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ABSTRACT

Given the increasing interest and need to teach students computer

science in formal education settings, it is imperative to understand

how to do so effectively and equitably. An important step of learn-

ing to program is being able to define the objective of a program and

then plan out how to implement a program to produce the desired

outcome. This step is particularly important in younger learners

who may have little experience with programming or trying to

create their own technological artifacts. In this paper, we explore

how to scaffold young programmers in planning their open-ended

programs as part of an intermediate Scratch curriculum for middle

grade students. We analyze 203 paper and virtual planning docu-

ments from 103 5th-8th grade students. Our results reveal that the

students often completed a majority of the document, which was

consistent across grade levels. However, we found differences in

student completion based on teacher and between physical and

virtual documents. This work advances our understanding of how

to support novice, young programmers in planning programs.
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· Social and professional topics→ K-12 education; Comput-
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1 INTRODUCTION

In a rapidly advancing technological society, there is a need to pre-

pare youth to be informed producers and consumers of the data and

technology that surrounds them. As such, understanding effective

ways to introduce young learners to foundational programming

practices is important. An increasingly popular way to introduce

young learners to the practice of programming and the field of

computer science more broadly is block-based programming [3, 48].

Many block-based programming environments are open-ended and

encourage learners to be inventive in creating their own games,

interactive stories, or animations. This open-ended exploratory

design is an important feature of Constructionist learning environ-

ments [28] and creates a łwide-wallsž learning environment that

supports many different types of projects [33].

Due to the open-ended nature of introductory programming

environments, such as Scratch, it is possible for learners to envision

programs beyond the capabilities of the tool or project that would

require significant amount of time and skill to implement. At the

same time, when used in more formal contexts where there are spe-

cific learning goals, such an open-ended context can be in tension

with the goals of a teacher or curriculum that seeks to ensure learn-

ers engage with desired concepts or employ specific practices. One

strategy to help address both of these challenges is the introduction

of planning scaffolds to help learners (and instructors) attend to

what the program will do and how they will accomplish it.

Planning scaffolds are a common instructional technique and

have been explored with young children in subjects like reading

[30], writing [5], math [17, 46], science [18], and engineering. In

the domain of CS, researchers have explored the use of planning

scaffolds with undergraduate [8, 40] and high school students [26],

but relatively little work has been done to investigate ways to

support younger learners’ planning when learning to program.

We developed a series of scaffolds in the form of planning sheets

to help students detail their vision within a structure that targets an

appropriate level of difficulty and relevant technical content before

starting the coding portion of their projects. We then incorporated

these planning sheets as part of the Scratch Encore Curriculum,

which uses the Use→Modify→Create pedagogical approach [24] to

provide opportunities for both structured and open-ended program-

ming challenges. In this paper, we present an analysis of the ways

students used the planning sheets to complete their open-ended
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Create projects. The Create scaffolds were inspired by łThe 5Wsž,

which is commonly used in K-12 English Language Arts (ELA) [9].

In this paper, we seek to understand how learners complete

the scaffold as they undertake open-ended Scratch challenges. We

are also interested in understanding how the scaffold presentation

informs the ways and the extent to which students use them. More

concretely, we answer the following two research questions:

• RQ1: How, and to what extent, do young learners use a planning

sheet to scaffold their open-ended programming projects?

• RQ2: How does learner use of the sheet differ based on the

learner and other characteristics (grade level, teacher, virtual

vs. physical)?

To answer these questions, we conducted a classroom-based

study comprised of 5 teachers and 103 students over the courses

of two consecutive school years. Through a mixed-methods analy-

sis of completed planning sheets, we answer our stated research

questions, and in doing so, advance our understanding of ways to

scaffold young novice programmers in planning their programs

and how planning sheets are used by novices.

2 PRIORWORK

In this section, we review prior work on students learning to pro-

gram in Scratch and on planning in CS and outside of CS.

