Session: Programming projects

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Scaffolding Young Learners’ Open-Ended Programming Projects
with Planning Sheets

Jennifer Tsan Donna Eatinger Alex Pugnali
University of Chicago University of Chicago University of Maryland
Chicago, IL, USA Chicago, IL, USA College Park, MD, USA
jennifertsan@uchicago.edu dmeatinger@uchicago.edu apugnali@umd.edu
David Gonzalez-Maldonado Diana Franklin David Weintrop
University of Chicago University of Chicago University of Maryland
Chicago, IL, USA Chicago, IL, USA College Park, MD, USA
dagm@uchicago.edu dmfranklin@uchicago.edu weintrop@umd.edu
ABSTRACT 1 INTRODUCTION

Given the increasing interest and need to teach students computer
science in formal education settings, it is imperative to understand
how to do so effectively and equitably. An important step of learn-
ing to program is being able to define the objective of a program and
then plan out how to implement a program to produce the desired
outcome. This step is particularly important in younger learners
who may have little experience with programming or trying to
create their own technological artifacts. In this paper, we explore
how to scaffold young programmers in planning their open-ended
programs as part of an intermediate Scratch curriculum for middle
grade students. We analyze 203 paper and virtual planning docu-
ments from 103 5th-8th grade students. Our results reveal that the
students often completed a majority of the document, which was
consistent across grade levels. However, we found differences in
student completion based on teacher and between physical and
virtual documents. This work advances our understanding of how
to support novice, young programmers in planning programs.

CCS CONCEPTS

« Social and professional topics — K-12 education; Comput-
ing education.

KEYWORDS

computer science education, planning, K-8

ACM Reference Format:

Jennifer Tsan, Donna Eatinger, Alex Pugnali, David Gonzalez-Maldonado,
Diana Franklin, and David Weintrop. 2022. Scaffolding Young Learners’
Open-Ended Programming Projects with Planning Sheets. In Proceedings of
the 27th ACM Conference on Innovation and Technology in Computer Science
Education Vol 1 (ITiCSE 2022), July 8-13, 2022, Dublin, Ireland. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524769

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9201-3/22/07...$15.00
https://doi.org/10.1145/3502718.3524769

372

In a rapidly advancing technological society, there is a need to pre-
pare youth to be informed producers and consumers of the data and
technology that surrounds them. As such, understanding effective
ways to introduce young learners to foundational programming
practices is important. An increasingly popular way to introduce
young learners to the practice of programming and the field of
computer science more broadly is block-based programming [3, 48].
Many block-based programming environments are open-ended and
encourage learners to be inventive in creating their own games,
interactive stories, or animations. This open-ended exploratory
design is an important feature of Constructionist learning environ-
ments [28] and creates a “wide-walls” learning environment that
supports many different types of projects [33].

Due to the open-ended nature of introductory programming
environments, such as Scratch, it is possible for learners to envision
programs beyond the capabilities of the tool or project that would
require significant amount of time and skill to implement. At the
same time, when used in more formal contexts where there are spe-
cific learning goals, such an open-ended context can be in tension
with the goals of a teacher or curriculum that seeks to ensure learn-
ers engage with desired concepts or employ specific practices. One
strategy to help address both of these challenges is the introduction
of planning scaffolds to help learners (and instructors) attend to
what the program will do and how they will accomplish it.

Planning scaffolds are a common instructional technique and
have been explored with young children in subjects like reading
[30], writing [5], math [17, 46], science [18], and engineering. In
the domain of CS, researchers have explored the use of planning
scaffolds with undergraduate [8, 40] and high school students [26],
but relatively little work has been done to investigate ways to
support younger learners’ planning when learning to program.

We developed a series of scaffolds in the form of planning sheets
to help students detail their vision within a structure that targets an
appropriate level of difficulty and relevant technical content before
starting the coding portion of their projects. We then incorporated
these planning sheets as part of the Scratch Encore Curriculum,
which uses the Use—Modify—Create pedagogical approach [24] to
provide opportunities for both structured and open-ended program-
ming challenges. In this paper, we present an analysis of the ways
students used the planning sheets to complete their open-ended

Session: Programming projects

Create projects. The Create scaffolds were inspired by “The 5Ws”,
which is commonly used in K-12 English Language Arts (ELA) [9].
In this paper, we seek to understand how learners complete
the scaffold as they undertake open-ended Scratch challenges. We
are also interested in understanding how the scaffold presentation
informs the ways and the extent to which students use them. More
concretely, we answer the following two research questions:

e RQI: How, and to what extent, do young learners use a planning
sheet to scaffold their open-ended programming projects?

® RQ2: How does learner use of the sheet differ based on the
learner and other characteristics (grade level, teacher, virtual
vs. physical)?

