Investigating the Use of Planning Sheets in Young Learners’
Open-Ended Scratch Projects

David Gonzalez-Maldonado Alex Pugnali Jennifer Tsan
University of Chicago University of Maryland University of Chicago
Chicago, USA College Park, USA Chicago, USA
dagm@uchicago.edu apugnali@umd.edu jennifertsan@uchicago.edu
Donna Eatinger Diana Franklin David Weintrop
University of Chicago University of Chicago University of Maryland

Chicago, USA
dmeatinger@uchicago.edu

ABSTRACT

Open-ended tasks can be both beneficial and challenging to students
learning to program. Such tasks allow students to be more creative
and feel ownership over their work, but some students struggle
with unstructured tasks and, without proper scaffolds, this can lead
to negative learning experiences. Scratch is a widely used coding
platform to teach computer science in classrooms and is designed
to support learner creativity and expression. With its open-ended
nature, Scratch can be used in various ways in the classroom to meet
the needs of schools and districts. One challenge of using Scratch in
classrooms is supporting learners in exploring their interests and
fostering creativity while still meeting the instructional goals of a
lesson and ensuring all students are engaged with, and understand,
focal concepts and practices.

In this paper, we investigate the use of planning sheets to fa-
cilitate novice programmers designing and implementing Scratch
programs based on open-ended prompts. To evaluate the plan-
ning sheets, we look at how closely students’ implemented Scratch
projects match their plans and whether the implemented Scratch
projects met the technical requirements for the given lesson. We
analyzed 303 Scratch projects from 155 middle grade students (ages
10-14) who were introduced to programming via the Scratch Encore
Curriculum. Completed Scratch projects that used planning sheets
(202) were qualitatively coded to evaluate how closely they matched
the initial plan, and Scratch programs (303) were analyzed with an
automated grader to check if technical project requirements were
met. Our results reveal that students that used planning sheets met
significantly more technical project requirements and had more
complex structures than those that did not have planning sheets.
Results differ based on teacher and type of planning sheet used
(physical vs. virtual). This work suggests that planning sheets are
a helpful tool for young learners when completing open-ended
coding projects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9194-8/22/08...$15.00
https://doi.org/10.1145/3501385.3543972

247

Chicago, USA
dmfranklin@uchicago.edu

College Park, USA
weintrop@umd.edu

CCS CONCEPTS

« Social and professional topics — K-12 education; Comput-
ing education.

KEYWORDS

computer science education, planning, K-8

ACM Reference Format:

David Gonzalez-Maldonado, Alex Pugnali, Jennifer Tsan, Donna Eatinger,
Diana Franklin, and David Weintrop. 2022. Investigating the Use of Planning
Sheets in Young Learners’ Open-Ended Scratch Projects. In Proceedings of
the 2022 ACM Conference on International Computing Education Research V.1
(ICER 2022), August 7-11, 2022, Lugano and Virtual Event, Switzerland. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3501385.3543972

1 INTRODUCTION

As the computer science education community continues to work
towards the goal of CSforAll, it is important for us to research the
most effective ways to scaffold students’ learning, especially with
younger learners. A common approach to introducing younger
learners to computer science is through the use of block-based
programming environments like Scratch [83], often by inviting
them to author programs based on their own ideas and interests
through the use of open-ended tasks [58]. While some students
excel on such ill-defined tasks, there are some potential drawbacks
to this approach. For example, some students may struggle with the
open-ended, unconstrained nature of the task and have difficulty
getting started on a project. Alternatively, students may envision
programs beyond the capabilities of the tool or their abilities, or
start out on a project that would require a significant amount of
time and skill to implement. Further, such open-ended activities
can be in tension with formal curricula with specific learning goals.
While it is important to support and encourage individual creativity
and agency as part of learning to program, it is equally important
to provide scaffolds for struggling students, so they can have posi-
tive CS experiences. Drawing from other fields that have similar
opportunities for open-ended activities, such as writing, this work
explores how planning scaffolds may help address these challenges
by supporting learners in thinking through what the program will
do and how they will implement it.

In open-ended writing tasks, planning has been shown to be
an important part of the pre-writing process and led to improved
writing artifacts [7, 69]. In other subjects, such as reading [56], math

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

[33, 77], and science [34], planning scaffolds are often used as an
instructional technique for young children. Across different sub-
jects, planning scaffolds have shown to be effective for all students,
and are especially helpful for neurodiverse learners [15, 34, 38] and
English language learners [33, 35, 56]. CS education researchers
have explored the use of planning scaffolds with high school [44]
and undergraduate students [11, 70]; however, relatively little work
has been done to investigate ways to scaffold younger learners’
planning when learning to program.

Inspired by reading and writing graphic organizers, such as 5W
(Who, What, Where, When, Why) Questions and Story Map [12, 33,
59], we developed a series of scaffolds in the form of planning sheets
to help students articulate their vision for Scratch programs within
a structure that targets an appropriate level of difficulty and relevant
technical content. These types of graphic organizers are often used
in elementary/primary (grades K-5, ages 5-11) classrooms, which
allow us to harness teachers’ and students’ familiarity of using such
scaffolds.

To understand the impact of using planning sheets, we incor-
porated them into the Scratch Encore Curriculum, a middle grade
(ages 10-14, spanning the border between late primary and early sec-
ondary school) CS curriculum that uses the Use—Maodify—Create
pedagogical approach [41] to provide opportunities for both struc-
tured and open-ended programming challenges. In previous work
[74], we investigated how students’ used the planning sheets to
structure their envisioned Scratch programs, finding high rates of
planning sheet completion with all grade levels. However, differ-
ences occurred in planning sheet completion based on the format
of the sheet (physical vs. virtual) and the teacher.

In this paper, we aim to extend this work by investigating how
the student-authored planning sheets impacted the Scratch pro-
grams they wrote, specifically with respect to how closely the
implemented projects adhere to the initial plans and to what degree
the authored Scratch projects meet the assignment requirements.
More concretely, this paper answers the following three research
questions:

e RQI1: After completing a planning sheet, how, and to what
extent, do learners implement the Scratch projects they plan?

e RQ2: How, and to what extent, does using a planning sheet
impact completeness of project requirements?

e RQ3: How do the factors of plan format, grade level, and teacher
influence the implementation of plan and completion of project
requirements?

To better understand how planning can scaffold novice program-
mers as part of early programming instruction, we conducted a
classroom-based study which included five teachers and 103 stu-
dents who used planning sheets and one teacher with 52 students
who did not use planning sheets prior to coding Scratch projects.
Through a mixed-methods analysis of completed student planning
sheets and Scratch projects, we investigated how often students
implemented their planning aspects in their projects. Additionally,
we used automated analysis to determine the percentage of require-
ments and extensions each Scratch project met, how complex the
projects were (based on total blocks and unique blocks) and further
analyzed the results based on whether the students used a plan-
ning sheet prior to coding. Finally, we investigated differences in

248

McCartney, et al.

project implementation and requirements met based on the
format of the plan (physical vs. virtual), grade level, and teacher.
This paper contributes to our knowledge of ways to support novices
in learning to program through open-ended tasks and identifies the
benefits of providing scaffolded planning materials to aid novices.
In doing so, this work advances our understanding of planning as
an instructional strategy to help young learners have positive early
experiences in programming.

2 THEORETICAL ORIENTATION

In this work, we examine the role of external scaffolds as a means
to help novices plan and implement Scratch programs, and in doing
so, provide opportunities for early, positive experiences writing
programs that include foundational computer science concepts and
employ essential programming practices. To understand the role
and importance of the planning sheets, we use two, complemen-
tary theoretical lenses. First, we use a distributed cognition lens
to understand the ways that the planning sheets are supporting
learners and the role the sheets play in structuring the cognitive ex-
ercise of authoring a program in response to an open-ended prompt
[13, 29]. Second, the learning activities are a part of the Scratch
Encore Curriculum, which was designed using a constructionist
design approach.

2.1 Distributed Cognition

Distributed cognition posits that cognition is externalized and dis-
tributed through interactions of:

(1) An individual with other people
(2) An individual’s tools and artifacts
(3) Earlier events with later events[29-31]

In this way, the theory challenges the notion that cognition re-
sides solely inside an individual’s head and instead provides a way
to understand cognition that recognizes the essential roles that
external artifacts (like tools and individuals) play in contributing
to a cognitive task. Through examining the artifacts, effects of, and
process of this distribution, we can gain insight into human cogni-
tion [30]. The individual, everyone, and everything the individual
interacts with to complete a task, is part of a system of knowledge
representations, both internal and external [32]. The external knowl-
edge representation also helps individuals in “holding” knowledge
that would normally be difficult to keep in an individual’s mind.
For example, in our context, students may struggle to remember:
every sprite they plan to use, which events and actions they asso-
ciate with each sprite, and what the project requirements are. The
scaffolds we provide them, in this case, planning sheets, provide a
means for learners to externally define these aspects of their project.
By externally defining them, learners can refer to them and use
them as an integral component of the cognitive task of authoring a
program. In that way, the scaffolds also carry cognition; the way we
designed the planning sheet and requirements list shape the way
students view and complete the activities [53]. Because distributed
cognition “offers access to the social, material, cultural, embodied,
and mental richness of activity and learning,’; [13], researchers call
on the learning community to reorient themselves to “facilitating
individuals” responsive and novel uses of resources for creative and
intelligent activity alone and in collaboration” [53].

In CS research, distributed cognition has been used in software
engineering to analyze team interactions [66, 67] and how software
engineering tools can support cognition [79]. Distributed cogni-
tion has also been used as a framework in the human-computer
interaction field [25, 85], which includes an investigation into how
students collaborate on and design tasks [78]. In computer science
education research, distributed cognition is a fairly new theoretical
framework [71]. Deitrick et al., used distributed cognition to ana-
lyze interactions in music programming tasks in a middle school
classroom [13]. They analyzed student interactions with teachers,
and tools, both physical and virtual. Knobelsdorf and Frede ana-
lyzed students’ collaborative interactions while solving CS proofs
through a distributed cognition lens [39]. To our knowledge, CS
ed researchers have not yet analyzed material scaffolds, such as
planning sheets, through a distributed cognition lens.

