
Scaffolding Young Learners’ Open-Ended Programming Projects
with Planning Sheets

Jennifer Tsan
University of Chicago

Chicago, IL, USA
jennifertsan@uchicago.edu

Donna Eatinger
University of Chicago

Chicago, IL, USA
dmeatinger@uchicago.edu

Alex Pugnali
University of Maryland
College Park, MD, USA
apugnali@umd.edu

David Gonzalez-Maldonado
University of Chicago

Chicago, IL, USA
dagm@uchicago.edu

Diana Franklin
University of Chicago

Chicago, IL, USA
dmfranklin@uchicago.edu

David Weintrop
University of Maryland
College Park, MD, USA
weintrop@umd.edu

ABSTRACT

Given the increasing interest and need to teach students computer

science in formal education settings, it is imperative to understand

how to do so effectively and equitably. An important step of learn-

ing to program is being able to define the objective of a program and

then plan out how to implement a program to produce the desired

outcome. This step is particularly important in younger learners

who may have little experience with programming or trying to

create their own technological artifacts. In this paper, we explore

how to scaffold young programmers in planning their open-ended

programs as part of an intermediate Scratch curriculum for middle

grade students. We analyze 203 paper and virtual planning docu-

ments from 103 5th-8th grade students. Our results reveal that the

students often completed a majority of the document, which was

consistent across grade levels. However, we found differences in

student completion based on teacher and between physical and

virtual documents. This work advances our understanding of how

to support novice, young programmers in planning programs.

CCS CONCEPTS

· Social and professional topics→ K-12 education; Comput-

ing education.

KEYWORDS

computer science education, planning, K-8

ACM Reference Format:

Jennifer Tsan, Donna Eatinger, Alex Pugnali, David Gonzalez-Maldonado,

Diana Franklin, and David Weintrop. 2022. Scaffolding Young Learners’

Open-Ended Programming Projects with Planning Sheets. In Proceedings of

the 27th ACM Conference on Innovation and Technology in Computer Science

Education Vol 1 (ITiCSE 2022), July 8ś13, 2022, Dublin, Ireland. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524769

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8ś13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524769

1 INTRODUCTION

In a rapidly advancing technological society, there is a need to pre-

pare youth to be informed producers and consumers of the data and

technology that surrounds them. As such, understanding effective

ways to introduce young learners to foundational programming

practices is important. An increasingly popular way to introduce

young learners to the practice of programming and the field of

computer science more broadly is block-based programming [3, 48].

Many block-based programming environments are open-ended and

encourage learners to be inventive in creating their own games,

interactive stories, or animations. This open-ended exploratory

design is an important feature of Constructionist learning environ-

ments [28] and creates a łwide-wallsž learning environment that

supports many different types of projects [33].

Due to the open-ended nature of introductory programming

environments, such as Scratch, it is possible for learners to envision

programs beyond the capabilities of the tool or project that would

require significant amount of time and skill to implement. At the

same time, when used in more formal contexts where there are spe-

cific learning goals, such an open-ended context can be in tension

with the goals of a teacher or curriculum that seeks to ensure learn-

ers engage with desired concepts or employ specific practices. One

strategy to help address both of these challenges is the introduction

of planning scaffolds to help learners (and instructors) attend to

what the program will do and how they will accomplish it.

Planning scaffolds are a common instructional technique and

have been explored with young children in subjects like reading

[30], writing [5], math [17, 46], science [18], and engineering. In

the domain of CS, researchers have explored the use of planning

scaffolds with undergraduate [8, 40] and high school students [26],

but relatively little work has been done to investigate ways to

support younger learners’ planning when learning to program.

We developed a series of scaffolds in the form of planning sheets

to help students detail their vision within a structure that targets an

appropriate level of difficulty and relevant technical content before

starting the coding portion of their projects. We then incorporated

these planning sheets as part of the Scratch Encore Curriculum,

which uses the Use→Modify→Create pedagogical approach [24] to

provide opportunities for both structured and open-ended program-

ming challenges. In this paper, we present an analysis of the ways

students used the planning sheets to complete their open-ended

Session: Programming projects ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

372

Create projects. The Create scaffolds were inspired by łThe 5Wsž,

which is commonly used in K-12 English Language Arts (ELA) [9].