To answer these questions, we conducted a classroom-based
study comprised of 5 teachers and 103 students over the courses
of two consecutive school years. Through a mixed-methods analy-
sis of completed planning sheets, we answer our stated research
questions, and in doing so, advance our understanding of ways to
scaffold young novice programmers in planning their programs
and how planning sheets are used by novices.

2 PRIOR WORK

In this section, we review prior work on students learning to pro-
gram in Scratch and on planning in CS and outside of CS.

2.1 Learning to Program in Middle School

The last decade has seen a rapid growth in research on K-12 CS
education [39, 45], including work focused on middle school (grades
6-8, ages 11-14) learners (e.g., [2, 15, 19]). Much of this work has
focused on the use of block-based programming generally, and
Scratch in particular, as the context in which introductory program-
ming instruction takes place [33, 48]. A number of middle-school
curricula have incorporated block-based programming into their
instruction, such as Creative Computing [4], Scratch Encore [13],
Code.org’s Computer Science Discoveries, and the Learning Com-
puter Science Concepts with Scratch Project [25]. Accompanying
the design of middle school curricular materials are findings re-
lated to productive pedagogical strategies for supporting middle
school students learning to program (e.g., [20, 41]) and identifying
conceptual sequencing for middle school instruction [12].

2.2 Teaching Planning

One of our main goals is to create equitable CS learning experiences.
This includes ensuring our curriculum meets the needs of neuro-
diverse students and students who are English language learners
(ELL). Planning in many subjects has been shown to be effective
in scaffolding tasks for all students, and are especially helpful for
those who are neurodiverse [18, 21] or ELLs [17, 30]. While we do
not focus on these populations of students in this paper, developing
effective planning sheets will help us reach our goal.

Here we present prior work on teaching planning. We cover
research on planning in CS education. Then we review research on
planning in subjects outside of CS.

In CS. When teaching novice learners how to program, instruc-
tors and researchers often use Unified Modeling Language (UML)
diagrams, [1, 29, 40], flow charts [16, 27], and pseudocode [14, 32].
In areas such as Human-Computer Interaction, storyboarding is

373

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

often used [42, 43]. Recently, researchers have also begun to inves-
tigate new planning formats/strategies such as supporting students
in decomposing and chunking programming problems [8, 36].

Very recent work has also focused on scaffolding student plan-
ning by having them identify aspects of their projects such as the
backstory, actors, important scenes, mechanics, player goal, and
aesthetics. These scaffolds were developed for undergraduate [6]
and high school [26] students in game design.

As we continue to teach programming to more young learners,
we must investigate how to best support them in planning their
projects. Common formats such as UML diagrams are likely too
complex for students aged 10-14. Of the work we reviewed, only
two publications addressed teaching planning to K-12 students
[26, 36]. Similar to previous work [6, 26], we focus on supporting
students in identifying and recording elements of their programs,
such as the sprites/actors, events, and actions/backstory.

Outside of CS. At the K-12 level, students often use planning
and comprehension documents in reading [9, 30], writing [10, 17],
math [46, 47], and science [18, 21, 35]. While we cannot cover every
format that is used by students in this age group, we review ones
that are commonly used. The most relevant formats are the 5Ws
and story-mapping. The 5Ws (who, what, where, when, why) is a
strategy that encourages students to identify elements of a story.
Story-mapping is a similar strategy that has students identify and
organize a story’s characters, settings, actions, problems, and other
elements. Both strategies have been shown to improve student
reading comprehension [9, 34] and writing [17, 44]. We drew in-
spiration from these formats because they are appropriate for our
age-group, the students are likely to be familiar with this process,
and the Create projects are story-based.

3 PLANNING SHEET

The planning sheet was designed to support the open-ended Create
activities that concluded each module of Scratch Encore and was
inspired by the Story Map/5W Questions graphic organizers that
are common in English Languages Arts elementary classrooms
[9, 17, 34], used to scaffold literature comprehension (story element
graphic organizers) and pre-writing activities (Who, What, Where,
When, and Why) [9]. In order to help students visualize their Scratch
“Stories,” our graphic organizers asked students to attend to the
Characters, Setting, and Events in their Scratch projects [17]. In
doing so, the planning sheet uses something familiar and accessible
- Story map/5W scaffold - in order to support learners in doing
something novel - designing and implementing a Scratch program.

The planning sheet contains six sections (Figure 1). The first
section (top) asks students to define the overall theme of the project.
Students are given a few idea prompts to spark their imagination
along with an open ended free choice. The remaining five sections
align to the 5W questions and are arranged in a grid. The grid
rows ask: Who will be in the project? where students define the
sprites that will be used; What are they doing?, where students
identify specific actions that sprites will perform; When? with
suggested event blocks to cause actions where students choose
events to start their scripts (note: the scaffolds in this row differ
by module to direct students to events relevant to the project and
recently covered content); Where?, which prompts students to

Session: Programming projects

Create a project about a topic you choose! Circle or highlight your topic choice or brainstorm your own.