In our work, we draw on previous research in CS education
and writing research to investigate how students externalize and
distribute their ideas from the planning stage to the completed CS
project. Using a distributed cognition theoretical lens helps justify
our research focus on external resources (e.g., the planning sheets)
as playing is a central role in the cognitive task of learning to
program. Further, it helps structure how we attend to the specific
roles the planning sheets play in the cognitive task and can help us
identify the links between the knowledge stored on the planning
sheets and how that knowledge is used for authoring the student
Scratch projects.

2.2 Constructionism

The design of the Scratch Encore Curriculum was informed by the
constructionist design approach [50, 52]. Constructionist design,
grounded in Piaget’s constructivist learning theory [55], empha-
sizes focusing on the powerful ideas of a discipline and foregrounds
learning-by-doing, giving learners opportunities to construct per-
sonally meaningful artifacts [49]. Learning experiences designed
through the constructionist lens prioritize self-directed learning
and exploration, with the goal of giving the learner agency over
their learning [37, 51]. Constructionism also emphasizes the idea
of having the learners create artifacts that are public and shareable
[37, 51]. As a result, the curriculum provides many opportunities
for learners to modify existing and create new programs as a means
for them to develop an understanding of the concept at hand while
retaining agency to do so in a way that is consistent with their inter-
ests and identity. We will return to these ideas when we introduce
the Scratch Encore Curriculum.

3 PRIOR WORK

In this section, we review three areas of relevant prior work: 1)
planning in CS and outside CS, 2) students learning to program in
Scratch, and 3) automated feedback for Scratch projects.

3.1 Teaching Planning

In this subsection, we cover relevant literature on teaching planning,
starting with literature from CS education. Then, we cover literature
on planning in subjects such as reading, writing, math, and science.

249

Many in the CS education community, including ourselves, have
the goal of creating equitable CS learning experiences. One im-
portant step to take in reaching this goal is to consider and meet
the needs of students who are neurodiverse and students who are
English language learners (ELL). Planning is especially helpful for
those who are neurodiverse [15, 34, 38] or ELL [33, 35, 56] but is
also beneficial for all students. Although our paper does not focus
on the above-mentioned populations of students (due to restric-
tions on the data we could collect), developing effective planning
scaffolds will help us reach our goal.

Computer Science. In CS education, instructors and researchers
have often focused on two ways of helping students plan: 1) var-
ious planning format/strategies, and 2) tools such as Intelligent
Tutoring Systems (ITSs) to assist students in planning. Common
planning formats include Unified Modeling Language (UML) di-
agrams, [2, 54, 70], flow charts [24, 46], and pseudocode [22, 57].
Storyboarding is also used in areas such as Human-Computer In-
teraction [72, 73]. Newer planning formats and strategies focus on
supporting students in decomposing and chunking programming
problems [11, 61]. Tools that have been developed to support plan-
ning include ITSs and software that provides automated feedback
to users [2, 22, 26, 36, 47, 64]. Researchers have also developed
tools using block-based programming environments [27, 81]. One
such tool was a gallery of code examples integrated Snap! [81].
The researchers investigated how undergraduate students’ use of
code examples in an open-ended programming task correlated with
their planning behavior. These researchers found that students
with plans that were more complex (had more unique features)
integrated more code examples into their projects.

We must also investigate how to best support young learners in
planning their projects. Common CS planning formats such as UML
diagrams are likely too complex for students aged 14 and younger.
Of the work we reviewed, only three publications addressed teach-
ing planning to K-12 students [44, 61, 74]. Much more recent work
involved scaffolds developed for high school (secondary, ages 14-18)
[44] and undergraduate [9] (post-secondary) students in game de-
sign. These scaffolds had students identify aspects of their projects
such as the backstory, actors, important scenes, mechanics, player
goal, and aesthetics. Work with middle grades (ages 10-14) include
an exploratory analysis of young Scratch learners’ use of plan-
ning scaffolds for their open-ended projects [74]. Similar to the
works of Card et al. [9], and Milliken et al. [44], we also support
students in identifying and recording visual (sprites/actors, setting)
and functional (events, and actions/backstory) elements of their
programs.

Outside of Computer Science. At the K-12 level, students of-
ten use planning and comprehension scaffolds in reading [12, 21, 56],
writing [7, 14, 33], math [77, 80], and science [10, 34, 38, 60]. Plan-
ning and comprehension scaffolds take many forms, including
graphic organizers [28]. Graphic organizers are visual displays
that show the relationships between facts or concepts. They are
often used in writing, reading, and science [15, 35, 56]. Types of
graphic organizers include concept maps [34, 48], story-maps, and
vee diagrams [4, 23]. Most relevant to our work are the 5Ws (Who,
What, Where, When, Why) and story-mapping, which have been
shown to improve student reading comprehension [12, 59] and
writing [33, 75]. We drew upon these formats for many reasons:

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

1) they are used in K-12 schools in the U.S., and we know that
they are appropriate for our age-group, 2) they are used in the
U.S., the students are likely to be familiar with this process, and 3)
the Create projects are open-ended and story-based, which makes
the task somewhat similar to a writing task. Both formats scaffold
students in identifying elements of their stories (characters/who,
settings/where, actions/what, and other elements) and organizing
the story plot.

3.2 Evaluating Learning in Scratch

With the rise in CS education in primary and secondary school
[65, 76] many educators have a need for platforms with which
to teach coding to students. As a free, online, block-based pro-
gramming platform with millions of users that allows users to
create open-ended and creative coding projects [42], Scratch has
fulfilled that need for many educators. Learning in Scratch is often
focused on how students gain knowledge of programming con-
cepts by analyzing and evaluating the code that students create
(e.g. [1, 84]). Observation and field notes [19, 43], peer evaluation
[17, 82], and student interviews [3] are also used alongside stu-
dent code as important sources when looking at how students gain
programming knowledge. In response to this trend of evaluating
learning in Scratch through student programs, Salac and Franklin
explored the relationship between concepts implemented in code
and students’ responses in written assessments. This study found
a weak correlation between coding concepts being present in stu-
dents code, and students understanding it. It also suggests that
using student programs may not be an effective measure of eval-
uating student learning and understanding when using Scratch
[62].

3.3 Automatic Feedback for Scratch Projects

As the popularity of Scratch exploded in K-12 CS education, there
have been several efforts aimed at analyzing student projects in
order to provide meaningful feedback to both students and teachers.
Moreno-Ledn and Robles developed Dr. Scratch, a public facing web
app that parses Scratch projects and generates a gamified report
ranking how the project scored on several high level CS skills
(Flow Control, Data representation, Parallelism, etc.) [45]. Similarly,
Hairball developed by Boe et al is a “lint-like” tool for Scratch that
is able to identify patterns such as infinite loops and unmatched
broadcast/receive blocks in addition to providing a framework for
extensible plugins [5]. Another tool worth mentioning is Scrape,
originally developed by Burke and Kafai for use during a seven-
week middle school Scratch workshop. Scrape is a visualization tool
aimed at analysis of multiple Scratch projects [8]. The automated
assessment tools developed by the Scratch Encore Curriculum build
upon the work done by these projects, providing feedback on both
an individual level to students and a classroom level to teachers via
a web app, while also being extensible enough so that hundreds of
projects can easily be evaluated at once.

4 CURRICULUM

Before detailing the methods for the study presented in this work,
we first provide an overview of the curriculum and the planning

250

McCartney, et al.

sheets used to scaffold project requirements and story elements of
Scratch projects.

This study took place in classrooms that used the Scratch En-
core Curriculum. As a part of the curriculum, students are intro-
duced to CS concepts (e.g. events, animation, conditional loops,
etc.) and asked to program in the Scratch [58] environment. The
Scratch Encore Curriculum includes 15 modules (one per CS con-
cept), with each module taking between 3-5 lessons to complete.
Lesson length varies from 60 - 120 minutes, which can be spilt
into different class sessions if necessary.Each module employs
the Use—Modify—Create [41] pedagogical approach where stu-
dents are first introduced to the CS concept through a teacher-led
mini-lesson or animated video, both of which engage students with
real-life examples of the focal CS concept. Students then use the
TIPP&SEE [63] strategy to observe an existing project through a
“user” lens and make predictions and explore the code from a “pro-
grammer” lens. Using the same project, students will then modify
the project by adding to or changing the code using the lesson’s fo-
cal CS concept. Finally, students create open-ended Scratch projects
that incorporate the focal CS concepts.

Students are supported throughout the create activity through
scaffolds such as project idea prompts and planning sheets that
are tailored to each module. In this work, we focus on the create
projects for Module 2 (M2) and Module 3 (M3), where students
learn about Events and Animation, respectively. Before each project,
students complete a planning sheet. The planning sheet consists
of two sections: 1) the project requirement task list, and 2) the
5W Questions. Due to COVID-19 virtual and hybrid learning, two
versions of the planning sheets are available: paper (physical) for in-
person and Google Form (virtual) for in-person and virtual learners.

4.1 Planning Sheets: Project Requirements
Section

Included in the create planning sheets for all modules of the Scratch
Encore Curriculum are lists of tasks necessary to complete the
project, depicted on the top right side of Figure 1. Project require-
ments are based on the focal CS concept of the module. The project
requirement task list reminds students to include aesthetic fea-
tures (backdrops, sprites, and costumes) in their projects, and it
identifies the coding requirements (blocks and scripts) needed to
complete the project. For M2, the focal CS concept is user events,
so the list includes a task requiring the use of different events in
the project along with other coding and aesthetic tasks. M2 Project
requirements are listed below:

e Choose a backdrop

o Include three sprites

o Use all three types of events (when green flag clicked, when

sprite clicked, and when _ key pressed)
e Sprites say things and move
e At least one sprite changes size
For M3, the focus is on animating sprites both in place and across

the screen, so the project requirement task list includes two tasks
that check for animation. M3 requirements are listed below:

e Choose a backdrop

e Include three sprites
e At least two sprites animated in place (w/o movement)

Scaffolding Scratch Projects with Planning Sheets

Creating with Events <"Lesson 2 =

Objective: Today, | will create a Scratch project where sprites talk/think, change size, and move
based on a tepic of my choice.

Create a project about a topic you choose! Circle or highlight your topic choice or brainstorm your own.

