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12 Abstract
13 In light of shifting precipitation patterns induced by climate change, communities are seeking to

14 build resiliency in urban drainage systems through interventions such as green stormwater

15  infrastructure (GSI). Bioretention cells are one of the most commonly implemented forms of GSI
16  for their ability to reduce peak discharge, retain runoff, and filter pollutants. However, they may
17  be at risk of reduced function in the future due to deviations from historic precipitation frequency
18 and intensity patterns which are essential to their design. Further, changes in future function are
19  likely to vary regionally as the magnitude of future climate changes will differ across the globe.
20  To explore the range of impacts to future bioretention function, an ensemble of 10 regional

21  climate models at 17 locations across the contiguous United States were evaluated to provide the
22 widest range of potential future outcomes using a probabilistic approach to capture the uncertain
23 nature of climate change. Bioretention cells were modeled using USEPA’s Storm Water

24  Management Model (SWMM) to compare existing and future performance under a range of

25  climate change projections. Median annual rainfall and 99" percentile rainfall event depths and
26  intensities were projected to increase across all 17 locations while antecedent dry period (i.e., the
27  time between consecutive rain events) was projected to increase for 11 locations.

28  Correspondingly, bioretention cell hydrologic performance decreased across all 17 locations
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under future scenarios: relative to performance under current climate conditions, annual volumes
of infiltration decreased between 4.0-24.0% across all 17 locations while overflow increased
between 0.4-19.6% for 15 locations. Results suggest that bioretention cells in the southern
United States are at significant risk of reduced function in the future while those in the Midwest
and Northeast are at moderate risk. Bioretention cells in the Northwest/West performed the best
under future climate scenarios; that is, they showed similar function in the future to that of the
present. Findings demonstrate that most, if not all, bioretention cells across the contiguous
United States will require some degree of modification to maintain existing function under future

conditions.

Keywords: Green infrastructure; urban hydrology; climate change; stormwater; SWMM
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1.0 Introduction

The increased likelihood of extreme weather events (e.g., frequent floods, drought
conditions, record-breaking temperatures) associated with anthropogenic activities has been well
documented (Masson-Delmotte et al., 2018). For example, Bishop et al. (2019) found a 40%
increase in fall precipitation for the period 1895-2018 in the southeastern United States, with
nearly all of the added precipitation occurring with an increased intensity. Similarly, using
datasets from 182 stations across the contiguous United States, Karl and Knight (1998) noted a
10% increase in precipitation over the twentieth century primarily due to heavy and extreme
precipitation events with 53% of the added precipitation attributable to the upper 10% of the
precipitation distribution. According to Prudhomme et al. (2014), if anthropogenic activities and
emissions continue to increase at the current rate, then Southern Europe, the Middle East, the
Southeast United States, Chile, and South West Australia are at significant risk of experiencing
droughts and water security issues by the year 2100.

At the same time, the rapid urbanization across the planet has led to a greater percentage
of urban areas becoming covered by impervious surfaces that prevent soil infiltration (Shuster et
al., 2005). These shifts result in increased runoff and flooding (Du et al., 2012), increased
nonpoint source pollution (O’Driscoll et al., 2010), and a suite of degraded conditions in
receiving waters referred to as the urban stream syndrome (Walsh et al., 2005). The combination
of climate change and rapid urbanization poses serious risks for public health and safety. Zhang
et al. (2018) showed that the extreme flooding caused by Hurricane Harvey in August 2017 was
intensified due to both anthropogenic-induced climate change and the effects of increased
urbanization in Houston, Texas, USA. Similarly, Yang et al. (2021) found that the extreme

rainfall and flooding in Western Europe during July 2021 was exacerbated due to urbanization



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

and urban-induced rainfall anomalies. Such extreme precipitation events have provoked efforts
to mitigate the worsening effects of climate change.

Stormwater management systems, which are typically broken into two categories, gray
and green, represent critical infrastructure components which are directly threatened by climate
change. Green stormwater infrastructure (GSI) is increasingly utilized in urban areas to assist and
supplant existing gray stormwater infrastructure and enhance the resilience of urban drainage
networks to climate change (Eckart et al., 2017; Huang et al., 2018). One of the most commonly
implemented and studied types of GSI is the bioretention cell, which consists of layers of gravel,
soil, sand, organic matter, and plants (TDEC, 2014). Bioretention cells provide effective removal
of total suspended solids (TSS) and pollutants (e.g., TN, TP) (Davis et al., 2001) while reducing
runoff volume and peak discharge (Dietz, 2007; Winston et al., 2016; Davis 2008).

Despite research showing the benefits of bioretention under existing climate regimes, the
use of these systems for climate change mitigation and environmental sustainability is
underpinned by their ability to function under future climate scenarios, which is effectively the
climate resiliency of bioretention (Hettiarachchi et al., 2022b). Historically, hydrologic
engineering designs (including bioretention) have relied on the stationarity of rainfall patterns.
However, recent research has shown that this can no longer be assumed with a shift towards
increasingly frequent and more intense storm events (Milly et al., 2008; Pryor et al., 2009; Cook
et al., 2020; Rosenberg et al., 2010). Wasko and Sharma (2015) and Hettiarachchi et al. (2018)
also found that warming temperatures associated with future climate regimes could increase the
variability of storm temporal patterns, further stressing stormwater infrastructure. Thus, a
number of studies have begun to use projections from regional climate models (RCMs) and

general circulation models (GCMs) to understand potential shifts in hydrologic processes and the
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resulting effects on critical infrastructure (Arnbjerg-Nielsen, 2012; Cook et al., 2019; Sarkar et
al., 2018).