Favorite Holiday

9 = ’ 5k ' X
o (:rmly felg@,(l]ﬂAéfh OF)I//}/ 1 MiSS, SS 1420

e Favorite place around your city
or

e My topic o e PP
& # x
©] Planning Your Project:
Use the Five W's to plan your project. Write your answers in the space provided. You may not
need to use all five for your project. Done
Whowillbeinthe | #1: ' #2: #3 n o
project (sprites)? fflc/g./ { My e w/0F@n oal/eitltboy
What are they doing? | 904 ay ay
Say, Move, Change /
Size by __ blocks /VIUUC of
Mmovc move
v
get bigge
When? 3 i s RN
The events this sprite [| whenPadiceed| hen R di { when|
will respond to are: - —— % /
hoc l et re i i dded] g
4 — | A e —\
when key pressed] | when key pressed| | when ey pre ssed
£ DRI \ e ST, 7
Where (Choose your Stage/Backdrop)? £ QUIS.JE . d
il
Why did you choose cand Wa -L am 20es |L¥ is hof"
this? or £z wrl(s 7), | o
Say blocks |

Figure 1: A completed planning sheet for Module 2, Year 1

define a setting (or background) for their project; and Why did you
choose this? which provides an opportunity for students to explain
their decisions. Each row includes a check box to help learners
track whether that aspect of the project has been completed.

Both the physical and virtual versions of the planning sheet
followed the same structure and used the same prompts. However,
there were some differences between the two formats. For example,
we revised the order of questions in the virtual versions of both
modules by placing the Why question immediately after the project
choice selection in response to feedback we received from teachers.
Additionally, the virtual version for module 2 asked students to
directly connect sprite actions to specific events (e.g “What will
Sprite X do when the green flag is clicked?”).

4 METHODS

4.1 Study Context and Curriculum

In this study, students learn to program in the Scratch [33] pro-
gramming environment through Scratch Encore. The curriculum
uses the Use-Modify-Create [24] pedagogical approach to scaffold
student learning through a process of gradual release [11]. The cur-
riculum starts with a module that introduces Scratch Basics then
gradually introduces more sophisticated concepts and practices (e.g.
conditional loops, and decomposition) through other modules. In
each module, students first Use example code, designed to clearly
demonstrate the focal concept of module, which students are famil-
iarized with through the TIPP&SEE strategy [37]. Students then
Modify the same Scratch project, altering its behavior to accomplish
specific outcomes. The module ends with an open-ended Create
task, that asks students to design and implement a Scratch project
that incorporates the focal concept. The students are given a set of
constraints for the project but are encouraged to design a project

374

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

that draws on their interests. To facilitate the Create project, stu-
dents are provided idea prompts (e.g., Tell about your favorite sport,
tell a story that your family likes to tell at the holidays).

The planning sheets were given to students at the outset of each
Create task and then collected at the conclusion of the module. We
created two versions of the planning sheet. In year 1, the documents
were distributed and completed on paper during class time. In
the second year of the project, due to COVID-19 virtual learning
accommodations, the planning sheets were converted to a online
form that students completed on the computer.

4.2 Participants

In this IRB-approved study, we collected data from middle grade
students who attended schools in a large, urban school district in
the Midwestern United States. Teachers were recruited with the
help of school district collaborators. Students in the participating
teachers’ classes were invited to participate in the study. Students
completed activities spanning 4-5 modules of Scratch Encore. We
collected data from two school years (2019 and 2020) and worked
with five teachers. For year 1, we collected 58 students responses
from two 5th grade and one 7th grade class. In year 2, 45 student
responses were collected from 5th through 8th grade classrooms.

Four of the teachers were female (teachers A, B, C, E) and one was
male (teacher D). All teachers were white. Only one teacher (teacher
A) participated in the both years of the study; their experience as
CS teachers ranged from 2-5 years, and their experience with this
curriculum ranged from 1-3 years. Table 1 shows the breakdown of
students, grade level, and school demographic data.

Year- # of Gr | Asian | Black | HSP | White | Other
Tchr | Stdnts | Lev
1-A 23 5 2.4% | 60.7% 23% 9.6% 4.3%
1-B 18 5 0% 88.9% | 5.6% 2.5% 3%
1-C 17 7 0% 5.9% | 92.3% 0.6% 1.4%
2-A 14 5 0% 88.9% | 5.6% 2.5% 3%
2-D 13 8 9.7% 1.2% | 45.8% | 37.5% 6%
2-E 18 6&7 | 76.1% 1.2% 16.3% 5.2% <2%

Table 1: Classroom and School Demographics

4.3 Data Collection and Analysis

This paper focuses on students’ Create project planning sheets
from modules 2 (events) and 3 (animation), over two consecutive
school years. We will refer to the modules and years in the form of
MxYx (e.g. Module 2, year 1 is M2Y1). In this study, we use a mixed
methods design to analyze a total of 203 planning sheets from 103
students.

