

1 **Evaluating the Impact of Climate Change on Future Bioretention** 2 **Performance Across the Contiguous United States**

3
4 Matthew Weathers^{1*}, Jon M. Hathaway¹, R. Andrew Tirpak², and Anahita Khojandi³

5
6 ¹ Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA

7 ² Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus,
8 OH, USA

9 ³ Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, USA

10 *Corresponding author: mweath11@vols.utk.edu

11

12 **Abstract**

13 In light of shifting precipitation patterns induced by climate change, communities are seeking to
14 build resiliency in urban drainage systems through interventions such as green stormwater
15 infrastructure (GSI). Bioretention cells are one of the most commonly implemented forms of GSI
16 for their ability to reduce peak discharge, retain runoff, and filter pollutants. However, they may
17 be at risk of reduced function in the future due to deviations from historic precipitation frequency
18 and intensity patterns which are essential to their design. Further, changes in future function are
19 likely to vary regionally as the magnitude of future climate changes will differ across the globe.

20 To explore the range of impacts to future bioretention function, an ensemble of 10 regional
21 climate models at 17 locations across the contiguous United States were evaluated to provide the
22 widest range of potential future outcomes using a probabilistic approach to capture the uncertain
23 nature of climate change. Bioretention cells were modeled using USEPA's Storm Water
24 Management Model (SWMM) to compare existing and future performance under a range of
25 climate change projections. Median annual rainfall and 99th percentile rainfall event depths and
26 intensities were projected to increase across all 17 locations while antecedent dry period (i.e., the
27 time between consecutive rain events) was projected to increase for 11 locations.
28 Correspondingly, bioretention cell hydrologic performance decreased across all 17 locations

29 under future scenarios: relative to performance under current climate conditions, annual volumes
30 of infiltration decreased between 4.0-24.0% across all 17 locations while overflow increased
31 between 0.4-19.6% for 15 locations. Results suggest that bioretention cells in the southern
32 United States are at significant risk of reduced function in the future while those in the Midwest
33 and Northeast are at moderate risk. Bioretention cells in the Northwest/West performed the best
34 under future climate scenarios; that is, they showed similar function in the future to that of the
35 present. Findings demonstrate that most, if not all, bioretention cells across the contiguous
36 United States will require some degree of modification to maintain existing function under future
37 conditions.

38

39 Keywords: Green infrastructure; urban hydrology; climate change; stormwater; SWMM

40

41

42

43

44

45

46

47

48

49

50 **1.0 Introduction**

51 The increased likelihood of extreme weather events (e.g., frequent floods, drought
52 conditions, record-breaking temperatures) associated with anthropogenic activities has been well
53 documented (Masson-Delmotte et al., 2018). For example, Bishop et al. (2019) found a 40%
54 increase in fall precipitation for the period 1895-2018 in the southeastern United States, with
55 nearly all of the added precipitation occurring with an increased intensity. Similarly, using
56 datasets from 182 stations across the contiguous United States, Karl and Knight (1998) noted a
57 10% increase in precipitation over the twentieth century primarily due to heavy and extreme
58 precipitation events with 53% of the added precipitation attributable to the upper 10% of the
59 precipitation distribution. According to Prudhomme et al. (2014), if anthropogenic activities and
60 emissions continue to increase at the current rate, then Southern Europe, the Middle East, the
61 Southeast United States, Chile, and South West Australia are at significant risk of experiencing
62 droughts and water security issues by the year 2100.

63 At the same time, the rapid urbanization across the planet has led to a greater percentage
64 of urban areas becoming covered by impervious surfaces that prevent soil infiltration (Shuster et
65 al., 2005). These shifts result in increased runoff and flooding (Du et al., 2012), increased
66 nonpoint source pollution (O'Driscoll et al., 2010), and a suite of degraded conditions in
67 receiving waters referred to as the urban stream syndrome (Walsh et al., 2005). The combination
68 of climate change and rapid urbanization poses serious risks for public health and safety. Zhang
69 et al. (2018) showed that the extreme flooding caused by Hurricane Harvey in August 2017 was
70 intensified due to both anthropogenic-induced climate change and the effects of increased
71 urbanization in Houston, Texas, USA. Similarly, Yang et al. (2021) found that the extreme
72 rainfall and flooding in Western Europe during July 2021 was exacerbated due to urbanization

73 and urban-induced rainfall anomalies. Such extreme precipitation events have provoked efforts
74 to mitigate the worsening effects of climate change.

75 Stormwater management systems, which are typically broken into two categories, gray
76 and green, represent critical infrastructure components which are directly threatened by climate
77 change. Green stormwater infrastructure (GSI) is increasingly utilized in urban areas to assist and
78 supplant existing gray stormwater infrastructure and enhance the resilience of urban drainage
79 networks to climate change (Eckart et al., 2017; Huang et al., 2018). One of the most commonly
80 implemented and studied types of GSI is the bioretention cell, which consists of layers of gravel,
81 soil, sand, organic matter, and plants (TDEC, 2014). Bioretention cells provide effective removal
82 of total suspended solids (TSS) and pollutants (e.g., TN, TP) (Davis et al., 2001) while reducing
83 runoff volume and peak discharge (Dietz, 2007; Winston et al., 2016; Davis 2008).

84 Despite research showing the benefits of bioretention under existing climate regimes, the
85 use of these systems for climate change mitigation and environmental sustainability is
86 underpinned by their ability to function under future climate scenarios, which is effectively the
87 climate resiliency of bioretention (Hettiarachchi et al., 2022b). Historically, hydrologic
88 engineering designs (including bioretention) have relied on the stationarity of rainfall patterns.
89 However, recent research has shown that this can no longer be assumed with a shift towards
90 increasingly frequent and more intense storm events (Milly et al., 2008; Pryor et al., 2009; Cook
91 et al., 2020; Rosenberg et al., 2010). Wasko and Sharma (2015) and Hettiarachchi et al. (2018)
92 also found that warming temperatures associated with future climate regimes could increase the
93 variability of storm temporal patterns, further stressing stormwater infrastructure. Thus, a
94 number of studies have begun to use projections from regional climate models (RCMs) and
95 general circulation models (GCMs) to understand potential shifts in hydrologic processes and the

96 resulting effects on critical infrastructure (Arnbjerg-Nielsen, 2012; Cook et al., 2019; Sarkar et
97 al., 2018).

98 Recent studies have implemented a similar approach to investigate the future function of
99 bioretention cells under climate change. Hathaway et al. (2014) evaluated future performance of
100 four bioretention cells in Rocky Mountain and Nashville, North Carolina, USA, using one RCM
101 and two representative concentration pathways (RCPs). Comparing historic (2001-2004) with
102 projected (2055-2058) performance, results showed that the frequency and volume of overflow
103 could increase significantly for projected scenarios, requiring an additional storage of between 9
104 and 31cm to limit increases in annual overflow under future conditions. Zhang et al. (2019)
105 evaluated a range of design configurations for a bioretention cell in Melbourne, Australia, using
106 eight GCMs and one RCP. Comparing historic (1995-2004) with projected (2040-2049)
107 performance, results suggested that larger bioretention cells should be prioritized due to the
108 variability of future GCM scenarios. Similarly, Tirpak et al. (2021) evaluated a range of design
109 configurations for a bioretention cell in Knoxville, Tennessee, USA, using 10 RCMs, two RCPs,
110 and three underlying soil types with infiltration rates ranging from 0.13 cm/hr to 2.5 cm/hr.
111 Comparing historic (2010-2014) with projected (2040-2044) performance, results showed that
112 even the most significant retrofit configurations led to overflow increases in 67.4% to 71.1% of
113 simulations – with underlying soil type having minimal effect on overflow – indicating the
114 significant impact of shifting precipitation patterns. Wang et al. (2019a) performed a similar
115 study by evaluating a range of bioretention cell surface areas in Guangzhou, China, using 11
116 GCMs, four RCPs, and six design storms. Results showed that future bioretention cells could
117 maintain existing function for small, short-duration storms by increasing surface area, but
118 function will diminish as storm size and duration increase regardless of increases in surface area.

119 Highlighting regional differences in future climate, Winston (2016) evaluated future
120 performance of bioretention cells located 25 km apart in northeast Ohio, USA, using one GCM
121 and two RCPs. Comparing historic (2001-2004) with projected (2055-2059) performance, results
122 showed that bioretention cells mitigated 5-9% less runoff in one location while mitigating 4-6%
123 more runoff in the other location.

124 As such, while some research has been performed investigating the performance of a
125 single bioretention cell under future precipitation patterns, almost no research has been
126 performed comparing multiple locations across the United States or the globe, for that matter.
127 There is a need to explore the geographic variability in the effects of climate change on existing
128 GSI to better understand the regional adaptations that may be required to prepare for these
129 impacts. To address this knowledge gap, this study explores changes in bioretention performance
130 under future climate change scenarios in 17 locations across the United States selected based off
131 their unique hydrologic region. Ten Regional Climate Models (RCMs) were selected from the
132 North American Coordinated Regional Downscaling Experiment (NA-CORDEX) to provide a
133 wide range of potential future precipitation outcomes at each location (Mearns et al., 2017). The
134 objective of this effort was to identify shifts in bioretention performance from historical to future
135 conditions and to better understand the geographic variability of impacts to future performance.
136 Results from this work can be used to identify locations where bioretention cells may be most
137 adversely affected by climate change, and thus may require modifications to ensure their desired
138 performance persists in the future.

139 **2.0 Data Collection and Methodology**

140 ***2.1 Data Collection***

141 Observed climate data were acquired from the National Oceanic and Atmospheric
142 Administration (NOAA) National Centers for Environmental Information (NCEI) data archive to
143 allow for bias-correction of climate model outputs and characterization of historical bioretention
144 function (NOAA, 2016). Simulated historic and future climate data were acquired from the
145 North American Coordinated Regional Downscaling Experiment (NA-CORDEX) data archive
146 (Mearns et al., 2017). Climate data were acquired for 17 locations across the US (Table 1), which
147 were selected based on their unique hydrologic region defined by the Bukovsky climate map
148 (Bukovsky et al., 2019). The Bukovsky climate map groups regions by hydrologic similarity,
149 accounting for average temperature and rainfall as well as seasonal occurrences such as the
150 North American monsoon (Bukovsky, 2011). Using the same cities as Cook et al. (2019), each
151 climate region in the contiguous US was represented by at least one city in the analysis.

