
52

Multi-User Mobile Sequential Recommendation

for Route Optimization

KELI XIAO, ZEYANG YE, and LIHAO ZHANG, State University of New York at Stony Brook

WENJUN ZHOU, University of Tennessee Knoxville

YONG GE, University of Arizona

YUEFAN DENG, State University of New York at Stony Brook

We enhance the mobile sequential recommendation (MSR) model and address some critical issues in existing

formulations by proposing three new forms of the MSR from a multi-user perspective. The multi-user MSR

(MMSR) model searches optimal routes for multiple drivers at different locations while disallowing overlap-

ping routes to be recommended. To enrich the properties of pick-up points in the problem formulation, we

additionally consider the pick-up capacity as an important feature, leading to the following two modified

forms of the MMSR: MMSR-m and MMSR-d. The MMSR-m sets a maximum pick-up capacity for all urban

areas, while the MMSR-d allows the pick-up capacity to vary at different locations. We develop a parallel

framework based on the simulated annealing to numerically solve the MMSR problem series. Also, a push-

point method is introduced to improve our algorithms further for the MMSR-m and the MMSR-d, which can

handle the route optimization in more practical ways. Our results on both real-world and synthetic data con-

firmed the superiority of our problem formulation and solutions under more demanding practical scenarios

over several published benchmarks.

CCSConcepts: • Information systems→Mobile information processing systems;Datamining; •Com-

puting methodologies→ Parallel computing methodologies;

Additional KeyWords and Phrases: Mobile sequential recommendation, trajectory data analysis, parallel com-

puting, simulated annealing, potential traveling distance

ACM Reference format:

Keli Xiao, Zeyang Ye, Lihao Zhang, Wenjun Zhou, Yong Ge, and Yuefan Deng. 2020. Multi-User Mobile Se-

quential Recommendation for Route Optimization. ACM Trans. Knowl. Discov. Data 14, 5, Article 52 (July

2020), 28 pages.

https://doi.org/10.1145/3360048

K. Xiao and Z. Ye contributed equally to this article.

This work was partially supported by the National Social Science Foundation of China (# 18BFX096) and the National

Natural Science Foundation of China (# 91746109).

Authors’ addresses: K. Xiao (corresponding author), College of Business, Stony Brook University, 100 Nicolls Rd, Stony

Brook, NY 11794; email: keli.xiao@stonybrook.edu; Z. Ye, L. Zhang, and Y. Deng, Department of Applied Mathematics and

Statistics, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794; emails: zeyang.ye@hotmail.com, {lihao.zhang,

yuefan.deng}@stonybrook.edu; W. Zhou, Department of Business Analytics and Statistics, Haslam College of Business,

University of Tennessee Knoxville, 916 Volunteer Blvd., Knoxville, TN 37996-0532; email: wzhou4@utk.edu; Y. Ge, Depart-

ment of Management Information Systems, Eller College of Management, University of Arizona, 1130 E Helen St, Tucson,

AZ 85721; email: yongge@email.arizona.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1556-4681/2020/07-ART52 $15.00

https://doi.org/10.1145/3360048

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:2 K. Xiao et al.

1 INTRODUCTION

Characteristics of human mobility can be extracted from extensive mobile sequential data (e.g.,
Global Positioning System (GPS) trajectories and points of interest (POI) check-in sequence), and
they can be utilized further in numerous recommendation problems. The mobile sequential rec-

ommendation (MSR) is one of the earliest applications in mobile recommender systems based on
GPS trajectories, followed by various valuable studies in a broad range of topics, including POI
recommendation [15], travel package recommendation [18], ride-sharing [20], and the like. In this
article, we focus on the MSR for route optimization.
A well-known MSR problem formalized by Ge et al. [11] is to provide route recommendation to

a taxi driver with an objective of minimizing the potential traveling distance (PTD) before picking
up the next passenger. While some route optimization problems are based on on-demand settings
(e.g., the first-mile ride-sharing [4]), the MSR problem aims to achieve route optimization for cases
without sharing or vehicle requests. For efficiently address theMSR problem, Huang et al. [12] pro-
posed a backward path-growth method to speed up the route searching process, the method is still
not efficient enough to handle high-dimensional MSR problems directly due to the costly offline
training process. Ye et al. [34] developed a stochastic method without any offline process based
on simulated annealing and substantially reduced the computational time for high-dimensional
MSR problems. However, the original form of MSR has not been sufficiently discussed after being
proposed. Qu et al. [25] modified the objective function of MSR by considering the cost effect,
while the modified objective function is essentially equivalent to the original MSR as suggested by
[33]. A major issue of the MSR is that it can only lead to effective solutions for a single user, while
complex situations under multi-user scenarios are not considered.
Developing theMSR problem and related algorithms are valuable to both individuals and the hu-

man society. In addition to satisfying individual users by providing them appropriate and precise
route recommendations, an efficient and effective traffic recommendation system would substan-
tially reduce various types of social costs, including labors, energy, air pollution, and travel time.
With the advent of the autonomous driving and sharing economy, considering the MSR problem
from the multi-user perspective will be an extremely important problem that affects people’s ev-
eryday life. The autonomous cars seeking passengers can be viewed as a general case of taxicabs
in the MSR problem. Thus, efficiently solving the multi-user MSR (MMSR) problem can not only
benefit today’s urban traffic system but also will lead to significant innovations on path planning
for autonomous driving in the near future.
However, designing search algorithms for MMSR problems is not easy, and major challenges

are threefold. First, the search algorithms must handle multi-user queries and recommend distinct
routes for different drivers. AlthoughHuang et al. [12] discovered that the recommended routes for
different taxi drivers could vary under different constraints regarding distances and destinations,
they did not provide a clear method to determine these constraints. Second, in addition to the
information of location and pick-up probability, another important feature must be considered is
the pick-up capacity. That is, locations with more waiting passengers must be allowed to be visited
more often by drivers. Last, the search algorithm should be efficient enough for volatile traffic
dynamics. In existingmethods, a two-stage framework containing an offline pruning and an online
searching procedure is usually adopted [11, 12]. However, the extremely high computational cost
of the offline pruning process indicates these two-stage approaches will still fail in handling high-
dimensional MSR problems.
To address the aforementioned issues, (i) we formalize a new MMSR problem that aims to rec-

ommend different routes to users such that the duplication of the pick-up locations in the rec-
ommended routes should be avoided; (ii) we improve the MMSR by formalizing MMSR-m and

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:3

MMSR-d, which consider an important feature of pick-up points, the pick-up capacity, to charac-
terize the popularity and demand for each location; and (iii) we propose a parallel framework to
efficiently address high-dimensional MMSR problems. Some of above innovations have been docu-
mented in an early phase work [35], including the formulation of the original MMSR problem and
the development of a parallel simulated annealing method with domain decomposition (PSAD) as
well as its enhanced version PSAD-M. We summarize them as follows:

—While the original MSR problem only asks for one route for a single user, we construct a
new MMSR problem that aims to provide distinct routes for multi-users.

—We develop two parallel methods, PSAD and PSAD-M, for solving the MMSR problem. We
show that our methods can efficiently recommend different routes for multi-users based on
100,000 pick-up points, which significantly outperforms all other benchmarks.

—We break the published speedup record of parallel simulated annealing by discovering that
our parallel methods can achieve up to 180x speedup with 384 cores. Compared to the pub-
lished record of 19.6x when parallel simulated annealing (SA) is adapted for use in other
optimization problems, our framework maximizes the strength of parallel SA in the MMSR
problem.

In addition, this work differs from [35] and contributes to the literature further in four ways.

—We propose two modified forms of the MMSR problem, named, MMSR-m and MMSR-d, as
improved versions of the MMSR, which take the pick-up capacity into consideration.

—We discover an important property that can be used in problem settings to reduce the com-
putational cost of MMSR-m and MMSR-d. We theoretically prove the property and verify
it in our experiments.

—A new push-point algorithm is developed and then embedded to the PSAD-M method for
handling the influence of the pick-up capacity on the searching process for optimal routes.
Related results further confirm the effectiveness of PSAD-M and its expandability.

—We conduct comprehensive experiments and demonstrate the superiority of MMSR-d over
other forms of MMSR as well as the original MSR problem.

2 PROBLEM FORMULATION AND IMPROVEMENTS

This section introduces the original MSR problem and then formalizes the newMMSR problem and
two improved forms (MMSR-m and MMSR-d). The improvements achieved from the new forms
of MMSR are discussed as well. We summarize important notations in Table 1.

2.1 The MSR Problem

The original format of the MSR problem [11] has the following settings. Suppose that we are given
a set of N potential pick-up points C = {c1, c2, . . . , cN }, the current position of the taxi driver c0,
and the set of the successful pick-up probabilities corresponding to each potential pick-up point
P = {p (c1),p (c2), . . . ,p (cN)}. From the perspective of practice, P should be updated frequently to
represent dynamic traffic status, and our recommendation system should be able to handle the
frequent traffic changes.

Given the route length L, we have a sequence of pick-up points −→ri =
(
ci1 , ci2 , . . . , ciL

)
represent-

ing a route. Then, there are in totalM = (N
L
)L! sequences inC . R =

{−→r1 ,−→r2 , . . . ,−→rM }
represents the

set of all possible routes through the potential pick-up points. The original form of MSR problem
is defined as follows:

Problem 1 (MSR). Given a single driver at position c0 and the set of all possible routes R, the
objective of the MSR problem is to search for the traveling route −→ri ∈ R with the minimal PTD before

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:4 K. Xiao et al.