Each completed planning sheet was qualitatively coded. To an-
alyze the planning sheets, 4 researchers iteratively developed a
coding manual [38], which attended to the different planning sec-
tions of the documents (e.g. project choice, Who: sprites, What:
actions, When: events, Where: background/ setting, and Why this
project was chosen). To analyze the planning sheets, we coded each
cell under the sections of the planning sheet, marking both whether

Session: Programming projects

the cell was completed as well as the contents of student responses.
Every planning sheet was given a completeness score based on the
number of cells that were filled in. In our coding phase, we counted
the Events section as completed if at least one event was chosen.

To understand the contents of each section, 4 researchers indi-
vidually coded the same 20% of the documents for each pairing (e.g.,
M2Y1, M3Y1). We calculated the Interrater Reliability (IRR) using
Cohen’s Kappa (k = 0.822-0.918), resulting in almost perfect agree-
ment [23]). The team met and reached complete agreement through
discussion. Finally, we coded the remainder of the planning sheets
individually. To determine if there were any statistically significant
differences in the planning sheets between the type of document
(physical vs. virtual), grade level, and teacher, we used the Kruskal
Wallis test (our data did not meet the assumption of normality or
homogeneity so we could not use the one-way ANOVA).

Additionally, we developed a coding manual for coding the
Events cells of the M3Y1 sheets to determine whether the students’
open-ended answers aligned with Scratch events. The codes types
included: Scraich (e.g. “green flag”, “GF”), real-life with sequence
(e.g. "after the coach talks”), real-life without sequence (e.g. “when
the boards are chopped.”), action only (where the answers did not
involve an event, such as, “move to edge of screen”), other (e.g.
“No Movement”), and blank (student did not fill in the cell). Two
researchers individually coded all responses, resulting in an IRR of
(x = 0.837) and came to a complete agreement.

5 RESULTS

In this section we begin by focusing on the students’ use of the
planning sheet. We specifically attend to how students used the
planning sheets and how characteristics related to students’ use of
the planning sheets (teacher, grade level, virtual vs. physical).

5.1 RQ1: How do Students Use the Sheets?

We explore this question in two phases. First, we look across the full
set of planning sheets to provide a quantitative picture of how they
were used. Next, we present and discuss two completed planning
sheets to further illustrate students’ use of the sheets.

Finding 1: Students completed a majority of the planning
sheets (90%+) across all modules and years. Figure 2 shows
the completion percentage of each section by module and year.
Of the six sections, “Actions” (y?=3.8788, df=3, p=0.27), “Events”
(¥?=4.3579, df=3, p=0.23), and Background (y%=6.524, df=3, p=0.09)
are the most consistent across years and modules.

For the sections “Project Choice” (y?=32.443, df=3, p=4.2x1077),
“Why” (y?=21.351, df=3, p=8.9x107>), and “Sprites” (¥*=9.8214,
df=3, p=0.02), the differences are statistically significant between
modules and years. A post hoc test (Games-Howell Test) on the
“Project Choice” revealed that the differences between M2Y1-M3Y1
(p=0.0002), M2Y2—-M3Y1 (p=0.002), and M3Y1-M3Y2 (p=0.002) are
statistically significant. This is likely the result of the formatting of
the sheet; the question was located outside of the grid and was easy
to miss (Figure 4). For the “Why” section, a post hoc test showed
that the differences were between the following pairs: M2Y1-M2Y2
(p=0.002), M2Y1-M3Y2 (p=0.002), M2Y2—M3Y1 (p=0.034), and M3Y1
— M3Y2 (p=0.034). The sheets of the modules of the same year
did not differ (i.e., M2Y1-M3Y1 and M2Y2—-M3Y3). This suggests

375

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

M2Y1 =M2Y2 - M3Y1 = M3Y2 = Average

1T

Project Who? What? When? Where? Why?
Choice Sprites Actions Events Background

100%
75%
50%
25%

0%

Figure 2: Completion rate in each section.

that student behavior may be related to the modality of the sheets
(explored further in Section 5.2). A post hoc test on the “Sprites”
revealed that the differences were not statistically significant.

Finding 2: Students’ open-ended responses in the “When:
Event” section for M3Y1 included Scratch (54%), Real-life (28%),
and non-events (11%). One noticeable difference between the two
planning sheets is how the students completed the When? portion
of the plan. In the M2Y1, M2Y2, and M3Y2 plans, we provided
Scratch event block choices for students to circle, but the M3Y1
plan for this portion was more open-ended. We designed the sheets
this way because M2 is focused on Events, and we hypothesized that
the students would be more comfortable choosing and using Scratch
events by M3. However, only 54% of the M3Y1 answers included
Scratch events (Figure 3). Twenty-eight percent of the answers were
real-life events (7.5% with sequence and 20% without sequence).
An additional 7.5% did not specify events at all and only listed
actions. We hypothesize that real-life events may prove difficult
to implement the way the students intended. This emphasizes the
importance of scaffolding students in their planning and providing
more explicit explanations and examples on CS vocabulary.

mBlank OOther mAction Only DReal-life w/o SEQ DReal-life w/SEQ mScratch
100%

75%
50%

25%

0%

Average

Figure 3: Types of open-ended event responses.