Table 1. Characteristics of US cities used in this study

City	State	Bukovsky Region	Latitude ^a	Longitude ^a	NOAA NCEI Station Name
Amarillo	TX	C. Plains	35.2220°	-101.8313°	AMARILLO AIRPORT TX US
Boise	ID	Great Basin	43.6150°	-116.2023°	BOISE AIR TERMINAL ID US
Boston	MA	North Atlantic	42.3601°	-71.0589°	BOSTON MA US
Boulder	CO	S. Rockies	40.0169°	-105.2796°	BOULDER 2 CO US
Charlotte	NC	Mid Atlantic	35.2271°	-80.8431°	CHARLOTTE DOUGLAS AIRPORT NC US
Chicago	IL	Great Lakes	41.8832°	-87.6324°	CHICAGO OHARE INTERNATIONAL AIRPORT IL US
El Paso	TX	Mezquital	31.7619°	-106.4850°	EL PASO INTERNATIONAL AIRPORT TX US
Fargo	ND	N. Plains	46.8772°	-96.7898°	FARGO HECTOR INTERNATIONAL AIRPORT ND US
Memphis	TN	Deep South	35.1495°	-90.0490°	MEMPHIS INTERNATIONAL AIRPORT TN US
Missoula	MT	N. Rockies	46.8721°	-113.9940°	MISSOULA INTERNATIONAL AIRPORT MT US
New Orleans	LA	Southeast	29.9511°	-90.0715°	NEW ORLEANS AIRPORT LA US
Phoenix	AZ	Southwest	33.4484°	-112.0740°	PHOENIX AIRPORT AZ US
Pittsburgh	PA	Appalachia	40.4406°	-79.9959°	PITTSBURGH ASOS PA US
Portland	OR	Pacific NW	45.5122°	-122.6587°	PORTLAND INTERNATIONAL AIRPORT OR US
San Antonio	TX	S. Plains	29.4241°	-98.4936°	SAN ANTONIO INTERNATIONAL AIRPORT TX US
San Jose	CA	Pacific SW	37.3348°	-121.8881°	SAN JOSE CA US
St. Louis	MO	Prairie	38.6270°	-90.1994°	ST LOUIS LAMBERT INTERNATIONAL AIRPORT MO US

^aValues provided by latlong.net

155 Observed daily temperature (maximum and minimum) and hourly precipitation data from
156 January 1, 1999, to December 31, 2013, were gathered from the NOAA NCEI archive for all 17
157 locations (NOAA, 2016). The 15-year period was selected to fully capture the year-to-year
158 variability of recent precipitation and temperature patterns, subject to data availability. The 17
159 NOAA NCEI stations shown in Table 1 were selected based off the availability of continuous
160 climate data for the time range specified and their proximity to the selected cities.

161 Covering the majority of North America, the NA-CORDEX data archive provides
162 simulated climate data from a range of RCMs produced using boundary conditions from GCMs
163 in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Mearns et al., 2017). As
164 recommended by Bukovsky and Mearns (2020), all ten NA-CORDEX climate models with
165 available hourly precipitation projections were used for this study to provide the most
166 comprehensive range of potential future outcomes (Table 2). Due to the limited availability of
167 hourly precipitation projections in the archive, only one RCP4.5 scenario (representing moderate
168 population growth, moderate climate policy, and eventual decline and stabilization of
169 anthropogenic emissions) was evaluated while nine RCP8.5 scenarios (representing high
170 population growth, no climate policy, and rapid increase in anthropogenic emissions) were
171 evaluated (van Vuuren et al., 2011). Both historic simulated climate data from January 1, 1999,
172 to December 31, 2013, and future simulated climate data from January 1, 2035, to December 31,
173 2049, were acquired to allow for bias-correction and SWMM modeling.

174 **Table 2.** Characteristics of NA-CORDEX climate models used in this study^a

Model	RCP	GCM	RCM	Spatial Resolution
1	4.5	CanESM2	CanRCM4	50km
2	8.5	CanESM2	CanRCM4	50km
3	8.5	GFDL-ESM2M	WRF	25km
4	8.5	GFDL-ESM2M	WRF	50km
5	8.5	HadGEM2-ES	WRF	25km

6	8.5	HadGEM2-ES	WRF	50km
7	8.5	MPI-ESM-LR	RegCM4	25km
8	8.5	MPI-ESM-LR	RegCM4	50km
9	8.5	MPI-ESM-LR	WRF	25km
10	8.5	MPI-ESM-LR	WRF	50km

175 ^aNA-CORDEX data provided by Mearns et al. (2017)

176 **2.2 Bias Correction**

177 Systematic bias was corrected in climate model outputs following data acquisition. Due
 178 to bias introduced during model formulation and the downscaling process, bias-correction
 179 procedures must be applied to more accurately align modeled climate data with observed climate
 180 data (Rosenberg et al., 2010). Stephens et al. (2010) compared five different weather prediction,
 181 climate, and global cloud “resolving” models and found that all models overproduced
 182 precipitation frequency by a factor of two while underproducing precipitation intensity compared
 183 with observed precipitation data. Bias-correction is, therefore, required prior to SWMM
 184 modeling to ensure that RCM inputs provide statistically accurate distributions.

185 The kernel density distribution mapping (KDDM) bias-correction procedure was selected
 186 due to its accuracy, ease of implementation (McGinnis and Mearns, 2016; Tirpak et al., 2021),
 187 and overall performance compared with other bias-correction procedures (McGinnis et al.,
 188 2015). KDDM applies a set of bias-correction steps to scale the distribution of climate
 189 projections to match that of observed climate data. Due to the frequent over-prediction of low
 190 intensity precipitation (Stephens et al., 2010), the excess “drizzle” was first removed from
 191 projected rainfall by setting hourly precipitation volumes below a minimum threshold to zero in
 192 order to match the wet/dry ratio of timesteps in the observed precipitation data (McGinnis and
 193 Mearns, 2016).

194 Following this “dedrizzling” step, nonparametric estimates of the underlying probability
 195 density functions (PDFs), similar to smooth, non-discrete histograms, were produced for the

196 observed and simulated precipitation datasets. The resulting PDFs were integrated using the
197 trapezoidal rule to approximate cumulative distribution functions (CDFs). A transfer function
198 was then created by fitting a spline between the corresponding quantiles for the inverse CDF of
199 the observed precipitation data and the forward CDF of the simulated precipitation data
200 (McGinnis et al., 2015). Lastly, the transfer function was applied to both the historic and future
201 simulated precipitation data, yielding bias-corrected projections of future rainfall. KDDM bias-
202 correction of the simulated temperature data followed the same steps as the precipitation bias-
203 correction, with the exception of the “dedrizzling” step, and was performed on a monthly basis to
204 account for seasonal variability (McGinnis et al., 2015). Bias-correction via KDDM was applied
205 to all projections of precipitation and temperature records for each of the 17 cities of interest.

206 In a single instance, extreme values were removed from observed climate data to improve
207 bias-correction. The September 2013 floods in Boulder, CO, resulted in 231mm of rainfall
208 recorded on September 12 (NOAA, 2016), nearly doubling the previous daily record of 122mm
209 (Hamill, 2014). According to the NOAA National Weather Service Precipitation Frequency Data
210 Server (NOAA, 2017), the 24-hr, 1000-year precipitation depth for Boulder, CO, is 207mm,
211 24mm less than the rainfall on September 12, 2013, further illustrating the rarity of the
212 precipitation event. Cook (2018) reported that extreme values in observed data used to bias-
213 correct simulated data may lead to inaccurate annual maximum values obtained through KDDM
214 bias-correction. As such, observed hourly precipitation data from September 9, 2013, through
215 September 16, 2013, for Boulder, CO, were replaced with the median precipitation depth for that
216 time period using the previous 14-year record. Removal of these extreme values resulted in bias-
217 corrected simulated precipitation data that more accurately reflected the distribution of the
218 observed precipitation data.

219 KDDM bias-correction of the simulated hourly precipitation and daily temperature data
220 was performed using the R package “climod” (McGinnis, 2018; R Core Team, 2020). Similar to
221 analysis in Tirpak et al. (2021), the Wilcoxon rank sum test was used to confirm the statistical
222 similarities between the distributions of observed and bias-corrected climate data for all 10
223 models across all 17 locations. Based on these results, the bias-corrected future climate data was
224 determined to be suitable for subsequent SWMM modeling. Following bias-correction, an
225 implausibly high precipitation depth was noted in the bias-corrected future dataset in El Paso
226 using Model 6 (9615mm in 4 hours). The precipitation amount was removed and set to 0mm for
227 the 4-hour time period, subsequently producing future precipitation statistics in line with the
228 other nine models.

229 **2.3 SWMM Modeling**

230 The USEPA Storm Water Management Model (SWMM) version 5.1 was used in this
231 study for its ability to provide dynamic rainfall-runoff relationships for long-term simulations
232 (Gironás et al., 2009) and capacity to directly model bioretention cells using the LID Control
233 Editor (Rossman, 2015). The SWMM model was designed to simulate a hypothetical 0.4-hectare
234 (4,000 m²) subcatchment, a bioretention cell, a rain gage, and an outlet. Detailed design
235 characteristics for the subcatchment are shown in Table 3. The subcatchment was designed with
236 100% impervious cover to represent a common impervious surface in a city such as a parking
237 lot. A Manning’s n value of 0.01 was selected for the impervious surface to account for the
238 hydraulic efficiency of the subcatchment (Arcement and Schneider, 1989). All runoff from the
239 subcatchment was routed directly to the bioretention cell.

240 **Table 3.** Subcatchment design characteristics

Parameter	Description	Value	Unit
Area	Area of subcatchment	0.4	hectare

Width	Width of overland flow path for sheet flow runoff	76.2	m
% Slope	Average surface slope	1	%
% Imperv	Percent impervious area	100	%
N-Imperv	Manning's n for overland flow across impervious area	0.01	-
Dstore-Imperv	Depression storage depth for impervious area	0	cm
%Zero-Imperv	Percent impervious area with zero depression storage	100	%
Subarea Routing	All runoff flows directly to outlet	OUTLET	-

241

242 While bioretention cell design guidelines vary by region, the same bioretention cell
 243 characteristics were used for all locations and models to ensure the only independent variable
 244 was climate (observed and bias-corrected future), allowing for relative changes in bioretention
 245 cell performance to be assessed. Bioretention cell design characteristics were based off the
 246 Baseline design scenario used by Tirpak et al. (2021), which incorporated design
 247 recommendations from the Tennessee Department of Conservation (TDEC, 2014), the
 248 Minnesota Stormwater Steering Committee (MSSC, 2006), the Knox County Tennessee
 249 Stormwater Management Manual (County, 2008), and the SWMM User's Manual version 5.1
 250 (Rossman, 2015). This design was considered to be comparable to design standards in most
 251 locations (Aiona et al., 2020; LDEQ, 2010; MassDEP, 2008; NCDEQ, 2020; PWSA, 2022;
 252 SARA 2019).

253 Bioretention cell design characteristics used in the SWMM model are shown in Table 4.
 254 The surface area (534.2 m²) and surface layer depth (15.2 cm) were sized to enable the
 255 bioretention cell to store the water quality storm event for the southeastern United States
 256 (Deletic, 1998; Pitt, 1999), which is typically the surface runoff generated from a 25.4-mm storm
 257 event. The soil layer was composed of a mixture of coarse sand, topsoil, and organic matter to
 258 filter pollutants while promoting flow through high hydraulic conductivity (5.1 cm/hr). The
 259 storage layer underlying the media was composed of ASTM #57 stone (nominal size of 4.75 to
 260 25mm) with a high void ratio (0.4) to allow for water storage or seepage (1.3 cm/hr) into the

261 native soil (ASTM, 2003). Lastly, the bottom of the underdrain pipe was placed at the top of the
262 storage layer to allow the storage layer to completely fill prior to draining (Rossman, 2015).