Table 1. Important Notations and Definitions

Notations Descriptions
C The set of pick-up points
P The set of pick-up probabilities
R A set of routes
C0 A set of starting locations
N The total number of pick-up points
M The total number of pick-up sequences
L Route length
K The total number of routes
c A pick-up point
pc The pick-up point capacity
pcl The pick-up point capacity of a pick-up point l
c0 The current position of a taxi
p (c) The pick-up probability of a pick-up point c
−→r A route
d (ci , c j) The traveling distance between ci and c j
d∞ The penalty term

PTD (c0,
−→r) The potential traveling distance of route −→r with starting location c0

PTDk (C0,Ri) The potential traveling distance of routes in Ri with location set C0

the next successful pick-up. That is,

min
−→ri ∈R

PTD
(
c0,
−→ri
)
. (1)

There are two forms of the PTD function, including the original form in [11] and the transformed
form in [33]. The two forms of PTD have been proved to be equivalent [33], while we use the latter
for its advantages of interpretability. The PTD function can be written as follows:

PTD
(
c0,
−→ri
)
= d
(
c0, ci1

)
+

L∑
j=2

⎡⎢⎢⎢⎢⎣
d
(
ci j−1 , ci j

)
·
j−1∏
k=1

p
(
cik
)⎤⎥⎥⎥⎥⎦ + d∞ ·

L∏
j=1

p
(
ci j
)
, (2)

where p (ci j) = 1 − p (ci j); d (ci j−1 , ci j) represents the distance between ci j−1 and ci j . Note that d∞ is
a penalty term, which can be viewed as the extra distance a driver needs to travel if (s)he fails to
find a passenger along the route.1

As can be seen in Problem 1, the MSR problem is designed from the view of a single driver
without considering the state of others. In this case, if K drivers are asking for recommendations
at the same time, the MSR system will process K independent recommendations. However, the K
recommended routes may overlap, especially when those drivers are close to each other. A good
route recommendation system should avoid duplicated recommendations, because they may lead
to serious traffic issues. Therefore, we seek an improved version of the MSR problem, which has
an objective function designed for multiple users.

1The original form of PTD proposed in [11] has a penalty term as well, say D∞. According to [33], D∞ in the original PTD

and d∞ in (2) are interconvertible; D∞ = d (c0, ci1) +
∑L
j=2 d (cij−1, cij) + d∞.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:5

2.2 The MMSR Problem Series

2.2.1 The MMSR Problem. To address the issues of the single user-based MSR problem, a new
MMSR problem [35] can be formalized as follows.

Problem 2 (MMSR). Given K drivers requesting sequential recommendations, the set of positions

of the these driversC0, the objective of the MMSR problem is to recommend K routes for the K drivers,

and the multi-user potential traveling distance (MPTD) should be minimized. That is,

min
Ri ⊆R

PTDK (C0,Ri),

s. t. −→ria ∩
−→rib = ∅,∀a,b ∈ [1,K],a � b,

(3)

where Ri = {−→ri1 ,
−→ri2 , . . . ,

−→rik }; PTDK (C0,Ri) represents the MPTD, which is computed as:

PTDK (C0,Ri) =
K∑
j=1

PTD (c0,
−→ri j). (4)

As our goal is to minimize the traveling distance for all the drivers before their next successful
pick-ups, the smaller the MPTD, the better quality of the routes. In this way, we can use MPTD to
evaluate the recommendation quality2. When K = 1, Equations (4) and (2) are equivalent, and the
MMSR and the MSR are equivalent.
Comparing with MSR, the MMSR problem is formalized based on a more practical way but with

a much higher computational cost, given its (N
K ·L) (K · L)! possible combinations. It is approxi-

mately (N − K
2)

K ·L times of the (N
L
)L! combinations in MSR. In MMSR, the MPTD function is the

accumulation of K PTDs in Problem 1 with one additional requirement that all the routes cannot
be overlapped. That is, any pick-up point can only be visited once. Such recommendation elimi-
nates the competition among drivers and aims to optimize the overall PTD. The objective function
of MMSR is clear and straightforward, but it still needs to be improved for some important issues,
which we summarize as the following four defects of MMSR.

—Defect 1. Some pick-up points in a recommended route may never be visited even if there
are passengers waiting. Let us consider the following situation. If a driver follows the rec-
ommended route and successfully gets a passenger, then (s)he would terminate the recom-
mended route. However, the rest of the potential pick-up points in the recommended route
will be skipped and will not be recommended to others. These pick-up points are blocked
in the recommendation system, and passengers waiting there will not be served. Thus, we
need to allow the system to recycle pick-up points if needed.

—Defect 2. The city may not be fully explored. In the real situation, a pick-up point is not a
single point on the map but a small area. Based on the settings of MSR and MMSR, as long
as a taxi driver passes by, the pick-up point is regarded as “visited.” However, one driver
will hardly explore all passengers in the area (e.g., someone located in a corner of a street).

—Defect 3. Even for a very small area, one pick-up point may contain more than one passen-
gers, but MSR and MMSR only allow one driver to visit each pick-up point. For example, in
the train station, there may be a large number of passengers. However, the system only as-
signs one driver to the train station, and then the rest of the passengers cannot be serviced.
Thus, we should allow a pick-up point to be revisited by drivers.

2Note that it has been shown in [33] that an equivalent substitute of the PTD is the expected traveling time (ETT) for the

drivers to get the next passenger. Following the same idea, our MPTD can also be substituted by a multiple-user version of

ETT, say METT, and hence traveling time can be used to evaluate the recommendation quality as well.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:6 K. Xiao et al.

Fig. 1. The miscalculation of the MPTD due to routes overlapping. Note: Numbers in the circles indicate

different the pick-up points. The numbers beside circles represent related pick-up probabilities. The green

line indicates the green route and the pick-up points assigned to the green line are filled with green. Similarly,

the blue route uses the color blue. The black dots indicate the starting locations of the routes. For ease of

analysis, all the roads in this map are oneway.

—Defect 4. To reduce the effect of the above three defects, for MMSR, we always make the
area covered by a pick-up point to be small. This design will then result in the large amount
of the overlap of the trajectories, which leads to erroneous of the MPTD values.

While Defects 1–3 are easy to understand, we show an example of Defect 4 in Figure 1. In this
route assignment, pick-up points “4,” “5,” and “6” locate in the same block. As points “4” and “5”
have large pick-up probabilities, they are usually assigned to different routes so that the overall
MPTD can be largely decreased. Assume that D∞ in this case is 30 miles, the PTD for the green
route is 7.6 miles and for blue route is 8.3 miles. The MPTD for these two routes should be the sum
of the PTDs, 15.9 miles. However, in the real case, a taxi in the green route would always be ahead
of a taxi in the blue route when visiting the points “4,” “5,” and “6” as its starting location is closer.
Although point “5” is not assigned for the green route, the taxi in green will naturally visit it since
it is in between points “4” and “6.” After all, if the taxi driver in green finds a passenger at point
“5,” he would pick him/her up instead of ignoring it. Therefore, the actual pick-up sequence of the
green route taxi follows (“6,” “5,” “4,” “3”), and the resulting PTD is 3.2 miles. Based on the setting
of MMSR, each pick-up point is only capable of one visit. The eligible pick-up points for the taxi
in blue include point “7” and “10,” and its PTD becomes 24.5 miles; the MPTD for the two routes
becomes 27.7 miles. In this example, the relative error for the MPTD is 74% due to the overlapping
trajectories.
In summary, the first two defects of the MMSR problem are driver-oriented, and the third and

the fourth defects are pick-up point-oriented. They can be addressed by improving the objective
functions, and we provide our designs in the rest of this section.

2.2.2 MMSR-m: An Improved Form. To allow multiple visits of a pick-up point, we propose a
new concept, the pick-up point capacity (denoted by pc), which is the maximum times that a pick-
up point can be visited by drivers. The initial form of MMSR sets the pc = 1 for all pick-up points.
Now, we improve the formulation of MMSR by allowing multiple visits for each pick-up points.
We first consider a special case in which all pick-up points has a capacity pc ≥ 1, and we call the
new problem as MMSR-m.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:7

Problem 3 (MMSR-m). Given K drivers requesting sequential recommendations, the set of posi-

tions of the these drivers C0, the objective of the MMSR-m is to search for K routes that have the

minimal MPTD based on a given pick-up point capacity before the successful pick-up of each route:

min
Ri ⊆R

PTDK (C0,Ri),

s. t. ∀Ri j ⊆ Ri ,∀cl , if cl ∈
⋂
−→ri ∈Rij

−→ri , then |Ri j | ≤ pc (5)

where pc is the pick-up point capacity; C0, Ri , and PTDK follow the same settings in problem 2

(MMSR).

The MMSR-m allows a pick-up point to be recommended in at most pc routes, and it can be
considered as a generalized form of MMSR.When pc = 1, the MMSR-m is equivalent to the MMSR.
Let pc > 1, routes are allowed to overlap because one pick-up point can be recommended to more
than one passenger.
The pick-up point capacity (pc) is an important parameter. By assigning each pick-up point the

same capacity, we can address the first two issues of the MMSR problem discussed in Section 2.2.
As nearby points with high pick-up probabilities can be visited multiple times, they are unlikely to
be missed after several rounds of visits. Also, as different drivers may pass a pick-up area through
different trajectories in the MMSR-m, the area should be better explored in comparison to cases in
the MMSR. The settings of the MMSR-m emphasize the importance of pick-up points nearby with
large pick-up probabilities. Therefore, we can expect that the K routes recommended based on the
MMSR-m are more centralized on the map compared to the MMSR.
By allowing multiple drivers to visit the same location, the chance for a pick-up point being

ignored or not fully explored decreases. So that the first two defects can be addressed. However,
problems still exist because the MMSR-m does not consider the information of different pick-up
probabilities. Even if all drivers follow the route assignments strictly, the third and fourth defects
still exist. Therefore, we further propose our final form of the MMSR problem, named MMSR-d.