We now present examples of completed planning sheets.

Example 1: 4th of July Figure 1 describes a family celebration
“The 4th of July in Mississippi.” The student completed the planning
sheet for all three sprites. The What? actions and When? events
listed/circled mirror the planning sheet suggestions and existing
blocks within the Scratch platform. Based on this completed sheet,

Session: Programming projects

it is clear that the student is planning to create a Scratch Project to
illustrate a story about a family celebration by having three family

sprites talking about the holiday and moving around outside.

Tell about your favorite Sport or Tell a story (maybe about your culture) or My topic 200cec

Create a project about a topic you choosel Circle or highlight your topic choice or brainstorm your own.

@ Planning Your Project:
Answer the Five W's and One H questions to plan your project. Write your answers in the space
provided. You may not need to use all questions for your project. Done
Who will be in the #1: 1 #2 #3: o
project (sprites)? 6@(\(Plrrier) Hekesee Yoo
What are they doing? \')\“(US‘\(\L/\} W\ [Reteree 0oy e Ohreedoey Nrern
5)
Mo e fee Pine one P a
>\'>U\)\ e ‘1\c¥\\\“ YW @ \)\C‘\H
When will the sprites (UN\“M\XQMQ(% Whnes \’\6 \ A o) oo
g \ \ \ -
z.voe\r,]e(é\;;mch Mo celesee w\i\\\% W0t CU)\\“W Nre_ "
e Qv - \ \
Wrer e 5 ‘W‘}J B ok
= \ S Luren e,
Pooded) | Wl
Where (Choose your Stage/Backdrop)? _ 0t ee £16\S o
Why did you choose this story/spog\?l‘ge((ﬁtgv 3 A WYy 0L f"ijoré 1 Yoo o

Figure 4: A completed planning sheet for M3Y1.

Example 2: Soccer Game Figure 4 describes the student’s fa-
vorite sport: soccer. Similar to the last project, this one includes a
plan for three sprites. The What? actions and When? events on the
other hand are more open-ended and have a less direct translation
to existing Scratch programming blocks. The response still provides
an indication of what the sprites will do in the project and can be
feasibly completed using Scratch, like using say block to discuss
soccer and sound block to cheer.

Finding 3: These examples show how the provided planning
scaffold allows for differentiation in completion based on how
students want to express their ideas. While the students filled
out the sheets differently, they both completed all sections and
portrayed a project that can be completed in Scratch and used
blocks that students were taught prior to these projects.

5.2 RQ2: Completion by Characteristic

Our second research question investigates differences in students’
use of the planning sheet based on their grade, teacher, and the
format of the sheet: a physical sheet of paper vs. a virtual form.

Finding 4: Student plan completeness did not differ across
grade level. Looking at differences in planning completion by the
students’ grade level, we find no difference. Although Figure 5 indi-
cates that the 5th grade students, which were the younger students,
had more variation in the completeness of their documents, the
difference was not statistically significant (y?=5.27, df=3, p=0.15).
This suggests that the scaffolding was appropriate for the students
across the middle school grades.

Finding 5: Students plan completeness differed by teacher.
When grouped by teacher, there is slightly more variation (Figure
6). The differences in plan completion between students taught by
each teacher was statistically significant (y>=12.86, df=4, p=0.01).
A post hoc test (Games-Howell) revealed that the differences were
between teachers A and D (p=0.003) and teachers A and E (p<0.001).

376

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

100%-
-c . -
% 90%- 5
o K .
E 80%- :
o
(@] .
e 70%- * T
o v
8 . y
T 60%- +
D_ .

50%- .

5 6 7 8
Grade

Figure 5: Completion rate by grade.

These differences are likely due to teacher fidelity in using the
planning sheets in their classrooms.

100%-
3 I 1
L 90%- :
<@
Q » .
E 80%- : 5
o
O %
e 70%- 5 i
S 5
S : .
O 60%- +
e :

50%- .

A B o} D E
Teacher

Figure 6: Completion rate by teacher.

Finding 6: Students open-ended responses to the “When:
Event” section differed by teacher. Similar to the previous finding,
when we conducted a Fisher’s exact test on the students’ catego-
rized “When: Event” for M3Y1, we found a statistically significant
difference (p=2.386"°). This differences, shown in Figure 3, fur-
ther supports the idea that teacher implementation affects student
behaviors and outcomes.