Recent studies have implemented a similar approach to investigate the future function of
bioretention cells under climate change. Hathaway et al. (2014) evaluated future performance of
four bioretention cells in Rocky Mountain and Nashville, North Carolina, USA, using one RCM
and two representative concentration pathways (RCPs). Comparing historic (2001-2004) with
projected (2055-2058) performance, results showed that the frequency and volume of overflow
could increase significantly for projected scenarios, requiring an additional storage of between 9
and 31cm to limit increases in annual overflow under future conditions. Zhang et al. (2019)
evaluated a range of design configurations for a bioretention cell in Melbourne, Australia, using
eight GCMs and one RCP. Comparing historic (1995-2004) with projected (2040-2049)
performance, results suggested that larger bioretention cells should be prioritized due to the
variability of future GCM scenarios. Similarly, Tirpak et al. (2021) evaluated a range of design
configurations for a bioretention cell in Knoxville, Tennessee, USA, using 10 RCMs, two RCPs,
and three underlying soil types with infiltration rates ranging from 0.13 cm/hr to 2.5 cm/hr.
Comparing historic (2010-2014) with projected (2040-2044) performance, results showed that
even the most significant retrofit configurations led to overflow increases in 67.4% to 71.1% of
simulations — with underlying soil type having minimal effect on overflow — indicating the
significant impact of shifting precipitation patterns. Wang et al. (2019a) performed a similar
study by evaluating a range of bioretention cell surface areas in Guangzhou, China, using 11
GCMs, four RCPs, and six design storms. Results showed that future bioretention cells could
maintain existing function for small, short-duration storms by increasing surface area, but

function will diminish as storm size and duration increase regardless of increases in surface area.
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Highlighting regional differences in future climate, Winston (2016) evaluated future
performance of bioretention cells located 25 km apart in northeast Ohio, USA, using one GCM
and two RCPs. Comparing historic (2001-2004) with projected (2055-2059) performance, results
showed that bioretention cells mitigated 5-9% less runoff in one location while mitigating 4-6%
more runoff in the other location.

As such, while some research has been performed investigating the performance of a
single bioretention cell under future precipitation patterns, almost no research has been
performed comparing multiple locations across the United States or the globe, for that matter.
There is a need to explore the geographic variability in the effects of climate change on existing
GSI to better understand the regional adaptations that may be required to prepare for these
impacts. To address this knowledge gap, this study explores changes in bioretention performance
under future climate change scenarios in 17 locations across the United States selected based off
their unique hydrologic region. Ten Regional Climate Models (RCMs) were selected from the
North American Coordinated Regional Downscaling Experiment (NA-CORDEX) to provide a
wide range of potential future precipitation outcomes at each location (Mearns et al., 2017). The
objective of this effort was to identify shifts in bioretention performance from historical to future
conditions and to better understand the geographic variability of impacts to future performance.
Results from this work can be used to identify locations where bioretention cells may be most
adversely affected by climate change, and thus may require modifications to ensure their desired

performance persists in the future.
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2.0 Data Collection and Methodology
2.1 Data Collection

Observed climate data were acquired from the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental Information (NCEI) data archive to
allow for bias-correction of climate model outputs and characterization of historical bioretention
function (NOAA, 2016). Simulated historic and future climate data were acquired from the
North American Coordinated Regional Downscaling Experiment (NA-CORDEX) data archive
(Mearns et al., 2017). Climate data were acquired for 17 locations across the US (Table 1), which
were selected based on their unique hydrologic region defined by the Bukovsky climate map
(Bukovsky et al., 2019). The Bukovsky climate map groups regions by hydrologic similarity,
accounting for average temperature and rainfall as well as seasonal occurrences such as the
North American monsoon (Bukovsky, 2011). Using the same cities as Cook et al. (2019), each

climate region in the contiguous US was represented by at least one city in the analysis.
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Observed daily temperature (maximum and minimum) and hourly precipitation data from
January 1, 1999, to December 31, 2013, were gathered from the NOAA NCEI archive for all 17
locations (NOAA, 2016). The 15-year period was selected to fully capture the year-to-year
variability of recent precipitation and temperature patterns, subject to data availability. The 17
NOAA NCEI stations shown in Table 1 were selected based off the availability of continuous
climate data for the time range specified and their proximity to the selected cities.

Covering the majority of North America, the NA-CORDEX data archive provides
simulated climate data from a range of RCMs produced using boundary conditions from GCMs
in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Mearns et al., 2017). As
recommended by Bukovsky and Mearns (2020), all ten NA-CORDEX climate models with
available hourly precipitation projections were used for this study to provide the most
comprehensive range of potential future outcomes (Table 2). Due to the limited availability of
hourly precipitation projections in the archive, only one RCP4.5 scenario (representing moderate
population growth, moderate climate policy, and eventual decline and stabilization of
anthropogenic emissions) was evaluated while nine RCP8.5 scenarios (representing high
population growth, no climate policy, and rapid increase in anthropogenic emissions) were
evaluated (van Vuuren et al., 2011). Both historic simulated climate data from January 1, 1999,
to December 31, 2013, and future simulated climate data from January 1, 2035, to December 31,

2049, were acquired to allow for bias-correction and SWMM modeling.

Table 2. Characteristics of NA-CORDEX climate models used in this study?

Model RCP GCM RCM Spatial Resolution
1 4.5 CanESM2 CanRCM4 50km
2 8.5 CanESM2 CanRCM4 50km
3 8.5 GFDL-ESM2M WRF 25km
4 8.5 GFDL-ESM2M WRF 50km
5 8.5 HadGEM2-ES WRF 25km
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6 8.5 HadGEM2-ES WRF 50km
7 8.5 MPI-ESM-LR RegCM4 25km
8 8.5 MPI-ESM-LR RegCM4 50km
9 8.5 MPI-ESM-LR WRF 25km
10 8.5 MPI-ESM-LR WRF 50km

*NA-CORDEX data provided by Mearns et al. (2017)
2.2 Bias Correction

Systematic bias was corrected in climate model outputs following data acquisition. Due
to bias introduced during model formulation and the downscaling process, bias-correction
procedures must be applied to more accurately align modeled climate data with observed climate
data (Rosenberg et al., 2010). Stephens et al. (2010) compared five different weather prediction,
climate, and global cloud “resolving” models and found that all models overproduced
precipitation frequency by a factor of two while underproducing precipitation intensity compared
with observed precipitation data. Bias-correction is, therefore, required prior to SWMM
modeling to ensure that RCM inputs provide statistically accurate distributions.