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

/ Tasks: -
Now, create a Scratch project based on your choice and plan above . Done | Tested
o Create and name a blank project in Scratch. =8
® Choose a backdrop and 3 sprites. o

Implement the two scripts that you planned for each sprite.

o Favorite Holiday o Useal 3 different types of events a | o
or
© Family » Have your sprites say things and move m/
or o Remember, if a sprite covers another sprite while it is talking, add a go to o
© Favorite place around your city front block at the beginning of the script.
or \ > exsrs
A \ S NG ’Hﬂc 2 "o Have at least one of your sprites change size
o (W .toel) Me_an d My nsom at Deocin o Remember, i a sprite changes size in a project, start the sprite the right size vl
— with set size to ___onthewhen green flag clicked.
&) 3 2 i P
@ py hineYouE Project o Share your project and +Add to Studio. i
Use the Five W's to plan your project. Write your answers in the space provided. You may not
need to use all five for your project. Done ® Reflect:
Whowillbeinthe | #t) #2: #3: / Circle or highlight a number telling how you felt about this activity.
3 M 7 A SNa . B/ 3
project (sprites)? My VI Oad [RA L g =¥ waytoohard alittletoohard justright alittletooeasy way too easy
What are they doing? | < v = Sy This activity was: 1 2 3 4 @
Say, Move, Change A Mowe I oz What was challenging about this project? How did youwork through the challenges you faced?
Size by __blocks 5 P ; : (e : i
2 thanee v TAe N/\cd\ﬂv\%f oI bce. LOOS mc&‘m\g o
Svze- Spovty
= — = [What is the difference between the change size by andset size to __% blocks?
When? e (0 2n [R - ane by ie makinathe. o biga s
The events this sprite {t | [g ¢ > % 3 < D) T | V)
wilrespond tomre: - | = Sei =) Sl oy is Vo reset Meamize O ¥% o oo
Choose at least two for () {) 7
each sprite. LX &—=
All three eventsneedto | g~~~ N\ | A~ 3 ﬁ’ 2 x
be chosen at least once r’;;\ ey pressed | [when < key pressed] [hen| ey pressed] 7 If you are done early:
- > S 5 Done | Tested
Where (Choose your Stage/! : e TYach \ﬁ Make a sprite spin around using the tuzn block and wait block. v o
3 > i
Why didyouchoose [The [c o O Ay [Add scripts to handle additional events. (e.g., make sprites say additional things when o
this? e b =Sl | 6 HE He et " | [l [other keys are pressed, make sprtes move when an event occurs). L4
Say blocks S U b
ot ¢ 33(i [Make a sprite blink using hi.de, show, and wa it blocks. 2

Figure 1: M2 Completed Physical Planning Sheet

o At least one sprite animated with movement

All planning sheets also include a task list of extension activi-
ties for students who have extra time after completing the project
requirement tasks (e.g. For M2: making sprites spin/blink and in-
cluding additional events; for M3: animating additional sprites and
experimenting with different types of animation).

4.2 Planning Sheets: 5W Questions Section

Planning sheets also include a section designed to scaffold the story-
telling nature of Scratch projects. This section includes elements
of Story Map and 5W Questions graphic organizers that are often
used for both reading comprehension and pre-writing [12, 33, 59]
activities in elementary classrooms. The 5W questions and Story
Map graphic organizers compare with our Create Planning Sheets
for Scratch, as shown in Table 1.

5Ws Story Map Planning Sheets
for Scratch Coding
Who? Characters Sprites
Where: Setting Backdrop
What? Plot Action blocks
When? | Plot (Beg/Mid/End) User Events
& Setting
Why? Plot Why did you choose this?
Why is the sprite doing this?

Table 1: Comparing Graphic Organizers

251

We theorized that learners would be better supported learning
something new (coding in Scratch) while using a familiar and rele-
vant scaffold.

AsFigure 1illustrates, the physical create planning sheet includes
a question about the topic choice or theme of the project, and the 5W
questions arranged in a grid for students to fill in. The grid provides
cells for students to answer questions about the Sprites (characters)
they plan to use (Who?), actions the sprites will perform (What?),
timing of the actions (When?), setting of the project (Where?),
and reason(s) they chose the project theme, actions, events and/or
sprites (Why?). Sample answer (with Scratch related blocks) selec-
tions are provided for each of the questions to guide students in
understanding the expectations. A checkbox is also provided to
help students keep track of the tasks completed.

Figure 2 depicts a completed Google Form (virtual) version of the
create planning form for M2. While most elements of the form are
the same as the physical version, we also made changes based on
teacher feedback (outlined in blue). For example, the “Why” ques-
tion was located at the end of the physical planning sheet. Teachers
stated that this was confusing because students did not understand
what we wanted them to explain. To address this concern, we moved
the “Why” question directly after the Project Choice in the virtual
plan. Additionally, the virtual version asks students to identify the
actions that will be completed for each sprite and event (also out-
lined in blue), whereas the physical version does not link actions to
specific events.

5 METHODS

5.1 Study Context and Participants

In this IRB-approved study, we collected project planning sheets
and Scratch projects for M2 and M3 from middle grade students

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

McCartney, et al.

Use the Five W's to plan your project. Write your answers to each question.
You may not need to use all five for your project.

What special occasion or place did you choose?

Christmas

Why did you choose this special occasion or place?

Christmas is a holiday in winter (my favorite s¢

Where does it take place (What will your Stage/Backdrop look like)?

In a living room with a tree in it

Who will be in the project (sprites)?

Sprite #1:

Mark (stickmen)

Sprite #2:

John (stickmen)

When & What?

When does Sprite #1 do something? (choose 2)

when this sprite clicked

when ¥ clicked

When green flag clicked When this sprite clicked

when key pressed

() when _key pressed

What will Sprite #1 do when the green flag is clicked? (e.g.. say something, move,
change size, nothing)

rest position

What will Sprite #1do when it is clicked? (e.g.. say something, move, change size,
nothing)

say something, move, open present

Figure 2: M2 Completed Virtual Planning Sheet

(ages 10 - 14) in a Midwestern, metropolitan school district. Our
district collaborators invited Technology, Media, and Science teach-
ers from their district to attend a professional development (PD)
workshop for the Scratch Encore Curriculum conducted in-person
in Year 1 (Y1: 2019-2020) and virtually in Year 2 (Y2: 2020-2021).
Teachers were recruited for our study during the PD. The teachers
and classrooms included in this paper are a subset of those partici-
pating in recurring multi-year studies with the large, metropolitan
partner district.

As Table 2 depicts, in Y1 of the study we collected and analyzed
physical, student planning sheets and Scratch projects from three
teachers, three classes, and 58 students in grades five and seven. In
Y2, we collected and analyzed virtual, student planning sheets and
Scratch projects from three teachers, four classes, and 45 students
in grades 5, 6, 7 and 8 (ages 10 — 14). Teacher experience with the
Scratch Encore Curriculum ranged from 1 to 3 years for both Y1 and
Y2. One teacher (teacher A) participated in the both years of this
study. Table 2 also illustrates the breakdown of school demographic
data.

Additionally, in Y2, we collected Scratch Project links from stu-
dents who did not use a planning sheet (teacher F*), 52 projects for
M2 and 49 projects for M3. During teacher interviews, teacher F*
stated that this class did not use the planning sheet and that only
the project requirements were posted on Google Classroom.

252

5.2 Data Collection and Analysis

In a previous study, we qualitatively coded each cell under the
sections of the student planning sheets (Figure 3 and Figure 2) for
completion to capture student thinking across the 5W’s (Who, What
When, Where and Why), marking both whether the cell was filled
in as well as the contents of student responses [74]. The dataset
consisted of 203 planning sheets for 202 Scratch projects from 103
students across 7 classrooms.

In this paper, we explore the relationship between student Cre-
ate project planning sheets for M2 and M3, the implementation
of student plan aspects within Scratch projects, and the project
requirements that they met. We analyzed the original dataset with
an additional 101 projects from 52 students who did not use the
planning sheets, totaling 303 projects from 155 students across
8 classrooms. We used a mixed methods analysis. Our findings
and analysis of the data will include two main categories: project
implementation and requirements met.

For project implementation, we qualitatively coded the stu-
dents’ Scratch projects to quantify the extent to which they im-
plemented their plans. The four researchers who had previously
coded the content of the planning sheets reviewed each project and
attempted to match the sprites present with those described in the
“Who” portion of the planning materials; in some cases, such as
when the names of the sprites had been changed to match those
on the planning sheets, this process was trivial. However, in sce-
narios where the sprites could not be clearly distinguished by their

Scaffolding Scratch Projects with Planning Sheets

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Year- #of Grade | Age | Asian | Black | HSP | White | Other
Teacher | Students | Level | Range
1-A 23 5 10-11 | 2.4% | 60.7% | 23% 9.6% 4.3%
1-B 18 5 10-11 0% 88.9% | 5.6% 2.5% 3%
1-C 17 7 12-13 0% 59% | 92.3% | 0.6% 1.4%
2-A 14 5 10-11 0% 88.9% | 5.6% 2.5% 3%
2-D 13 8 13-14 | 9.7% 1.2% | 45.8% | 37.5% 6%
2-E 18 6&7 11-13 | 76.1% | 1.2% | 16.3% | 5.2% <2%
[2F | 52 [8 [13-14 [01% | 01% [993% | 01% | <1%]

Table 2: Classroom and School Demographics (* denotes class where no plans were used)

results:

All tasks done!

- The backdrop of the project was changed
- There are at least three sprites

- A sprite has two required events

- A second sprite has two required events

- Athird sprite has two required events

- A sprite has two scripts with unique events

- Asecond sprite has two scripts with unique events
- Athird sprite has two scripts with unique events

LKL

- Uses all event blocks from lesson plan
If you are done early:

/ - Asprite spins (uses turn block)

/ - Asprite reacts to more events.

V/ - Asprite blinks (use hide, show, and wait blocks).

Figure 3: M2 Auto Grader Results

name or appearance, the researchers would compare the “What”
section of the planning sheets and the implemented behavior of
each sprite and attempt to use that as a basis to match the sprites.
In scenarios where an objective mapping between implemented
sprites and planned characters was impossible (either because the
project implementation varied widely with the plan or because the
project was incomplete) the researchers defaulted to sorting the
sprites alphabetically.