In this paper, we seek to understand how learners complete

the scaffold as they undertake open-ended Scratch challenges. We

are also interested in understanding how the scaffold presentation

informs the ways and the extent to which students use them. More

concretely, we answer the following two research questions:

• RQ1: How, and to what extent, do young learners use a planning

sheet to scaffold their open-ended programming projects?

• RQ2: How does learner use of the sheet differ based on the

learner and other characteristics (grade level, teacher, virtual

vs. physical)?

To answer these questions, we conducted a classroom-based

study comprised of 5 teachers and 103 students over the courses

of two consecutive school years. Through a mixed-methods analy-

sis of completed planning sheets, we answer our stated research

questions, and in doing so, advance our understanding of ways to

scaffold young novice programmers in planning their programs

and how planning sheets are used by novices.

2 PRIORWORK

In this section, we review prior work on students learning to pro-

gram in Scratch and on planning in CS and outside of CS.

2.1 Learning to Program in Middle School

The last decade has seen a rapid growth in research on K-12 CS

education [39, 45], including work focused onmiddle school (grades

6-8, ages 11-14) learners (e.g., [2, 15, 19]). Much of this work has

focused on the use of block-based programming generally, and

Scratch in particular, as the context in which introductory program-

ming instruction takes place [33, 48]. A number of middle-school

curricula have incorporated block-based programming into their

instruction, such as Creative Computing [4], Scratch Encore [13],

Code.org’s Computer Science Discoveries, and the Learning Com-

puter Science Concepts with Scratch Project [25]. Accompanying

the design of middle school curricular materials are findings re-

lated to productive pedagogical strategies for supporting middle

school students learning to program (e.g., [20, 41]) and identifying

conceptual sequencing for middle school instruction [12].

2.2 Teaching Planning

One of our main goals is to create equitable CS learning experiences.

This includes ensuring our curriculum meets the needs of neuro-

diverse students and students who are English language learners

(ELL). Planning in many subjects has been shown to be effective

in scaffolding tasks for all students, and are especially helpful for

those who are neurodiverse [18, 21] or ELLs [17, 30]. While we do

not focus on these populations of students in this paper, developing

effective planning sheets will help us reach our goal.

Here we present prior work on teaching planning. We cover

research on planning in CS education. Then we review research on

planning in subjects outside of CS.

In CS. When teaching novice learners how to program, instruc-

tors and researchers often use Unified Modeling Language (UML)

diagrams, [1, 29, 40], flow charts [16, 27], and pseudocode [14, 32].

In areas such as Human-Computer Interaction, storyboarding is

often used [42, 43]. Recently, researchers have also begun to inves-

tigate new planning formats/strategies such as supporting students

in decomposing and chunking programming problems [8, 36].

Very recent work has also focused on scaffolding student plan-

ning by having them identify aspects of their projects such as the

backstory, actors, important scenes, mechanics, player goal, and

aesthetics. These scaffolds were developed for undergraduate [6]

and high school [26] students in game design.

As we continue to teach programming to more young learners,

we must investigate how to best support them in planning their

projects. Common formats such as UML diagrams are likely too

complex for students aged 10-14. Of the work we reviewed, only

two publications addressed teaching planning to K-12 students

[26, 36]. Similar to previous work [6, 26], we focus on supporting

students in identifying and recording elements of their programs,

such as the sprites/actors, events, and actions/backstory.

Outside of CS. At the K-12 level, students often use planning

and comprehension documents in reading [9, 30], writing [10, 17],

math [46, 47], and science [18, 21, 35]. While we cannot cover every

format that is used by students in this age group, we review ones

that are commonly used. The most relevant formats are the 5Ws

and story-mapping. The 5Ws (who, what, where, when, why) is a

strategy that encourages students to identify elements of a story.