Table 4. Bioretention cell design characteristics

Surface Parameter	Description	Value	Unit	Source
Berm Height	Max ponding depth above surface	15.2	cm	TDEC (2014)
Vegetation Volume Fraction	Fraction of volume filled with vegetation (ignored)	0	-	Rossman (2015)
Surface Roughness	Manning's n for overland flow (ignored)	0	-	Rossman (2015)
Surface Slope	Slope of surface (ignored)	0	%	Rossman (2015)
Soil Parameter	Description	Value	Unit	Source
Soil Thickness	Thickness of soil layer	61.0	cm	TDEC (2014)
Porosity	Pore space volume/total soil volume	0.44	-	MSSC (2006)
Field Capacity	Pore water volume/total soil volume (following drainage)	0.09	-	MSSC (2006)
Wilting Point	Pore water volume/total soil volume (for well-dried soil)	0.04	-	MSSC (2006)
Conductivity	Hydraulic conductivity of fully saturated soil	5.1	cm/hr	MSSC (2006)
Conductivity Slope	Slope of log(Conductivity) vs soil moisture content curve	50	-	Rossman (2015)
Suction Head	Soil capillary suction	10.2	cm	Brakensiek et al. (1981)
Storage Parameter	Description	Value	Unit	Source
Storage Thickness	Thickness of gravel layer	15.2	cm	County (2008)
Void Ratio	Void space volume/solid space volume	0.4	-	Miller (1978)
Seepage Rate	Rate of water seepage from storage layer into native soil	1.3	cm/hr	MSSC (2006)
Clogging Factor	Clogging parameter (ignored)	0	-	Rossman (2015)
Drain Parameter	Description	Value	Unit	Source
Flow Coefficient ^a (C)	Determines drain flow rate as function of hydraulic head	0.6	-	County (2008)
Flow Exponent ^a (n)	Determines drain flow rate as function of hydraulic head	0.5	-	County (2008)
Offset	Height of drain line above bottom of storage layer	15.2	cm	Miller (1978)

^aFlow Coefficient and Flow Exponent are incorporated within $q = Ch^n$ where q is drain outflow rate (cm/hr) and h is height of saturated media above drain (cm) (Rossman, 2015).

267 The Rainfall/Runoff process model accounted for surface runoff from the subcatchment
268 into the bioretention cell. The Green-Ampt infiltration model was used to represent soil
269 infiltration using fundamental soil properties (i.e., initial soil moisture deficit, saturated hydraulic
270 conductivity, and suction head at the wetting front) (Green and Ampt, 1911). Dynamic wave
271 routing was used to solve the one-dimensional Saint-Venant equations and incorporate both the
272 continuity and momentum equations (Rossman, 2015).

273 Data File inputs included observed hourly precipitation data (1999-2013) and bias-
274 corrected future hourly precipitation data (2035-2049). The Climatology Editor was used to input
275 External Climate Files containing observed daily temperature data (1999-2013) and bias-
276 corrected future daily temperature data (2035-2049). The temperature files were used as the
277 Source of Evaporation Rates in the Evaporation tab of the Climatology Editor, which estimates
278 daily evaporation rates from daily temperature values using the Hargreaves method (Hargreaves
279 and Samani, 1985; Rossman, 2015).

280 Following model setup, the model was run using the observed climate data (17 scenarios)
281 from January 1, 1999, to December 31, 2013, and the bias-corrected future climate data (170
282 scenarios, which included 10 projections for each of the 17 cities used herein) from January 1,
283 2035, to December 31, 2049. Three bioretention cell outputs were compiled and assessed in this
284 study (i.e., infiltration loss, underdrain outflow, and overflow). These three bioretention cell
285 performance indices accounted for the majority of total inflow into the bioretention cell and
286 provided quantitative measures for the efficacy of the bioretention cell. The sum of all three
287 performance indices (i.e., infiltration loss, underdrain outflow, and overflow) over the entire
288 simulation period (i.e., 15 years) is hereafter referred to as “cumulative volume.”

289 Observed (1999-2013) and future (2035-2049) median average annual infiltration loss,
290 underdrain outflow, and overflow volumes for all 17 locations were calculated for Figure 5. The
291 values were calculated by dividing the median cumulative volume by the duration of the
292 simulation period (i.e., 15 years) to yield an annual average. The sum of all three annualized
293 performance indices (i.e., infiltration loss, underdrain outflow, and overflow) is hereafter referred
294 to as “annual volume.” Due to many locations having extremely low underdrain outflow or
295 overflow under the observed precipitation dataset, relative comparisons between observed and
296 future datasets have been made in Figure 5 using changes in the percent of total annual volume
297 attributed to each hydrologic pathway as opposed to using percent change. Relative percent
298 change between the observed and future datasets was calculated using Eq. 1.

299
$$\text{relative \% change} = \text{future \%} - \text{observed \%} \quad \text{Eq. 1}$$

300 **3.0 Results and Discussion**

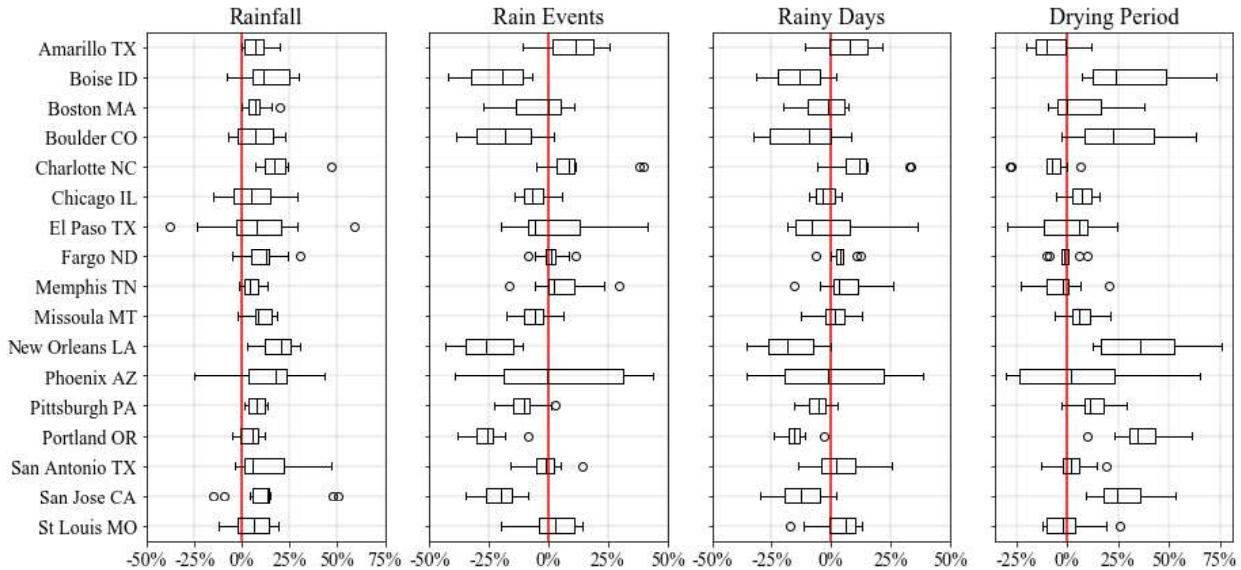
301 ***3.1 Precipitation Statistics***

302 Due to the significant number of locations (17) and models (10), climate inputs were first
303 analyzed to understand how precipitation varied based on both location and a given climate
304 model. Comparison of observed and future datasets using both categories, location and model,
305 provides context as to how assessments of climate change effects may yield variable results
306 based on these factors. Bioretention cell performance was then assessed using three bioretention
307 cell performance indices: infiltration loss, underdrain outflow, and overflow.

308 Due to the range of locations selected, it’s important to first note the geographic and
309 hydrologic variability of the United States. The 17 locations can be separated into the following
310 five regions: the Northeast (Boston and Pittsburgh), the Midwest (Chicago, Fargo, and St.
311 Louis), the Southeast (Charlotte, Memphis, and New Orleans), the Southwest (Amarillo, El Paso,

312 Phoenix, and San Antonio), and the Northwest/West (Boise, Boulder, Portland, Missoula, and
313 San Jose). The Northeast and Midwest are defined by humid continental climates with mild to
314 hot summers and year-round precipitation; the Southeast is defined by a humid subtropical
315 climate; the Southwest varies from cold semi-arid to hot desert climates; and the Northwest/West
316 varies from cold semi-arid to humid continental to Mediterranean climates (Köppen, 1900). For
317 example, in the eastern United States, Pittsburgh is between 550 and 950 km from Boston (776
318 km), Charlotte (584 km), Chicago (674 km), and St. Louis (898 km), and in the western United
319 States, El Paso is also between 550 and 950 km from Amarillo (577 km), Boulder (923 km),
320 Phoenix (555 km), and San Antonio (808 km). However, while the observed mean annual
321 rainfall for these five eastern US locations ranges between 912 mm in Chicago and 1072 mm in
322 Boston, the observed mean annual rainfall for these five western US locations ranges between
323 163 mm in Phoenix and 790 mm in San Antonio. Rainfall event depths also vary significantly by
324 region, from 35 mm in Boise to 268 mm in New Orleans for observed 99.9th percentile rainfall
325 event depths.

326 Figure 1 displays the percent change between the observed (1999-2013) and future
327 (2035-2049) datasets for mean annual rainfall, mean annual rain events, mean annual rainy days,
328 and mean drying period for the 17 locations. Rainy days were counted as any day in which
329 rainfall depth was greater than 0.0 mm between 00:00 and 23:59. A minimum inter-event time
330 (MIT) of 6-hours was used to separate rain events in the datasets (Chin et al., 2016; Palynchuk
331 and Guo, 2007). Any period without rainfall for 6 hours or more was accounted for in the mean
332 drying period (i.e., the time between consecutive rain events).



333
334 **Fig. 1.** Percent change between observed (1999-2013) and future (2035-2049) mean annual
335 rainfall, mean annual rain events, mean annual rainy days, and mean drying period for the 17
336 locations. The solid red line marks zero percent change between observed and future values.

