 24.0%. New Orleans and San 526 

Antonio also recorded the two highest relative increases in annual overflow volume, 2115.1 cu 527 

m/yr and 710.0 cu m/yr, respectively. Significant increases in overflow in the southern United 528 

States are consistent with extreme precipitation projections by Prein et al. (2017) and 529 

bioretention literature (Cook et al., 2019; Hathaway et al., 2014). The significant increases in 530 

overflow are a direct result of the frequent and intense rainfall in the southern United States, 531 

highlighting the potential limitations of current bioretention design strategies. Although GSI is 532 

likely to provide some resiliency to extreme precipitation, these results indicate there are limits 533 

in this resilience that can be exceeded.  534 
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 535 
Fig. 5. Annual Volume (1000 cu m/yr) shown in the center of each donut chart is the sum of 536 
annual overflow, underdrain outflow, and infiltration loss. Observed (top) and future (bottom) 537 
overflow (grey), underdrain outflow (orange), and infiltration loss (blue) for all 17 locations. 538 
Donut hole size is inversely proportional to the annual volume.  539 

 540 
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Similarly, bioretention cells located in the Midwest and Northeast are still at risk of 541 

diminished performance under future climate change scenarios. Following the seven southern 542 

locations, the five locations in the Midwest and Northeast (i.e., Boston, Chicago, Fargo, 543 

Pittsburgh, and St. Louis) produced the next highest relative percent increases in overflow, 544 

ranging from 3.3% to 5.2%. The five Midwest and Northeast locations also recorded the 5th 545 

through 9th highest relative median increases in annual overflow volumes, ranging from 176.2 cu 546 

m/yr to 241.1 cu m/yr. Results are consistent with Cook et al. (2019) who found that overflow 547 

from bioretention cells in the Midwest and Northeast occurred at equal or greater magnitudes 548 

compared with other regions in the United States. 549 

Bioretention cells in the Northwest/West have the best likelihood of being able to 550 

maintain existing function under future climate change scenarios, also consistent with previous 551 

findings (Cook et al. 2019). The five Northwest/West locations (i.e., Boise, Boulder, Missoula, 552 

Portland, and San Jose) produced the lowest relative percent changes in overflow, ranging from a 553 

decrease of 0.3% to an increase of 1.2%. These locations also recorded the lowest relative 554 

changes in annual overflow volume, ranging from a median decrease of 4.2 cu m/yr to an 555 

increase of 21.5 cu m/yr. The minimal effect on existing bioretention cell function indicates that 556 

stormwater infrastructure in the Northwest/West may require the least adaptation measures to 557 

maintain existing function under future climate conditions.   558 

3.4 Implications to Bioretention Design and Adaptation Measures 559 

While overflow and infiltration are expected to increase and decrease, respectively, under 560 

future climate conditions for many bioretention cells across the United States, modifications can 561 

be implemented to mitigate the effects of climate change to their performance. Tirpak et al. 562 

(2021) compared an ensemble of retrofit and design configurations for bioretention cells in east 563 
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Tennessee, and found varying degrees of success for three scenarios: 1) increasing the soil layer 564 

depth; 2) increasing the storage layer depth; 3) and increasing the bioretention cell surface area. 565 

Increasing the depth of the soil layer in the bioretention cell was shown to be a conservative yet 566 

effective method of increasing runoff volume retention (Tirpak et al., 2021). As such, increasing 567 

the depth of the soil layer for bioretention cells in regions where overflow is expected to 568 

modestly increase, such as the Northwest/West and parts of the Midwest, is a viable option 569 

requiring low investment, particularly for newly constructed cells. Increased soil layer depth can 570 

also increase pollutant removal and water storage (Hatt et al., 2009), which may mitigate plant 571 

stress in these systems in the drier climates projected for the Northwest/West.  572 

Increasing the depth of the storage layer has been found to be an effective method of 573 

reducing overflow. Hathaway et al. (2014) found an increased storage layer depth from 9.0 to 574 