The kernel density distribution mapping (KDDM) bias-correction procedure was selected
due to its accuracy, ease of implementation (McGinnis and Mearns, 2016; Tirpak et al., 2021),
and overall performance compared with other bias-correction procedures (McGinnis et al.,
2015). KDDM applies a set of bias-correction steps to scale the distribution of climate
projections to match that of observed climate data. Due to the frequent over-prediction of low
intensity precipitation (Stephens et al., 2010), the excess “drizzle” was first removed from
projected rainfall by setting hourly precipitation volumes below a minimum threshold to zero in
order to match the wet/dry ratio of timesteps in the observed precipitation data (McGinnis and
Mearns, 2016).

Following this “dedrizzling” step, nonparametric estimates of the underlying probability
density functions (PDFs), similar to smooth, non-discrete histograms, were produced for the

10
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observed and simulated precipitation datasets. The resulting PDFs were integrated using the
trapezoidal rule to approximate cumulative distribution functions (CDFs). A transfer function
was then created by fitting a spline between the corresponding quantiles for the inverse CDF of
the observed precipitation data and the forward CDF of the simulated precipitation data
(McGinnis et al., 2015). Lastly, the transfer function was applied to both the historic and future
simulated precipitation data, yielding bias-corrected projections of future rainfall. KDDM bias-
correction of the simulated temperature data followed the same steps as the precipitation bias-
correction, with the exception of the “dedrizzling” step, and was performed on a monthly basis to
account for seasonal variability (McGinnis et al., 2015). Bias-correction via KDDM was applied
to all projections of precipitation and temperature records for each of the 17 cities of interest.

In a single instance, extreme values were removed from observed climate data to improve
bias-correction. The September 2013 floods in Boulder, CO, resulted in 23 1mm of rainfall
recorded on September 12 (NOAA, 2016), nearly doubling the previous daily record of 122mm
(Hamill, 2014). According to the NOAA National Weather Service Precipitation Frequency Data
Server (NOAA, 2017), the 24-hr, 1000-year precipitation depth for Boulder, CO, is 207mm,
24mm less than the rainfall on September 12, 2013, further illustrating the rarity of the
precipitation event. Cook (2018) reported that extreme values in observed data used to bias-
correct simulated data may lead to inaccurate annual maximum values obtained through KDDM
bias-correction. As such, observed hourly precipitation data from September 9, 2013, through
September 16, 2013, for Boulder, CO, were replaced with the median precipitation depth for that
time period using the previous 14-year record. Removal of these extreme values resulted in bias-
corrected simulated precipitation data that more accurately reflected the distribution of the

observed precipitation data.

11



219 KDDM bias-correction of the simulated hourly precipitation and daily temperature data
220  was performed using the R package “climod” (McGinnis, 2018; R Core Team, 2020). Similar to
221  analysis in Tirpak et al. (2021), the Wilcoxon rank sum test was used to confirm the statistical
222 similarities between the distributions of observed and bias-corrected climate data for all 10

223 models across all 17 locations. Based on these results, the bias-corrected future climate data was
224 determined to be suitable for subsequent SWMM modeling. Following bias-correction, an

225  implausibly high precipitation depth was noted in the bias-corrected future dataset in El Paso
226  using Model 6 (9615mm in 4 hours). The precipitation amount was removed and set to 0Omm for
227  the 4-hour time period, subsequently producing future precipitation statistics in line with the

228  other nine models.

229 2.3 SWMM Modeling

230 The USEPA Storm Water Management Model (SWMM) version 5.1 was used in this
231  study for its ability to provide dynamic rainfall-runoff relationships for long-term simulations
232 (Gironaés et al., 2009) and capacity to directly model bioretention cells using the LID Control
233 Editor (Rossman, 2015). The SWMM model was designed to simulate a hypothetical 0.4-hectare
234 (4,000 m?) subcatchment, a bioretention cell, a rain gage, and an outlet. Detailed design

235  characteristics for the subcatchment are shown in Table 3. The subcatchment was designed with
236  100% impervious cover to represent a common impervious surface in a city such as a parking
237  lot. A Manning’s n value of 0.01 was selected for the impervious surface to account for the

238  hydraulic efficiency of the subcatchment (Arcement and Schneider, 1989). All runoff from the

239  subcatchment was routed directly to the bioretention cell.

240  Table 3. Subcatchment design characteristics

Parameter Description Value Unit

Area Area of subcatchment 04 hectare

12
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Width Width of overland flow path for sheet flow runoff 76.2 m

% Slope Average surface slope 1 %
% Imperv Percent impervious area 100 %
N-Imperv Manning's n for overland flow across impervious area 0.01 -
Dstore-Imperv Depression storage depth for impervious area 0 cm
%Zero-Imperv Percent impervious area with zero depression storage 100 %
Subarea Routing  All runoff flows directly to outlet OUTLET -

While bioretention cell design guidelines vary by region, the same bioretention cell
characteristics were used for all locations and models to ensure the only independent variable
was climate (observed and bias-corrected future), allowing for relative changes in bioretention
cell performance to be assessed. Bioretention cell design characteristics were based off the
Baseline design scenario used by Tirpak et al. (2021), which incorporated design
recommendations from the Tennessee Department of Conservation (TDEC, 2014), the
Minnesota Stormwater Steering Committee (MSSC, 2006), the Knox County Tennessee
Stormwater Management Manual (County, 2008), and the SWMM User’s Manual version 5.1
(Rossman, 2015). This design was considered to be comparable to design standards in most
locations (Aiona et al., 2020; LDEQ, 2010; MassDEP, 2008; NCDEQ, 2020; PWSA, 2022;
SARA 2019).