The open-ended nature of the projects coupled with the fact that
programming is an inherently creative process made the develop-
ment of a coding scheme that reliably captured all the different
ways in which a student might implement a planned behavior a
surprisingly difficult task and required several iterations. We indi-
vidually coded 20% of the documents for each pairing (e.g., M2Y1,
M3Y1). We calculated the Interrater Reliability (IRR) using Cohen’s
Kappa (k = 0.822-0.918, indicating almost perfect agreement [40]).
The team discussed inconsistencies to reach 100% agreement. The
remaining planning sheets were coded individually.

We coded each sprite, action, event, etc. that were planned as:

o “1” - fully implemented if the element found in the project
matched the plan (e.g., (Who?) planned sprite was “Mom”
and project contained a sprite named “Mom”),

e “P” - partially implemented part of the planned element ex-
isted in the project (e.g., (What?) planned actions were “walk”
and “talk” and project included a say block but no movement
blocks), or

253

e “0” - not implemented planned element was not included in
the project (e.g., (When?) planned event “When Sprite Click”,
but the event was not in the project).

In our analysis, considered a planned item as “implemented” if
they fell under the “1 - fully implemented” or “P - partially imple-
mented” code. We did so because the “P” occurred infrequently
(5.3%) and we aimed to account for student attempts at implement-
ing their plans. 78.07% of the entries were fully implemented and
16.63% of the entries were not implemented.

For requirements met, student projects were run through our
automatic assessment tool, which we will refer to as the autograder,
that checked how many of the project requirements the project
satisfied (output shown in Figure 3). The autograders work by
first building an Abstract Syntax Tree (AST) out of the Scratch
projects and then parsing it while looking for specific patterns. For
instance, to check whether a sprite is “animated while moving” the
autograder would traverse the AST and award points if it is able
to pattern match on a loop of any kind that contains a move block.
Both students and teachers had access to the autograder and were
encouraged to use it to check their progress.

6 RESULTS

In this section, we begin by exploring the correlation between stu-
dent plans and implementations. We then dive into the relationship
between plans (or the lack thereof) and project requirement com-
pletion, including a case study as well as quantitative results on
an individual level (across classrooms) and a class-level compari-
son. Finally, we explore the degree to which various characteristics
(teacher, grade level, virtual vs. physical) affected the project im-
plementation complexity and requirements met.

6.1 RQ1: How, and to what extent, do Students
Implement their Plans?

We begin by breaking down the planning sheet into sections (as-
pects) and looking at the percentage of students who implement
that section’s plan.

Finding 1: Students implemented their planned Sprites (92%),
Backgrounds (81.77%) and Project Choice (79.59%) more than
the other planned sections in their Scratch Projects (e.g., Ac-
tions, Events).

A Kruskal-Wallis H test was conducted to determine if there were
differences in student implementation of their plans in each section.

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

100%-

75%-

50%-

Percent Implemented

25%-

0%~
Achbns Backdround Evénts Projecfchowce Spr‘\tes Wﬁy
Section

Figure 4: Project Implementation of Plan aspects

Distributions of project implementation were not similar for all
sections (Figure 4). The mean ranks of project implementation were
statistically significantly different between sections, y*(3) = 480.639,
p < 0.001.

Pairwise comparisons were performed using Dunn’s [16] proce-
dure with a Bonferroni correction for multiple comparisons. Ad-
justed p-values are presented. This post hoc analysis revealed sta-
tistically significant differences in project implementation between:
the “Why” and all other sections (p < 0.001 in all cases); the “Actions”
section and the “Sprites”, “Background”, and “Project Choice” sections
(p < 0.001 in all cases); and the “Events” section and the “Sprites”,
“Background”, and “Project Choice” (p = 0.003 in all cases).

Figure 4 depicts how different sections of the planning sheet
were implemented in projects. For the “Sprites”, “Background”,
and “Project Choice” sections, almost all (87%-90%) of the project
implementations were at 100%. For the “Why” section, almost all
(87%) the project implementations were at 0%. Actions and Events
are more spread out, and fewer students implemented the Actions
(68.99%) and Events (65.02%) overall. A possible reason that the
Sprites, Backgrounds and Project Choice were implemented more
often is that backgrounds and Sprites are fairly easy to include
in Scratch projects, whereas, coding different Events and Actions
may prove more challenging. Additionally, some students may have
planned actions that were later found to be challenging to code (e.g.,
“kicking a soccer ball” which might include attending to costumes,
motion and timing). We hypothesize that the “Why” aspect may
not have been implemented due to student confusion about how
and where to integrate this information in their Scratch stories.

6.2 RQ2: What is the Relationship between
Planning Sheets and Project Requirements
Completion?

For RQ2, we begin by exploring the relationship between com-

pleted planning sheets and project requirements on a case study

basis and quantitative individual student basis. We then explore dif-
ferences between completed projects (requirements met and project
complexity) on a classroom basis, comparing classrooms that used
planning sheets and those that did not.

Finding 2: Plans expressed on planning sheets do not al-
ways satisfy project requirements.

254

McCartney, et al.

To answer RQ2, we first present a case study analyzing two
students’ completed planning sheets (Figure 1 and Figure 5) and the
resulting Scratch projects (Figure 6 and Figure 7). The individual
projects were selected as they are representative of two particularly
interesting types of projects encountered by the authors: projects
that are technically correct but aesthetically simple, and projects
that fail to meet all of the requirements yet demonstrate substantial
creative effort. In both instances, the students made use of the
planning sheets and implemented all aspects of their plans. In one
case, however, the student completed all of the project requirements
(Figure 3), while in the other case the student completed only 4 out
of 9 technical requirements (Figure 8).

Focusing first on the planning sheets, a significant distinction
between the high-scoring and low-scoring projects is the level of
detail of the planned actions. The high-scoring student followed
the instructions of the planning sheet completely: they first listed
out which action blocks each character would use, selected two
events for each character, specified a backdrop, and then wrote out
the dialog. The low-scoring student on the other hand did not fully
follow the directions of the planning sheets: they did not list specific
action blocks that would be used, they only used the “green flag”
event for all sprites, and they left the dialog portion blank. There
are several potential reasons for this. It is possible that the planning
sheet proved to be too vague, leading to confusion regarding what
is expected in each section. The fact that the switch from physical
planning sheets to virtual planning sheets that make more explicit
what type of input is expected in each section led to an overall
increase in project completion rates would certainly support this.
Similarly, since the authors of the high- and low-scoring projects
belonged to different classrooms, it is possible the manner in which
their teachers introduced the planning sheets and illustrated what
was expected in each section could also lead to different project
completion rates. This might also indicate that the high-scoring
student was using the planning sheet as a cognitive artifact that
assisted them in offloading the need to hold the entirety of their
plan in memory, while the low-scoring student treated the planning
sheets as an assignment to be completed rather than a design tool.

The most striking difference between the two projects from an
aesthetic perspective is the use of custom-made sprites in the low-
scoring project (Figure 7): it is evident that in the planning stage of
the project, the student had a very specific list of characters (three
celebrity chefs) that went beyond what is immediately available
by default in Scratch. By contrast, the high-scoring project only
utilizes assets that are immediately available within the Scratch
editor. This implies that in the implementation phase, the student
of the low-scoring project spent more time on finding their sprites
than that of the other student. While using custom sprites allow
for students to express their ideas, students may also need more
help in managing their time.

Turning to the projects requirements part of the planning sheets,
it is also interesting to note that in both instances the students
appear to be aware of the extent to which their projects were sat-
isfying the requirements. The author of the high-scoring project
accurately indicated that they had completed all requirements and
extensions, while the author of the low-scoring project seemed to
recognize that their project was incomplete.

Scaffolding Scratch Projects with Planning Sheets

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Creating with Events - Lesson 2
g 7 Tasks:
Objective: Today, | will create a Scratch project where sprites talk/think, change size, and move Now, create a Scratch project based on your choice and plan above . Done | Tested
based on a topic of my choice. e Create and name a blank project in Scratch. g |V
Ch i
Create a project about a topic you choose! Circle or highlight your topic choice or brainstorm your own. ®_Choose abackdrop and 3 sprites. a1/
i) Implement the two scripts that you planned for each sprite.
. Fj"°"‘e Holiday o Useal 3 different types of events E]]
o Family cel ® Have your sprites say things and move /
or § © Remember, if a sprite covers another sprite while itis talking, add a go to o o
. Z?"O"fe place around your city £ront block at the beginning of the script.
o Mytopic an\?“ o_0n COOV\(E’V\ O ® Have at least one of your sprites change size' ,
3 9 o Remember, if a sprite changes size in a project, start the sprite the right size o a
withset size to __onthewhen green flag clicked.
@ Blanning Your Project: « Share your project and +Add to Studio. E
Use the Five W's to plan your project, Write your answers in the space provided. You may not
need to use all five for your project. Done ® o flect:
Who will be in the : #2 . #3; _— o " ihi e activi
ooy ‘?‘/ oy Slay " ler Llorence Pone Bucell Circle or highlight a number telling how you felt about this activity.
- way too hard a little too hard ju;;[igr\\t alittle too easy ~ way too easy
What are they doing? | /0 161 Pa o Tal¥ing This activity was: 1 2 (3 4 5
 Move, Ch o 3) _) -
;azve b;f kflo::f 3 o [What was challenging about this project? How did you work through the challenges you faced?
When? — / — / T / What is the difference between the change size by andset size to _ % blocks?
The this sprite [i . | il
will respond to are: .
Choose at least twa for | [o e (— = o
each sprite. L . =
All three events need to ~ o)
be chosen at least once | | when! key pressed ﬁ”m key pressed| | | when ey pressed tal’ you are done early:
Done | Tested
Where (Choose your A Wihen o —
Make a sprite spin around using the turn block and wa i t block. Cl o
:‘T\"I’g did you choose 5 [Add scripts to handle additional events. (e.g., make sprites say additional things when o o
? ther k i
Say blocks other keys are pressed, make sprites move when an event occurs).
Make a sprite blink using hide, show, and wai t blocks. o o

Figure 5: Planning sheets for a project that completely implemented the plan yet met few of the requirements

~

o Jei=s

S WHATTTTTTTTTTT IS HAPPENING!! X213 o seconds.