Story-mapping is a similar strategy that has students identify and

organize a story’s characters, settings, actions, problems, and other

elements. Both strategies have been shown to improve student

reading comprehension [9, 34] and writing [17, 44]. We drew in-

spiration from these formats because they are appropriate for our

age-group, the students are likely to be familiar with this process,

and the Create projects are story-based.

3 PLANNING SHEET

The planning sheet was designed to support the open-ended Create

activities that concluded each module of Scratch Encore and was

inspired by the Story Map/5W Questions graphic organizers that

are common in English Languages Arts elementary classrooms

[9, 17, 34], used to scaffold literature comprehension (story element

graphic organizers) and pre-writing activities (Who, What, Where,

When, andWhy) [9]. In order to help students visualize their Scratch

łStories,ž our graphic organizers asked students to attend to the

Characters, Setting, and Events in their Scratch projects [17]. In

doing so, the planning sheet uses something familiar and accessible

- Story map/5W scaffold - in order to support learners in doing

something novel - designing and implementing a Scratch program.

The planning sheet contains six sections (Figure 1). The first

section (top) asks students to define the overall theme of the project.

Students are given a few idea prompts to spark their imagination

along with an open ended free choice. The remaining five sections

align to the 5W questions and are arranged in a grid. The grid

rows ask: Who will be in the project? where students define the

sprites that will be used; What are they doing?, where students

identify specific actions that sprites will perform; When? with

suggested event blocks to cause actions where students choose

events to start their scripts (note: the scaffolds in this row differ

by module to direct students to events relevant to the project and

recently covered content); Where?, which prompts students to

Session: Programming projects ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

373

Figure 1: A completed planning sheet for Module 2, Year 1

define a setting (or background) for their project; and Why did you

choose this? which provides an opportunity for students to explain

their decisions. Each row includes a check box to help learners

track whether that aspect of the project has been completed.

Both the physical and virtual versions of the planning sheet

followed the same structure and used the same prompts. However,

there were some differences between the two formats. For example,

we revised the order of questions in the virtual versions of both

modules by placing the Why question immediately after the project

choice selection in response to feedback we received from teachers.

Additionally, the virtual version for module 2 asked students to

directly connect sprite actions to specific events (e.g łWhat will

Sprite X do when the green flag is clicked?ž).

4 METHODS

4.1 Study Context and Curriculum

In this study, students learn to program in the Scratch [33] pro-

gramming environment through Scratch Encore. The curriculum

uses the Use-Modify-Create [24] pedagogical approach to scaffold

student learning through a process of gradual release [11]. The cur-

riculum starts with a module that introduces Scratch Basics then

gradually introduces more sophisticated concepts and practices (e.g.

conditional loops, and decomposition) through other modules. In

each module, students first Use example code, designed to clearly

demonstrate the focal concept of module, which students are famil-

iarized with through the TIPP&SEE strategy [37]. Students then

Modify the same Scratch project, altering its behavior to accomplish

specific outcomes. The module ends with an open-ended Create

task, that asks students to design and implement a Scratch project

that incorporates the focal concept. The students are given a set of

constraints for the project but are encouraged to design a project

that draws on their interests. To facilitate the Create project, stu-

dents are provided idea prompts (e.g., Tell about your favorite sport,

tell a story that your family likes to tell at the holidays).

The planning sheets were given to students at the outset of each

Create task and then collected at the conclusion of the module. We

created two versions of the planning sheet. In year 1, the documents

were distributed and completed on paper during class time. In

the second year of the project, due to COVID-19 virtual learning

accommodations, the planning sheets were converted to a online

form that students completed on the computer.