Finding 7: Students plan completeness differed between plan-
ning format. Our response to the COVID-19 pandemic required
us to transition our paper materials into an electronic form to
accommodate virtual learning. Figure 7 shows the differences in
how complete the students’ submissions were between the two
modalities. This difference is statistically significant (y?=12.8, df=1,
p<0.001). This finding suggests that the virtual scaffolding was more
effective than the paper scaffolding.

6 DISCUSSION

This study investigated ways to support young programmers in
planning their programs. In designing scaffolded planning sheets
for students to complete before starting on their programs and
aligning those sheets with the programming environment they were
going to use (i.e., asking about sprites and events before writing a
Scratch program), the planning sheet was able to support novices

Session: Programming projects

100%-
g !
% 90%- :
=) .
g 80%- .
(@) 5
= 70%- .
S !
3 3
& 60%- 1
0_ .

50%- .

2019 2020

Year

Figure 7: Completion rate by year/modality.

in planning achievable programs that still support the creativity
and flexibility that is central to the design of Scratch.

6.1 Drawing Inspiration from Other Disciplines

The design challenge we pursued in this work, scaffolding the plan-
ning process, was one that had not been directly addressed in the
computing education literature for the intended audience. However,
this was a question that has long been a focus in other disciplines.
We drew from a well-established pedagogical approach from the
field of English Language Arts: Story Maps/5W Questions, which
computing education researchers rarely draw from; although there
are some notable examples of computing education researchers
looking to ELA, reading strategies, and narrative composition for
inspiration to support CS learning (e.g., [31, 37, 49]). Given the deep
connections between introductory computing and storytelling (e.g.,
[19]), this work contributes to the scholarship drawing inspiration
from ELA for improving computing instruction.

6.2 Connecting to Prior Knowledge and Interest

A second noteworthy feature of the chosen approach for scaffold-
ing planning was the way in which the planning sheet remained
true to one of the central design goals of Scratch: supporting per-
sonal expression [33]. By presenting learners with open prompts
that invited them to incorporate themes that could draw on prior
knowledge or cultural resources (e.g., “Favorite place around your
city?”, “Tell a story (maybe about your culture)”), the planning sheet
provided a clear pathway for learners to incorporate their own in-
terests and cultures into their Create projects. This can be seen in
the two highlighted projects, which tell the stories of young learn-
ers celebrating holidays with their families and engaging in their
favorite sports. By beginning the planning activity with prompts
that allow learners to frame their programs in familiar and/or fa-
vored contexts, the remainder of the planning activity is situated
within a space of comfort and can support a final program that
reflect who the leaner is and what they value and enjoy.

377

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

6.3 Open-ended vs. Constrained Programming

A final noteworthy topic is related to how this planning sheet can
help resolve tensions between structured curricula and more open-
ended, exploratory learning. The Use—Modify—Create pedagog-
ical strategy serves as a way to introduce learners to computing
content in accessible ways en route to them creating their own
projects that adhere to the constructionist ethos of learner-directed
exploration [11]. The planning sheets introduced in this work serve
as an additional, complementary scaffold to incorporate into the
Use—Modify—Create structure as they can help learners design
Create projects that are both achievable and support personal ex-
pression and creativity. We also envision planning sheets that build
off of what is presented above to include additional prompts or con-
straints to ensure the focal concepts or practices are also included
in the Create project to further reinforce the learning experience. By
layering scaffolded planning sheets into the Use—Modify—Create
framework, we show yet another way that the tension between
open-ended, exploratory learning and more constrained, content-
drive forms of instruction can be resolved through design.

Although our findings are promising, the differences between
student performance based on teachers require further investiga-
tion. Notable work on planning revealed that novice CS students
often struggle with idea development and program planning and
would likely benefit from explicit instruction [7, 22]. Together, this
suggests that teacher implementation fidelity has a great affect on
how students fill out the planning sheets, which could also affect
their final projects. This is an important avenue for future work.

Limitations. As with all qualitative studies, there is a potential
of researcher bias. We worked to minimize those biases through
discussion. Additionally, one out of five teachers that participated
in the study both years and was more familiar with the curriculum
than some of the other teachers. However, this reflects a real school
environment where teachers have varying levels of experience
and skills. Finally, some teachers taught Module 3 around Febru-
ary/March of 2020; the pandemic and switch to digital documents
likely affected the students’ work.

7 CONCLUSIONS

With the increase in students being introduced to programming
and computer science, it is important to ensure that curricula in-
clude age- and content-appropriate scaffolds. This will lead to a
more equitable learning experiences for all students. Planning has
shown to be important in many K-12 subjects and has also benefited
students who have been historically marginalized. We developed
a planning sheet for middle grade (5th-8th) CS learners based on
scaffolds that are commonly used for this age group in English
Language Arts. We found promising results about how students use
the sheets, however these results differ depending on the students’
teachers. This suggests that in addition to improving our sheets,
we should investigate teacher implementation fidelity of the sheets.
Additionally, we will investigate the relationship of the planning
sheets’ completion to how the students implement the projects.