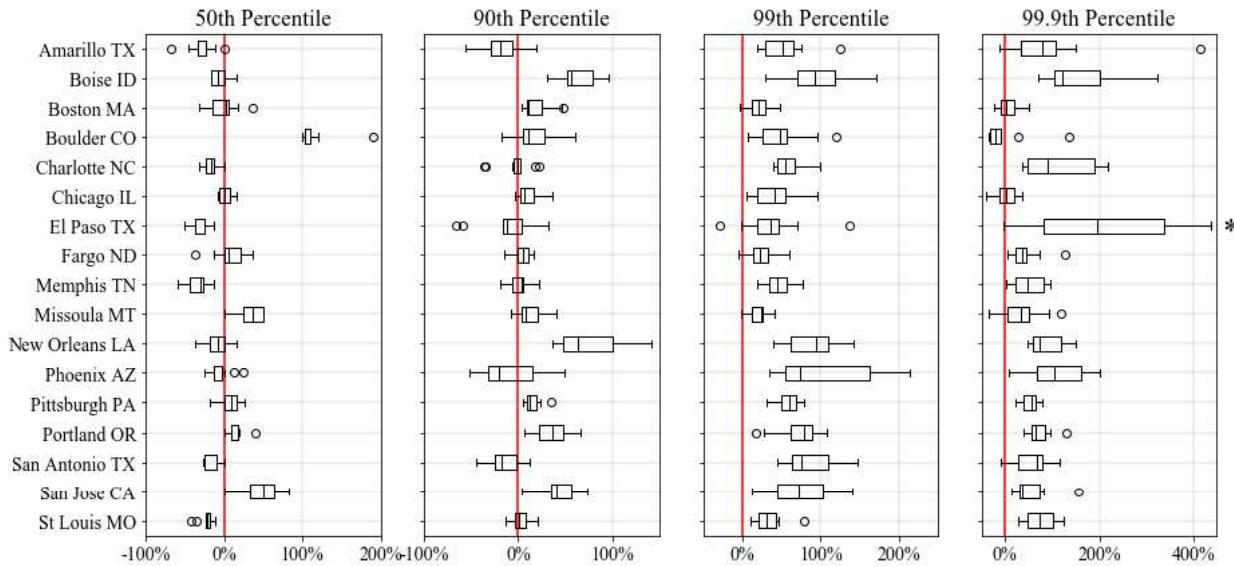
337 The boxplots for each location consist of the percent change between the observed and
338 future datasets for all 10 models (i.e., 10 values per boxplot). Out of the 170 total future model-
339 location combinations, annual rainfall increased in 135 combinations (79.4%), annual rain events
340 decreased in 110 combinations (64.7%), annual rainy days decreased in 103 combinations
341 (60.6%), and mean drying period increased in 107 combinations (62.9%). Median annual rainfall
342 (shown as the solid black line inside each boxplot in Figure 1) increased for all 17 locations
343 while the median number of annual rain events and rainy days decreased for nine locations with
344 an additional three locations observing decreases in one of these two precipitation characteristics.
345 Across all locations, mean annual rainfall depth increased by 9.9% (71mm) while mean annual
346 rain events and rainy days decreased 6.2% (6.5 days) and 3.9% (3.7 days), respectively. The
347 greatest percent change in mean annual rainfall (with an increase of 18.7%, corresponding to an
348 additional 278mm of rainfall) occurred in New Orleans, while the lowest percent change
349 occurred in Portland with an increase of 4.3% (38mm). These trends are consistent with the

350 understanding that while the total amount of rainfall may be higher in many locations in the
351 future, extreme rainfall will also increase in a significant number of locations due to climate
352 change.

353 Coupled with an anticipated reduction in the number of rainfall events, climate change is
354 expected to bring larger drying periods between storms (Zhang et al., 2019), further increasing
355 the vulnerability of water scarce environments (Hettiarachchi et al., 2022a). Median drying
356 period increased for 11 locations, but Portland was the only location where all 10 models
357 projected increased annual dry days (i.e., a decrease in the average number of rainy days per
358 year). The Northwest/West was the only region in which all locations (i.e., Boise, Boulder,
359 Portland, Missoula, and San Jose) showed increases in median drying period, and excluding
360 Missoula, account for four of the five largest percent increases in median drying period. As
361 documented by Manka et al. (2016), the significant increase in median drying period in the
362 Northwest/West could reduce the efficacy of biological processes present in bioretention cells
363 resulting in nutrient export and the subsequent degradation of nearby waterways. Combining all
364 locations, mean drying period increased by 10.5% (0.5 days) with the greatest percent change in
365 mean drying period occurring in New Orleans (mean increase of 37.8% or 1.2 days), while no
366 change occurred in St. Louis. Jhong and Tung (2018) also observed increases in the duration of
367 future dry periods in Taiwan and suggested that occurrences of floods and droughts could occur
368 more frequently due to the combination of increased precipitation event volumes and drying
369 periods.

370 Figure 2 displays the percent change between observed (1999-2013) and future (2035-
371 2049) precipitation depths for 50th, 90th, 99th, and 99.9th percentile rainfall event depths for the 17
372 locations. Out of the 170 total future model-location combinations, 50th percentile events

373 increased in 62 combinations (36.5%), 90th percentile events increased in 118 combinations
 374 (69.4%), 99th percentile events increased in 165 combinations (97.1%), and 99.9th percentile
 375 events increased in 147 combinations (86.5%). While median 50th percentile events only
 376 increased in seven locations, the higher percentile events were consistently predicted to increase
 377 in size, with median 90th percentile events increasing in 12 locations, median 99th percentile
 378 events increasing in all 17 locations, and median 99.9th percentile events increasing in 16
 379 locations. Rainfall intensities were projected to increase for an even greater number of locations
 380 and percentiles, with median 50th percentile rainfall intensities predicted to increase in 11
 381 locations, median 90th percentile rainfall intensities predicted to increase in 15 locations, median
 382 99th percentile rainfall intensities predicted to increase in all 17 locations, and median 99.9th
 383 percentile rainfall intensities predicted to increase in 15 locations.



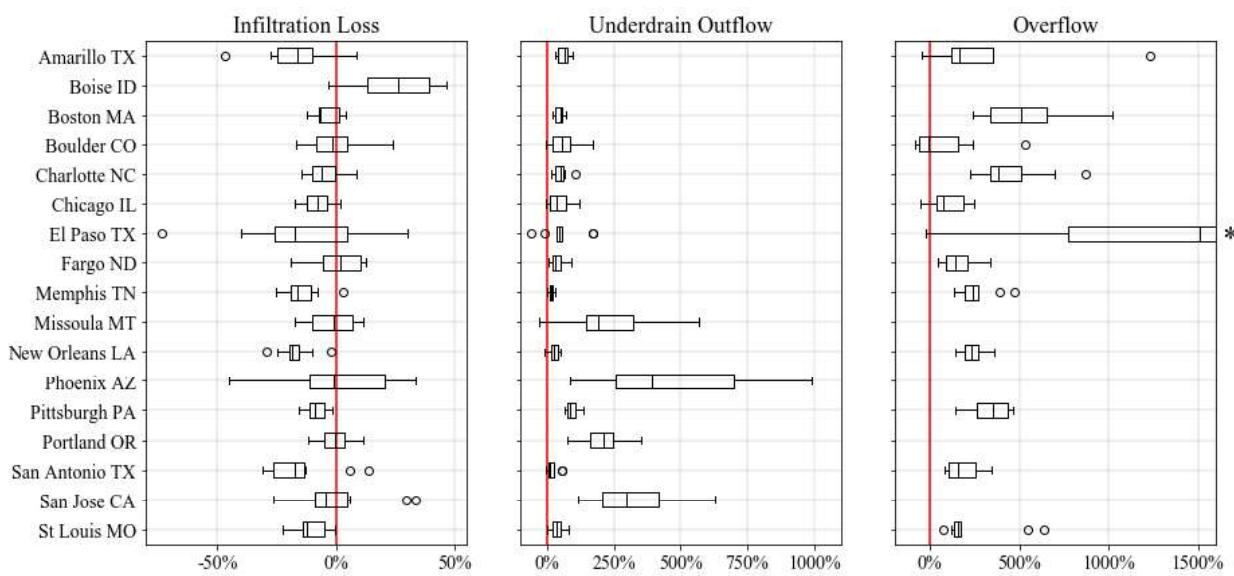
384
 385 **Fig. 2.** Percent change between observed (1999-2013) and future (2035-2049) precipitation
 386 depths for 50th, 90th, 99th, and 99.9th percentile rainfall event depths for the 17 locations. The
 387 solid red line marks zero percent change between observed and future values.
 388 *Note: An extreme outlier for 99.9th percentile events in El Paso is not shown in the figure
 389 (843%).

390 The trend in upper-percentile precipitation events and rainfall intensities ($\geq 90^{\text{th}}$) coupled
391 with minimal changes to moderate precipitation events (i.e., 50th percentile) supports findings in
392 existing literature and again points to anticipated increases in severe rainfall in the future (Karl
393 and Knight, 1998; Olsson et al., 2009). Since bioretention cells are most effective during small,
394 lower-intensity precipitation events, the increase in the frequency of large, higher-intensity
395 precipitation events is particularly concerning for future bioretention cell performance (Wang et
396 al., 2018). The significant outliers in the 50th (Boulder) and 99.9th percentiles (El Paso) indicate
397 that, as expected, climate change will not affect regional or even local precipitation equally. For
398 example, the four locations (i.e., Boulder, Missoula, Portland, and San Jose) with the greatest
399 increases in median 50th percentile precipitation events occurred in the Northwest/West, while no
400 location in the Southwest or Southeast showed an increase in median 50th percentile precipitation
401 events. Additionally, while those four locations (i.e., Boulder, Missoula, Portland, and San Jose)
402 showed all 10 models projecting either increases or no change in 50th percentile precipitation
403 events, six locations (i.e., Amarillo, Charlotte, El Paso, Memphis, San Antonio, and St. Louis)
404 showed all 10 models projecting either decreases or no change in 50th percentile precipitation
405 events – demonstrating the variability of future climate. Winston (2016) found similar variability
406 in future precipitation when comparing locations only 25 km apart in northeast Ohio, USA.
407 Similarly, Gao et al. (2012) showed substantial variability in climate change effects on extreme
408 weather across the eastern United States.

409 **3.2 Bioretention Cell Performance Statistics**

410 Figure 3 displays the percent change between observed (1999-2013) and future (2035-
411 2049) infiltration loss, underdrain outflow, and overflow from the modeled bioretention cell for
412 all 17 locations. Due to a lack of overflow under the observed rainfall data (i.e., flow equal to

413 zero), boxplots for Boise, Missoula, Phoenix, Portland, and San Jose are excluded from Figure 3
 414 as percent change could not be calculated. Boise was the only location where both underdrain
 415 outflow and overflow did not occur under the observed rainfall data and also produced the lowest
 416 observed 99th and 99.9th percentile rainfall event depths out of all 17 locations, illustrating the
 417 relationship between bioretention performance and regional climate. While underdrain outflow
 418 and/or overflow box plots in Figure 3 could not be produced for these five locations (i.e., Boise,
 419 Missoula, Phoenix, Portland, and San Jose), underdrain outflow and overflow increased in all
 420 five locations under future scenarios, indicating even the best-performing bioretention cells may
 421 experience diminished performance under future climate change scenarios. These locations also
 422 produced five of the six lowest observed 99.9th percentile rainfall event depths and are the
 423 western-most out of all 17 locations, further illustrating the relationship between bioretention cell
 424 performance and regional climate. Additionally, overflow only occurred on two days (out of 15
 425 years) under the observed rainfall data for El Paso. As such, percent change between observed
 426 and future overflow in El Paso appears more extreme in part due to the low number of overflow
 427 days for the observed dataset.



428

429 **Fig. 3.** Percent change between observed (1999-2013) and future (2035-2049) infiltration loss,
430 underdrain outflow, and overflow from modeled bioretention cell for 17 locations. The solid red
431 line marks zero percent change between observed and future values.

432 *Note: Second half of boxplot for El Paso is cut off from the figure ($Q_3 = 2487\%$; Max =
433 5360%).