2.1 Learning to Program in Middle School

The last decade has seen a rapid growth in research on K-12 CS

education [39, 45], including work focused onmiddle school (grades

6-8, ages 11-14) learners (e.g., [2, 15, 19]). Much of this work has

focused on the use of block-based programming generally, and

Scratch in particular, as the context in which introductory program-

ming instruction takes place [33, 48]. A number of middle-school

curricula have incorporated block-based programming into their

instruction, such as Creative Computing [4], Scratch Encore [13],

Code.org’s Computer Science Discoveries, and the Learning Com-

puter Science Concepts with Scratch Project [25]. Accompanying

the design of middle school curricular materials are findings re-

lated to productive pedagogical strategies for supporting middle

school students learning to program (e.g., [20, 41]) and identifying

conceptual sequencing for middle school instruction [12].

2.2 Teaching Planning

One of our main goals is to create equitable CS learning experiences.

This includes ensuring our curriculum meets the needs of neuro-

diverse students and students who are English language learners

(ELL). Planning in many subjects has been shown to be effective

in scaffolding tasks for all students, and are especially helpful for

those who are neurodiverse [18, 21] or ELLs [17, 30]. While we do

not focus on these populations of students in this paper, developing

effective planning sheets will help us reach our goal.

Here we present prior work on teaching planning. We cover

research on planning in CS education. Then we review research on

planning in subjects outside of CS.

In CS. When teaching novice learners how to program, instruc-

tors and researchers often use Unified Modeling Language (UML)

diagrams, [1, 29, 40], flow charts [16, 27], and pseudocode [14, 32].

In areas such as Human-Computer Interaction, storyboarding is

often used [42, 43]. Recently, researchers have also begun to inves-

tigate new planning formats/strategies such as supporting students

in decomposing and chunking programming problems [8, 36].

Very recent work has also focused on scaffolding student plan-

ning by having them identify aspects of their projects such as the

backstory, actors, important scenes, mechanics, player goal, and

aesthetics. These scaffolds were developed for undergraduate [6]

and high school [26] students in game design.

As we continue to teach programming to more young learners,

we must investigate how to best support them in planning their

projects. Common formats such as UML diagrams are likely too

complex for students aged 10-14. Of the work we reviewed, only

two publications addressed teaching planning to K-12 students

[26, 36]. Similar to previous work [6, 26], we focus on supporting

students in identifying and recording elements of their programs,

such as the sprites/actors, events, and actions/backstory.

Outside of CS. At the K-12 level, students often use planning

and comprehension documents in reading [9, 30], writing [10, 17],

math [46, 47], and science [18, 21, 35]. While we cannot cover every

format that is used by students in this age group, we review ones

that are commonly used. The most relevant formats are the 5Ws

and story-mapping. The 5Ws (who, what, where, when, why) is a

strategy that encourages students to identify elements of a story.

Story-mapping is a similar strategy that has students identify and

organize a story’s characters, settings, actions, problems, and other

elements. Both strategies have been shown to improve student

reading comprehension [9, 34] and writing [17, 44]. We drew in-

spiration from these formats because they are appropriate for our

age-group, the students are likely to be familiar with this process,

and the Create projects are story-based.

3 PLANNING SHEET

The planning sheet was designed to support the open-ended Create

activities that concluded each module of Scratch Encore and was

inspired by the Story Map/5W Questions graphic organizers that

are common in English Languages Arts elementary classrooms

[9, 17, 34], used to scaffold literature comprehension (story element

graphic organizers) and pre-writing activities (Who, What, Where,

When, andWhy) [9]. In order to help students visualize their Scratch

łStories,ž our graphic organizers asked students to attend to the

Characters, Setting, and Events in their Scratch projects [17]. In

doing so, the planning sheet uses something familiar and accessible

- Story map/5W scaffold - in order to support learners in doing

something novel - designing and implementing a Scratch program.

The planning sheet contains six sections (Figure 1). The first

section (top) asks students to define the overall theme of the project.

Students are given a few idea prompts to spark their imagination

along with an open ended free choice. The remaining five sections

align to the 5W questions and are arranged in a grid. The grid

rows ask: Who will be in the project? where students define the

sprites that will be used; What are they doing?, where students

identify specific actions that sprites will perform; When? with

suggested event blocks to cause actions where students choose

events to start their scripts (note: the scaffolds in this row differ

by module to direct students to events relevant to the project and

recently covered content); Where?, which prompts students to
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Figure 1: A completed planning sheet for Module 2, Year 1

define a setting (or background) for their project; and Why did you

choose this? which provides an opportunity for students to explain

their decisions. Each row includes a check box to help learners

track whether that aspect of the project has been completed.