8 ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1738758.

Session: Programming projects

REFERENCES

(1]

=
20,

[10

[11]

[12]

[13]

[14]

(15

[16]

[17]

[18

[19]

Sohail Alhazmi, Charles Thevathayan, and Margaret Hamilton. 2021. Learning
UML sequence diagrams with a new constructivist pedagogical tool: SD4ED. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
893-899.

Ashok R Basawapatna, Kyu Han Koh, and Alexander Repenning. 2010. Using
scalable game design to teach computer science from middle school to gradu-
ate school. In Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education. 224-228.

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable programming: blocks and beyond. Commun. ACM 60, 6 (2017), 72-80.
K Brennan, M Chung, and] Hawson. [n. d.]. Creative com-
puting: A design-based introduction to computational thinking.
https://creativecomputing.gse.harvard.edu/guide/ ([n. d.]).

Marjorie Brown. 2011. Effects of Graphic Organizers on Student Achievement in
the Writing Process. Online Submission (2011).

Alexander Card, Wengran Wang, Chris Martens, and Thomas Price. 2021. Scaf-
folding Game Design: Towards Tool Support for Planning Open-Ended Projects in
an Introductory Game Design Class. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1-5.

Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the interplay between
bottom-up and datatype-driven program design. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. 205-210.

Umberto Costantini, Violetta Lonati, and Anna Morpurgo. 2020. How plans
occur in novices’ programs: A method to evaluate program-writing skills. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
852-858.

Tim Crabtree, Sheila R Alber-Morgan, and Moira Konrad. 2010. The effects of
self-monitoring of story elements on the reading comprehension of high school
seniors with learning disabilities. Education and Treatment of Children (2010),
187-203.

Laura Nicole Delrose. 2011. Investigating the use of graphic organizers for writing.
(2011).

Diana Franklin, Merijke Coenraad, Jennifer Palmer, Donna Eatinger, Anna Zipp,
Marco Anaya, Max White, Hoang Pham, Ozan Gékdemir, and David Weintrop.
2020. An Analysis of Use-Modify-Create Pedagogical Approach’s Success in Bal-
ancing Structure and Student Agency. In Proceedings of the 2020 ACM Conference
on International Computing Education Research. 14-24.

Diana Franklin, Gabriela Skifstad, Reiny Rolock, Isha Mehrotra, Valerie Ding,
Alexandria Hansen, David Weintrop, and Danielle Harlow. 2017. Using upper-
elementary student performance to understand conceptual sequencing in a blocks-
based curriculum. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. 231-236.

Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa
Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, Max White, Marco Anaya,
et al. 2020. Scratch Encore: The design and pilot of a culturally-relevant interme-
diate Scratch curriculum. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. 794-800.

Stuart Garner. 2007. A program design tool to help novices learn programming.
ICT: Providing choices for learners and learning (2007), 321-324.

Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning
in a blended computer science course for middle school students. Computer science
education 25, 2 (2015), 199-237.

Dee Gudmundsen, Lisa Olivieri, and Namita Sarawagi. 2011. Using visual logic©:
three different approaches in different courses-general education, CS0, and CS1.
J. Comput. Sci. Coll 26, 6 (2011), 23-29.

Salem Saleh Khalaf Ibnian. 2010. The Effect of Using the Story-Mapping Tech-
nique on Developing Tenth Grade Students’ Short Story Writing Skills in EFL.
English Language Teaching 3, 4 (2010), 181-194.

Elizabeth M Jackson and Mary Frances Hanline. 2020. Using a concept map with
RECALL to Increase the comprehension of science texts for children with autism.
Focus on Autism and Other Developmental Disabilities 35, 2 (2020), 90-100.
Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice motivates
middle school girls to learn computer programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 1455-1464.

[20] Jordana Kerr, Mary Chou, Reilly Ellis, and Caitlin Kelleher. 2013. Setting the

[21

[22

scene: Scaffolding stories to benefit middle school students learning to program.
In 2013 IEEE Symposium on Visual Languages and Human Centric Computing.
IEEE, 95-98.

Victoria F Knight, Fred Spooner, Diane M Browder, Bethany R Smith, and
Charles L Wood. 2013. Using systematic instruction and graphic organizers
to teach science concepts to students with autism spectrum disorders and intel-
lectual disability. Focus on autism and other developmental disabilities 28, 2 (2013),
115-126.

Kyungbin Kwon. 2017. Novice programmera€™ s misconception of programming
reflected on problem-solving plans. International Journal of Computer Science
Education in Schools 1, 4 (2017), 14-24.