434 Excluding the two locations with increased median infiltration loss, Boise (25.9%) and
435 Fargo (1.7%), percent change in median infiltration loss ranged from -0.2% (Portland) to -18.3%
436 (New Orleans) in the remaining 15 locations. Conversely, excluding the one location with an
437 observed underdrain outflow value of zero (Boise), percent change in median underdrain outflow
438 increased between 9.7% (San Antonio) and 393.2% (Phoenix) in the remaining 16 locations.
439 Finally, five locations had an observed overflow value of zero (i.e., percent change could not be
440 calculated), while extreme outlier values were observed in two locations, namely Boulder
441 (median decrease of 8.6%) and El Paso (median increase of 1510.4%). In the remaining 10
442 locations, the percent change in median overflow increased between 74.5% (Chicago) and
443 509.7% (Boston). Additionally, all locations in the Northeast (i.e., Boston and Pittsburgh) and
444 Southeast (i.e., Charlotte, Memphis, and New Orleans) showed all 10 models projecting
445 increases in overflow – with a minimum increase in overflow of 140% across the five locations.
446 New Orleans, Pittsburgh, and St. Louis also showed all 10 models projecting decreases in
447 median infiltration loss, indicating a high likelihood of diminished performance regardless of the
448 future climate change scenario. The projected significant increase in overflow in 11 locations is
449 most concerning from a public health and safety perspective due to the increased risk of flooding
450 in urban areas (Hou et al., 2020; Olsson et al., 2009) and degradation of waterways caused by
451 overflow predominantly bypassing treatment and quickly proceeding to nearby conveyances
452 (Hathaway et al., 2014; Walsh et al., 2005).

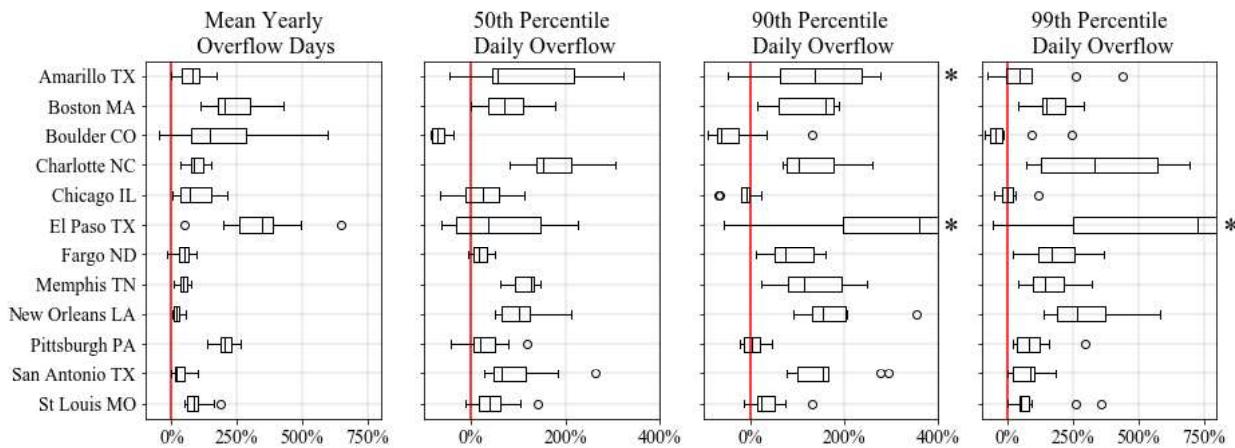
453 Out of the 170 total future model-location combinations, overflow increased in 151
454 combinations (88.8%), underdrain outflow increased in 163 combinations (95.9%), and
455 infiltration loss decreased in 121 combinations (71.2%). The increase in overflow and underdrain
456 outflow combined with decreased infiltration loss indicate bioretention cells designed following
457 current methods may be unable to accommodate the projected shift in precipitation patterns;
458 specifically, surface infiltration rates may not be sufficient to avoid significant increases in
459 overflow. While only a single underlying soil type (1.3 cm/hr) was evaluated in this study,
460 results from Tirpak et al. (2021) indicate that underlying soil type has little effect on overflow.
461 Thus, the primary benefits of bioretention cells (i.e., reducing peak runoff, groundwater recharge,
462 and filtering pollutants) may be lessened under future climate change scenarios.

463 Decreased infiltration loss under increased rainfall volumes has been documented in
464 previous literature (Tirpak et al., 2021), but the root cause has not been investigated. This is
465 important as different design modifications may be needed depending on the primary
466 contributors to decreased infiltration. This phenomenon is most likely due to the bioretention cell
467 surface layer filling too quickly, overwhelming surface infiltration rates (and subsequent
468 infiltration loss), and contributing to immediate overflow. If the surface layer is filling too
469 quickly to enable surface infiltration, then the surface layer depth could be increased to hold a
470 greater runoff volume, providing additional time for surface infiltration to occur (Tirpak et al.,
471 2021). Real-time control (RTC) technologies could provide an additional option to decrease
472 overflow and increase infiltration during moderate storm events through weather research and
473 forecast (WRF) models and real-time sensors and controls (Klenzendorf et al., 2015), enabling
474 bioretention cells to transition from passive stormwater management to active (Vijayaraghavan,
475 et al., 2021). Compared to passive bioretention cells, Persaud et al. (2019) and Shen et al. (2020)

476 found that RTC technologies could provide both hydrologic and water quality improvements if
477 retention time and storage are optimized for storm events. However, further research on the
478 efficacy of RTC technologies for bioretention performance optimization is still required, and it's
479 unlikely that RTC technologies could significantly reduce overflow during extreme storm events.

480 Figure 4 displays the percent change between observed (1999-2013) and future (2035-
481 2049) mean yearly overflow days, 50th percentile daily overflow volume, 90th percentile daily
482 overflow volume, and 99th percentile daily overflow volume. Overflow days were counted as any
483 day in which overflow volume was greater than 0.0 m³ between 00:00 and 23:59. Due to
484 observed values of zero for overflow, Boise, Missoula, Phoenix, Portland, and San Jose are not
485 shown in Figure 4 (i.e., percent change could not be calculated). Percent change in median yearly
486 overflow days increased between 16.4% (New Orleans) and 347.5% (El Paso) for all 12
487 locations shown. Of the 12 locations shown in Figure 4, median number of annual rainy days
488 also decreased in six locations (i.e., Boston, Boulder, Chicago, El Paso, New Orleans, and
489 Pittsburgh) and, excluding Boulder and St. Louis, median \geq 90th percentile rainfall intensities also
490 increased for the 10 remaining locations, again indicating increases in rainfall magnitude and
491 intensity when events do occur. A particularly compelling example of this trend is found in New
492 Orleans, where a relatively low increase in median yearly overflow days was observed, yet a
493 significant increase in median annual precipitation (18.7%) and 99th percentile rainfall intensities
494 (21.3%) and decrease in median annual rainy days (19.5%) were observed – the largest percent
495 changes in all three precipitation statistics – suggesting more intense events will make up a
496 greater percentage of the storms that do occur. Given that bioretention cells are most effective
497 during small, lower-intensity precipitation events, the efficacy of bioretention cells as a

498 stormwater management practice in New Orleans may be questioned as large, higher-intensity
499 precipitation events become the norm.



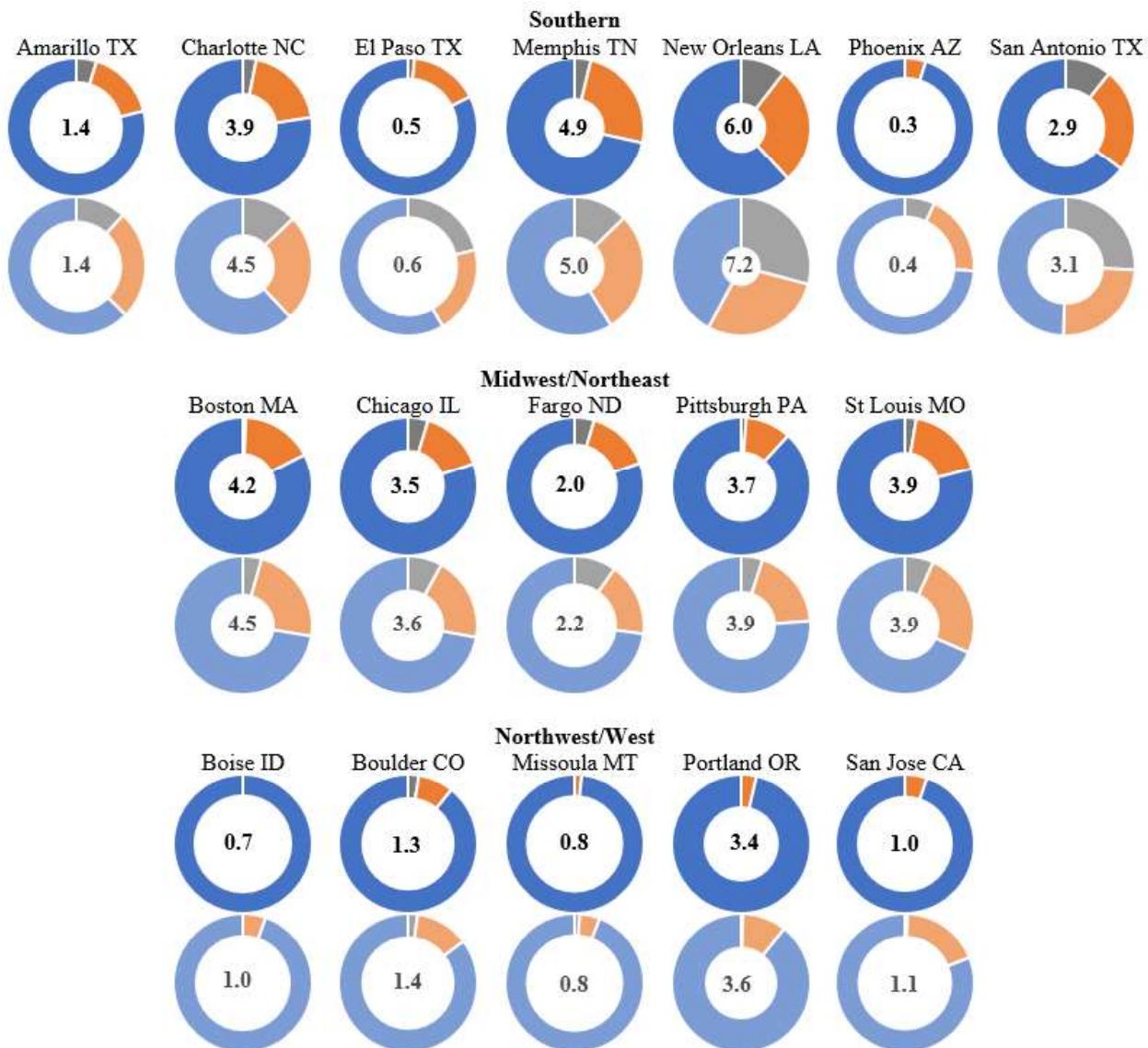
501 **Fig. 4.** Percent change between observed (1999-2013) and future (2035-2049) overflow
502 characteristics for 12 locations. The solid red line marks zero percent change between observed
503 and future values.