31.0 cm would maintain existing function of bioretention cells in east North Carolina into the 575 

late 2050s. Similarly, Winston (2016) found that increasing storage layer depth from 5.0 to 17.0 576 

cm would maintain existing function in northeast Ohio into the late 2050s. Increasing the storage 577 

layer depth has the potential to temporarily store a greater volume of runoff than increasing the 578 

soil layer depth but requires either deepening the bioretention cell or removing media from the 579 

soil layer, reducing the efficacy of pollutant removal. Further, substantial increases in surface 580 

storage depth may lead to public safety concerns due to the hazard posed by deeper ponding 581 

zones relative to nearby surfaces. However, increasing the storage layer depth has been shown to 582 

be more effective at reducing overflow than increasing the soil layer depth and should be 583 

considered if overflow reduction is a priority (Tirpak et al., 2021). Densely populated, highly 584 

urbanized locations with a need to mitigate projected increases in future overflow, such as 585 
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Chicago, Pittsburgh, or Boston, may greatly benefit from increased storage layer depths in 586 

bioretention cells.  587 

The final viable option investigated by Tirpak et al. (2021) increased the surface area of 588 

bioretention cells relative to the subcatchment, which has been shown to be an effective method 589 

of reducing overflow and increasing infiltration due to increased soil and storage layer volumes 590 

(Wang et al., 2019b; Zhang et al. 2019). Increasing bioretention cell surface area requires the 591 

greatest investment of the three options and may not be viable in highly urbanized locations due 592 

to limited space or cost. However, locations in the southern United States, such as El Paso, San 593 

Antonio, Memphis, Charlotte, and New Orleans, may require significant investment in all 594 

stormwater infrastructure (both grey and green) to mitigate projected increases in overflow 595 

volumes. A location such as New Orleans, in particular, may need to incorporate bioretention 596 

cell modifications wherever possible to reduce the significant increases in overflow volumes 597 

projected under future climate conditions. 598 

Given the geographic and hydrologic variability of the US locations selected for this 599 

study, the bioretention cell modifications suggested could be applied to a range of cities globally. 600 

Locations projected to experience fewer rainfall events and longer dry periods, such as 601 

Melbourne, Australia (Zhang et al., 2019), could increase soil layer depths of bioretention cells 602 

to mitigate plant stress and improve pollutant removal. High-density locations with humid 603 

continental climates similar to Boston and Pittsburgh, such as Vienna, Austria (Strauss et al., 604 

2012), may benefit from increasing the storage layer depth in bioretention cells depending on the 605 

severity of future climate conditions. Subtropical locations similar to New Orleans and Charlotte, 606 

such as Guangzhou, China (Wang et al., 2019a), will likely require considerable bioretention cell 607 

modifications wherever possible. 608 
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4.0 Conclusions 609 

Bioretention performance under future climate change projections was evaluated for 17 610 

cities across the contiguous United States using SWMM version 5.1. Median annual rainfall 611 

increased across all 17 locations in future scenarios. A majority of locations also experienced a 612 

decreased median number of rainy days and rain events while median drying period increased. 613 

Precipitation events were projected to become more severe for upper-percentile events ( 90th) 614 

while 50th percentile events were projected to change minimally for all locations except for 615 

Boulder. Future precipitation events were projected, therefore, to become less frequent but more 616 

severe. However, findings clearly indicate that while precipitation event severity is expected to 617 

increase on average across the United States the shift in precipitation patterns will vary 618 

significantly by location. 619 

As a result of shifting precipitation patterns, future bioretention cell performance was 620 

impacted by changing climates across all locations. Results demonstrated that bioretention cells 621 

in the southern United States have the greatest likelihood of diminished future function, followed 622 

by cells in the Midwest and Northeast. Due to the magnitude of change projected for the 623 

Northwest/West, bioretention cells in those regions may only require minor investments in 624 

retrofits or design modifications to maintain future performance.  625 

Increased annual overflow, which poses significant environmental and health risks to 626 

urban communities, projected for the Midwest, Northeast, and southern United States, may 627 

elevate the importance of design modifications (e.g., increasing surface storage layer volumes) to 628 

offset these risks. Projected decreases in infiltration from bioretention cells, especially notable in 629 

the southern United States, presents additional challenge for city planners and stormwater 630 

engineers. If bioretention cells are no longer able to promote infiltration into native soils and 631 

filter pollutants from runoff, then their benefit as a stormwater control measure will be 632 
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substantially reduced. Further, these outcomes suggest that while bioretention following current 633 

design strategies may continue to provide some runoff mitigation, shifting precipitation patterns, 634 

including more intense rain events, reveal limitations in their ability to maintain desired 635 

performance under future climate conditions. 636 

Future studies should consider a wider range of climate models, emissions scenarios, and 637 

bioretention cell configurations to provide an even more robust assessment of future impacts to 638 

performance. Additionally, while a range of climate models and locations were evaluated in this 639 

study, a single bioretention cell configuration was used for all simulations. Studies which 640 

consider multiple bioretention cell configurations would provide insight on the significance of 641 

design modifications beyond current standards for a range of locations to maintain existing 642 

function under future climate scenarios.  643 
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