Figure 6: Implementation for High-Scoring Project

The low-scoring project is fairly representative of others encoun-
tered by the authors where students found/made custom assets
leading to aesthetically complex projects without meeting the con-
tent requirements for the assignment. Additionally, we encountered
several projects that satisfied the requirements with minimal aes-
thetic changes. This tension between allowing students enough
creative control to make projects that are meaningful and intel-
lectually stimulating while also providing sufficient constraints to
ensure that the content of the curriculum is practiced lies at the
core of the Scratch Encore Curriculum.

Having shown a detailed description of what students’ implemen-
tation of their plans looked like for the Scratch Encore Curriculum,
we now look across our full set of data to understand the students’
use of their plans in their projects.

255

Finding 3: There was no correlation between the extent to
which students implemented their plans and how well the re-
sulting programs met the project requirements. Having inves-
tigated how, and to what extent, students implemented their plans,
we sought to investigate the relationship between students meeting
their requirements and implementing their plans. Figure 9 displays
the scatterplot of the student project implementation (x-axis, in
percentages) and project requirements and extensions met (y-axis,
in percentages). As shown in the figure, the students’ rate of project
implementation of plan did not correlate with the students’ rate of
meeting the project requirements or extensions.

Finding 4: Students taught by the teacher that did not use
planning documents completed significantly less of the project
requirements.

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

o QD e @ e

o T o € s

o QD - @ e

McCartney, et al.

Figure 7: Implementation for Low-Scoring Project

results:

4 tasks done 5 tasks not done

Project ID:
Creator:
Tasks

+/ - The backdrop of the project was changed
/ - There are at least three sprites
+/ - Asprite has two required events
- A second sprite has two required events
- Athird sprite has two required events
+/ - Asprite has two scripts with unique events
- A second sprite has two scripts with unique events
- A third sprite has two scripts with unique events
- Uses all event blocks from lesson plan
If you are done early:
- Assprite spins (uses turn block)
- A sprite reacts to more events.
+/ - Asprite blinks (use hide, show, and wait blocks).

Figure 8: Auto Grader Feedback for Low-Scoring Project

100%- e . eme ® sscscme s o
.
. . e
75%-
"
2
S . . o Module
£
T 50%- o oo ® oo soee see o mgg’é‘q
E oo o + M3Ext
3 . s e o so m se me M3Req
04 5 e o see o
25% =
A
0%- ® ¢ ss e o "o s * meso o
0% 25% 50% 75% 100%
Implementation

Figure 9: Scatterplot of Students’ Requirements Met and
Project Implementation

We conducted Mann-Whitney U tests to determine if there were
differences in the students’ completion of the project requirements

256

and extensions based on whether they used a planning sheet. There
were statistically significant differences in all four cases (M2 Req: W
=916, p < 0.001 ; M2 Ext: W = 1089.5, p < 0.001; M3 Req: W = 1084.5,
p < 0.001; M3 Ext: W = 2947, p = 0.014). The differences are shown
in Figure 10, which shows the percentage of no-plan and plan re-
quirements and extensions completed. In the case of M2Req, M2Ext,
and M3Regq, the projects with plans had higher percentages of com-
pletion. And, while completion of extensions may seem relevant,
the purpose of exploring this becomes clear when we see that, for
M3Ext, the projects without plans had higher percentages of com-
pletion. This suggests that for M3Ext, the students without a plan
worked on the extension tasks before completing the requirements.
Extensions are designed to be creative ideas that may not corre-
spond as closely with the material just taught, so the intent is for
students to only pursue them once they have completed required
elements.

100% o o

75%-

Plan_No

50%1 E3 NoPlan
= Plan

25%-

Percent Requirements Met

0%- ——

M2Ext M2Req M3Ext
Module

MS?eq

Figure 10: Completing Required Tasks with/without a Plan

Finding 5: Projects with a plan were more complex, using
both more Scratch blocks and more types of Scratch blocks,
than projects without a plan.

Scaffolding Scratch Projects with Planning Sheets

. — —

Plan
No Plan vs. Plan

Total Number of Blocks

(a) Total Number of Blocks without and with Plans

N
o

Total Number of Unigue Blocks
o

Plan
No Plan vs. Plan

(b) Total Number of Unique Blocks without and with Plans

Figure 11: Project Complexity of Projects without and with
Plans

We ran Mann-Whitney U tests to determine whether the projects
with a plan were more complex using two criteria: number of blocks
(Figure 11a) and number of unique blocks (Figure 11b). The median
number of total blocks was statistically significantly higher for the
plan (30 blocks) than the no plan (18 blocks) projects, U = 11711.500, z
=4.249, p < 0.001. Additionally, the median number of unique blocks
was statistically significantly higher for programs based on a plan (10
blocks) than those without a plan (7 blocks), U = 12771.500, z = 5.897, p
< 0.001. This result suggests that the plans scaffolded students to use
more blocks and more types of blocks. One potential explanation
stems from the distributed cognition lens, which suggests that
since the plan was able to “remember” the learners’ intentions, the
learners could focus on implementation while not needing to keep
track of everything they needed to add to their projects.

6.3 RQ3: Other Factors Influencing Project
Implementation and Requirements Met

Now we present the results of our final research question where

we compare students’ project implementation and requirements

met based on the format of the planning sheets, grade-level, and
teacher.

257

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

100%- 0

75%-

50%-

Physical

25%-

Percent Implemented

0%-

Virtual

Format

Figure 12: Project Implementation By Planning Sheet For-
mat: Overall

Finding 6: Student project implementation and requirements
met differed between planning sheet formats.

Project Implementation. A Mann-Whitney U test was run
to determine if there were differences in project implementation
percentage overall between physical and virtual planning sheets.
Distributions of the implementation percentage for physical and
virtual formats were not similar (Figure 12). Project implementation
percentage for physical (41.7%) were statistically significantly lower
than for virtual (58.3%), U = 6845.5, z = 4.358, p < .001.

We also investigated the differences in project implementation
percentage for each section between planning formats. We con-
ducted a Mann-Whitney U test for each section. We found that the
differences between the formats were statistically significant for the
“Why” and “Event” sections.

For the “Why” section (Figure 13a), the median project implemen-
tation percentage for physical sheet were statistically significantly
higher than for virtual version, U = 3739.5, z = -3.165, p = 0.002.

For the “Event” section, distributions of the project implementa-
tion percentage for planning formats were not similar (Figure 13b),
with the project implementation percentage for virtual sheets being
statistically significant higher (U = 6189.5, z = 4.423, p < 0.001).

As discussed in the case study, ambiguities in the physical ver-
sions of the planning sheets may have led to some students under-
utilizing the scaffolds. We believe that our shift to virtual planning
sheets made necessary by COVID-19 pandemic inadvertently ad-
dressed this issue. Our edits to the planning sheets (explained in
Section 4) made some prompts less open-ended while still allowing
students to make choices. This includes the modification of the
action section from asking “What is [the sprite] doing?” to asking
the students to choose actions for each event for each sprite (e.g.,
“What does Sprite X do when the green flag is clicked?” and “What
does Sprite X do when it is clicked”). This likely scaffolded the
students to think a step further and made the implementation part
of their projects easier.

Requirements Met. We conducted Mann-Whitney U tests to
determine if there were differences in the students’ completion
of the project requirements and extensions based on the different
planning formats. There were statistically significant differences in
three of the cases (M2 Ext: W = 3445, p < 0.001; M3 Req: W = 3140.5, p =
0.01; M3 Ext: W = 1084, p < 0.001). The differences in M2 requirements

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

100%- i i

75%-

50%-

25%-

Percent Implemented

0%-

Physical Virtual
Format

(a) Why Section
100%-

75%-
50%-

25%-

Percent Implemented

Physical Virtual
Format

0%-

(b) Events Section

Figure 13: Project Implementation by Planning Sheet For-
mat

100%-

75%-

50%-

25%-

Requirements Met

0%-

Physical Virtual
Format

Figure 14: Requirements Met by Planning Sheet Format

met did not differ between the planning formats (W = 2723, p = 0.438).
The differences are shown in Figure 14, which shows the percentage
of requirements and extensions completed for the projects with
each planning sheet format. Overall, the projects completed using
the physical sheets had higher percentages of completion than the
projects with virtual sheets. However, the results across the projects
and requirements/extensions were not consistent. For M2Ext and

258

McCartney, et al.

Percent Implemented

25%-

100%- i
)
75%-"
- -

0%-
7 s
Grade

(a) Project implementation of Plan by Grade Level

100%-
75%-
50%-
25%-
0%-

5 6 7 8

Grade

Requirements Met

(b) Requirements met Aspects by Grade Level

Figure 15: Grade Level Differences

M3Req, the physical planned projects (M2Ext median = 50%; M3Req
median = 77.78%) were higher than the virtual planned projects
(M2Ext median = 0%; M3Req median = 60%). The M3Ext completion
for the virtual (median = 50%) plan projects were much higher than
the physical plan (median = 0%) projects.

Finding 7: Student project implementation and requirements
met differed across grade levels.

Project Implementation. Student plans were fully implemented
approximately 75% of the time, regardless of grade level. A Kruskal-
Wallis H test was conducted to determine if there were differences in
student project implementation of their plans based on grade level.
Distributions of project implementation were not similar for all
grades (Figure 15a). The mean ranks of project implementation were
statistically significantly different between sections, y?(3) = 28.879, p
< 0.001. Pairwise comparisons were performed using Dunn’s [16]
procedure with a Bonferroni correction for multiple comparisons.
Adjusted p-values are presented. This post hoc analysis revealed
statistically significant differences in project implementation between
grades 5 and 6 (p < 0.001), and grades 5 and 7 (p < 0.001). No other
statistically significant differences were found. The 6th grade stu-
dents implemented their projects closest to their plans, while the
5th grade students implemented their projects furthest from their
plans.

Scaffolding Scratch Projects with Planning Sheets

Requirements Met. A Kruskal-Wallis H test was conducted to
determine if there were differences in student requirements met
based on grade level. Distributions of requirements met were not
similar for all grades (Figure 15b). The mean ranks of requirements
met were statistically significantly different between sections, y*(3)
= 36.953, p < 0.001. Pairwise comparisons were performed using
Dunn’s [16] procedure with a Bonferroni correction for multiple
comparisons. Adjusted p-values are presented. This post hoc analy-
sis revealed statistically significant differences in requirements met
between grades 5 and 7 (p < 0.001), and grades 5 and 8 (p < 0.001).
No other statistically significant differences were found. The 5th
grade students met the most requirements and extensions, while
the 7th and 8th grade students met the least. The results on grade-
level differences further supports our findings from earlier in this
paper on the mismatch between the percentage of student project
implementation and requirements met (Finding 6).