378

(23]

[24

[25]

[26]

[27

[28

[29

(30]

[31

@
&,

[33

(34]

[35

[36

®
=

[38

[39

[40

[41

=
)

[43]

[44

[45

[46

N
)

[48

[49

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

JRichard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159-174.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32-37.

Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2013. Learning
computer science concepts with scratch. Computer Science Education 23, 3 (2013),
239-264.

Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
et al. 2021. PlanIT! A New Integrated Tool to Help Novices Design for Open-
ended Projects. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 232-238.

Isaac Nassi and Ben Shneiderman. 1973. Flowchart techniques for structured
programming. ACM Sigplan Notices 8, 8 (1973), 12-26.

Seymour Papert. 1980. " Mindstorms" Children. Computers and powerful ideas
(1980).

Marian Petre. 2013. UML in practice. In 2013 35th international conference on
software engineering (icse). IEEE, 722-731.

Sam D Praveen and Premalatha Rajan. 2013. Using Graphic Organizers to Improve
Reading Comprehension Skills for the Middle School ESL Students. English
language teaching 6, 2 (2013), 155-170.

Chris Proctor and Paulo Blikstein. 2017. Interactive fiction: Weaving together
literacies of text and code. In Proceedings of the 2017 Conference on Interaction
Design and Children. 555-560.

Haider Ali Ramadhan. 2000. Programming by discovery. Journal of Computer
Assisted Learning 16, 1 (2000), 83-93.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60-67.

D Ray Reutzel. 1985. Story maps improve comprehension. The Reading Teacher
38, 4 (1985), 400-404.

Veronica Roberts and Richard Joiner. 2007. Investigating the efficacy of concept
mapping with pupils with autistic spectrum disorder. British Journal of Special
Education 34, 3 (2007), 127-135.

Jean Salac. 2020. Diagramming as a Strategy for Primary/Elementary-Age Pro-
gram Comprehension. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 322-323.

Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: A Learning Strategy to Guide Students through Use-Modify
Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. 79-85.

Johnny Saldafia. 2021. The coding manual for qualitative researchers. SAGE
Publications Limited.

Sue Sentance, Erik Barendsen, and Carsten Schulte. 2018. Computer Science Edu-
cation: Perspectives on Teaching and Learning in School. Bloomsbury Publishing.
Michael Striewe and Michael Goedicke. 2014. Automated assessment of UML
activity diagrams. In Proceedings of the 2014 conference on Innovation & technology
in computer science education. 336-336.

Addison YS Su, Chester SJ Huang, Stephen JH Yang, Ting-Jou Ding, and YZ
Hsieh. 2015. Effects of Annotations and Homework on Learning Achievement:
An Empirical Study of Scratch Programming Pedagogy. J. Educ. Technol. Soc. 18,
4(2015), 331-343.

Jakita O Thomas. 2018. The Computational Algorithmic Thinking (CAT) Capa-
bility Flow: An Approach to Articulating CAT Capabilities over Time in African-
American Middle-school Girls. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education. 149-154.

Khai N Truong, Gillian R Hayes, and Gregory D Abowd. 2006. Storyboarding: an
empirical determination of best practices and effective guidelines. In Proceedings
of the 6th conference on Designing Interactive systems. 12-21.

Kayo Tsuji. 2017. Implementation of the Writing Activity Focusing on 5W1H
Questions: An Approach to Improving Student Writing Performance. LET Journal
of Central Japan 28 (2017), 1-12.

Jan Vahrenhold, Quintin Cutts, and Katrina Falkner. 2019. Schools (K-12). Cam-
bridge University Press, 547-583. https://doi.org/10.1017/9781108654555.019
Delinda van Garderen and Amy M Scheuermann. 2015. Diagramming word
problems: A strategic approach for instruction. Intervention in School and Clinic
50, 5 (2015), 282-290.

David W Walker and James A Poteet. 1990. A Comparison of Two Methods of
Teaching Mathematics Story Problem-Solving with Learning Disabled Students..
In National Forum of Special Education Journal, Vol. 1. ERIC, 44-51.

David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22-25.

Robert Whyte, Shaaron Ainsworth, and Jane Medwell. 2019. Designing for
Integrated K-5 Computing and Literacy through Story-making Activities. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 167-175.

	Abstract
	1 Introduction
	2 Prior Work
	2.1 Learning to Program in Middle School
	2.2 Teaching Planning

	3 Planning Sheet
	4 Methods
	4.1 Study Context and Curriculum
	4.2 Participants
	4.3 Data Collection and Analysis

	5 Results
	5.1 RQ1: How do Students Use the Sheets?
	5.2 RQ2: Completion by Characteristic

	6 Discussion
	6.1 Drawing Inspiration from Other Disciplines
	6.2 Connecting to Prior Knowledge and Interest
	6.3 Open-ended vs. Constrained Programming

	7 Conclusions
	8 Acknowledgments
	References