4.2 Participants

In this IRB-approved study, we collected data from middle grade

students who attended schools in a large, urban school district in

the Midwestern United States. Teachers were recruited with the

help of school district collaborators. Students in the participating

teachers’ classes were invited to participate in the study. Students

completed activities spanning 4-5 modules of Scratch Encore. We

collected data from two school years (2019 and 2020) and worked

with five teachers. For year 1, we collected 58 students responses

from two 5th grade and one 7th grade class. In year 2, 45 student

responses were collected from 5th through 8th grade classrooms.

Four of the teachers were female (teachers A, B, C, E) and onewas

male (teacher D). All teachers were white. Only one teacher (teacher

A) participated in the both years of the study; their experience as

CS teachers ranged from 2-5 years, and their experience with this

curriculum ranged from 1-3 years. Table 1 shows the breakdown of

students, grade level, and school demographic data.

Year- # of Gr Asian Black HSP White Other

Tchr Stdnts Lev

1-A 23 5 2.4% 60.7% 23% 9.6% 4.3%

1-B 18 5 0% 88.9% 5.6% 2.5% 3%

1-C 17 7 0% 5.9% 92.3% 0.6% 1.4%

2-A 14 5 0% 88.9% 5.6% 2.5% 3%

2-D 13 8 9.7% 1.2% 45.8% 37.5% 6%

2-E 18 6&7 76.1% 1.2% 16.3% 5.2% <2%

Table 1: Classroom and School Demographics

4.3 Data Collection and Analysis

This paper focuses on students’ Create project planning sheets

from modules 2 (events) and 3 (animation), over two consecutive

school years. We will refer to the modules and years in the form of

MxYx (e.g. Module 2, year 1 is M2Y1). In this study, we use a mixed

methods design to analyze a total of 203 planning sheets from 103

students.

Each completed planning sheet was qualitatively coded. To an-

alyze the planning sheets, 4 researchers iteratively developed a

coding manual [38], which attended to the different planning sec-

tions of the documents (e.g. project choice, Who: sprites, What:

actions, When: events, Where: background/ setting, and Why this

project was chosen). To analyze the planning sheets, we coded each

cell under the sections of the planning sheet, marking both whether

Session: Programming projects ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

374

Figure 7: Completion rate by year/modality.

in planning achievable programs that still support the creativity

and flexibility that is central to the design of Scratch.

6.1 Drawing Inspiration from Other Disciplines

The design challenge we pursued in this work, scaffolding the plan-

ning process, was one that had not been directly addressed in the

computing education literature for the intended audience. However,

this was a question that has long been a focus in other disciplines.

We drew from a well-established pedagogical approach from the

field of English Language Arts: Story Maps/5W Questions, which

computing education researchers rarely draw from; although there

are some notable examples of computing education researchers

looking to ELA, reading strategies, and narrative composition for

inspiration to support CS learning (e.g., [31, 37, 49]). Given the deep

connections between introductory computing and storytelling (e.g.,

[19]), this work contributes to the scholarship drawing inspiration

from ELA for improving computing instruction.

6.2 Connecting to Prior Knowledge and Interest

A second noteworthy feature of the chosen approach for scaffold-

ing planning was the way in which the planning sheet remained

true to one of the central design goals of Scratch: supporting per-

sonal expression [33]. By presenting learners with open prompts

that invited them to incorporate themes that could draw on prior

knowledge or cultural resources (e.g., łFavorite place around your

city?ž, łTell a story (maybe about your culture)ž), the planning sheet

provided a clear pathway for learners to incorporate their own in-

terests and cultures into their Create projects. This can be seen in

the two highlighted projects, which tell the stories of young learn-

ers celebrating holidays with their families and engaging in their

favorite sports. By beginning the planning activity with prompts

that allow learners to frame their programs in familiar and/or fa-

vored contexts, the remainder of the planning activity is situated

within a space of comfort and can support a final program that

reflect who the leaner is and what they value and enjoy.