Finding 8: Student project implementation and requirements
met differed by teacher.

Project Implementation. A Kruskal-Wallis H test was con-
ducted to determine if there were differences in student implemen-
tation of their plans based on teacher. Distributions of project im-
plementation were not similar for all grades (Figure 16a). The mean
ranks of project implementation were statistically significantly differ-
ent between sections, y*(3) = 33.082, p < 0.001. Pairwise comparisons
were performed using Dunn’s [16] procedure with a Bonferroni cor-
rection for multiple comparisons. Adjusted p-values are presented.
This post hoc analysis revealed statistically significant differences in
project implementation between teachers B and D, C, and E (p < 0.001
for B-C, B-E; p = 0.018 for B-D), and teachers A and E (p = 0.005). No
other statistically significant differences were found. Teacher B’s
students had the lowest percentage of the project implementation
matching the plan (median = 33.33%). Teacher E’s students had the
highest percentage of the projects matching the plans (median =
77%).

Requirements Met. A Kruskal-Wallis H test was conducted to
determine if there were differences in student requirements met
based on teacher. Distributions of requirements met were not sim-
ilar for all teachers (Figure 16b). The mean ranks of requirements
met were statistically significantly different between sections, y?(3)
= 88.168, p < 0.001. Pairwise comparisons were performed using
Dunn’s [16] procedure with a Bonferroni correction for multiple
comparisons. Adjusted p-values are presented. This post hoc analy-
sis revealed statistically significant differences in requirements met
between teachers C and A, B, D, and E (p < 0.001 for all), and teachers F
and A, B, D, and E (p < 0.001 for all). No other statistically significant
differences were found. Teachers F and C’s students had the lowest
percentage of the requirements met matching the plan (medians =
22.22%, 33.33%). Teacher D’s students had the highest percentage
of the projects matching the plans (median = 100%).

It is interesting to note that similar to our findings about differ-
ences in project implementation and requirements met by grade
level, the differences by teacher were not the same for the project
implementation as they were for the project requirements met. This
is another piece of evidence showing a lack of correlation between
levels of project implementation and requirements met, a trend we
will return to in the discussion.

259

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

D E

(a) Project Implementation by Teacher

100%-
75%-
50%-
25%-
0%-
A B c D E

Teacher

100%-

75%-"
50%-
25%-

0%-

Percent Implemented

A B c
Teacher

Requirements Met

(b) Requirements Met by Teacher

Figure 16: Teacher Differences

7 DISCUSSION

Having presented the data and individual results related to each
research question, we now take a cross-cutting look at the entire
set of results and how it relates to the original research questions.
In this study, we investigated how young programmers used their
planning sheets in their project implementation and how the sheets
related to the students meeting the project requirements. Through
the lens of distributed cognition, we hypothesize that the act of
writing down and organizing their thoughts in a scaffolded sheet
helped the students create their Scratch projects. In what ways,
however, did it help them? To plan, implement, both, or neither?

RQ1: After completing a planning sheet, how, and to what extent,
do learners implement the Scratch projects they plan?

Our results show that students are faithful to their plans of
Sprites, Backgrounds, and Project Choice. What is the distinction be-
tween these sections and the others (Events / Actions)? The straight-
forward answer is that students fairly faithfully implemented the
aesthetic choices much more than the coding aspects. This could
be because during the planning stage, students do not realize the
complexity in programming some actions (e.g. kicking a ball), so
they have high aspirations but must adjust due to programming
difficulty. In addition, some mismanage their time, focusing on aes-
thetics rather than functionality (as seen in the case study student).

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

This raises two potential challenges that students face in all open-
ended projects, well beyond computer science: planning projects of
appropriate difficulty and managing their time in order to complete
required technical elements.

RQ2: How, and to what extent, does using a planning sheet impact
completeness of project requirements?

Exploring the relationship between planning sheets and corre-
sponding Scratch projects requirements brought up several inter-
esting issues. Due to the lack of correlation between the extent to
which students implemented their plan and the extent to which
they completed requirements, one might conclude that the plan-
ning documents were not useful. On the other hand, the data was
clear that being in a classroom with the planning documents helped
students meet project requirements as well as create more com-
plex projects. Put another way, while, on an individualized level,
a student’s project implementation (i.e., how often their final
programs included the features they had planned to include) does
not correlate with requirements met (i.e., how well they accom-
plished the specific objects of the assignment), at the classroom
level the act of planning consistently led to projects that better
implemented the technical requirements as well as projects that
were more complex (as measured by number of and distinct types
of blocks used). Since only two classrooms (one teacher) did not to
use planning documents, we do not know whether it is the planning
documents themselves or the teacher’s instruction that makes the
difference.

To help resolve this conundrum, we use the existence of the
planning sheet to disambiguate between student plans versus stu-
dent implementations. Our case study showed an example of two
students who fully implemented their plans, but one student’s plan
did not fulfill the requirements (that were specified on the planning
sheet). Coupled with the finding that there was no correlation be-
tween the extent to which students implemented their plans and
how well the resulting programs met the project requirements, this
points to the possibility that shortcoming of the plans, not short-
comings of the implementations, is a critical factor in not meeting
requirements.

This tension is at the heart of constructionist design. Our goal
in Create projects is to give learners agency in customizing their
projects and making them personally meaningful while still using
specific computing concepts. In the 5W Questions portion of the plan-
ning sheet, we included specific directions to ensure that students’
plans would meet the requirements. For example, the instructions in
the physical version of M2 planning sheet for the “When” question
included “Choose at least two [Events] for each sprite. All three
events need to be chosen at least once” The students were to circle
their chosen events for each sprite. However, we also find that some
students still make plans that do not satisfy all of the requirements.
Perhaps some requirements are too detailed for some students, or
they do not pay close attention to the “small print”. This could be
further supported by a plan checker that points out when aspects of
their plan do not satisfy the requirements. However, the planning
documents led to both more complex projects and a higher require-
ment completion rate, so they have been helpful in obtaining our
desired balance between technical coverage and creativity.

260

McCartney, et al.

RQ3: How do the factors of plan format, grade level, and teacher
influence the implementation plan and completion of project require-
ments?

Our results also suggest that some changes we made while shift-
ing from the physical planning sheets to the virtual planning sheets
may have inadvertently addressed some problems with helping
students create plans that more closely met requirements. In partic-
ular, our changes made more explicit what type of answers were
expected in each section. For example, the virtual version of the
M2 planning sheet had students select their event choices using
a checkbox rather than a textbox. This implies that there may be
worthwhile gains in further improving the planning document
and/or checking plans prior to implementation.

Our results also show that teacher-level differences played a large
role in their students’ outcomes, which is consistent with previous
literature [20, 74]. While we do not currently have the data to fully
understand the ways in which teacher differences affected their
students’ completed projects (such as recordings of the classes),
we encountered evidence of teacher feedback on some physical
planning sheets that we believe to be relevant. In the case of one
instructor, this was merely a check mark at the top of the page. In
other cases, it appeared that the teacher wrote specific suggestions.
Figure 17 shows that at some point the students submitted their
planning sheets for review. The teacher from the paper on the left
correctly identified that the student had skipped the why section of
the planning sheet yet provided no further instructions/suggestions
on how to improve the project. On the right side of Figure 17, we
see writing in a different color and handwriting saying “Change
costume to sprites to animate” and “add text to tell viewer what to
do.” That the virtual planning sheets led to a significant increase
in project completion was somewhat surprising to the authors, as
there was concern that teachers would no longer be able to spot-
check and provide feedback in the same immediate way as they
were able to on the physical versions.

7.1 A Holistic View of Designing for
Computing Education

Another contribution of this work is to broaden the conversation
around the design of introductory programming environments.
Historically, a significant portion of the design-related discussion
related to introducing novices to programming has focused on the
design of the technical programming environment (e.g., the design
of programming environments [42], the role of block-based pro-
gramming [83], features of programming languages [68]) while
less emphasis has attended to scaffolds that live outside the pro-
gramming environment itself. While there is a growing body of
research evaluating various aspects of and pedagogical strategies
(e.g., [41], TIPP&SEE [63]) and introductory curricula [6, 18], this
work adds yet another consideration to designing for novices -
that of scaffolds that live alongside programming environments
in support of the act of programming. The distributed cognition
lens is particularly useful for this larger framing, as it now extends
the cognitive system beyond the individual and the programming
environment to include a fuller set of scaffolds that can contribute
to the cognitive task of writing a program. In doing so, this work
seeks to open the door to further scholarship investigating the role

Scaffolding Scratch Projects with Planning Sheets

ScratehB: R
Creating with Events = 'Lesson 2

Objective: Today, | will create a Scratch project where sprites talk/think, change size, a
based on a tepic of my choice. &

ove

Create a project abouta topic you choase! Circle or highlight your topic choice or brainstorm your own.
"« Favarite Holiday_ N (STHAD s
or o '

o Family celebration

or

o Favorite place around your city
or

e My topic

(C] Planning Your Project:

Use the Five Ws to plan your project. Write your answers in the space provided. You may not
need to use all five for your project

" 9|

Done

Who will be in the

#2 ¢ 2 o
project (sprites)? j\ ([Mom
What are they doing? | MOYE. Mave move
Say, Move, Change | Chapiap G 2€ 50N v
Size by __blocks ange o1 2€ / =

N
D) frtenmiaad)
i 2
4

p—

whenPa iceed)

When?
The events this sprite |
will respond to are:

fuben = key pressed

ey pressed]

Where (Choose your Ce [W(istmas Seting o
Why did you choose

this? o
Say blocks (7 /) 7

D)

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

Creating with Animation - Lesson 2

Objective: Today, | will create a Scratch project that animates sprites. | will animate at leqst two
sprites to animate in place and at least one sprite to move across the stage using animation.

Create a project about a topic you choosel Circle or highlight your topic choice or brainstorm your own.

Tell about your favorite Sport or Tella story (maybe about your culture) or My topic _SPort .

@ Planning Your Project:

Answer the Five Ws and One H questions to plan your project. Write your answers in the space
provided. You may not need to use all questions for your project.