Bioretention cell design characteristics used in the SWMM model are shown in Table 4.
The surface area (534.2 m?) and surface layer depth (15.2 cm) were sized to enable the
bioretention cell to store the water quality storm event for the southeastern United States
(Deletic, 1998; Pitt, 1999), which is typically the surface runoff generated from a 25.4-mm storm
event. The soil layer was composed of a mixture of coarse sand, topsoil, and organic matter to
filter pollutants while promoting flow through high hydraulic conductivity (5.1 cm/hr). The
storage layer underlying the media was composed of ASTM #57 stone (nominal size of 4.75 to

25mm) with a high void ratio (0.4) to allow for water storage or seepage (1.3 cm/hr) into the

13



261  native soil (ASTM, 2003). Lastly, the bottom of the underdrain pipe was placed at the top of the

262  storage layer to allow the storage layer to completely fill prior to draining (Rossman, 2015).

14
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The Rainfall/Runoff process model accounted for surface runoff from the subcatchment
into the bioretention cell. The Green-Ampt infiltration model was used to represent soil
infiltration using fundamental soil properties (i.e., initial soil moisture deficit, saturated hydraulic
conductivity, and suction head at the wetting front) (Green and Ampt, 1911). Dynamic wave
routing was used to solve the one-dimensional Saint-Venant equations and incorporate both the
continuity and momentum equations (Rossman, 2015).

Data File inputs included observed hourly precipitation data (1999-2013) and bias-
corrected future hourly precipitation data (2035-2049). The Climatology Editor was used to input
External Climate Files containing observed daily temperature data (1999-2013) and bias-
corrected future daily temperature data (2035-2049). The temperature files were used as the
Source of Evaporation Rates in the Evaporation tab of the Climatology Editor, which estimates
daily evaporation rates from daily temperature values using the Hargreaves method (Hargreaves
and Samani, 1985; Rossman, 2015).

Following model setup, the model was run using the observed climate data (17 scenarios)
from January 1, 1999, to December 31, 2013, and the bias-corrected future climate data (170
scenarios, which included 10 projections for each of the 17 cities used herein) from January 1,
2035, to December 31, 2049. Three bioretention cell outputs were compiled and assessed in this
study (i.e., infiltration loss, underdrain outflow, and overflow). These three bioretention cell
performance indices accounted for the majority of total inflow into the bioretention cell and
provided quantitative measures for the efficacy of the bioretention cell. The sum of all three
performance indices (i.e., infiltration loss, underdrain outflow, and overflow) over the entire

simulation period (i.e., 15 years) is hereafter referred to as “cumulative volume.”
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Observed (1999-2013) and future (2035-2049) median average annual infiltration loss,
underdrain outflow, and overflow volumes for all 17 locations were calculated for Figure 5. The
values were calculated by dividing the median cumulative volume by the duration of the
simulation period (i.e., 15 years) to yield an annual average. The sum of all three annualized
performance indices (i.e., infiltration loss, underdrain outflow, and overflow) is hereafter referred
to as “annual volume.” Due to many locations having extremely low underdrain outflow or
overflow under the observed precipitation dataset, relative comparisons between observed and
future datasets have been made in Figure 5 using changes in the percent of total annual volume
attributed to each hydrologic pathway as opposed to using percent change. Relative percent
change between the observed and future datasets was calculated using Eq. 1.

relative % change = future % — observed % Eq. 1

3.0 Results and Discussion
3.1 Precipitation Statistics

Due to the significant number of locations (17) and models (10), climate inputs were first
analyzed to understand how precipitation varied based on both location and a given climate
model. Comparison of observed and future datasets using both categories, location and model,
provides context as to how assessments of climate change effects may yield variable results
based on these factors. Bioretention cell performance was then assessed using three bioretention
cell performance indices: infiltration loss, underdrain outflow, and overflow.

Due to the range of locations selected, it’s important to first note the geographic and
hydrologic variability of the United States. The 17 locations can be separated into the following
five regions: the Northeast (Boston and Pittsburgh), the Midwest (Chicago, Fargo, and St.

Louis), the Southeast (Charlotte, Memphis, and New Orleans), the Southwest (Amarillo, El Paso,
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Phoenix, and San Antonio), and the Northwest/West (Boise, Boulder, Portland, Missoula, and
San Jose). The Northeast and Midwest are defined by humid continental climates with mild to
hot summers and year-round precipitation; the Southeast is defined by a humid subtropical
climate; the Southwest varies from cold semi-arid to hot desert climates; and the Northwest/West
varies from cold semi-arid to humid continental to Mediterranean climates (Koppen, 1900). For
example, in the eastern United States, Pittsburgh is between 550 and 950 km from Boston (776
km), Charlotte (584 km), Chicago (674 km), and St. Louis (898 km), and in the western United
States, El Paso is also between 550 and 950 km from Amarillo (577 km), Boulder (923 km),
Phoenix (555 km), and San Antonio (808 km). However, while the observed mean annual
rainfall for these five eastern US locations ranges between 912 mm in Chicago and 1072 mm in
Boston, the observed mean annual rainfall for these five western US locations ranges between
163 mm in Phoenix and 790 mm in San Antonio. Rainfall event depths also vary significantly by
region, from 35 mm in Boise to 268 mm in New Orleans for observed 99.9" percentile rainfall
event depths.