Both the physical and virtual versions of the planning sheet

followed the same structure and used the same prompts. However,

there were some differences between the two formats. For example,

we revised the order of questions in the virtual versions of both

modules by placing the Why question immediately after the project

choice selection in response to feedback we received from teachers.

Additionally, the virtual version for module 2 asked students to

directly connect sprite actions to specific events (e.g łWhat will

Sprite X do when the green flag is clicked?ž).

4 METHODS

4.1 Study Context and Curriculum

In this study, students learn to program in the Scratch [33] pro-

gramming environment through Scratch Encore. The curriculum

uses the Use-Modify-Create [24] pedagogical approach to scaffold

student learning through a process of gradual release [11]. The cur-

riculum starts with a module that introduces Scratch Basics then

gradually introduces more sophisticated concepts and practices (e.g.

conditional loops, and decomposition) through other modules. In

each module, students first Use example code, designed to clearly

demonstrate the focal concept of module, which students are famil-

iarized with through the TIPP&SEE strategy [37]. Students then

Modify the same Scratch project, altering its behavior to accomplish

specific outcomes. The module ends with an open-ended Create

task, that asks students to design and implement a Scratch project

that incorporates the focal concept. The students are given a set of

constraints for the project but are encouraged to design a project

that draws on their interests. To facilitate the Create project, stu-

dents are provided idea prompts (e.g., Tell about your favorite sport,

tell a story that your family likes to tell at the holidays).

The planning sheets were given to students at the outset of each

Create task and then collected at the conclusion of the module. We

created two versions of the planning sheet. In year 1, the documents

were distributed and completed on paper during class time. In

the second year of the project, due to COVID-19 virtual learning

accommodations, the planning sheets were converted to a online

form that students completed on the computer.

4.2 Participants

In this IRB-approved study, we collected data from middle grade

students who attended schools in a large, urban school district in

the Midwestern United States. Teachers were recruited with the

help of school district collaborators. Students in the participating

teachers’ classes were invited to participate in the study. Students

completed activities spanning 4-5 modules of Scratch Encore. We

collected data from two school years (2019 and 2020) and worked

with five teachers. For year 1, we collected 58 students responses

from two 5th grade and one 7th grade class. In year 2, 45 student

responses were collected from 5th through 8th grade classrooms.

Four of the teachers were female (teachers A, B, C, E) and onewas

male (teacher D). All teachers were white. Only one teacher (teacher

A) participated in the both years of the study; their experience as

CS teachers ranged from 2-5 years, and their experience with this

curriculum ranged from 1-3 years. Table 1 shows the breakdown of

students, grade level, and school demographic data.

Year- # of Gr Asian Black HSP White Other

Tchr Stdnts Lev

1-A 23 5 2.4% 60.7% 23% 9.6% 4.3%

1-B 18 5 0% 88.9% 5.6% 2.5% 3%

1-C 17 7 0% 5.9% 92.3% 0.6% 1.4%

2-A 14 5 0% 88.9% 5.6% 2.5% 3%

2-D 13 8 9.7% 1.2% 45.8% 37.5% 6%

2-E 18 6&7 76.1% 1.2% 16.3% 5.2% <2%

Table 1: Classroom and School Demographics

4.3 Data Collection and Analysis

This paper focuses on students’ Create project planning sheets

from modules 2 (events) and 3 (animation), over two consecutive

school years. We will refer to the modules and years in the form of

MxYx (e.g. Module 2, year 1 is M2Y1). In this study, we use a mixed

methods design to analyze a total of 203 planning sheets from 103

students.

Each completed planning sheet was qualitatively coded. To an-

alyze the planning sheets, 4 researchers iteratively developed a

coding manual [38], which attended to the different planning sec-

tions of the documents (e.g. project choice, Who: sprites, What:

actions, When: events, Where: background/ setting, and Why this

project was chosen). To analyze the planning sheets, we coded each

cell under the sections of the planning sheet, marking both whether
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Figure 7: Completion rate by year/modality.

in planning achievable programs that still support the creativity

and flexibility that is central to the design of Scratch.