2.2.3 MMSR-d: The Final Form. Some pick-up points are more important than the others. As
wementioned in the third defect of theMMSR problem, some points not only provide high pick-up
probabilities but also contain a large number of passengers. Thus, we should assign them higher
capacities than those with low pick-up probabilities and small numbers of waiting passengers.
For the fourth defect, the area represented by a pick-up point should be enlarged to cover a road

segment between any two road intersections. Some pick-up points that cover small areas are then
grouped as a large pick-up point. The large pick-up point should be settled with a larger pick-up
capacity than small ones. The third and fourth defects can be addressed by allowing pick-up points
to have different pick-up capacities, and we formalized the final form of the problem (MMSR-d) as
follows.

Problem 4 (MMSR-d). GivenK drivers requesting sequential recommendations, the set of positions

of the these drivers C0, the objective of the MMSR-d is to search for K routes that have the minimal

MPTD based on the capacity of each pick-up point before the successful pick-up of each route:

min
Ri ⊆R

PTDK (C0,Ri),

s. t. ∀Ri j ⊆ Ri ,∀cl , if cl ∈
⋂
−→ri ∈Rij

−→ri , then |Ri j | ≤ pcl
(6)

where pcl is the capacity of the pick-up point cl ; C0, Ri , and PTDK follows the same settings in

problem 2 (MMSR).

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:8 K. Xiao et al.

Fig. 2. The taxi number and the prediction burden.

MMSR-d requires that any pick-up point cl should not take more than pcl positions in a route
assignment Ri . Note that, MMSR-d and MMSR-m are equivalent if pcl is fixed and does not depend
on l . Given the settings of the MMSR-d, a pick-up point that is easy to be recommended may
have the following characteristics: (i) a high pick-up probability, (ii) a large pick-up capacity, and
(iii) close to the location where the service request is sent.
For some special pick-up points, for example, in the train station, the pick-up capacity is large

and may be even greater than K , the number of drivers requesting route recommendations. How-
ever, the solution for theMMSR-d problemwill be the samewhenwe decrease the capacity of those
points to K . After all, any pick-up point can only take at most K positions in a route assignment
and any large capacity cannot break this limit. This refers to the following property.

Property 2.1. In the MMSR-d problem, given a pick-up point cl and the number of drivers request-

ing route recommendation services K , and we mistakenly estimate its pick-up point capacity from pcl
to pcl0 . If pcl ,pcl0 ≥ K , we should obtain the same solution of route recommendation.

Proof. As pcl ≥ K and pcl0 ≥ K , with either pick-up point capacity, the pick-up point cl can
be recommended to K routes simultaneously. Since all the possible routes to be optimized are not
affected by the capacity of cl , the solutions are the same. �

This property relieves our burden of estimating the pick-up point capacity, especially when we
recommend routes to a small number of drivers. That is, we can simply set the maximum pick-up
capacity to be the same as the number of drivers.
To emphasize this property, we give an example in Figure 2. In Figure 2(a), there are two drivers

in the same location. They have the following two choices for the next place to visit: (i) a subway
station that offers 3–5 passengers by prediction and (ii) a train station that now offers at least
10 passengers. Also, the train station is 3 miles further than the subway station. As there are only
two drivers, we can recommend all of them to the subway station. However, in Figure 2(b), if we
are asked to recommend routes for six drivers, we need to make the prediction for the subway
station more precise. Different predictions may lead to different route recommendations. On the
other hand, we do not need to care about the prediction of the train station as it offers much
more passengers than we need. In the MMSR-d problem, we do not just recommend the first pick-
up point to the drivers. We consider a route that contains a sequence of points, which is a more
complicated task. However, because of Property 2.1, we can solve the recommendation problem
much easier. We will discuss more in the next section.

3 METHODOLOGY

For the MMSR problem, the number of possible route combinations grows exponentially with an
increasing number of users K . On the other hand, there is an urge from users longing for the

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:9

recommendation. Considering the characteristic of independence for the optimal route searching,
we develop a parallel framework to handle the overwhelming computational task.

3.1 PSAD: Parallelizing SA by Domain Decomposition

SA is a stochastic optimization method aiming to find the global optimization of a non-convex
objective function [25]. The serial algorithm3 of SA consists of four key components (initial con-
dition, move generation, cooling schedule, and stopping criterion) and processes as follows. It first
generates an initial solution. Then, the algorithm starts iterating. It performs the move generation
by perturbing its solution with a small movement. If the new solution leads to an improvement,
the current solution is updated to the new one. Otherwise, it only accepts the solution based on a
probability function, which is positively correlated to a parameter, named, temperature. The tem-
perature is then cooled down based on a cooling schedule function. The algorithm stops if the
stopping condition is met; otherwise, it returns to the beginning of the iteration and performs
the move generation again. Although MMSR is a new problem, we adopt and adjust the SA ran-
dom search in [5], which specifies the SA for solving the MSR problem, as the fundamental serial
(single-core) algorithm.
We propose a PSAD method to speed up the searching based on the SA random search in [32].

For Pc computing processes, Pr1, Pr2, . . . , PrPc , we require that K is divisible by Pc . PSAD first
randomly divide the pick-up point set C into Pc mutually exclusive subsets, C1,C2, . . . ,CPc , each
with �N /Pc � or �N /Pc � + 1 pick-up points and assign Ci to computing process Pi . Since there

are K routes for Pc processes, process Pri are responsible for
−→r (i−1)K/Pc+1, . . . ,

−→r iK/Pc routes. Pri
randomly initializes the routes based on their current positions of the taxi drivers and updates Ci

by excluding the pick-up points in the routes. Pri then performs the iterations following four main
procedures: (i) SA Step, (ii) rotation, (iii) Interaction, and (iv) shuffling.

SA Step. In each step, Pri performs the move generation, random search in [32], and the expo-
nential cooling in SA. At the same time, Pri needs to make sure that Ci and its routes have no
pick-up points in common.

Rotation. Because the pick-up points set are divided randomly, the pick-up points in one pro-
cess may be suitable for the routes in the other processes. Then, parallel operations need to be
performed to ensure that pick-up points have the same chance to be considered. Therefore, in ev-
ery stepro , all Pc processes perform rotation. In the rotation procedure, PSAD can either rotate the
current routes or the pick-up point subsets of each process. We rotate routes to reduce the com-
munication cost. When rotating, Pri sends its current routes to Pri+1, and PrPc sends the routes to
Pr0. Following this way, all pick-up points in the set ∪iCi get chances to be selected and placed in
the routes within every Pc rotations.

Interaction.One routemay need a pick-up point from the other routes in addition to∪iCi . There-
fore, after Pc rotations, each process gathers the routes for all the other processes and perform
stepin SA steps only using the pick-up points in the routes. By this means, the whole pick-up
point set C gets chances to be selected and placed in all the routes within a period of Pc rotations
and one interaction.

Shuffling. Different pick-up point subsets result in different parallel performance. A good subset
may contain either all the optimal pick-up points or no pick-up point for a route, while a bad subset
may contain a few optimal pick-up points for each route. To diminish the effect of the randomness,
our PSAD reshuffles the pick-up points in these subsets in every Pc rotations.

3In this article, we refer to the single-core version of algorithms as serial algorithms.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:10 K. Xiao et al.

Fig. 3. Parallel operations for PSAD.

Finally, repeating the procedures above, PSAD can decompose the domain C and locate the
optimal or near optimal routes for the MMSR problem.
We demonstrate an example of aforementioned parallel procedures in Figure 3. Supposewe have

three computing cores (processes),Core1,Core2, andCore3, to handle the MMSR problem. We use
three different colors to represent assigned subsets and the current routes in consideration for the
three computing processes. The empty circles are the current positions of drivers. Below we show
how the PSAD works with the three-step process, rotation, interaction, and shuffling. First, in the
rotation operation, the three cores rotate (exchange) their current routes. For example,Core1 sends
its route to Core3; Core2 sends its route to Core1; and Core3 sends its route to Core2. Second, in
the interaction operation, each process gains access to all three routes and optimizes those routes
based on their pick-up points subsets. As shown in Figure 3, in all three cores, the pick-up points in
two routes are switched after the interaction, leading to a reduction of the traveling distances for
both routes. Last, in the shuffling operation, each core obtains a new subset of pick-up points from
other processes. The three operations are repeated until we locate the optimal route, evaluated by
MPTD.

3.2 PSAD-M: Parallelizing SA by Mixing

One limitation of PSAD is that the parallel size cannot exceedK . We therefore develop an improved
method with a mixing process to further speed up the PSAD method. With the add-on effect of
mixing, the new parallel method is called parallel SA by domain decomposition andmixing (PSAD-
M).
Let Pc = PmK . Similar to PSAD, PSAD-M randomly decomposes the domain into K mutually

exclusive subsets, C1,C2, . . . ,CK , with Pm processes as a group to deal with one subset. PSAD-M
still performs rotation, interaction, and shuffling, and mixing is added between the two consecu-
tive rotation procedures. We hope that by adding mixing, the SA step procedure in PSAD can be
accelerated. That is, Pm SA steps in PSAD are equivalent to Pm processes in PSAD-M each making
one SA step. In this way, PSAD-M achieves Pm times speedup. Then, the way to mix needs to be
carefully studied.
There are two extreme cases. First, in PSAD-M, Pm processes mix every step. Specifically, after

the Pm processes each making one SA step, they obtain Pm new routes. Among them, Pm processes
all adopt the route with the lowest PTD as their current route and perform the next SA step. In
this case, all the SA steps are performed based on the most up-to-date route. It is very efficient

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:11

especially when the temperature is very low where in each SA step, the new routes always get
rejected. Pm rejected SA steps in PSAD are equivalent to Pm processes in PSAD-M each making
one rejected SA step. Under this circumstance, in terms of steps, there will be Pm times speedup.
However, in this case, the Pm processes need to communicate every step to obtain the route with
the lowest PTD. The additional communication cost offsets the saved computational cost. Second,
in PSAD-M, Pm processes does not mix at all. In this case, PSAD-M performs Pm independent
PSAD and there is no communication cost. However, although using Pm times more processes,
PSAD-M just runs as Pm independent PSADs with no speedup.
Therefore, there needs to be a mixing pattern and a mixing period to make sure that all the pro-

cessesmix efficiently to reduce the computational cost without incurring toomuch communication
cost. To construct the mixing pattern, we define two concepts, the distance and the neighborhood.