Whowillbeinthe | #: #2 e)
project (sprites)? Me. richeat Jowkn Kobhe brgan
What are they doing? [Pioy7ng brsret | Py buskeas :
X Jin Dol papen PeS
" Gonq fe 7he rying 7% N
f:::mliz:“p"'es ore) for = The Kpot Cleering /
=h
event(s)? =
Where (Choose your Stage/Backdrop)? _Pasiel ball court d
Why did you choose th 7 bocavst kebe Passedd otway o
How are the sprtes | fwam dlifrent im/‘:a;uy cie:wn_-] /
animating in place oy ’ ot ns
and/or across the
screen? J
b (o ek
Qf ‘CW‘M U"'Mk% wt’ o
fekts Yo e
A ot Yo
o a0

Figure 17: Feedback from two different teachers.

that designed artifacts beyond the programming environment itself
play in helping novices learn to program.

7.2 Relevance and Future Work

By analyzing the impact of planning sheets on completed program-
ming project, we believe we have identified compelling evidence
that adequate planning scaffolds can play a beneficial role in early
CS education: scaffolds such as our planning sheets allow students
creative control and ownership over their own ideas while at the
same time directing towards projects that reinforce the technical
concepts they are learning.

We have also identified several areas for future work on the topic.
The discrepancies in student performance for virtual v.s. physical
planning documents was a particularly interesting finding for the
authors, however, since the switch from virtual to physical was
driven primarily by the urgent need of curriculum materials that
could be taught during the emergency period of remote learning
instigated by the COVID-19 pandemic, a more rigorous effort to
study the specific affordances being exploited by high performing
students in each condition is required.

Similarly, the discovery of student projects that demonstrate
high levels of technical and creative competence yet meet only a
portion of the techincal requirements suggessts that the planning
scaffolds provided might need further refinements: are low scoring
students unaware of what the technical requirements are? Of how
to implement? Or perhaps the current scaffolds are inadvertently
driving some students to plan projects that are too complex to be
implemented within the constraints of the Scratch environment.

7.3 Limitations

While we think the study design and data collected positioned us
well to make claims about the role of planning sheets in supporting

261

novice programmers, it is not without its limitations. For exam-
ple, the number of students and teachers who participated in the
study was relatively small. This may introduce some confounds,
especially when the full set of participants was subdivided (such
as the plan/no-plan analysis). Additionally, one of the five teach-
ers participated in the study both years and was therefore more
familiar with the curriculum than some other teachers. However,
this reflects the conditions of a real school environment, where
teachers will have varying levels of experience and skills. Second,
as with all qualitative studies, there is a potential of researcher
bias. We worked together to minimize those biases through dis-
cussion. Finally, some teachers were teaching Module 3 around
February/March 2020 and the COVID-19 pandemic may have af-
fected the students’ work. The pandemic and the switch to digital
planning sheets likely also affected their work: some students might
have experienced substantially different work environments dur-
ing the periods of remote learning, the amount/quality of teacher
feedback provided could also have been different to what students
before the pandemic received, etc.

Another set of potential limitations is in how teacher decisions
shaped the structure of the data we analyzed. For example, the
division of classrooms into plan/no plan groups was incidental
rather than an intervention: one of the teachers who participated in
the study decided to have their students start programming without
using the planning sheets and using only the project requirements
as a guide. As such, it is impossible to conclusively separate the
effects of planning with confounding variables such as teacher
effects.

On a more technical level, while the automated assessment tools
were designed to be fairly robust, it is possible for a student project
to contain code that satisfies the spirit of a requirement, yet is
accomplished in an unconventional way so the autograder fails

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

to recognize the behavior as correct or valid. Cases such as these
are extremely rare in student code, as the overwhelming major-
ity of projects follow the conventions taught in the curriculum,
specifically those of the module being tested. Furthermore, the auto
graders were custom made for each specific module and student
projects were spot checked and compared with the autograder
output as part of this analysis.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1738758.

REFERENCES

(1]

[10

(11

[12

[13

[14]

[15

[16]

[17

[18]

[19]

Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and how we
know: An exploratory study on the Scratch repository. In Proceedings of the 2016
ACM conference on international computing education research. 53-61.

Sohail Alhazmi, Charles Thevathayan, and Margaret Hamilton. 2021. Learning
UML sequence diagrams with a new constructivist pedagogical tool: SD4ED. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
893-899.

Yasemin Allsop. 2019. Assessing computational thinking process using a multiple
evaluation approach. International journal of child-computer interaction 19 (2019),
30-55.

Marino C Alvarez and Victoria J Risko. 2007. The use of vee diagrams with third
graders as a metacognitive tool for learning science concepts. (2007).

Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Franklin Diana. 2015. Hairball: lint-inspired static analysis of scratch projects.
In Proceedings of the Workshop in Primary and Secondary Computing Education.
132-133.

K Brennan, M Chung, and] Hawson. [n. d.].
puting: A design-based introduction to computational
https://creativecomputing.gse.harvard.edu/guide/ ([n. d.]).

Marjorie Brown. 2011. Effects of Graphic Organizers on Student Achievement in
the Writing Process. Online Submission (2011).

Quinn Burke and Yasmin B Kafai. 2012. The writers’ workshop for youth program-
mers: digital storytelling with scratch in middle school classrooms. In Proceedings
of the 43rd ACM technical symposium on Computer Science Education. 433-438.
Alexander Card, Wengran Wang, Chris Martens, and Thomas Price. 2021. Scaf-
folding Game Design: Towards Tool Support for Planning Open-Ended Projects in
an Introductory Game Design Class. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1-5.

Christina R Carnahan, Pamela Williamson, Nicole Birri, Christopher Swoboda,
and Kate K Snyder. 2016. Increasing comprehension of expository science text for
students with autism spectrum disorder. Focus on Autism and Other Developmental
Disabilities 31, 3 (2016), 208-220.

Umberto Costantini, Violetta Lonati, and Anna Morpurgo. 2020. How plans
occur in novices’ programs: A method to evaluate program-writing skills. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
852-858.

Tim Crabtree, Sheila R Alber-Morgan, and Moira Konrad. 2010. The effects of
self-monitoring of story elements on the reading comprehension of high school
seniors with learning disabilities. Education and Treatment of Children (2010),
187-203.

Elise Deitrick, R Benjamin Shapiro, Matthew P Ahrens, Rebecca Fiebrink, Paul D
Lehrman, and Saad Farooq. 2015. Using distributed cognition theory to analyze
collaborative computer science learning. In Proceedings of the eleventh annual
international conference on international computing education research. 51-60.
Laura Nicole Delrose. 2011. Investigating the use of graphic organizers for writing.
(2011).

Douglas D Dexter and Charles A Hughes. 2011. Graphic organizers and students
with learning disabilities: A meta-analysis. Learning Disability Quarterly 34, 1
(2011), 51-72.

Olive Jean Dunn. 1964. Multiple comparisons using rank sums. Technometrics 6,
3 (1964), 241-252.

Hatice Yildiz Durak and Tolga Guyer. 2019. Programming with Scratch in primary
school, indicators related to effectiveness of education process and analysis of
these indicators in terms of various variables. Gifted Education International 35,
3(2019), 237-258.

Diana Franklin, Phillip Conrad, Gerardo Aldana, and Sarah Hough. 2011. Animal
tlatoque: attracting middle school students to computing through culturally-
relevant themes. In Proceedings of the 42nd ACM technical symposium on Computer
science education. 453-458.

Diana Franklin, Phillip Conrad, Bryce Boe, Katy Nilsen, Charlotte Hill, Michelle
Len, Greg Dreschler, Gerardo Aldana, Paulo Almeida-Tanaka, Brynn Kiefer, et al.

Creative com-
thinking.

262

[20]

&
=)

[35

[36

(37

[38

(39]

[40]

[41]

[42]

[43]

[45]

McCartney, et al.

2013. Assessment of computer science learning in a scratch-based outreach
program. In Proceeding of the 44th ACM technical symposium on Computer science
education. 371-376.

Diana Franklin, Jean Salac, Zachary Crenshaw, Saranya Turimella, Zipporah
Klain, Marco Anaya, and Cathy Thomas. 2020. Exploring student behavior using
the TIPP&SEE learning strategy. In Proceedings of the 2020 ACM Conference on
International Computing Education Research. 91-101.

Linda B Gambrell and Ann Dromsky. 2000. Fostering reading comprehension.
Beginning reading and writing (2000), 143-153.

Stuart Garner. 2007. A program design tool to help novices learn programming.
ICT: Providing choices for learners and learning (2007), 321-324.

D Bob Gowin. 1981. Educating. Cornell University Press.

Dee Gudmundsen, Lisa Olivieri, and Namita Sarawagi. 2011. Using visual logic©:
three different approaches in different courses-general education, CS0, and CS1.
J. Comput. Sci. Coll 26, 6 (2011), 23-29.

James Hollan, Edwin Hutchins, and David Kirsh. 2000. Distributed cognition:
toward a new foundation for human-computer interaction research. ACM Trans-
actions on Computer-Human Interaction (TOCHI) 7, 2 (2000), 174-196.

Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Farrah Dina Yusop, and
S-J Horng. 2015. A flowchart-based intelligent tutoring system for improving
problem-solving skills of novice programmers. Journal of Computer Assisted
Learning 31, 4 (2015), 345-361.

Minjie Hu, Michael Winikoff, and Stephen Cranefield. 2012. Teaching novice
programming using goals and plans in a visual notation. In Proceedings of the
Fourteenth Australasian Computing Education Conference-Volume 123. 43-52.
Charles A Hughes, Paula Maccini, and Joseph Calvin Gagnon. 2003. Interventions
that positively impact the performance of students with learning disabilities in
secondary general education classrooms. (2003).

Edwin Hutchins. 1995. Cognition in the Wild. MIT press.

Edwin Hutchins. 2000. Distributed cognition. International Encyclopedia of the
Social and Behavioral Sciences. Elsevier Science 138 (2000).

Edwin Hutchins. 2006. The distributed cognition perspective on human in-
teraction. Roots of human sociality: Culture, cognition and interaction 1 (2006),
375.

Edwin Hutchins and Tove Klausen. 1996. Distributed cognition in an airline
cockpit. Cognition and communication at work (1996), 15-34.