Figure 1 displays the percent change between the observed (1999-2013) and future
(2035-2049) datasets for mean annual rainfall, mean annual rain events, mean annual rainy days,
and mean drying period for the 17 locations. Rainy days were counted as any day in which
rainfall depth was greater than 0.0 mm between 00:00 and 23:59. A minimum inter-event time
(MIT) of 6-hours was used to separate rain events in the datasets (Chin et al., 2016; Palynchuk
and Guo, 2007). Any period without rainfall for 6 hours or more was accounted for in the mean

drying period (i.e., the time between consecutive rain events).
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Fig. 1. Percent change between observed (1999-2013) and future (2035-2049) mean annual
rainfall, mean annual rain events, mean annual rainy days, and mean drying period for the 17
locations. The solid red line marks zero percent change between observed and future values.

The boxplots for each location consist of the percent change between the observed and
future datasets for all 10 models (i.e., 10 values per boxplot). Out of the 170 total future model-
location combinations, annual rainfall increased in 135 combinations (79.4%), annual rain events
decreased in 110 combinations (64.7%), annual rainy days decreased in 103 combinations
(60.6%), and mean drying period increased in 107 combinations (62.9%). Median annual rainfall
(shown as the solid black line inside each boxplot in Figure 1) increased for all 17 locations
while the median number of annual rain events and rainy days decreased for nine locations with
an additional three locations observing decreases in one of these two precipitation characteristics.
Across all locations, mean annual rainfall depth increased by 9.9% (71mm) while mean annual
rain events and rainy days decreased 6.2% (6.5 days) and 3.9% (3.7 days), respectively. The
greatest percent change in mean annual rainfall (with an increase of 18.7%, corresponding to an
additional 278mm of rainfall) occurred in New Orleans, while the lowest percent change

occurred in Portland with an increase of 4.3% (38mm). These trends are consistent with the
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understanding that while the total amount of rainfall may be higher in many locations in the
future, extreme rainfall will also increase in a significant number of locations due to climate
change.

Coupled with an anticipated reduction in the number of rainfall events, climate change is
expected to bring larger drying periods between storms (Zhang et al., 2019), further increasing
the vulnerability of water scarce environments (Hettiarachchi et al., 2022a). Median drying
period increased for 11 locations, but Portland was the only location where all 10 models
projected increased annual dry days (i.e., a decrease in the average number of rainy days per
year). The Northwest/West was the only region in which all locations (i.e., Boise, Boulder,
Portland, Missoula, and San Jose) showed increases in median drying period, and excluding
Missoula, account for four of the five largest percent increases in median drying period. As
documented by Manka et al. (2016), the significant increase in median drying period in the
Northwest/West could reduce the efficacy of biological processes present in bioretention cells
resulting in nutrient export and the subsequent degradation of nearby waterways. Combining all
locations, mean drying period increased by 10.5% (0.5 days) with the greatest percent change in
mean drying period occurring in New Orleans (mean increase of 37.8% or 1.2 days), while no
change occurred in St. Louis. Jhong and Tung (2018) also observed increases in the duration of
future dry periods in Taiwan and suggested that occurrences of floods and droughts could occur
more frequently due to the combination of increased precipitation event volumes and drying
periods.

Figure 2 displays the percent change between observed (1999-2013) and future (2035-
2049) precipitation depths for 50, 90, 99 and 99.9" percentile rainfall event depths for the 17

locations. Out of the 170 total future model-location combinations, 50" percentile events
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increased in 62 combinations (36.5%), 90 percentile events increased in 118 combinations
(69.4%), 99" percentile events increased in 165 combinations (97.1%), and 99.9" percentile
events increased in 147 combinations (86.5%). While median 50" percentile events only
increased in seven locations, the higher percentile events were consistently predicted to increase
in size, with median 90" percentile events increasing in 12 locations, median 99" percentile
events increasing in all 17 locations, and median 99.9" percentile events increasing in 16
locations. Rainfall intensities were projected to increase for an even greater number of locations
and percentiles, with median 50™ percentile rainfall intensities predicted to increase in 11
locations, median 90™ percentile rainfall intensities predicted to increase in 15 locations, median
99'" percentile rainfall intensities predicted to increase in all 17 locations, and median 99.9™

percentile rainfall intensities predicted to increase in 15 locations.
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Fig. 2. Percent change between observed (1999-2013) and future (2035-2049) precipitation
depths for 50", 90", 99" and 99.9'" percentile rainfall event depths for the 17 locations. The
solid red line marks zero percent change between observed and future values.

*Note: An extreme outlier for 99.9" percentile events in El Paso is not shown in the figure

(843%).
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The trend in upper-percentile precipitation events and rainfall intensities (>90'™) coupled
with minimal changes to moderate precipitation events (i.e., S0™ percentile) supports findings in
existing literature and again points to anticipated increases in severe rainfall in the future (Karl
and Knight, 1998; Olsson et al., 2009). Since bioretention cells are most effective during small,
lower-intensity precipitation events, the increase in the frequency of large, higher-intensity
precipitation events is particularly concerning for future bioretention cell performance (Wang et
al., 2018). The significant outliers in the 50™ (Boulder) and 99.9' percentiles (El Paso) indicate
that, as expected, climate change will not affect regional or even local precipitation equally. For
example, the four locations (i.e., Boulder, Missoula, Portland, and San Jose) with the greatest
increases in median 50™ percentile precipitation events occurred in the Northwest/West, while no
location in the Southwest or Southeast showed an increase in median 50™ percentile precipitation
events. Additionally, while those four locations (i.e., Boulder, Missoula, Portland, and San Jose)
showed all 10 models projecting either increases or no change in 50 percentile precipitation
events, six locations (i.e., Amarillo, Charlotte, El Paso, Memphis, San Antonio, and St. Louis)
showed all 10 models projecting either decreases or no change in 50" percentile precipitation
events — demonstrating the variability of future climate. Winston (2016) found similar variability
in future precipitation when comparing locations only 25 km apart in northeast Ohio, USA.
Similarly, Gao et al. (2012) showed substantial variability in climate change effects on extreme

weather across the eastern United States.