Definition 1 (Distance). Let −→ri = (Ci1 ,Ci2 , . . . ,CiL) and
−→r j = (Cj1 ,Cj2 , . . . ,CjL). The distance be-

tween −→ri and −→r j is defined as:

Dist
(−→ri ,−→r j) = 1

L

L∑
k=1

β (Cik ,Cjk), (7)

where

β (x ,y) =

{
0, if x = y
1, if x � y. (8)

According to Definition 1, we further define the neighborhood as follows.

Definition 2 (Neighborhood). The neighborhood of −→ri with distance d0 ≥ 0 is defined as:

N
(−→ri ,d0) = {−→r j | Dist (−→ri ,−→r j) ≤ d0}. (9)

Note that −→ri ∈ N (−→ri ,d0). We then design the mixing pattern and mixing period to determine an
adaptive distance d0. Then in each group, among the Pm routes from Pm processes at step n, let
−→ri be the one with the lowest PTD. The mixing pattern and mixing period aim to restrict all Pm
routes in N (−→ri ,d0).
Mixing pattern. In PSAD-M, the temperature is initially high and gradually decreases to zero in

the end, which indicates its tolerance of the routes with larger PTD, high at the beginning and
low at the end of a PSAD-M run. To adapt d0 to this trend, we introduce a metric, acceptance
rate, and a parameter stepneiдh . The acceptance rate is updated every stepacc steps and records the
average acceptance probability of a new move during these steps. Also, for one process in PSAD-
M, the largest distance between any of the two routes in stepneiдh steps is set to be d0. There will
be a large computational cost if we compute the actual distance, but we can approximate d0 as the
expected distance in stepneiдh steps with the help of acceptance rate.

Theorem 3.1. Given the acceptance rate r , the pick-up points number n, and the route length L,
the expected change in stepneiдh SA steps is computed as:

d0 = 1 −
(
1 − r

L
− r (L − 1)

Ln

)stepneiдh
. (10)

Proof. Let −→ri = (Ci1 ,Ci2 , . . . ,CiL) be the route before stepneiдh SA steps. Let

Aj =

{
0, if Ci j does not change in stepneiдh steps
1, if Ci j changes in stepneiдh steps.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:12 K. Xiao et al.

Fig. 4. The mixing procedure on PSAD-M.

In one SA step, according to the move generation, there is probability 1/L to choose Ci1 for the
first time and 1/n for the second time. Based on the acceptance rate, we have:

P1 = P (first choosing Ci j and accept) = r/L

and

P2 = P (second choosing Ci j and accept) =
L − 1
L
· 1
n
· r .

Therefore, we get:

P3 = P (Ci j does not change in one step) = 1 − P1 − P2.

The expected change for Ci j in stepneiдh steps is:

E (Aj) = 1 − Pstepneiдh3 ,

and the expected change for −→ri in stepneiдh steps is:

L∑
j=1

E (Aj) = L · E (Aj).

Finally, we get the expected change d0 as:

d0 =
L · E (Aj)

L
= 1 −

(
1 − r

L
− r (L − 1)

Ln

)stepneiдh
. �

According to Theorem 3.1, our PSAD-M can adjust the neighborhood by setting different values
of stepneiдh .

Mixing period. In PSAD-M, from the computational aspect, it is the best to check if all the new
routes from Pm processes are within the neighborhood. However, to reduce the communication
cost, we design a new strategy for mixing period. Let mixing period be stepm . If in the last mixing
process, all the new routes stay within the neighborhood, stepm increases by one to allow each
process to perform the SA process more independently. Otherwise, stepm decreases by one to
restrict the independence for each process.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:13

Figure 4 demonstrates an example of the mixing process in each group. Suppose three cores
(processes), Core1, Core2, and Core3, together optimizing the same route in group 1. After the
optimization procedure in the three cores, assume that the PTD from theCore1 is lower than other
two, Core1 sends a copy of its route to Core2 and Core3. According to Equation (7), the similarity
rate betweenCore1 andCore2 is 0% while the rate betweenCore1 andCore3 is 75%. According to
Equation (10), if in previous stepneiдh SA steps, the d0 of Core1 is calculated to be 0.5, then Core3
accepts the route copy from Core1 while Core2 rejects it. In this mixing process, stepm decreases
by one since Core2 does not lie in the neighborhood of the best route from Core1. Finally, after
the mixing process, in Figure 4(c), Core1 and Core2 perform SA steps as the previous route from
Core1 as their current route Core3 uses its own route found previously.

In summary, the key challenge that the PSAD and PSAD-M address is the high computational
cost of the communication process among different cores. Our methods separate the whole set
of pick-up points into several groups and assign them to different computing cores. Since each
pick-up point can only appear in one group, it can appear in at most one recommended route.
This setting guarantees that all recommended routes are not overlapped. Meanwhile, there is no
need for different computing cores to frequently communicate to avoid duplications, so that the
communication time is saved.

3.3 Parallelizing SA by Pushing Points

The PSAD and PSAD-M methods are designed for MMSR, because each point can be visited at
most once. For MMSR-m and MMSR-d, this situation is different: one pick-up point can appear for
multiple times in different routes. For the two new problems MMSR-m and MMSR-d, we design a
pushing point strategy, which can be embedded to PSAD and PSAD-M we proposed.
We regard the input dataset of PSAD and PSAD-M as candidate pool, which stores all the can-

didate pick-up points that can be selected in the final route assignment. For MMSR, the candidate
pool contains all the pick-up points. For MMSR-m and MMSR-d, the candidate pool should be
larger. If we allow a pick-up point, ci , to appear for pc times in the final route assignment, we push
this pick-up point into the pool for pc times. Therefore, in total, there are pc ci s in the pool. Just
like the other points, each ci has equal chances to be pushed into a route. If ci has a large pick-
up probability and is closed to the taxis’ starting locations, it has a large probability to be pushed
into each route. Since there are pc of them, they can appear in pc routes. To avoid the same pick-
up point appears in the same route for multiple times, we add a checking procedure. Before each
pick-up point is inserted to a route, the algorithm checks if it has already been in the route. If so,
this pick-up point is rejected. Therefore, by changing the candidate pool, we are able to use PSAD
and PSAD-M to solve for MMSR-m and MMSR-d as well. We name the PSAD and PSAD-M with
the pushing-point technique as PSAD-p and PSAD-M-p.
We demonstrate an example of the candidate pool for the PSAD-p in Figure 5. All pick-up points

are pushed into the candidate pool. Each pick-up point can be pushed multiple times according
to its pc . For example, pick-up point “1” can be pushed three times given three pick-up points “1”
in the candidate pool. All the points in the pool will be randomly distributed to the three groups
and each group receives approximately the same number of pick-up oints. In this example, since
there are in total 23 pick-up points, Group 1 receives seven pick-up points, and Groups 2 and 3
receive 8. Each group first uses its pick-up points to initialize the route. Then, each group runs SA
to optimize its route by replacing the points between the route and the other candidate pick-up
points in its pool. After a preset number of steps, PSAD-p will perform rotation, interaction, and
shuffling just like PSAD.
As can be seen, in this example, since pick-up point “2” is pushed twice, two points are in the

pool. They can be assigned into at most two different groups and appear in the two different routes.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:14 K. Xiao et al.

Fig. 5. The candidate pool of PSAD-p. Note: Each circle labeled by a number indicates a pick-up point. Same

number refers to the same pick-up point. The solid circle indicates the taxis starting locations. The red line

indicates a route sequence.

If so, it means that in this route assignment, two routes will include pick-up point “2.” In this way,
we can make sure that each pick-up point will not be visited for more than pc times.
The pushing point technique reduces the communication efforts between computing cores. For

parallel SA, each computing core optimizes one route using SA. Without this technique, to make
sure that one pick-up point will appear in the routes for less than pc times, in each step, each the
computing core has to collect all the routes from the other cores. Then this core needs to check
whether the recent pick-up point added to the routes along with its appearance in the other routes
exceeds its pc or not. The checking operation costs for O (#Cores · L) in each step leading to a
significant increase of the total computing time. The pushing point technique reduces this cost
to 0 as no communication is required to assure that the duplicated visits of a point is less than
pc times. By relieving the communication burden, we are able to use a large number of cores to
provide solutions for multiple taxis.
To find out the amount of times a point is pushed into the candidate pool, we need to determine

pc . For MMSR-m, to determine one pc for all the pick-up points is equivalent to determine the
area each pick-up point covers. If a pick-up point covers a large area, this area is likely to have
more passengers and is unlikely to be fully explored by one taxi, the pc should then be increased.
Therefore, we propose two concepts, the base area and the pick-up point area. The base area is the
largest area where at most one passenger appears and one driver can fully explore. The pick-up
point area is the area a pick-up point represents. Then, by finding out the number of base areas
that a pick-up point area covers, we can determine its pc . If the base area and the pick-up area
have the same size, the pcs for all the pick-up points are identical.
ForMMSR-d, to determine thepc for each pick-up point, we define a new concept, the popularity.