6.3 Open-ended vs. Constrained Programming

A final noteworthy topic is related to how this planning sheet can

help resolve tensions between structured curricula and more open-

ended, exploratory learning. The Use→Modify→Create pedagog-

ical strategy serves as a way to introduce learners to computing

content in accessible ways en route to them creating their own

projects that adhere to the constructionist ethos of learner-directed

exploration [11]. The planning sheets introduced in this work serve

as an additional, complementary scaffold to incorporate into the

Use→Modify→Create structure as they can help learners design

Create projects that are both achievable and support personal ex-

pression and creativity. We also envision planning sheets that build

off of what is presented above to include additional prompts or con-

straints to ensure the focal concepts or practices are also included

in the Create project to further reinforce the learning experience. By

layering scaffolded planning sheets into the Use→Modify→Create

framework, we show yet another way that the tension between

open-ended, exploratory learning and more constrained, content-

drive forms of instruction can be resolved through design.

Although our findings are promising, the differences between

student performance based on teachers require further investiga-

tion. Notable work on planning revealed that novice CS students

often struggle with idea development and program planning and

would likely benefit from explicit instruction [7, 22]. Together, this

suggests that teacher implementation fidelity has a great affect on

how students fill out the planning sheets, which could also affect

their final projects. This is an important avenue for future work.

Limitations. As with all qualitative studies, there is a potential

of researcher bias. We worked to minimize those biases through

discussion. Additionally, one out of five teachers that participated

in the study both years and was more familiar with the curriculum

than some of the other teachers. However, this reflects a real school

environment where teachers have varying levels of experience

and skills. Finally, some teachers taught Module 3 around Febru-

ary/March of 2020; the pandemic and switch to digital documents

likely affected the students’ work.

7 CONCLUSIONS

With the increase in students being introduced to programming

and computer science, it is important to ensure that curricula in-

clude age- and content-appropriate scaffolds. This will lead to a

more equitable learning experiences for all students. Planning has

shown to be important in many K-12 subjects and has also benefited

students who have been historically marginalized. We developed

a planning sheet for middle grade (5th-8th) CS learners based on

scaffolds that are commonly used for this age group in English

Language Arts. We found promising results about how students use

the sheets, however these results differ depending on the students’

teachers. This suggests that in addition to improving our sheets,

we should investigate teacher implementation fidelity of the sheets.

Additionally, we will investigate the relationship of the planning

sheets’ completion to how the students implement the projects.

8 ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1738758.

Session: Programming projects ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

377

REFERENCES
[1] Sohail Alhazmi, Charles Thevathayan, and Margaret Hamilton. 2021. Learning

UML sequence diagrams with a new constructivist pedagogical tool: SD4ED. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
893ś899.

[2] Ashok R Basawapatna, Kyu Han Koh, and Alexander Repenning. 2010. Using
scalable game design to teach computer science from middle school to gradu-
ate school. In Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education. 224ś228.

[3] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable programming: blocks and beyond. Commun. ACM 60, 6 (2017), 72ś80.

[4] K Brennan, M Chung, and J Hawson. [n. d.]. Creative com-
puting: A design-based introduction to computational thinking.
https://creativecomputing.gse.harvard.edu/guide/ ([n. d.]).

[5] Marjorie Brown. 2011. Effects of Graphic Organizers on Student Achievement in
the Writing Process. Online Submission (2011).

[6] Alexander Card, Wengran Wang, Chris Martens, and Thomas Price. 2021. Scaf-
folding Game Design: Towards Tool Support for Planning Open-Ended Projects in
an Introductory Game Design Class. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1ś5.

[7] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the interplay between
bottom-up and datatype-driven program design. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. 205ś210.

[8] Umberto Costantini, Violetta Lonati, and Anna Morpurgo. 2020. How plans
occur in novices’ programs: A method to evaluate program-writing skills. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
852ś858.

[9] Tim Crabtree, Sheila R Alber-Morgan, and Moira Konrad. 2010. The effects of
self-monitoring of story elements on the reading comprehension of high school
seniors with learning disabilities. Education and Treatment of Children (2010),
187ś203.