3.2 Bioretention Cell Performance Statistics
Figure 3 displays the percent change between observed (1999-2013) and future (2035-
2049) infiltration loss, underdrain outflow, and overflow from the modeled bioretention cell for

all 17 locations. Due to a lack of overflow under the observed rainfall data (i.e., flow equal to
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zero), boxplots for Boise, Missoula, Phoenix, Portland, and San Jose are excluded from Figure 3
as percent change could not be calculated. Boise was the only location where both underdrain
outflow and overflow did not occur under the observed rainfall data and also produced the lowest
observed 99 and 99.9'" percentile rainfall event depths out of all 17 locations, illustrating the
relationship between bioretention performance and regional climate. While underdrain outflow
and/or overflow box plots in Figure 3 could not be produced for these five locations (i.e., Boise,
Missoula, Phoenix, Portland, and San Jose), underdrain outflow and overflow increased in all
five locations under future scenarios, indicating even the best-performing bioretention cells may
experience diminished performance under future climate change scenarios. These locations also
produced five of the six lowest observed 99.9'" percentile rainfall event depths and are the
western-most out of all 17 locations, further illustrating the relationship between bioretention cell
performance and regional climate. Additionally, overflow only occurred on two days (out of 15
years) under the observed rainfall data for El Paso. As such, percent change between observed
and future overflow in El Paso appears more extreme in part due to the low number of overflow

days for the observed dataset.
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Fig. 3. Percent change between observed (1999-2013) and future (2035-2049) infiltration loss,
underdrain outflow, and overflow from modeled bioretention cell for 17 locations. The solid red
line marks zero percent change between observed and future values.

*Note: Second half of boxplot for El Paso is cut off from the figure (Q3; = 2487%; Max =
5360%).

Excluding the two locations with increased median infiltration loss, Boise (25.9%) and
Fargo (1.7%), percent change in median infiltration loss ranged from -0.2% (Portland) to -18.3%
(New Orleans) in the remaining 15 locations. Conversely, excluding the one location with an
observed underdrain outflow value of zero (Boise), percent change in median underdrain outflow
increased between 9.7% (San Antonio) and 393.2% (Phoenix) in the remaining 16 locations.
Finally, five locations had an observed overflow value of zero (i.e., percent change could not be
calculated), while extreme outlier values were observed in two locations, namely Boulder
(median decrease of 8.6%) and El Paso (median increase of 1510.4%). In the remaining 10
locations, the percent change in median overflow increased between 74.5% (Chicago) and
509.7% (Boston). Additionally, all locations in the Northeast (i.e., Boston and Pittsburgh) and
Southeast (i.e., Charlotte, Memphis, and New Orleans) showed all 10 models projecting
increases in overflow — with a minimum increase in overflow of 140% across the five locations.
New Orleans, Pittsburgh, and St. Louis also showed all 10 models projecting decreases in
median infiltration loss, indicating a high likelihood of diminished performance regardless of the
future climate change scenario. The projected significant increase in overflow in 11 locations is
most concerning from a public health and safety perspective due to the increased risk of flooding
in urban areas (Hou et al., 2020; Olsson et al., 2009) and degradation of waterways caused by
overflow predominantly bypassing treatment and quickly proceeding to nearby conveyances

(Hathaway et al., 2014; Walsh et al., 2005).
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Out of the 170 total future model-location combinations, overflow increased in 151
combinations (88.8%), underdrain outflow increased in 163 combinations (95.9%), and
infiltration loss decreased in 121 combinations (71.2%). The increase in overflow and underdrain
outflow combined with decreased infiltration loss indicate bioretention cells designed following
current methods may be unable to accommodate the projected shift in precipitation patterns;
specifically, surface infiltration rates may not be sufficient to avoid significant increases in
overflow. While only a single underlying soil type (1.3 cm/hr) was evaluated in this study,
results from Tirpak et al. (2021) indicate that underlying soil type has little effect on overflow.
Thus, the primary benefits of bioretention cells (i.e., reducing peak runoff, groundwater recharge,
and filtering pollutants) may be lessened under future climate change scenarios.

Decreased infiltration loss under increased rainfall volumes has been documented in
previous literature (Tirpak et al., 2021), but the root cause has not been investigated. This is
important as different design modifications may be needed depending on the primary
contributors to decreased infiltration. This phenomenon is most likely due to the bioretention cell
surface layer filling too quickly, overwhelming surface infiltration rates (and subsequent
infiltration loss), and contributing to immediate overflow. If the surface layer is filling too
quickly to enable surface infiltration, then the surface layer depth could be increased to hold a
greater runoff volume, providing additional time for surface infiltration to occur (Tirpak et al.,
2021). Real-time control (RTC) technologies could provide an additional option to decrease
overflow and increase infiltration during moderate storm events through weather research and
forecast (WRF) models and real-time sensors and controls (Klenzendorf et al., 2015), enabling
bioretention cells to transition from passive stormwater management to active (Vijayaraghavan,