Popularity represents by the potential number of passengers to appear in a pick-up point, or more
precisely, a pick-up area. By determining the popularity, the pcs for each point are found out.

4 DATA AND EXPERIMENTAL SETTINGS

In this section, we discuss the data processing and the experimental settings.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:15

Table 2. Benchmark Methods for Comparison

Abbr. Methods
SARS SA Random Search [32]
PEP Parallel Enumerative Process [11]
PIBP Parallel IBP [12]
CDR Chu et al. 1999 [5]
Lou Lou et al. 2016 [19]
PSAD Parallel Simulated Annealing Domain Decomposition
PSAD-M PSAD by Mixing

4.1 Data Description

Real-world Data. The data contains 12,000 taxi trajectories during 6–7 pm in Beijing, China. All
the trajectories locate on the urban area with longitude from 116.05 to 116.75 and latitude from
39.65 to 40.17, a zone is decomposed into 1,000×1,000 subzones. In each subzone, if the empty taxis
have entered it for more than five times and have picked up at least one passenger, its centroid
is considered as a pick-up point. Its pick-up probability is calculated as the ratio of the successful
pick-up number to the number of passing taxis in this subzone. With this, we obtain 21,824 pick-
up points whose coordinates are normalized. d∞ is determined automatically to ensure that the
maximal cruising distance does not exceed 1. In these experiments, we optimize 96 routes with
different starting positions. They are set to be a 12 by 8 mesh lie in the coordinates [0.50, 0.55] ×
[0.50, 0.55].

Synthetic Data.We also generate synthetic data for 100,000 pick-up points, which are uniformly
distributed in a [0, 1] × [0, 1] square, and their pick-up probabilities are normally distributed with
a mean 0.3 and a standard deviation 0.05, and bounded in [0, 1]. The starting positions and d∞ are
set to be the same as the settings for the real-world data.

4.2 Experimental Settings

Benchmark Methods. We compare our two methods with five benchmarks, including one serial
and four parallel algorithms, as summarized in Table 2. Our methods in this article are bold.
To solve the MSR problem, Ge et al. [11] and Huang et al. [12] proposed several methods that

we replicate as benchmarks. The Enumerative process represents the best case in the algorithms
in [11], and IBP is the main algorithm in [12].

Parameter Settings.We carefully determine parameters of all benchmark methods following the
suggestions from related work and our own experiments. The method SARS and its parameter set

were proposed in [32]. We set the cooling rate α = (1 − 10−6)
√
1/K so that the temperature cools

down slower when the number of routes K is larger. For PEP and PIBP, the only parameter is the
size of the subdomain. The larger the size, the better the MPTD they can obtain but with a higher
computational cost. We set the size to be 17 since any larger sizes can lead to computationally
prohibitive cases, which will be shown in later sections. CDR and Lou are two parallel SA frame-
works with their own strategies of mixing pattern and mixing period. They can be directly applied
to SARS for parallelization. For CDR, its mixing period is a fixed number, while we test 1 to 10 and
choose 5 for achieving a near optimal solution without too much communication burden. For Lou,
we follow an adaptive way proposed in their work that can automatically determine the mixing
period. For PSAD, we set stepro = 10 and carefully analyze in Appendix A. For PSAD-M, we set
stepneiдh to be 100 and discuss the performance in Appendix A. We test stepin and stepacc for 10,
100, 1,000 and find little variance of the performance. We therefore set stepin the same as stepro

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:16 K. Xiao et al.

Fig. 6. Parallel performance of different methods.

and stepacc = 1,000. For the parallel method with Pc processes, its cooling rate is Pc times faster so
as to accelerate the convergence. Note that PEP and PIBP are deterministic algorithms while the
others are stochastic. We conduct 10 rounds of independent experiments and report the average
for all stochastic methods for obtaining reliable overall performance.

Experimental Environment. we conduct our experiments on the Seawulf Cluster provided by
the Institute for Advanced Computational Science at Stony Brook University. Our experimental
environment includes 100 nodes, and each of which has two Intel Xeon E5-2690v3 12 core CPUs
and 128 GB DDR4 Memory.

5 RESULTS AND ANALYSIS

5.1 The Overall Performance of PSAD and PSAD-M

5.1.1 Comparison of Parallel Methods. Now we discuss the results for computing time and
MPTD for PEP, PIBP, CDR, Lou, and PSAD, with Pc = 96 based on both real and synthetic datasets.
Figure 6 shows that our PSAD takes 10–20 seconds to finish the searching job based on both
datasets. On the other hand, other benchmarks take more than 1,000 seconds. Also, the PSAD also
generates the lowest MPTD. Note that, the MPTD obtained from the synthetic dataset is gener-
ally lower than the real dataset. The reason is that the synthetic dataset contains more pick-up
points. The results show that our method consistently outperforms all benchmarks in terms of the
computational efficiency as well as the quality of recommendation measured by MPTD.

5.1.2 Speedup for PSAD. We further investigate the parallel performance of ourmethod (PSAD)
and two benchmark parallel techniques (CDR and Lou). Themetric of speedup is defined as follows:

Speedup =
tser ial
tparallel

, (11)

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:17

Fig. 7. Parallel performance of CDR, Lou, and PSAD with different number of cores. Note: In (a) and (e), the

points are the SARS runs with cooling rate α = (1 − 10−6)
1
i where i is the point from the left to the right. The

comparisons of achieved MPTD are plotted in (b) and (f) for the taxi data and synthetic one, respectively.

In (c) and (g), the dash line indicates the upper bound and the solid line is for the lower bound. The red line

and the green line are overlapped. The comparisons of computational efficiency are shown in (d) and (h),

respectively. Note that the results we report are all based on the average of 10 independent experiments.

where tser ial and tparallel are the serial and parallel timing results respectively. In our experiments,
tser ial is the running time from SARS, and tparallel is the running time from CDR, Lou, PSAD, or
PSAD-M.
SA has an important parameter, the cooling rate α ∈ (0, 1) that balances the computational ef-

forts and the quality of the results. When α is closer to 0, the SA run takes less time but locates
a solution with worse quality and vice versa. SARS is the SA framework with random search as
a move generation and thus inherits this property. We are able to learn the running time that SA
needs for each MPTD level by varying α . For different parallel methods, each method may find so-
lutions in different MPTD levels. This technique is important for obtaining tser ial for each parallel
method, because different parallel methods may result in different MPTD levels.
In Figure 7(a) and (e), we demonstrate the average running time and MPTD of SARS with dif-

ferent values of α in 10 runs. The red points lie in the upper right of the others indicate that SARS
with these values of α would result in larger MPTD and longer running time than SARS with
other values of α . These values of α are removed for obtaining the best performed SA for all paral-
lel techniques we compare. That is, the parallel methods are compared based on the optimal serial
method, SARS.
As shown in Figure 7(b) and (f), we run CDR, Lou, and PSAD based on 12, 24, 48, and 96 cores,

and we record the MPTD they obtain. Based on Figure 7(a) and (e), we can calculate the upper
bound and lower bound of tser ial . Note that, parallel method a with n cores achieves MPTD at a
value of MPTDan . In Figure 7(a) and (e), let s1 to be the lowest point that is higher than MPTDan

and s2 to be the highest point that is lower than MPTDan . If we use the tser ial of s1 to calculate
the speedup, it is too strict since we are comparing the timing results of the parallel method to
a serial method with worse solution quality. Because the longer the running time, the better the
solution quality, the tser ial is smaller than it should be. According to Equation (11), the speedup
of the parallel method is smaller than the actual case, and we use it as the lower bound of the

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:18 K. Xiao et al.

Fig. 8. Parallel performance of PSAD-M. Note: Dash lines represent lower bounds and solid lines are upper

bounds for speedup.

speedup. On the opposite, s2 obtains better solution than the parallel method, leading to the upper
bound of the speedup. We now obtain an objective way to estimate the speedup with its lower and
upper bounds.
Figure 7(c) and (g) plot the speedup of our PSAD and the benchmarks. We only show the up-

per bound of the speedup for CDR and Lou, while providing both upper and lower bounds of the
speedup for PSAD. As can be seen, even looking at the lower bound, our PSAD significantly out-
performs CDR and Lou. For instance, in the real-world dataset, when the number of cores is set to
96, the lower bound and the upper bound of the speedup of PSAD are 88x and 100x, respectively,
while CDR and Lou can only reach 2.9x and 2.7x. For the synthetic dataset, the speedup is between
82x and 88x, while CDR and Lou are lower than 3.3x and 3.2x. We finally show the running time
of the parallel methods with different numbers of cores in Figure 7(d) and (h). Combining with
Figure 7(b) and (f), we can learn that PSAD achieves a lower MPTD in a much shorter running
time. Together with the lower bound in Figure 7(c) and (g), we obtain the corresponding timing
results of SARS. For the real-world dataset, our PSAD spends only 10.1 seconds to locate 96 routes,
while it takes SARS 891 seconds to locate a worse solution. For the synthetic dataset, PSAD gets a
good solution spending 21.0 seconds, while SARS takes 1,722 seconds to obtain a worse solution.
All results show that our PSAD consistently outperforms other parallel methods and can accel-

erate the serial performance significantly.