[10] Laura Nicole Delrose. 2011. Investigating the use of graphic organizers for writing.
(2011).

[11] Diana Franklin, Merijke Coenraad, Jennifer Palmer, Donna Eatinger, Anna Zipp,
Marco Anaya, Max White, Hoang Pham, Ozan Gökdemir, and David Weintrop.
2020. An Analysis of Use-Modify-Create Pedagogical Approach’s Success in Bal-
ancing Structure and Student Agency. In Proceedings of the 2020 ACM Conference
on International Computing Education Research. 14ś24.

[12] Diana Franklin, Gabriela Skifstad, Reiny Rolock, Isha Mehrotra, Valerie Ding,
Alexandria Hansen, David Weintrop, and Danielle Harlow. 2017. Using upper-
elementary student performance to understand conceptual sequencing in a blocks-
based curriculum. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. 231ś236.

[13] Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa
Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, MaxWhite, Marco Anaya,
et al. 2020. Scratch Encore: The design and pilot of a culturally-relevant interme-
diate Scratch curriculum. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. 794ś800.

[14] Stuart Garner. 2007. A program design tool to help novices learn programming.
ICT: Providing choices for learners and learning (2007), 321ś324.

[15] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning
in a blended computer science course formiddle school students. Computer science
education 25, 2 (2015), 199ś237.

[16] Dee Gudmundsen, Lisa Olivieri, and Namita Sarawagi. 2011. Using visual logic©:
three different approaches in different courses-general education, CS0, and CS1.
J. Comput. Sci. Coll 26, 6 (2011), 23ś29.

[17] Salem Saleh Khalaf Ibnian. 2010. The Effect of Using the Story-Mapping Tech-
nique on Developing Tenth Grade Students’ Short Story Writing Skills in EFL.
English Language Teaching 3, 4 (2010), 181ś194.

[18] Elizabeth M Jackson and Mary Frances Hanline. 2020. Using a concept map with
RECALL to Increase the comprehension of science texts for children with autism.
Focus on Autism and Other Developmental Disabilities 35, 2 (2020), 90ś100.

[19] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice motivates
middle school girls to learn computer programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 1455ś1464.

[20] Jordana Kerr, Mary Chou, Reilly Ellis, and Caitlin Kelleher. 2013. Setting the
scene: Scaffolding stories to benefit middle school students learning to program.
In 2013 IEEE Symposium on Visual Languages and Human Centric Computing.
IEEE, 95ś98.

[21] Victoria F Knight, Fred Spooner, Diane M Browder, Bethany R Smith, and
Charles L Wood. 2013. Using systematic instruction and graphic organizers
to teach science concepts to students with autism spectrum disorders and intel-
lectual disability. Focus on autism and other developmental disabilities 28, 2 (2013),
115ś126.

[22] Kyungbin Kwon. 2017. Novice programmerâ€™ s misconception of programming
reflected on problem-solving plans. International Journal of Computer Science
Education in Schools 1, 4 (2017), 14ś24.

[23] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159ś174.

[24] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32ś37.

[25] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2013. Learning
computer science concepts with scratch. Computer Science Education 23, 3 (2013),
239ś264.

[26] Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
et al. 2021. PlanIT! A New Integrated Tool to Help Novices Design for Open-
ended Projects. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 232ś238.

[27] Isaac Nassi and Ben Shneiderman. 1973. Flowchart techniques for structured
programming. ACM Sigplan Notices 8, 8 (1973), 12ś26.

[28] Seymour Papert. 1980. " Mindstorms" Children. Computers and powerful ideas
(1980).

[29] Marian Petre. 2013. UML in practice. In 2013 35th international conference on
software engineering (icse). IEEE, 722ś731.

[30] SamD Praveen and Premalatha Rajan. 2013. Using Graphic Organizers to Improve
Reading Comprehension Skills for the Middle School ESL Students. English
language teaching 6, 2 (2013), 155ś170.