et al., 2021). Compared to passive bioretention cells, Persaud et al. (2019) and Shen et al. (2020)
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found that RTC technologies could provide both hydrologic and water quality improvements if
retention time and storage are optimized for storm events. However, further research on the
efficacy of RTC technologies for bioretention performance optimization is still required, and it’s
unlikely that RTC technologies could significantly reduce overflow during extreme storm events.
Figure 4 displays the percent change between observed (1999-2013) and future (2035-
2049) mean yearly overflow days, 50" percentile daily overflow volume, 90" percentile daily
overflow volume, and 99" percentile daily overflow volume. Overflow days were counted as any
day in which overflow volume was greater than 0.0 m? between 00:00 and 23:59. Due to
observed values of zero for overflow, Boise, Missoula, Phoenix, Portland, and San Jose are not
shown in Figure 4 (i.e., percent change could not be calculated). Percent change in median yearly
overflow days increased between 16.4% (New Orleans) and 347.5% (El Paso) for all 12
locations shown. Of the 12 locations shown in Figure 4, median number of annual rainy days
also decreased in six locations (i.e., Boston, Boulder, Chicago, El Paso, New Orleans, and
Pittsburgh) and, excluding Boulder and St. Louis, median >90'" percentile rainfall intensities also
increased for the 10 remaining locations, again indicating increases in rainfall magnitude and
intensity when events do occur. A particularly compelling example of this trend is found in New
Orleans, where a relatively low increase in median yearly overflow days was observed, yet a
significant increase in median annual precipitation (18.7%) and 99'" percentile rainfall intensities
(21.3%) and decrease in median annual rainy days (19.5%) were observed — the largest percent
changes in all three precipitation statistics — suggesting more intense events will make up a
greater percentage of the storms that do occur. Given that bioretention cells are most effective

during small, lower-intensity precipitation events, the efficacy of bioretention cells as a
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498  stormwater management practice in New Orleans may be questioned as large, higher-intensity

499  precipitation events become the norm.

Mean Yearly 50th Percentile 90th Percentile 99th Percentile
Overflow Days Daily Overtlow Daily Overflow Daily Overflow
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501  Fig. 4. Percent change between observed (1999-2013) and future (2035-2049) overflow

502  characteristics for 12 locations. The solid red line marks zero percent change between observed
503  and future values.

504  *Note: An outlier for Amarillo is cut off from the 90" percentile figure (Max = 722%), and the
505  second half of the boxplot for El Paso is cut off from the 90" percentile figure (Qs = 701%; Max
506 = 1158%) and 99" percentile figure (Q3=1220%; Max = 4436%).

507 Excluding Boulder and Chicago, median 50", 90", and 99" percentile daily overflow
508 increased for the 10 remaining locations shown in Figure 4. Excluding the Northwest/West, the
509 consistent increase across all overflow percentiles indicates that government agencies, city

510  planners, and stormwater engineers across the country should expect higher volumes to bypass
511  treatment when overflow occurs from bioretention cells. Locations in the Southeast (i.e.,

512 Charlotte, Memphis, and New Orleans) face the greatest likelihood of higher overflow volumes.
513 All three locations experienced >100% increases for all three (50™, 90™, and 99") median daily
514  overflow percentiles, with all 10 climate models projecting increases in overflow compared with
515  observed performance. Given the uniformity in predicted changes to a range of overflow

516  volumes, adaptations to limit the environmental and public safety impacts of untreated bypass

517  may be especially critical in these locations.
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3.3 Regional Trends in Future Bioretention Cell Performance

Observed (1999-2013) and future (2035-2049) median average annual infiltration loss,
underdrain outflow, and overflow volumes for all 17 locations are presented in Figure 5. Results
indicate that bioretention cells in the southern United States (i.e., Southeast and Southwest) are
most at risk of performance impacts under future climate change scenarios. The seven southern-
most locations (i.e., Amarillo, Charlotte, El Paso, Memphis, New Orleans, Phoenix, and San
Antonio) produced the highest relative percent increases in overflow, ranging from 7.0% to
19.6%. With the exception of Memphis, these locations also produced six of the highest relative
percent decreases in infiltration loss, ranging from 15.3% to 24.0%. New Orleans and San
Antonio also recorded the two highest relative increases in annual overflow volume, 2115.1 cu
m/yr and 710.0 cu m/yr, respectively. Significant increases in overflow in the southern United
States are consistent with extreme precipitation projections by Prein et al. (2017) and
bioretention literature (Cook et al., 2019; Hathaway et al., 2014). The significant increases in
overflow are a direct result of the frequent and intense rainfall in the southern United States,
highlighting the potential limitations of current bioretention design strategies. Although GSI is
likely to provide some resiliency to extreme precipitation, these results indicate there are limits

in this resilience that can be exceeded.
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Fig. 5. Annual Volume (1000 cu m/yr) shown in the center of each donut chart is the sum of
annual overflow, underdrain outflow, and infiltration loss. Observed (top) and future (bottom)
overflow (grey), underdrain outflow (orange), and infiltration loss (blue) for all 17 locations.
Donut hole size is inversely proportional to the annual volume.
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Similarly, bioretention cells located in the Midwest and Northeast are still at risk of
diminished performance under future climate change scenarios. Following the seven southern
locations, the five locations in the Midwest and Northeast (i.e., Boston, Chicago, Fargo,
Pittsburgh, and St. Louis) produced the next highest relative percent increases in overflow,
ranging from 3.3% to 5.2%. The five Midwest and Northeast locations also recorded the 5%
through 9™ highest relative median increases in annual overflow volumes, ranging from 176.2 cu
m/yr to 241.1 cu m/yr. Results are consistent with Cook et al. (2019) who found that overflow
from bioretention cells in the Midwest and Northeast occurred at equal or greater magnitudes
compared with other regions in the United States.

Bioretention cells in the Northwest/West have the best likelihood of being able to
maintain existing function under future climate change scenarios, also consistent with previous
findings (Cook et al. 2019). The five Northwest/West locations (i.e., Boise, Boulder, Missoula,
Portland, and San Jose) produced the lowest relative percent changes in overflow, ranging from a
decrease of 0.3% to an increase of 1.2%. These locations also recorded the lowest relative
changes in annual overflow volume, ranging from a median decrease of 4.2 cu m/yr to an
increase of 21.5 cu m/yr. The minimal effect on existing bioretention cell function indicates that
stormwater infrastructure in the Northwest/West may require the least adaptation measures to

maintain existing function under future climate conditions.