5.1.3 Further Speedup for PSAD-M. We discuss the speed up performance of our second
method, PSAD-M. With the limited computing resources, the maximum parallel size that we can
access is 384. Based on our experimental settings, our task is to simultaneously locate 96 routes.
Therefore, we can assign up to four cores into a group for each route searching. We plot both the
lower bound and the upper bound of PSAD-M in Figure 8(a) and (c). PSAD can be considered as a
simple case of PSAD-M when the number of cores is 96 where each core itself is a group. As can
be seen, the speedup still increases as the number of cores increases. When the number of cores
is 384, the speedup of PSAD-M is between 174x and 180x for the real dataset, and between 163x

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:19

Fig. 9. A case study for four routes. Note: The four lines with different colors indicate the routes recom-

mended to the four different taxi drivers with closed but different starting locations. The larger the size of a

pick-up point, the larger the pc . The largest pick-up points have pc = 4, and the smallest ones have pc = 1.

and 176x for the synthetic dataset. Using 384 cores, PSAD-M doubles the speedup obtained from
PSAD. For running time, according to Figure 8(b) and (d), PSAD-M spends 4.6 seconds for the real
dataset and 9.9 seconds for the synthetic dataset to locate 96 high-quality route recommendations.
The results confirm the consistent improvement on speedup with our PSAD-M, comparing to the
performance of PSAD.

5.2 Improvements on the Objective Function

Now, we compare the benefits brought from the new objective functions inMMSR-m andMMSR-d.
We have shown that by increasing the parallel size, the PSAD method can significantly reduce the
computing time. For the experiments investigating the quality of recommended routes, we use up
to 24 computing cores for ease of implementation. To facilitate the discussion, we use M0, M1, M2,
M3, M4, and M5 to represent the MSR, MMSR, MMSR-m, MMSR-mwith Property 2.1 (MMSR-mP),
MMSR-d, and MMSR-d with Property 2.1 (MMSR-dP), respectively.

5.2.1 A Showcase on Synthetic Data. In Section 3, we discussed several characteristics of the
three objective functions, MMSR (M1), MMSR-m (M2), andMMSR-d (M4). In Figure 9, we showcase
the recommendation quality of the three forms of MMSR along with the original MSR problem
(M0), based on synthetic settings. MMSR-mP (M3) and MMSR-dP (M5) are not included as they
only work for improving the computational efficiency of M2 and M4, while they do not affect the
recommendation quality. Detailed settings are as follows. There are four drivers and 50 pick-up
points of which the locations are uniformly distributed in the map. The pick-up probabilities are
uniformly generated as 0.2, 0.4, 0.6, and 0.8, and their pick-up capacities (pc) are also uniformly

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:20 K. Xiao et al.

distributed from a range between 1 and 4. Following our previous experimental settings, we let
the starting locations to be concentrated in a small area, say (0.50, 0.50), (0.52, 0.52), (0.54, 0.54),
and (0.56, 0.56).
For M0, although the starting locations of the four routes are close, they do not consider the

influence of the other routes. Therefore, in Figure 9(a), recommended routes are almost squeezed
to one route. The pcs of some pick-up points are very small but are passed by all four routes. This
would cause serious traffic issues if apply in practice. Moreover, by following this recommendation,
the last driver may fail to pick up anyone, because the pick-up points with low pick-up probability
may have already been explored by the other three drivers.
By definition,M1 requires all routes to bemutually exclusive. This strategy avoidsmultiple visits

for a single pick-up point, and no driver will visit a pick-up point that has already been explored.
This case is represented in Figure 9(b) where the routes expand to the whole map. We can see that
some pick-up points are in large sizes, indicating that they should be visited more often than the
small pick-up points. However, M1 ignores such information and let some drivers to detour, and
hence it results in a long total traveling distance for the four drivers.
Figure 9(c) shows the recommended routes based on the settings of M2. The objective function

is designed to balance between short detouring for the drivers and the small number of duplicated
visits for the pick-up points. In the experiments, each pick-up point can be visited by two drivers.
As can be seen, the visited pick-up points in Figure 9(c) are more compact than the points in
Figure 9(b) and decentralized comparing to those in Figure 9(a). However, Figure 9(c) also shows
that some pick-up points suggested by M2 have large pick-up capacity, while they are not fully
served. On the other hand, if we increase pc for all the pick-up points, the small-size pick-up point
in Figure 9(c) may be visited by too many drivers.
To consider different pick-up capacities of pick-up points, we show the recommended routes

based on M4 in Figure 9(d). The visited pick-up points are more compact than the points suggested
by M2 and M1 but more scattered than those recommended by M0. As shown in Figure 9(d), du-
plicated visits only appear in large size pick-up points. Following the recommended route of M4,
drivers may visit multiple times at the pick-up points with high pcs and separate to explore the
points with low pcs.
To sum up, MSR and MMSR are two extreme cases in the MMSR problem series. The MSR

assumes the pc to be infinitely large, and the MMSR assumes the pc to be one. MMSR-m and
MMSR-d improve the setting of pc to each pick-up point. MMSR-d has a more reasonable setting
that allows different pcs for different pick-up points, while MMSR-m assumes an identical pc .
Thus, we can expect that the MMSR-d to result in the best route recommendation among the four
objective functions.

5.2.2 The Overall Performance of the MMSR Problem Series. Now we compare the solutions
of MMSR, MMSR-m, MMSR-d based on the real-world data. We apply the PSAD for MMSR. For
MMSR-m and MMSR-d, we apply PSAD-p to push more pick-up points to the candidate pool
for those points with high pc . Furthermore, to check the impact of Property 2.1, we conduct the
experiments for PSAD-p with and without this property.
For MMSR, the whole city is equally divided into 1,000 × 1,000 grids and we name such setting

as G4. For MMSR-m, we divide the city into 125 × 125, 250 × 250, and 500 × 500 grids and name
them as G1, G2, and G3 accordingly. Among the four settings, the pick-up point area for G1 is
the largest and that for G4 is the smallest. We regard each block in G4 as a base area. We set the
number of drivers requesting recommendation services K = 96. For MMSR-m, the pc of a pick-up
point is set to be the number of base areas it covers (pc = 64 in G1, pc = 16 in G2, pc = 4 in G3, and
pc = 1 in G4). By such settings, we are able to keep the total number of pick-up points for different

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:21

Fig. 10. Overall performance for recommending 96 routes. Note: G1 - G4 represent four different ways to

divide the map (125 × 125, 250 × 250, 500 × 500, and 1,000 × 1,000). M1 - M5 refer to the five forms of the

MMSR problem series (MMSR, MMSR-m, MMSR-mP, MMSR-d, and MMSR-dP).

grids to be similar. Then we can compare the performance of our methods in different grids under
the similar settings. For MMSR-d, the pick-up points are the same as those in MMSR-m. For the
setting of pc , we let it to be the total number of visited empty taxis within one hour over a scale
parameter pc0. To determine pc0, we discover that the average pick-up probability for all the points
is around 0.1. Then, for 10 empty taxis entering a pick-up point, the probability for picking up at
least one passenger is about 0.65. Therefore, we increase pc by one for every 10 passing taxis, and
we set pc0 = 10 as initialization.

Figure 10 summarizes the overall performance, in terms of the MPTD as well as the com-
putational efficiency. Each boxplot shows the results from 10 independent experiments. From
Figure 10(a) to 10(c), MMSR-m (M2) and MMSR-mP (M3) always lead to a lower MPTD, which in-
dicates a higher recommendation quality, in comparison with M1. By pushing more points, some
precious nearby points with high pick-up probabilities can be visited multiple times, resulting in a
decrease of the MPTD. However, MMSR-m and MMSR-mP obtain similar MPTD to MMSR in G4,
as shown in Figure 10(d). The reasons are the following. G4 contains 1,000 × 1,000 grids, and the
area covered by each pick-up point is very small. Considering that there are many pick-up points
with low pick-up probabilities in rural areas, we set pc = 1 for these cases. Since all pick-up points
have the same pick-up capacity in MMSR-m, we set pc = 1 for all. If no additional pick-up point
is pushed into the candidate pool, PSAD-p works exactly the same as PSAD. Thus, in Figure 10(d),
MMSR-m and MMSR-mP obtain MPTD at the same level of MMSR.
For the MMSR-d (M4) and MMSR-dP (M5), we always obtain a better MPTD comparing to

MMSR, regardless the setting of grids. As shown in Figure 10(d), MMSR-d and MMSR-dP man-
age to obtain a lower level of MPTD since they use different pcs for different pick-up points in G4.
Although rural pick-up points exist, they do not affect the pc of urban pick-up points. However,
MMSR-m and MMSR-mP can achieve better MPTDs than MMSR-d and MMSR-dP in G2 and G3.
The results show that although MMSR-d has a more reasonable setting than MMSR-m, MMSR-m
may still achieve better MPTD in some special cases. Thus, the two forms of MMSR can be jointly
applied for practical purposes.
Figure 10 (e)–(h) demonstrates the results of computing time. As can be seen, MMSR has the

smallest computing cost due to its simple settings. For MMSR-m and MMSR-d, the time difference

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:22 K. Xiao et al.

Fig. 11. The frequency of duplicated routes. Note: The blue line, green line, and red line analyze the duplica-

tion frequency for G1, G2, and G3, respectively.

varies under different grid settings (G1–G4). According to Property 2.1, only if pc is larger than
the total number of drivers, the candidate pool can be reduced. Given 96 drivers, we only see small
improvements obtained by applying the property. That is, there are small differences between
MMSR-m and MMSR-mP and between MMSR-d and MMSR-dP. Although MMSR-m and MMSR-d
have higher computational costs than MMSR, we can see that the computing costs are in the same
magnitude level. Note that we only use 24 computing cores in this test, the computing time can be
reduced further by increasing the number of computing cores.
The MMSR-m and MMSR-d enable duplicated visits of each pick-up point. For an route assign-

ment, we sort the frequency of duplicated visits of the visited pick-up points from small to large
in Figure 11. As can be seen, some visited pick-up points are less popular and do not get many
drivers. Some points are very attractive, and they are more often.
For the MMSR-m problem as shown in Figure 11(a), we can see an unnatural bound for the G2

settings in green and G3 settings in red. This is because MMSR-m requires all pc to be the same,
the duplicated visit frequency of are bounded by the average pc . Figure 11(b) shows a more natural
route duplication frequency, as each pick-up point has its own pc . Thus, MMSR-d enables us to
locate some attractive pick-up points that are also capable of handling a large number of visits.
In summary, we can see that by introducing pc , some pick-up points will stand out and may take
more places in the route recommendation process.