504 *Note: An outlier for Amarillo is cut off from the 90th percentile figure (Max = 722%), and the
505 second half of the boxplot for El Paso is cut off from the 90th percentile figure ($Q_3 = 701\%$; Max
506 = 1158%) and 99th percentile figure ($Q_3 = 1220\%$; Max = 4436%).

507 Excluding Boulder and Chicago, median 50th, 90th, and 99th percentile daily overflow
508 increased for the 10 remaining locations shown in Figure 4. Excluding the Northwest/West, the
509 consistent increase across all overflow percentiles indicates that government agencies, city
510 planners, and stormwater engineers across the country should expect higher volumes to bypass
511 treatment when overflow occurs from bioretention cells. Locations in the Southeast (i.e.,
512 Charlotte, Memphis, and New Orleans) face the greatest likelihood of higher overflow volumes.
513 All three locations experienced $\geq 100\%$ increases for all three (50th, 90th, and 99th) median daily
514 overflow percentiles, with all 10 climate models projecting increases in overflow compared with
515 observed performance. Given the uniformity in predicted changes to a range of overflow
516 volumes, adaptations to limit the environmental and public safety impacts of untreated bypass
517 may be especially critical in these locations.

518 3.3 *Regional Trends in Future Bioretention Cell Performance*

519 Observed (1999-2013) and future (2035-2049) median average annual infiltration loss,
520 underdrain outflow, and overflow volumes for all 17 locations are presented in Figure 5. Results
521 indicate that bioretention cells in the southern United States (i.e., Southeast and Southwest) are
522 most at risk of performance impacts under future climate change scenarios. The seven southern-
523 most locations (i.e., Amarillo, Charlotte, El Paso, Memphis, New Orleans, Phoenix, and San
524 Antonio) produced the highest relative percent increases in overflow, ranging from 7.0% to
525 19.6%. With the exception of Memphis, these locations also produced six of the highest relative
526 percent decreases in infiltration loss, ranging from 15.3% to 24.0%. New Orleans and San
527 Antonio also recorded the two highest relative increases in annual overflow volume, 2115.1 cu
528 m/yr and 710.0 cu m/yr, respectively. Significant increases in overflow in the southern United
529 States are consistent with extreme precipitation projections by Prein et al. (2017) and
530 bioretention literature (Cook et al., 2019; Hathaway et al., 2014). The significant increases in
531 overflow are a direct result of the frequent and intense rainfall in the southern United States,
532 highlighting the potential limitations of current bioretention design strategies. Although GSI is
533 likely to provide some resiliency to extreme precipitation, these results indicate there are limits
534 in this resilience that can be exceeded.



535
536
537
538
539

Fig. 5. Annual Volume (1000 cu m/yr) shown in the center of each donut chart is the sum of annual overflow, underdrain outflow, and infiltration loss. Observed (top) and future (bottom) overflow (grey), underdrain outflow (orange), and infiltration loss (blue) for all 17 locations. Donut hole size is inversely proportional to the annual volume.

540

541 Similarly, bioretention cells located in the Midwest and Northeast are still at risk of
542 diminished performance under future climate change scenarios. Following the seven southern
543 locations, the five locations in the Midwest and Northeast (i.e., Boston, Chicago, Fargo,
544 Pittsburgh, and St. Louis) produced the next highest relative percent increases in overflow,
545 ranging from 3.3% to 5.2%. The five Midwest and Northeast locations also recorded the 5th
546 through 9th highest relative median increases in annual overflow volumes, ranging from 176.2 cu
547 m/yr to 241.1 cu m/yr. Results are consistent with Cook et al. (2019) who found that overflow
548 from bioretention cells in the Midwest and Northeast occurred at equal or greater magnitudes
549 compared with other regions in the United States.

550 Bioretention cells in the Northwest/West have the best likelihood of being able to
551 maintain existing function under future climate change scenarios, also consistent with previous
552 findings (Cook et al. 2019). The five Northwest/West locations (i.e., Boise, Boulder, Missoula,
553 Portland, and San Jose) produced the lowest relative percent changes in overflow, ranging from a
554 decrease of 0.3% to an increase of 1.2%. These locations also recorded the lowest relative
555 changes in annual overflow volume, ranging from a median decrease of 4.2 cu m/yr to an
556 increase of 21.5 cu m/yr. The minimal effect on existing bioretention cell function indicates that
557 stormwater infrastructure in the Northwest/West may require the least adaptation measures to
558 maintain existing function under future climate conditions.

559 ***3.4 Implications to Bioretention Design and Adaptation Measures***

560 While overflow and infiltration are expected to increase and decrease, respectively, under
561 future climate conditions for many bioretention cells across the United States, modifications can
562 be implemented to mitigate the effects of climate change to their performance. Tirpak et al.
563 (2021) compared an ensemble of retrofit and design configurations for bioretention cells in east

564 Tennessee, and found varying degrees of success for three scenarios: 1) increasing the soil layer
565 depth; 2) increasing the storage layer depth; 3) and increasing the bioretention cell surface area.
566 Increasing the depth of the soil layer in the bioretention cell was shown to be a conservative yet
567 effective method of increasing runoff volume retention (Tirpak et al., 2021). As such, increasing
568 the depth of the soil layer for bioretention cells in regions where overflow is expected to
569 modestly increase, such as the Northwest/West and parts of the Midwest, is a viable option
570 requiring low investment, particularly for newly constructed cells. Increased soil layer depth can
571 also increase pollutant removal and water storage (Hatt et al., 2009), which may mitigate plant
572 stress in these systems in the drier climates projected for the Northwest/West.

573 Increasing the depth of the storage layer has been found to be an effective method of
574 reducing overflow. Hathaway et al. (2014) found an increased storage layer depth from 9.0 to
575 31.0 cm would maintain existing function of bioretention cells in east North Carolina into the
576 late 2050s. Similarly, Winston (2016) found that increasing storage layer depth from 5.0 to 17.0
577 cm would maintain existing function in northeast Ohio into the late 2050s. Increasing the storage
578 layer depth has the potential to temporarily store a greater volume of runoff than increasing the
579 soil layer depth but requires either deepening the bioretention cell or removing media from the
580 soil layer, reducing the efficacy of pollutant removal. Further, substantial increases in surface
581 storage depth may lead to public safety concerns due to the hazard posed by deeper ponding
582 zones relative to nearby surfaces. However, increasing the storage layer depth has been shown to
583 be more effective at reducing overflow than increasing the soil layer depth and should be
584 considered if overflow reduction is a priority (Tirpak et al., 2021). Densely populated, highly
585 urbanized locations with a need to mitigate projected increases in future overflow, such as

586 Chicago, Pittsburgh, or Boston, may greatly benefit from increased storage layer depths in
587 bioretention cells.

588 The final viable option investigated by Tirpak et al. (2021) increased the surface area of
589 bioretention cells relative to the subcatchment, which has been shown to be an effective method
590 of reducing overflow and increasing infiltration due to increased soil and storage layer volumes
591 (Wang et al., 2019b; Zhang et al. 2019). Increasing bioretention cell surface area requires the
592 greatest investment of the three options and may not be viable in highly urbanized locations due
593 to limited space or cost. However, locations in the southern United States, such as El Paso, San
594 Antonio, Memphis, Charlotte, and New Orleans, may require significant investment in all
595 stormwater infrastructure (both grey and green) to mitigate projected increases in overflow
596 volumes. A location such as New Orleans, in particular, may need to incorporate bioretention
597 cell modifications wherever possible to reduce the significant increases in overflow volumes
598 projected under future climate conditions.

599 Given the geographic and hydrologic variability of the US locations selected for this
600 study, the bioretention cell modifications suggested could be applied to a range of cities globally.
601 Locations projected to experience fewer rainfall events and longer dry periods, such as
602 Melbourne, Australia (Zhang et al., 2019), could increase soil layer depths of bioretention cells
603 to mitigate plant stress and improve pollutant removal. High-density locations with humid
604 continental climates similar to Boston and Pittsburgh, such as Vienna, Austria (Strauss et al.,
605 2012), may benefit from increasing the storage layer depth in bioretention cells depending on the
606 severity of future climate conditions. Subtropical locations similar to New Orleans and Charlotte,
607 such as Guangzhou, China (Wang et al., 2019a), will likely require considerable bioretention cell
608 modifications wherever possible.

609 **4.0 Conclusions**

610 Bioretention performance under future climate change projections was evaluated for 17
611 cities across the contiguous United States using SWMM version 5.1. Median annual rainfall
612 increased across all 17 locations in future scenarios. A majority of locations also experienced a
613 decreased median number of rainy days and rain events while median drying period increased.
614 Precipitation events were projected to become more severe for upper-percentile events ($\geq 90^{\text{th}}$)
615 while 50th percentile events were projected to change minimally for all locations except for
616 Boulder. Future precipitation events were projected, therefore, to become less frequent but more
617 severe. However, findings clearly indicate that while precipitation event severity is expected to
618 increase on average across the United States the shift in precipitation patterns will vary
619 significantly by location.

620 As a result of shifting precipitation patterns, future bioretention cell performance was
621 impacted by changing climates across all locations. Results demonstrated that bioretention cells
622 in the southern United States have the greatest likelihood of diminished future function, followed
623 by cells in the Midwest and Northeast. Due to the magnitude of change projected for the
624 Northwest/West, bioretention cells in those regions may only require minor investments in
625 retrofits or design modifications to maintain future performance.

626 Increased annual overflow, which poses significant environmental and health risks to
627 urban communities, projected for the Midwest, Northeast, and southern United States, may
628 elevate the importance of design modifications (e.g., increasing surface storage layer volumes) to
629 offset these risks. Projected decreases in infiltration from bioretention cells, especially notable in
630 the southern United States, presents additional challenge for city planners and stormwater
631 engineers. If bioretention cells are no longer able to promote infiltration into native soils and
632 filter pollutants from runoff, then their benefit as a stormwater control measure will be

633 substantially reduced. Further, these outcomes suggest that while bioretention following current
634 design strategies may continue to provide some runoff mitigation, shifting precipitation patterns,
635 including more intense rain events, reveal limitations in their ability to maintain desired
636 performance under future climate conditions.

637 Future studies should consider a wider range of climate models, emissions scenarios, and
638 bioretention cell configurations to provide an even more robust assessment of future impacts to
639 performance. Additionally, while a range of climate models and locations were evaluated in this
640 study, a single bioretention cell configuration was used for all simulations. Studies which
641 consider multiple bioretention cell configurations would provide insight on the significance of
642 design modifications beyond current standards for a range of locations to maintain existing
643 function under future climate scenarios.

644

645 **Acknowledgements**

646 This work was supported by the National Science Foundation [grant number 1634975]. The
647 authors would like to thank Dr. Seth McGinnis and Dr. Lauren Cook for their assistance with the
648 bias correction procedure and Dr. Sean Arms for his assistance in acquiring the climate projections
649 used in this research.

650

651

652

653

654

655

656 **References**

657 Aiona, A., Coker, A., Dunlap, I., Simpson, A., Stevens, H., 2020. City of Portland Stormwater
658 Management Manual. Compiled by Bureau of Environmental Services, Portland, OR.

659 American Society for Testing and Materials (ASTM), 2003. C 33 Standard Specification for
660 Concrete Aggregates. American Society for Testing and Materials, Philadelphia, PA.