3.4 Implications to Bioretention Design and Adaptation Measures

While overflow and infiltration are expected to increase and decrease, respectively, under
future climate conditions for many bioretention cells across the United States, modifications can
be implemented to mitigate the effects of climate change to their performance. Tirpak et al.

(2021) compared an ensemble of retrofit and design configurations for bioretention cells in east
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Tennessee, and found varying degrees of success for three scenarios: 1) increasing the soil layer
depth; 2) increasing the storage layer depth; 3) and increasing the bioretention cell surface area.
Increasing the depth of the soil layer in the bioretention cell was shown to be a conservative yet
effective method of increasing runoff volume retention (Tirpak et al., 2021). As such, increasing
the depth of the soil layer for bioretention cells in regions where overflow is expected to
modestly increase, such as the Northwest/West and parts of the Midwest, is a viable option
requiring low investment, particularly for newly constructed cells. Increased soil layer depth can
also increase pollutant removal and water storage (Hatt et al., 2009), which may mitigate plant
stress in these systems in the drier climates projected for the Northwest/West.

Increasing the depth of the storage layer has been found to be an effective method of
reducing overflow. Hathaway et al. (2014) found an increased storage layer depth from 9.0 to
31.0 cm would maintain existing function of bioretention cells in east North Carolina into the
late 2050s. Similarly, Winston (2016) found that increasing storage layer depth from 5.0 to 17.0
cm would maintain existing function in northeast Ohio into the late 2050s. Increasing the storage
layer depth has the potential to temporarily store a greater volume of runoff than increasing the
soil layer depth but requires either deepening the bioretention cell or removing media from the
soil layer, reducing the efficacy of pollutant removal. Further, substantial increases in surface
storage depth may lead to public safety concerns due to the hazard posed by deeper ponding
zones relative to nearby surfaces. However, increasing the storage layer depth has been shown to
be more effective at reducing overflow than increasing the soil layer depth and should be
considered if overflow reduction is a priority (Tirpak et al., 2021). Densely populated, highly

urbanized locations with a need to mitigate projected increases in future overflow, such as
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Chicago, Pittsburgh, or Boston, may greatly benefit from increased storage layer depths in
bioretention cells.

The final viable option investigated by Tirpak et al. (2021) increased the surface area of
bioretention cells relative to the subcatchment, which has been shown to be an effective method
of reducing overflow and increasing infiltration due to increased soil and storage layer volumes
(Wang et al., 2019b; Zhang et al. 2019). Increasing bioretention cell surface area requires the
greatest investment of the three options and may not be viable in highly urbanized locations due
to limited space or cost. However, locations in the southern United States, such as El Paso, San
Antonio, Memphis, Charlotte, and New Orleans, may require significant investment in all
stormwater infrastructure (both grey and green) to mitigate projected increases in overflow
volumes. A location such as New Orleans, in particular, may need to incorporate bioretention
cell modifications wherever possible to reduce the significant increases in overflow volumes
projected under future climate conditions.

Given the geographic and hydrologic variability of the US locations selected for this
study, the bioretention cell modifications suggested could be applied to a range of cities globally.
Locations projected to experience fewer rainfall events and longer dry periods, such as
Melbourne, Australia (Zhang et al., 2019), could increase soil layer depths of bioretention cells
to mitigate plant stress and improve pollutant removal. High-density locations with humid
continental climates similar to Boston and Pittsburgh, such as Vienna, Austria (Strauss et al.,
2012), may benefit from increasing the storage layer depth in bioretention cells depending on the
severity of future climate conditions. Subtropical locations similar to New Orleans and Charlotte,
such as Guangzhou, China (Wang et al., 2019a), will likely require considerable bioretention cell

modifications wherever possible.
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4.0 Conclusions

Bioretention performance under future climate change projections was evaluated for 17
cities across the contiguous United States using SWMM version 5.1. Median annual rainfall
increased across all 17 locations in future scenarios. A majority of locations also experienced a
decreased median number of rainy days and rain events while median drying period increased.
Precipitation events were projected to become more severe for upper-percentile events (>90™)
while 50" percentile events were projected to change minimally for all locations except for
Boulder. Future precipitation events were projected, therefore, to become less frequent but more
severe. However, findings clearly indicate that while precipitation event severity is expected to
increase on average across the United States the shift in precipitation patterns will vary
significantly by location.

As aresult of shifting precipitation patterns, future bioretention cell performance was
impacted by changing climates across all locations. Results demonstrated that bioretention cells
in the southern United States have the greatest likelihood of diminished future function, followed
by cells in the Midwest and Northeast. Due to the magnitude of change projected for the
Northwest/West, bioretention cells in those regions may only require minor investments in
retrofits or design modifications to maintain future performance.

Increased annual overflow, which poses significant environmental and health risks to
urban communities, projected for the Midwest, Northeast, and southern United States, may
elevate the importance of design modifications (e.g., increasing surface storage layer volumes) to
offset these risks. Projected decreases in infiltration from bioretention cells, especially notable in
the southern United States, presents additional challenge for city planners and stormwater
engineers. If bioretention cells are no longer able to promote infiltration into native soils and

filter pollutants from runoff, then their benefit as a stormwater control measure will be
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substantially reduced. Further, these outcomes suggest that while bioretention following current
design strategies may continue to provide some runoff mitigation, shifting precipitation patterns,
including more intense rain events, reveal limitations in their ability to maintain desired
performance under future climate conditions.

Future studies should consider a wider range of climate models, emissions scenarios, and
bioretention cell configurations to provide an even more robust assessment of future impacts to
performance. Additionally, while a range of climate models and locations were evaluated in this
study, a single bioretention cell configuration was used for all simulations. Studies which
consider multiple bioretention cell configurations would provide insight on the significance of
design modifications beyond current standards for a range of locations to maintain existing

function under future climate scenarios.
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