5.2.3 The Impact of Property 2.1. Our Property 2.1 suggests that if the number of drivers K
is smaller than the maximum pick-up capacity, we can set the maximum pick-up capacity to K .
Thus, to investigate the importance of Property 2.1 in MMSR-m and MMSR-d, we conduct experi-
ments for the MMSR problem series with a small number of drivers. We set K = 6. Other settings
regarding pick-up points follow the discussions in Section 5.2.2.
Our task in the experiments is to recommend routes for six drivers with their starting loca-

tions at (0.50, 0.50), (0.51, 0.51), . . . , (0.55, 0.55). Figure 12 reports the overall performance of the
MMSR problem series, for the MPTD and computing time. The key findings can be summarized
as follows. First, As shown in Figure 12(a)–(d), MMSR-d and MMSR-dP can always achieve lower
MPTDs than other models, indicating the superior of MMSR-d to other forms of MMSR, in terms
of the recommendation quality. Second, after considering Property 2.1, we can achieve similar or
even betterMPTDs forMMSR-m andMMSR-d. Third, MMSR-m andMMSR-mP can lead to slightly
lower MPTDs than the sample form of MMMSR in G1 and G4, while they obtain higher MPTDs
than MMSR in G2 and G3. These results indicate that the MMSR-m does not have significant ad-
vantages in smallK cases. Last, although the simple form ofMMSR still performs the fastest among

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:23

Fig. 12. Overall performance for recommending six routes. Note: G1–G4 represent four different ways to

divide the map (125 × 125, 250 × 250, 500 × 500, and 1,000 × 1,000). M1–M5 refer to the five forms of the

MMSR problem series (MMSR, MMSR-m, MMSR-mP, MMSR-d, and MMSR-dP).

M1–M5, as shown in Figure 12(e)–12(h), considering Property 2.1 (MMSR-mP and MMSR-dP) can
significantly reduce the computational cost. Especially for G1, the computing time of MMSR-mP
and MMSR-dP is close to that of MMSR.

6 RELATEDWORK

We summarize the related work into two categories: human trajectory mining and parallel simu-
lated annealing.

6.1 Human Trajectory Mining

Different from research based on traditional urban data that focuses on characterizing the market
dynamics [8, 9], recent studies on data mining topics seek efficient methods to support dynamic
decision-making for mobile users. The MSR problem, as one of the popular problems in recent
urban computing research, has been widely discussed and studied [12, 24, 25]. Specifically, Huang
et al. [12] improved the algorithm by making use of the iterative property of the PTD functions
from the MSR problem so as to significantly reduce the search space. However, due to the high
computational cost in the search space reduction process, these algorithms are computationally
prohibited for the MSR problem in large dimensions. There are different studies on capacity in
taxi driver problems. For addressing the ride-sharing problem, Alonso-Mora et al. [1] investigated
the relation between the vehicle number and vehicle capacity for serving the taxi demands. Ma
et al. [20] related the taxi capacity to taxi fare. Different from above two papers that focus on the
capacity of the taxis, we focus on the capacity of the pick-up points in this work.
Efforts have also been taken to develop other applications using human trajectory data. Ge et al.

[10] developed a taxi business intelligence system for reducing inefficiency in energy consumption
and improving customer experience and business performance. Powell et al. [24] proposed novel
methods in identifying profitable locations for targeted taxicab based on its current location and
time by making use of the historical pick-up points. Qu et al. [25] developed the net profit calcu-
lation by taking the gas, traffic, and opportunity cost into consideration and designed a recursive
recommendation strategy for the taxicabs to achieve the most profitable route. Yuan et al. [36]
proposed a partition-and-group framework to achieve on-line recommendation based on route

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:24 K. Xiao et al.

segments. The recommendation could also be provided for the passengers to balance to demand
and supply and targeted at the off-peak hours. Yuan et al. [37] also provided an algorithm to search
for the parking places and built up a model that facilitates the recommendation in a whole city.
Wang et al. [29] adapted artificial neural network to recognize the high passenger-finding poten-
tial road clusters for the taxicabs. Ma et al. [20] studied the taxis in ride-sharing and provided
algorithms for taxi searching and scheduling to reduce the total traveling distance. Ma et al. [21]
also improved the recommendation of the ride-sharing for practical concerns by involving mone-
tary constraints for taxicab drivers and passengers. Liu et al. [16] studied workflow by unraveling
the patterns hidden in location traces while constructing estimating parameters and construct-
ing workflow states automatically. Also, Liu et al. [17] designed a workflow modeling framework
for health-care operation and management based on indoor trajectory data. More work based on
human trajectory data can be found in [30, 31, 38, 39].

6.2 Parallel Simulated Annealing

SA was initially proposed by Kirkpatrick et al. [13] and has been widely used for solving combina-
torial problems. It is able to locate a high-quality solution but with a significantly large amount of
time. Studies are conducted for optimizing the cooling schedules and move generations in speed-
ing up the SA calculations. Nourani and Andresen [23] compared linear, exponential, logarithm,
and other schedules by looking into the entropy production rate. They tested the schedules for one
three state system and one NP-hard problem and discovered different behaviors of those sched-
ules. Triki et al. [28] studied the cooling schedules through the theoretical concepts including
thermodynamic equilibrium and demonstrate that all classic cooling schedules are equivalent. In
our experiments we choose the exponential schedule as it achieves a reasonable solutions within
a short time. In terms of move generation, Li and Ma [14] adapted simulated annealing to binary
problems. They designed a specific move generation for the target problems by adopting a tech-
nique similar to the local search in optimizing the continuous functions. In our SA settings, we
also use the move generation proposed in Ye et al. [34] for this specific MSR problem.
To further accelerate the calculation, efforts are then spent on parallelizing SA. Due to the serial

nature of SA, the computing cores have to frequently communicate with each other. As a result,
although the computation time can be reduced in [5], the running time is large because of the
significant increase of the communication time [19]. According to [19], among the literature on
parallel SA, for the parallel size of 32 or larger, the best speedup record was 19.6x for the travel-
ing salesperson problem (TSP) [26]. Other work in parallel SA with a parallel size larger than 32
either did not report the actual speedup or failed to conclude the preservation of the quality of
their solutions. [22]. Efforts are also spent in combining the parallel SA by domain decomposition.
However, the largest speedup reported was 14.1x [7].
To get the inspiration of parallelizing SA onMMSR problem, we try to relate the MMSR problem

to the problems in classic operational research and look for the performance when parallel SA is
applied to those problems. The MSR problem shares some similarities with the classic traveling
salesperson problem [2] as they both recommend a sequence of locations but with relatively dif-
ferent sizes of location set. The set is larger than the sequence in MSR while in TSP the set and the
sequence are the same. The vehicle routing problem (VRP) [6, 27] generalizes the TSP to a fleet
of vehicles, which is similar to the MMSR problem that generalizes the MSR problem to multiple
routes. The largest speedup for the VRP based on parallel SA was less than 10x [3].

7 CONCLUSIONS

We formalized a new MMSR problem series (MMSR, MMSR-m, and MMSR-d) to improve and
generalize the original MSR problem for route optimization. Our MMSR problem series aims to

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:25

simultaneously recommend optimal routes to multiple users (e.g., taxi drivers). While the MMSR
requires all recommended routes to be mutually exclusive with each other, the MMSR-m allows
a certain level of route overlap, and the MMSR-d considers more complicated case when pick-up
capacities are different from point to point. We proposed two parallel algorithms PSAD and PSAD-
M, along with a push-point strategy to address the computing issues among the problem series we
proposed. While PSAD and PSAD-M are designed for the MMSR, the push-point strategy can be
embedded to the two algorithms for handling the MMSR-m and the MMSR-d. Our results confirm
the superiority of the new problem formulation over its original form in providing an effective and
efficient solution to multi-user route recommendation.

APPENDIX

A PARAMETER ANALYSIS

We analyze two parameters, stepro of PSAD and stepneiдh of PSAD-M for both real and synthetic
datasets.
For stepro , we test five cases from stepro being 10

0 to 104. As shown in Figure A.1(a) and (b) and
Figure A.1(d) and (e), the MPTD and total computational steps grow with an increasing stepro .
This phenomenon is understandable. For stepro = 1, the routes keep rotating to different cores
with their pick-up point sets in every step. The rotation is too frequent, so that the algorithm
becomes similar to the serial case. The PSAD imitates the serial procedure almost perfectly and
therefore is able to achieve a low MPTD with a small amount of computing steps. On the other
hand, with a large stepro , after stepro steps, the route in each core has already approached a local
minimum based on the current pick-up point set. Considering that the current route is nearly the
local minimum, it can hardly be affected by the other pick-up point sets for changing to a global
minimum solution. Thus, we conclude that a larger stepro will result in a higher MPTD. Also,
assume that the pick-up point ci in core i can improve the route in core j with i < j. Then it takes
ci about (j − i)stepro to reach core j, leading to the large increase of the total number of steps if
stepro is large.

Fig. A.1. Parameter selection based on the parallel performance of PSAD.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:26 K. Xiao et al.

Fig. A.2. Parameter selection based on the parallel performance of PSAD-M.