Salem Saleh Khalaf Ibnian. 2010. The Effect of Using the Story-Mapping Tech-
nique on Developing Tenth Grade Students’ Short Story Writing Skills in EFL.
English Language Teaching 3, 4 (2010), 181-194.

Elizabeth M Jackson and Mary Frances Hanline. 2020. Using a concept map with
RECALL to Increase the comprehension of science texts for children with autism.
Focus on Autism and Other Developmental Disabilities 35, 2 (2020), 90-100.
Xiangying Jiang and William Grabe. 2007. Graphic organizers in reading instruc-
tion: Research findings and issues. (2007).

Wei Jin, Albert Corbett, Will Lloyd, Lewis Baumstark, and Christine Rolka. 2014.
Evaluation of guided-planning and assisted-coding with task relevant dynamic
hinting. In International Conference on Intelligent Tutoring Systems. Springer,
318-328.

Yasmin B Kafai and Mitchel Resnick. 2012. Constructionism in practice: Designing,
thinking, and learning in a digital world. Routledge.

Victoria F Knight, Fred Spooner, Diane M Browder, Bethany R Smith, and
Charles L Wood. 2013. Using systematic instruction and graphic organizers
to teach science concepts to students with autism spectrum disorders and intel-
lectual disability. Focus on autism and other developmental disabilities 28, 2 (2013),
115-126.

Maria Knobelsdorf and Christiane Frede. 2016. Analyzing student practices in
theory of computation in light of distributed cognition theory. In Proceedings of
the 2016 ACM Conference on International Computing Education Research. 73-81.
JRichard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159-174.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32-37.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1-15.

John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie
Rusk. 2008. Programming by choice: urban youth learning programming with
scratch. In Proceedings of the 39th SIGCSE technical symposium on Computer
science education. 367-371.

Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
et al. 2021. PlanIT! A New Integrated Tool to Help Novices Design for Open-
ended Projects. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 232-238.

Jestis Moreno-Ledn and Gregorio Robles. 2015. Dr. Scratch: a Web Tool to Auto-
matically Evaluate Scratch Projects. In Proceedings of the Workshop in Primary

Scaffolding Scratch Projects with Planning Sheets

[46]

[47

[48]
[49]

[50]

w
—

[52

[53]

[54]
[55]

[56]

[57]

[58

[59]

[60]

and Secondary Computing Education. 132-133.

Isaac Nassi and Ben Shneiderman. 1973. Flowchart techniques for structured
programming. ACM Sigplan Notices 8, 8 (1973), 12-26.

Mark J Nelson and Michael Mateas. 2008. An interactive game-design assistant.
In Proceedings of the 13th international conference on Intelligent user interfaces.
90-98.

Joseph D Novak. 1990. Concept maps and Vee diagrams: Two metacognitive
tools to facilitate meaningful learning. Instructional science 19, 1 (1990), 29-52.
Seymour Papert. 1980. " Mindstorms" Children. Computers and powerful ideas
(1980).

S. Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc.

Seymour Papert. 1993. The children’s machine: Rethinking school in the age of the
computer. ERIC.

Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism
36, 2 (1991), 1-11

Roy D Pea. 1993. Practices of distributed intelligence and designs for education.
Distributed cognitions: Psychological and educational considerations 11 (1993),
47-87.

Marian Petre. 2013. UML in practice. In 2013 35th international conference on
software engineering (icse). IEEE, 722-731.

Jean Piaget and Margaret Trans Cook. 1952. The origins of intelligence in children.
(1952).

Sam D Praveen and Premalatha Rajan. 2013. Using Graphic Organizers to Improve
Reading Comprehension Skills for the Middle School ESL Students. English
language teaching 6, 2 (2013), 155-170.

Haider Ali Ramadhan. 2000. Programming by discovery. Journal of Computer
Assisted Learning 16, 1 (2000), 83-93.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60-67.

D Ray Reutzel. 1985. Story maps improve comprehension. The Reading Teacher
38, 4 (1985), 400-404

Veronica Roberts and Richard Joiner. 2007. Investigating the efficacy of concept
mapping with pupils with autistic spectrum disorder. British Journal of Special
Education 34, 3 (2007), 127-135.

[61] Jean Salac. 2020. Diagramming as a Strategy for Primary/Elementary-Age Pro-

[62]

[63]

[64]

[65]

[66]

[67

gram Comprehension. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 322-323.

Jean Salac and Diana Franklin. 2020. If they build it, will they understand it?
exploring the relationship between student code and performance. In Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer Science
Education. 473-479.

Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: A Learning Strategy to Guide Students through Use-Modify
Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. 79-85.

Joachim Schramm, Sven Strickroth, Nguyen-Thinh Le, and Niels Pinkwart. 2012.
Teaching UML skills to novice programmers using a sample solution based
intelligent tutoring system. In Twenty-Fifth International FLAIRS Conference.
Sue Sentance, Erik Barendsen, and Carsten Schulte. 2018. Computer Science Edu-
cation: Perspectives on Teaching and Learning in School. Bloomsbury Publishing.
Helen Sharp, Rosalba Giuffrida, and Grigori Melnik. 2012. Information flow
within a dispersed agile team: a distributed cognition perspective. In International
Conference on Agile Software Development. Springer, 62-76.

Helen Sharp, Hugh Robinson, Judith Segal, and Dominic Furniss. 2006. The Role
of Story Cards and the Wall in XP teams: a distributed cognition perspective. In

263

[68

[69

(73]

(74

[79

[80

[81

(83]

[84]

[85

ICER 2022, August 7-11, 2022, Lugano and Virtual Event, Switzerland

AGILE 2006 (AGILE’06). IEEE, 11-pp.

Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into pro-
gramming language syntax. ACM Transactions on Computing Education (TOCE)
13, 4 (2013), 1-40

Nicole Strangman, T Hall, and A Meyer. 2003. Graphic organizers and implications
for universal design for learning: Curriculum enhancement report. National
Center on Accessing the General Curriculum (2003).

Michael Striewe and Michael Goedicke. 2014. Automated assessment of UML
activity diagrams. In Proceedings of the 2014 conference on Innovation & technology
in computer science education. 336-336.

Josh Tenenberg and Maria Knobelsdorf. 2014. Out of our minds: a review of
sociocultural cognition theory. Computer Science Education 24, 1 (2014), 1-24.
Jakita O Thomas. 2018. The Computational Algorithmic Thinking (CAT) Capa-
bility Flow: An Approach to Articulating CAT Capabilities over Time in African-
American Middle-school Girls. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education. 149-154.

Khai N Truong, Gillian R Hayes, and Gregory D Abowd. 2006. Storyboarding: an
empirical determination of best practices and effective guidelines. In Proceedings
of the 6th conference on Designing Interactive systems. 12-21.

Jennifer Tsan, Donna Eatinger, Alex Pugnali, David Gonzalez-Maldonado, Diana
Franklin, and David Weintrop. 2022. Scaffolding Young Learners’ Open-Ended
Programming Projects with Planning Sheets. In Proceedings of the 2022 ACM
Conference on Innovation and Technology in Computer Science Education. in press.
Kayo Tsuji. 2017. Implementation of the Writing Activity Focusing on 5W1H
Questions: An Approach to Improving Student Writing Performance. LET Journal
of Central Japan 28 (2017), 1-12.

Jan Vahrenhold, Quintin Cutts, and Katrina Falkner. 2019. Schools (K-12). Cam-
bridge University Press, 547-583. https://doi.org/10.1017/9781108654555.019
Delinda van Garderen and Amy M Scheuermann. 2015. Diagramming word
problems: A strategic approach for instruction. Intervention in School and Clinic
50, 5 (2015), 282-290.

Christina Vasiliou, Andri Ioannou, Agni Stylianou-Georgiou, and Panayiotis
Zaphiris. 2017. A glance into social and evolutionary aspects of an artifact
ecology for collaborative learning through the lens of distributed cognition.
International Journal of Human-Computer Interaction 33, 8 (2017), 642-654.
Andrew Walenstein. 2002. Cognitive support in software engineering tools: A
distributed cognition framework. Ph.D. Dissertation. Citeseer.

David W Walker and James A Poteet. 1990. A Comparison of Two Methods of
Teaching Mathematics Story Problem-Solving with Learning Disabled Students..
In National Forum of Special Education Journal, Vol. 1. ERIC, 44-51.

Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany Barnes,
Chris Martens, and Thomas Price. 2022. Exploring Design Choices to Support
Novices’ Example Use During Creative Open-Ended Programming. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education. 619-625.
Xiao-Ming Wang, Gwo-Jen Hwang, Zi-Yun Liang, and Hsiu-Ying Wang. 2017.
Enhancing students’ computer programming performances, critical thinking
awareness and attitudes towards programming: An online peer-assessment at-
tempt. Journal of Educational Technology & Society 20, 4 (2017), 58-68.

David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22-25.

David Weintrop, Alexandria K Hansen, Danielle B Harlow, and Diana Franklin.
2018. Starting from Scratch: Outcomes of early computer science learning expe-
riences and implications for what comes next. In Proceedings of the 2018 ACM
conference on international computing education research. 142—-150.

Peter C Wright, Robert E Fields, and Michael D Harrison. 2000. Analyzing human-
computer interaction as distributed cognition: the resources model. Human-
Computer Interaction 15, 1 (2000), 1-41.

	Abstract
	1 Introduction
	2 Theoretical Orientation
	2.1 Distributed Cognition
	2.2 Constructionism

	3 Prior Work
	3.1 Teaching Planning
	3.2 Evaluating Learning in Scratch
	3.3 Automatic Feedback for Scratch Projects

	4 Curriculum
	4.1 Planning Sheets: Project Requirements Section
	4.2 Planning Sheets: 5W Questions Section

	5 Methods
	5.1 Study Context and Participants
	5.2 Data Collection and Analysis

	6 Results
	6.1 RQ1: How, and to what extent, do Students Implement their Plans?
	6.2 RQ2: What is the Relationship between Planning Sheets and Project Requirements Completion?
	6.3 RQ3: Other Factors Influencing Project Implementation and Requirements Met

	7 Discussion
	7.1 A Holistic View of Designing for Computing Education
	7.2 Relevance and Future Work
	7.3 Limitations

	Acknowledgments
	References