661 Arcement, G. J., Schneider, V. R., 1989. Guide for selecting Manning's roughness coefficients
662 for natural channels and flood plains. US Geology Survey, Denver, CO.

663 Arnbjerg-Nielsen, K., 2012. Quantification of climate change effects on extreme precipitation
664 used for high resolution hydrologic design. *Urban Water J.* 9(2): 57-65.
665 <https://doi.org/10.1080/1573062X.2011.630091>.

666 Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., Meko, D. M., 2014. Assessing the Risk
667 of Persistent Drought Using Climate Model Simulations and Paleoclimate Data. *J. Clim.* 27(20):
668 7529-7549. <https://doi.org/10.1175/JCLI-D-12-00282.1>.

669 Bishop, D. A., Williams, A. P., Seager, R., 2019. Increased Fall Precipitation in the Southeastern
670 United States Driven by Higher- Intensity, Frontal Precipitation. *Geophys. Res. Lett.* 46(14):
671 8300-8309. <https://doi.org/10.1029/2019GL083177>.

672 Brakensiek, D. L., Engleman, R. L., Rawls, W. J., 1981. Variation within Texture Classes of Soil
673 Water Parameters. *Transactions of the ASAE* 24(2): 0335-0339.
674 <https://dx.doi.org/10.13031/2013.34253>.

675 Bukovsky, M. S., 2011. Masks for the Bukovsky regionalization of North America. Regional
676 Integrated Sciences Collective, Institute for Mathematics Applied to Geosciences, National
677 Center for Atmospheric Research. Accessed March 2, 2021.
678 <http://www.narccap.ucar.edu/contrib/bukovsky/>.

679 Bukovsky, M. S., Thompson, J. A., Mearns, L. O., 2019. Weighting a regional climate model
680 ensemble: Does it make a difference? Can it make a difference? *Clim. Res.* 77(1): 23-43.
681 <https://doi.org/10.3354/cr01541>.

682 Bukovsky, M. S., Mearns, L. O., 2020. Regional climate change projections from NA-CORDEX
683 and their relation to climate sensitivity. *Clim. Change* 162(2): 645-665.
684 <https://doi.org/10.1007/s10584-020-02835-x>.

685 Chin, R. J., Lai, S. H., Chang, K. B., Jaafar, W. Z. W., Othman, F., 2016. Relationship between
686 minimum inter-event time and the number of rainfall events in Peninsular Malaysia. *Weather*
687 71(9): 213-218. <https://doi.org/10.1002/wea.2766>.

688 Cook, L. M., 2018. Using climate change projections to increase the resilience of stormwater
689 infrastructure designs under uncertainty. Doctoral dissertation, Pittsburgh, PA: Carnegie Mellon
690 Univ.

691 Cook, L. M., VanBriesen, J. M., Samaras, C., 2019. Using rainfall measures to evaluate
692 hydrologic performance of green infrastructure systems under climate change. *Sustainable*
693 *Resilient Infrastruct.* 1-25. <https://doi.org/10.1080/23789689.2019.1681819>.

694 Cook, L. M., McGinnis, S., Samaras, C., 2020. The effect of modeling choices on updating
695 intensity-duration-frequency curves and stormwater infrastructure designs for climate change.
696 *Clim. Change* 159(2): 289-308. <https://doi.org/10.1007/s10584-019-02649-6>.

697 County, K., 2008. Knox County Tennessee stormwater management manual. Compiled by
698 AMEC Earth & Environmental Inc, Knoxville, TN.

699 Davis, A. P., 2008., Field Performance of Bioretention: Hydrology Impacts. *J. Hydrol. Eng.*
700 13(2): 90-95. [https://doi.org/10.1061/\(ASCE\)1084-0699\(2008\)13:2\(90\)](https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(90)).

701 Davis, A. P., Shokouhian, M., Sharma, H., Minami, C., 2001. Laboratory Study of Biological
702 Retention for Urban Stormwater Management. *Water Environ. Res.* 73(1): 5-14.
703 <https://doi.org/10.2175/106143001X138624>.

704 Deletic, A., 1998. The first flush load of urban surface runoff. *Water Res.* 32(8): 2462-2470.
705 [https://doi.org/10.1016/S0043-1354\(97\)00470-3](https://doi.org/10.1016/S0043-1354(97)00470-3).

706 Dietz, M. E., 2007. Low Impact Development Practices: A Review of Current Research and
707 Recommendations for Future Directions. *Water Air Soil Pollut.* 186(1-4): 351-363.
708 <https://doi.org/10.1007/s11270-007-9484-z>.

709 Du, J., Qian, L., Rui, H., Zuo, T., Zheng, D., Xu, Y., Xu, C. Y., 2012. Assessing the effects of
710 urbanization on annual runoff and flood events using an integrated hydrological modeling system
711 for Qinhuai River basin, China. *J. Hydrol.* 464-465: 127-139.
712 <https://doi.org/10.1016/j.jhydrol.2012.06.057>.

713 Dupont, B., Allen, D. L., 1999. Revision of the Rainfall-intensity Duration Curves for the
714 commonwealth of Kentucky.

715 Eckart, K., McPhee, Z., Bolisetti, T., 2017. Performance and implementation of low impact
716 development – A review. *Sci. Total Environ.* 607-608: 413-432.
717 <https://dx.doi.org/10.1016/j.scitotenv.2017.06.254>.

718 Gao, Y., Fu, J. S., Drake, J. B., Liu, Y., Lamarque, J. F., 2012. Projected changes of extreme
719 weather events in the eastern United States based on a high resolution climate modeling system.
720 *Environ. Res. Lett.* 7(4): 044025. <https://dx.doi.org/10.1088/1748-9326/7/4/044025>.

721 Gironás, J., Roesner, L. A., Davis, J., 2009. Storm Water Management Model Applications
722 Manual. US Environmental Protection Agency, EPA: Washington, DC, US.

723 Green, W. H., Ampt, G. A., 1911. Studies on Soil Phyics. *J. Agric. Sci.* 4(1): 1-24.
724 <https://dx.doi.org/10.1017/s0021859600001441>.

725 Hamill, T. M., 2014. Performance of Operational Model Precipitation Forecast Guidance during
726 the 2013 Colorado Front-Range Floods. *Mon. Weather Rev.* 142(8): 2609-2618.
727 <https://dx.doi.org/10.1175/mwr-d-14-00007.1>.

728 Hargreaves, G. H., Samani, Z. A., 1985. Reference Crop Evapotranspiration from Temperature.
729 *Appl. Eng. Agric.* 1(2): 96-99. <https://doi.org/10.13031/2013.26773>.

730 Hathaway, J. M., Brown, R. A., Fu, J. S., Hunt, W. F., 2014. Bioretention function under climate
731 change scenarios in North Carolina, USA. *J. Hydrol.* 519: 503-511.
732 <https://doi.org/10.1016/j.jhydrol.2014.07.037>.

733 Hatt, B. E., Fletcher, T. D., Deletic, A., 2009. Hydrologic and pollutant removal performance of
734 stormwater biofiltration systems at the field scale. *J. Hydrol.* 365(3): 310-321.
735 <https://doi.org/10.1016/j.jhydrol.2008.12.001>.

736 Hettiarachchi, S., Wasko, C., Sharma, A., 2018. Increase in flood risk resulting from climate
737 change in a developed urban watershed—the role of storm temporal patterns. *Hydrol. Earth Syst.
738 Sci.* 22(3): 2041-2056. <https://doi.org/10.5194/hess-22-2041-2018>.

739 Hettiarachchi, S., Wasko, C., Sharma, A., 2022a. Do longer dry spells associated with warmer
740 years compound the stress on global water resources? *Earth's Future* 10(2): e2021EF002392.
741 <https://doi.org/10.1029/2021EF002392>.

742 Hettiarachchi, S., Wasko, C., Sharma, A., 2022b. Rethinking urban storm water management
743 through resilience—The case for using green infrastructure in our warming world. *Cities* 128:
744 103789. <https://doi.org/10.1016/j.cities.2022.103789>.

745 Hou, X., Guo, H., Wang, F., Li, M., Xue, X., Liu, X., Zeng, S., 2020. Is the sponge city
746 construction sufficiently adaptable for the future stormwater management under climate change?
747 *J. Hydrol.* 588: 125055. <https://doi.org/10.1016/j.jhydrol.2020.125055>.

748 Huang, C. L., Hsu, N. S., Liu, H. J., Huang, Y. H., 2018. Optimization of low impact
749 development layout designs for megacity flood mitigation. *J. Hydrol.* 564: 542-558.
750 <https://doi.org/10.1016/j.jhydrol.2018.07.044>.

751 Jhong, B.-C., Tung, C.-P., 2018. Evaluating Future Joint Probability of Precipitation Extremes
752 with a Copula-Based Assessing Approach in Climate Change. *Water Resour. Manag.* 32(13):
753 4253-4274. <https://doi.org/10.1007/s11269-018-2045-y>.

754 Karl, T. R., Knight, R. W., 1998. Secular Trends of Precipitation Amount, Frequency, and
755 Intensity in the United States. *Bull. Am. Meteorol. Soc.* 79(2): 231-241.
756 [https://dx.doi.org/10.1175/1520-0477\(1998\)079<0231:stopaf>2.0.co;2](https://dx.doi.org/10.1175/1520-0477(1998)079<0231:stopaf>2.0.co;2).

757 Klenzendorf, B., Barrett, M., Christman, M., Quigley, M., 2015. Water Quality and Conservation
758 Benefits Achieved via Real Time Control Retrofit of Stormwater Management Facilities near
759 Austin, Texas. *StormCon*, Austin, TX.

760 Köppen, W., 1900. Versuch einer Klassifikation der Klimate, Vorzugsweise nach ihren
761 Beziehungen zur Pflanzenwelt [Attempted climate classification in relation to plant
762 distributions]. [In German]. *Geogr. Z.*, 6, 593-611, 657-679.

763 Leopold, L. B., 1968. Hydrology for urban land planning: A guidebook on the hydrologic effects
764 of urban land use, US Geological Survey.

765 Louisiana Department of Environmental Quality (LDEQ), 2010. Stormwater BMP Guidance
766 Tool. Compiled by Geosyntec Consultants, New Orleans, LA.

767 Mahmoud, S. H., Gan, T. Y., 2018. Urbanization and climate change implications in flood risk
768 management: Developing an efficient decision support system for flood susceptibility mapping.
769 *Sci. Total Environ.* 636: 152-167. <https://doi.org/10.1016/j.scitotenv.2018.04.282>.

770 Manka, B. N., Hathaway, J. M., Tirpak, R. A., He, Q., Hunt, W. F., 2016. Driving forces of
771 effluent nutrient variability in field scale bioretention. *Ecol. Eng.* 94: 622-628.
772 <https://doi.org/10.1016/j.ecoleng.2016.06.024>.

773 Massachusetts Department of Environmental Protection (MassDEP), 2008. Massachusetts
774 Stormwater Handbook Volume 2. Massachusetts Department of Environmental Protection,
775 Boston, MA.