[31] Chris Proctor and Paulo Blikstein. 2017. Interactive fiction: Weaving together
literacies of text and code. In Proceedings of the 2017 Conference on Interaction
Design and Children. 555ś560.

[32] Haider Ali Ramadhan. 2000. Programming by discovery. Journal of Computer
Assisted Learning 16, 1 (2000), 83ś93.

[33] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60ś67.

[34] D Ray Reutzel. 1985. Story maps improve comprehension. The Reading Teacher
38, 4 (1985), 400ś404.

[35] Veronica Roberts and Richard Joiner. 2007. Investigating the efficacy of concept
mapping with pupils with autistic spectrum disorder. British Journal of Special
Education 34, 3 (2007), 127ś135.

[36] Jean Salac. 2020. Diagramming as a Strategy for Primary/Elementary-Age Pro-
gram Comprehension. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 322ś323.

[37] Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: A Learning Strategy to Guide Students through Use-Modify
Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. 79ś85.

[38] Johnny Saldaña. 2021. The coding manual for qualitative researchers. SAGE
Publications Limited.

[39] Sue Sentance, Erik Barendsen, and Carsten Schulte. 2018. Computer Science Edu-
cation: Perspectives on Teaching and Learning in School. Bloomsbury Publishing.

[40] Michael Striewe and Michael Goedicke. 2014. Automated assessment of UML
activity diagrams. In Proceedings of the 2014 conference on Innovation & technology
in computer science education. 336ś336.

[41] Addison YS Su, Chester SJ Huang, Stephen JH Yang, Ting-Jou Ding, and YZ
Hsieh. 2015. Effects of Annotations and Homework on Learning Achievement:
An Empirical Study of Scratch Programming Pedagogy. J. Educ. Technol. Soc. 18,
4 (2015), 331ś343.

[42] Jakita O Thomas. 2018. The Computational Algorithmic Thinking (CAT) Capa-
bility Flow: An Approach to Articulating CAT Capabilities over Time in African-
American Middle-school Girls. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education. 149ś154.

[43] Khai N Truong, Gillian R Hayes, and Gregory D Abowd. 2006. Storyboarding: an
empirical determination of best practices and effective guidelines. In Proceedings
of the 6th conference on Designing Interactive systems. 12ś21.

[44] Kayo Tsuji. 2017. Implementation of the Writing Activity Focusing on 5W1H
Questions: An Approach to Improving StudentWriting Performance. LET Journal
of Central Japan 28 (2017), 1ś12.

[45] Jan Vahrenhold, Quintin Cutts, and Katrina Falkner. 2019. Schools (Kś12). Cam-
bridge University Press, 547ś583. https://doi.org/10.1017/9781108654555.019

[46] Delinda van Garderen and Amy M Scheuermann. 2015. Diagramming word
problems: A strategic approach for instruction. Intervention in School and Clinic
50, 5 (2015), 282ś290.

[47] David WWalker and James A Poteet. 1990. A Comparison of Two Methods of
Teaching Mathematics Story Problem-Solving with Learning Disabled Students..
In National Forum of Special Education Journal, Vol. 1. ERIC, 44ś51.

[48] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22ś25.

[49] Robert Whyte, Shaaron Ainsworth, and Jane Medwell. 2019. Designing for
Integrated K-5 Computing and Literacy through Story-making Activities. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 167ś175.

Session: Programming projects ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

378

	Abstract
	1 Introduction
	2 Prior Work
	2.1 Learning to Program in Middle School
	2.2 Teaching Planning

	3 Planning Sheet
	4 Methods
	4.1 Study Context and Curriculum
	4.2 Participants
	4.3 Data Collection and Analysis

	5 Results
	5.1 RQ1: How do Students Use the Sheets?
	5.2 RQ2: Completion by Characteristic

	6 Discussion
	6.1 Drawing Inspiration from Other Disciplines
	6.2 Connecting to Prior Knowledge and Interest
	6.3 Open-ended vs. Constrained Programming

	7 Conclusions
	8 Acknowledgments
	References