6.1 Drawing Inspiration from Other Disciplines

The design challenge we pursued in this work, scaffolding the plan-

ning process, was one that had not been directly addressed in the

computing education literature for the intended audience. However,

this was a question that has long been a focus in other disciplines.

We drew from a well-established pedagogical approach from the

field of English Language Arts: Story Maps/5W Questions, which

computing education researchers rarely draw from; although there

are some notable examples of computing education researchers

looking to ELA, reading strategies, and narrative composition for

inspiration to support CS learning (e.g., [31, 37, 49]). Given the deep

connections between introductory computing and storytelling (e.g.,

[19]), this work contributes to the scholarship drawing inspiration

from ELA for improving computing instruction.

6.2 Connecting to Prior Knowledge and Interest

A second noteworthy feature of the chosen approach for scaffold-

ing planning was the way in which the planning sheet remained

true to one of the central design goals of Scratch: supporting per-

sonal expression [33]. By presenting learners with open prompts

that invited them to incorporate themes that could draw on prior

knowledge or cultural resources (e.g., łFavorite place around your

city?ž, łTell a story (maybe about your culture)ž), the planning sheet

provided a clear pathway for learners to incorporate their own in-

terests and cultures into their Create projects. This can be seen in

the two highlighted projects, which tell the stories of young learn-

ers celebrating holidays with their families and engaging in their

favorite sports. By beginning the planning activity with prompts

that allow learners to frame their programs in familiar and/or fa-

vored contexts, the remainder of the planning activity is situated

within a space of comfort and can support a final program that

reflect who the leaner is and what they value and enjoy.

6.3 Open-ended vs. Constrained Programming

A final noteworthy topic is related to how this planning sheet can

help resolve tensions between structured curricula and more open-

ended, exploratory learning. The Use→Modify→Create pedagog-

ical strategy serves as a way to introduce learners to computing

content in accessible ways en route to them creating their own

projects that adhere to the constructionist ethos of learner-directed

exploration [11]. The planning sheets introduced in this work serve

as an additional, complementary scaffold to incorporate into the

Use→Modify→Create structure as they can help learners design

Create projects that are both achievable and support personal ex-

pression and creativity. We also envision planning sheets that build

off of what is presented above to include additional prompts or con-

straints to ensure the focal concepts or practices are also included

in the Create project to further reinforce the learning experience. By

layering scaffolded planning sheets into the Use→Modify→Create

framework, we show yet another way that the tension between

open-ended, exploratory learning and more constrained, content-

drive forms of instruction can be resolved through design.

Although our findings are promising, the differences between

student performance based on teachers require further investiga-

tion. Notable work on planning revealed that novice CS students

often struggle with idea development and program planning and

would likely benefit from explicit instruction [7, 22]. Together, this

suggests that teacher implementation fidelity has a great affect on

how students fill out the planning sheets, which could also affect

their final projects. This is an important avenue for future work.

Limitations. As with all qualitative studies, there is a potential

of researcher bias. We worked to minimize those biases through

discussion. Additionally, one out of five teachers that participated

in the study both years and was more familiar with the curriculum

than some of the other teachers. However, this reflects a real school

environment where teachers have varying levels of experience

and skills. Finally, some teachers taught Module 3 around Febru-

ary/March of 2020; the pandemic and switch to digital documents

likely affected the students’ work.

7 CONCLUSIONS

With the increase in students being introduced to programming

and computer science, it is important to ensure that curricula in-

clude age- and content-appropriate scaffolds. This will lead to a

more equitable learning experiences for all students. Planning has

shown to be important in many K-12 subjects and has also benefited

students who have been historically marginalized. We developed

a planning sheet for middle grade (5th-8th) CS learners based on

scaffolds that are commonly used for this age group in English

Language Arts. We found promising results about how students use

the sheets, however these results differ depending on the students’

teachers. This suggests that in addition to improving our sheets,

we should investigate teacher implementation fidelity of the sheets.

Additionally, we will investigate the relationship of the planning

sheets’ completion to how the students implement the projects.
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