In Figure A.1(d) and (f), the running time is high for small stepro due to large communication
time from frequent rotations. It is high for large stepro due to large computation efforts. The stepro
that lies between 101 and 103 can balance the computation and communication cost. stepro is an
essential parameter in PSAD because it determines the frequency for rotation, interaction, and
shuffling. Our results show that it is not sensitive in [101103], which is a large range indicating
the flexibility of the determination of stepro . Also, it has a consistent pattern for both taxi and
synthetic dataset. Therefore, there will be little parameter tuning process if one wants to adopt
PSAD to a new dataset.
When adding the second parallel technique to PSAD to form PSAD-M, we need to tune an ad-

ditional parameter stepneiдh . As can be seen from Figure A.2, when stepneiдh is less than 104, it
will neither affect the quality of the results nor the total number of steps. However, it will af-
fect the communication time resulting in the changes in running time. When stepneiдh = 1, the
neighborhood of the relative best route is very small. The cores need frequent communication to
stay close to each other resulting in high running time. When stepneiдh is a large number, in each
mixing, it is a common case that only one route is synchronized while others need to wait. Wait-
ing time among the cores increases the running time. It explains the phenomenon in Figure A.2.
Like stepro , stepneiдh behaves consistently in the two datasets and has a reasonably large suitable

interval [101, 103] for parameter selection.

REFERENCES

[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. 2017. On-demand high-

capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences 114, 3

(2017), 462–467.

[2] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. 2011. The Traveling Salesman Problem: A

Computational Study. Princeton University Press.

[3] RaúL BañOs, Julio Ortega, Consolación Gil, Antonio FernáNdez, and Francisco De Toro. 2013. A simulated annealing-

based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Appli-

cations 40, 5 (2013), 1696–1707.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

Multi-User Mobile Sequential Recommendation 52:27

[4] Zheyong Bian and Xiang Liu. 2019. Mechanism design for first-mile ridesharing based on personalized requirements

part I: Theoretical analysis in generalized scenarios. Transportation Research Part B: Methodological 120 (2019), 147–

171. https://www.sciencedirect.com/science/article/abs/pii/S0191261517308044.

[5] King-Wai Chu, Yuefan Deng, and John Reinitz. 1999. Parallel simulated annealing by mixing of states. Journal of

Computational Physics 148, 2 (1999), 646–662.

[6] George B. Dantzig and John H. Ramser. 1959. The truck dispatching problem.Management Science 6, 1 (1959), 80–91.

[7] Frederica Darema, Scott Kirkpatrick, and V. Alan Norton. 1987. Parallel algorithms for chip placement by simulated

annealing. IBM Journal of Research and Development 31, 3 (1987), 391–402.

[8] Frank J. Fabozzi and Keli Xiao. 2017. Explosive rents: The real estate market dynamics in exuberance. The Quar-

terly Review of Economics and Finance 66 (2017), 100–107. https://www.sciencedirect.com/science/article/abs/pii/

S1062976917302132.

[9] Frank J. Fabozzi and Keli Xiao. 2019. The timeline estimation of bubbles: The case of real estate. Real Estate Economics

47, 2 (2019), 564–594.

[10] Yong Ge, Chuanren Liu, Hui Xiong, and Jian Chen. 2011. A taxi business intelligence system. In Proceedings of the

17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 735–738.

[11] Yong Ge, Hui Xiong, Alexander Tuzhilin, Keli Xiao, Marco Gruteser, and Michael Pazzani. 2010. An energy–efficient

mobile recommender system. In Proceedings of the 16th ACMSIGKDD International Conference on Knowledge Discovery

and Data Mining. 899–908.

[12] Jianbin Huang, Xuejun Huangfu, Heli Sun, Hui Li, Peixiang Zhao, Hong Cheng, and Qinbao Song. 2015. Backward

path growth for efficient mobile sequential recommendation. IEEE Transactions on Knowledge and Data Engineering

27, 1 (2015), 46–60.

[13] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598

(1983), 671–680. https://science.sciencemag.org/content/220/4598/671.

[14] Xuesong Li and Lin Ma. 2012. Minimizing binary functions with simulated annealing algorithm with applications to

binary tomography. Computer Physics Communications 183, 2 (2012), 309–315.

[15] Bin Liu, Hui Xiong, Spiros Papadimitriou, Yanjie Fu, and Zijun Yao. 2015. A general geographical probabilistic factor

model for point of interest recommendation. IEEE Transactions on Knowledge and Data Engineering 27, 5 (2015), 1167–

1179.

[16] Chuanren Liu, Yong Ge, Hui Xiong, Keli Xiao, Wei Geng, and Matt Perkins. 2014. Proactive workflow modeling

by stochastic processes with application to healthcare operation and management. In Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1593–1602.

[17] Chuanren Liu, Hui Xiong, Spiros Papadimitriou, Yong Ge, and Keli Xiao. 2017. A proactive workflow model for

healthcare operation and management. IEEE Transactions on Knowledge and Data Engineering 29, 3 (2017), 586–598.

[18] Qi Liu, Enhong Chen, Hui Xiong, Yong Ge, Zhongmou Li, and XiangWu. 2014. A cocktail approach for travel package

recommendation. IEEE Transactions on Knowledge and Data Engineering 26, 2 (2014), 278–293.

[19] Zhihao Lou and John Reinitz. 2016. Parallel simulated annealing using an adaptive resampling interval. Parallel Com-

puting 53 (2016), 23–31. https://www.sciencedirect.com/science/article/pii/S0167819116000430.

[20] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic taxi ridesharing service. In Proceedings

of the 2013 IEEE 29th International Conference on Data Engineering (ICDE’13). 410–421.

[21] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2015. Real-time city-scale taxi ridesharing. IEEE Transactions on Knowledge

and Data Engineering 27, 7 (2015), 1782–1795.

[22] Samir W. Mahfoud and David E. Goldberg. 1995. Parallel recombinative simulated annealing: A genetic algorithm.

Parallel Computing 21, 1 (1995), 1–28.

[23] Yaghout Nourani and Bjarne Andresen. 1998. A comparison of simulated annealing cooling strategies. Journal of

Physics A: Mathematical and General 31, 41 (1998), 8373.

[24] Jason W. Powell, Yan Huang, Favyen Bastani, and Minhe Ji. 2011. Towards reducing taxicab cruising time using

spatio-temporal profitability maps. In Proceedings of the International Symposium on Spatial and Temporal Databases.

Springer, 242–260.

[25] Meng Qu, Hengshu Zhu, Junming Liu, Guannan Liu, and Hui Xiong. 2014. A cost-effective recommender system

for taxi drivers. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 45–54.

[26] Andrew Sohn. 1996. Generalized speculative computation of parallel simulated annealing. Annals of Operations Re-

search 63, 1 (1996), 29–55.

[27] Paolo Toth and Daniele Vigo. 2002. The Vehicle Routing Problem. SIAM.

[28] Eric Triki, Yann Collette, and Patrick Siarry. 2005. A theoretical study on the behavior of simulated annealing leading

to a new cooling schedule. European Journal of Operational Research 166, 1 (2005), 77–92.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

52:28 K. Xiao et al.

[29] RanWang, Chi-Yin Chow, Yan Lyu, Victor CS Lee, SamKwong, Yanhua Li, and Jia Zeng. 2018. Taxirec: Recommending

road clusters to taxi drivers using ranking-based extreme learningmachines. IEEE Transactions on Knowledge andData

Engineering 30, 3 (2018), 585–598.

[30] Keli Xiao, Qi Liu, Chuanren Liu, and Hui Xiong. 2018. Price shock detection with an influence-based model of social

attention. ACM Transactions on Management Information Systems 9, 1 (2018), 2.

[31] Tong Xu, Hengshu Zhu, Hui Xiong, Hao Zhong, and Enhong Chen. 2019. Exploring the social learning of taxi dri-

vers in latent vehicle-to-vehicle networks. IEEE Transactions on Mobile Computing (2019). https://ieeexplore.ieee.org/

abstract/document/8708931.

[32] Zeyang Ye, Keli Xiao, and Yuefan Deng. 2015. Investigation of simulated annealing cooling schedule for mobile rec-

ommendations. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW’15). IEEE,

1078–1084.

[33] Zeyang Ye, Keli Xiao, and Yuefan Deng. 2018. A unified theory of the mobile sequential recommendation problem.

In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM’18). IEEE, 1380–1385.

[34] Zeyang Ye, Keli Xiao, Yong Ge, and Yuefan Deng. 2019. Applying simulated annealing and parallel computing to the

mobile sequential recommendation. IEEE Transactions on Knowledge and Data Engineering 31, 2 (2019), 243–256.

[35] Zeyang Ye, Lihao Zhang, Keli Xiao, Wenjun Zhou, Yong Ge, and Yuefan Deng. 2018. Multi-user mobile sequential

recommendation: An efficient parallel computing paradigm. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. ACM, 2624–2633.

[36] Jing Yuan, Yu Zheng, Liuhang Zhang, Xing Xie, and Guangzhong Sun. 2011. Where to find my next passenger. In

Proceedings of the 13th International Conference on Ubiquitous Computing. 109–118.

[37] Nicholas Jing Yuan, Yu Zheng, Liuhang Zhang, and Xing Xie. 2013. T-finder: A recommender system for finding

passengers and vacant taxis. IEEE Transactions on Knowledge and Data Engineering 25, 10 (2013), 2390–2403.

[38] Li Zhang, Keli Xiao, Qi Liu, Yefan Tao, and Yuefan Deng. 2015. Modeling social attention for stock analysis: An

influence propagation perspective. In Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM’15).

IEEE, 609–618.

[39] Hengshu Zhu, Enhong Chen, Kuifei Yu, Huanhuan Cao, Hui Xiong, and Jilei Tian. 2012. Mining personal context-

aware preferences for mobile users. In Proceedings of the 2012 IEEE International Conference on DataMining (ICDM’12).

IEEE, 1212–1217.

Received January 2019; revised June 2019; accepted September 2019

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 52. Publication date: July 2020.