776 Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A.,
777 Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X.,
778 Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., 2018. Global Warming of
779 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial
780 levels and related global greenhouse gas emission pathways, in the context of strengthening the
781 global response to the threat of climate change, sustainable development, and efforts to eradicate
782 poverty, IPCC.

783 McGinnis, S., 2018. climod: Bias correction and other tools for climate model output. Version
784 0.0.1. Accessed March 10, 2021. <https://github.com/sethmcg/climod>.

785 McGinnis, S., Nychka, D., Mearns, L. O., 2015. A new distribution mapping technique for
786 climate model bias correction. *Machine learning and data mining approaches to climate science*,
787 Springer: 91-99.

788 McGinnis, S. A., Mearns, L., 2016. Bias-Correction of Extreme Temperatures and Precipitation
789 in NA-CORDEX Regional Climate Model Output. AGU FM 2016: GC53B-1290.

790 [dataset] Mearns et al., 2017. The NA-CORDEX dataset, version 1.0. NCAR Climate Data
791 Gateway. Accessed March 2, 2021. <https://doi.org/10.5065/D6SJ1JCH>.

792 Miller, R., 1978. The hydraulically effective impervious area of an urban basin, Broward
793 County, Florida. Prepared for the International Symposium on Urban Storm Water Management,
794 Kentucky University, Lexington, July 24-27, 1978.

795 Milly, P., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P.,
796 Stouffer, R. J., 2008. Stationarity is dead: Whither water management? *Science* 319(5863): 573-
797 574. <https://www.science.org/doi/10.1126/science.1151915>

798 Minnesota Stormwater Steering Committee (MSSC), 2006. Minnesota Stormwater Manual.
799 Minnesota Pollution Control Agency, St. Paul, MN.

800 [dataset] National Oceanic and Atmospheric Administration (NOAA), 2016. National Centers
801 for Environmental Information. Accessed June 1, 2020. <https://www.ncdc.noaa.gov/>.

802 [dataset] National Oceanic and Atmospheric Administration (NOAA), 2017. National Weather
803 Service. Accessed January 20, 2021. <https://hdsc.nws.noaa.gov/hdsc/pfds/>.

804 North Carolina Department of Environmental Quality (NCDEQ), 2020. NCDEQ Stormwater
805 Design Manual. North Carolina Department of Environmental Quality, Raleigh, NC.

806 O'Driscoll, M., Clinton, S., Jefferson, A., Manda, A., McMillan, S., 2010. Urbanization Effects
807 on Watershed Hydrology and In-Stream Processes in the Southern United States. *Water* 2(3):
808 605-648. <https://dx.doi.org/10.3390/w2030605>.

809 Olsson, J., Berggren, K., Olofsson, M., Viklander, M., 2009. Applying climate model
810 precipitation scenarios for urban hydrological assessment: A case study in Kalmar City, Sweden.
811 *Atmos. Res.* 92(3): 364-375. <https://doi.org/10.1016/j.atmosres.2009.01.015>.

812 Palynchuk, B., Guo, Y., 2008. Threshold analysis of rainstorm depth and duration statistics at
813 Toronto, Canada. *J. Hydrol.* 348(3-4): 535-545. <https://doi.org/10.1016/j.jhydrol.2007.10.023>.

814 Persaud, P. P., Akin, A. A., Kerkez, B., McCarthy, D. T., Hathaway, J. M., 2019. Real time
815 control schemes for improving water quality from bioretention cells. *Blue-Green Syst.* 1(1): 55-
816 71. <https://doi.org/10.2166/bgs.2019.924>.

817 Pitt, R. E., 1999. Small storm hydrology and why it is important for the design of stormwater
818 control practices. *J. Water Manag. Model.* R204-04.

819 Pittsburgh Water and Sewer Authority (PWSA), 2022. The City of Pittsburgh Stormwater
820 Design Manual. Pittsburgh Water and Sewer Authority, Pittsburgh, PA.

821 Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., Holland, G. J., 2017. The future
822 intensification of hourly precipitation extremes. *Nat. Clim. Change* 7(1): 48-52.
823 <https://doi.org/10.1038/nclimate3168>.

824 Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete,
825 B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y.,
826 Satoh, Y., Stacke, T., Wada, Y., Wisser, D., 2014. Hydrological droughts in the 21st century,
827 hotspots and uncertainties from a global multimodel ensemble experiment. *Proc. Natl. Acad. Sci.*
828 111(9): 3262-3267. <https://doi.org/10.1073/pnas.1222473110>.

829 Pryor, S. C., Howe, J. A., Kunkel, K. E., 2009. How spatially coherent and statistically robust are
830 temporal changes in extreme precipitation in the contiguous USA? *Int. J. Climatol.* 29(1): 31-45.
831 <https://dx.doi.org/10.1002/joc.1696>.

832 R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for
833 Statistical Computing, Vienna, Austria. Accessed March 10, 2020.
834 <http://www.r-project.org/index.html>.

835 Rosenberg, E. A., Keys, P. W., Booth, D. B., Hartley, D., Burkey, J., Steinemann, A. C.,
836 Lettenmaier, D. P., 2010. Precipitation extremes and the impacts of climate change on
837 stormwater infrastructure in Washington State. *Clim. Change* 102(1): 319-349.
838 <https://doi.org/10.1007/s10584-010-9847-0>.

839 Rossman, L., 2015. Storm Water Management Model User's Manual Version 5.1—Manual. US
840 EPA Office of Research and Development, EPA: Washington, DC, USA.

841 Roy, A. H., Freeman, M. C., Freeman, B. J., Wenger, S. J., Ensign, W. E., Meyer, J. L., 2005.
842 Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing
843 streams. *J. N. Am. Benthol. Soc.* 24(3): 656-678. <https://doi.org/10.1899/04-022.1>.

844 San Antonio River Authority (SARA), 2019. San Antonio River Basin Low Impact Development
845 Technical Design Guidance Manual, v2. San Antonio River Authority, San Antonio, TX.

846 Sarkar, S., Butcher, J. B., Johnson, T. E., Clark, C. M., 2018. Simulated sensitivity of urban
847 green infrastructure practices to climate change. *Earth Interact.* 22(13): 1-37.
848 <https://doi.org/10.1175/EI-D-17-0015.1>.

849 Shen, P., Deletic, A., Bratieres, K., McCarthy, D. T., 2020. Real time control of biofilters
850 delivers stormwater suitable for harvesting and reuse. *Water Res.* 169: 115257.
851 <https://doi.org/10.1016/j.watres.2019.115257>.

852 Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., Smith, D. R., 2005. Impacts of
853 impervious surface on watershed hydrology: A review. *Urban Water J.* 2(4): 263-275.
854 <https://doi.org/10.1080/15730620500386529>.

855 Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J. C., Bodus- Salcedo, A.,
856 Suzuki, K., Gabriel, P., Haynes, J., 2010. Dreary state of precipitation in global models. *J.*
857 *Geophys. Res. Atmos.* 115(D24). <https://doi.org/10.1029/2010JD014532>.

858 Strauss, F., Formayer, H., Schmid, E., 2013. High resolution climate data for Austria in the
859 period 2008–2040 from a statistical climate change model. *Int. J. Climatol.* 33(2): 430-443.
860 <https://doi.org/10.1002/joc.3434>.

861 Tennessee Department of Environment and Conservation (TDEC), 2014. Tennessee Permanent
862 Stormwater Management and Design Guidance Manual. Tennessee Department of Environment
863 and Conservation, Division of Water Resources, Nashville, TN.

864 Tirpak, A., Hathaway, J. M., Khojandi, A., Weathers, M., Epps, T. H., 2021. Building Resiliency
865 to Climate Change Uncertainty through Bioretention Design Modifications. *J. Environ. Manage.*
866 287: 112300. <https://doi.org/10.1016/j.jenvman.2021.112300>.

867 van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.
868 C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.
869 J., Rose, S. K., 2011. The representative concentration pathways: an overview. *Clim. Change.*
870 109(1): 5-31. <https://doi.org/10.1007/s10584-011-0148-z>.

871 Vijayaraghavan, K., Biswal, B. K., Adam, M. G., Soh, S. H., Tsen-Tieng, D. L., Davis, A. P.,
872 Chew, S. H., Tan, P. Y., Babovic, V., Balasubramanian, R., 2021. Bioretention systems for
873 stormwater management: Recent advances and future prospects. *J. Environ. Manage.* 292:
874 112766. <https://doi.org/10.1016/j.jenvman.2021.112766>.

875 Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., Morgan, R. P.,
876 2005. The urban stream syndrome: current knowledge and the search for a cure. *J. N. Am.
877 Benthol. Soc.* 24(3): 706-723. <https://dx.doi.org/10.1899/04-028.1>.

878 Wang, M., Zhang, D. Q., Su, J., Dong, J. W., Tan, S. K., 2018. Assessing hydrological effects
879 and performance of low impact development practices based on future scenarios modeling. *J.
880 Clean. Prod.* 179: 12-23. <https://doi.org/10.1016/j.jclepro.2018.01.096>.

881 Wang, M., Zhang, D., Cheng, Y., Tan, S. K., 2019a. Assessing performance of porous
882 pavements and bioretention cells for stormwater management in response to probable climatic
883 changes. *J. Environ. Manage.*, 243: 157-167. <https://doi.org/10.1016/j.jenvman.2019.05.012>.

884 Wang, M., Zhang, D., Lou, S., Hou, Q., Liu, Y., Cheng, Y., Qi, J., Tan, S. K., 2019b. Assessing
885 hydrological effects of bioretention cells for urban stormwater runoff in response to climatic
886 changes. *Water* 11(5): 997. <https://doi.org/10.3390/w11050997>.

887 Wasko, C., Sharma, A., 2015. Steeper temporal distribution of rain intensity at higher
888 temperatures within Australian storms. *Nat. Geosci.* 8(7): 527-529.
889 <https://doi.org/10.1038/ngeo2456>.

890 Winston, R. J., 2016. Resilience of Green Infrastructure under Extreme Conditions. Doctoral
891 dissertation, Raleigh, NC: North Carolina State Univ.

892 Winston, R. J., Dorsey, J. D., Hunt, W. F., 2016. Quantifying volume reduction and peak flow
893 mitigation for three bioretention cells in clay soils in northeast Ohio. *Sci. Total Environ.* 553: 83-
894 95. <https://doi.org/10.1016/j.scitotenv.2016.02.081>.

895 Yang, L., Ni, G., Tian, F., Niyogi, D., 2021. Urbanization exacerbated rainfall over European
896 suburbs under a warming climate. *Geophys. Res. Lett.* 48(21): e2021GL095987.
897 <https://doi.org/10.1029/2021GL095987>.

898 Zhang, W., Villarini, G., Vecchi, G. A., Smith, J. A., 2018. Urbanization exacerbated the rainfall
899 and flooding caused by hurricane Harvey in Houston. *Nature* 563(7731): 384-388.
900 <https://doi.org/10.1038/s41586-018-0676-z>.

901 Zhang, K., Manelpillai, D., Raut, B., Deletic, A., Bach, P. M., 2019. Evaluating the reliability
902 of stormwater treatment systems under various future climate conditions. *J. Hydrol.* 568: 57-66.
903 <https://doi.org/10.1016/j.jhydrol.2018.10.056>.