
Investigating the Use of Planning Sheets in Young Learners’
Open-Ended Scratch Projects

David Gonzalez-Maldonado
University of Chicago

Chicago, USA
dagm@uchicago.edu

Alex Pugnali
University of Maryland

College Park, USA
apugnali@umd.edu

Jennifer Tsan
University of Chicago

Chicago, USA
jennifertsan@uchicago.edu

Donna Eatinger
University of Chicago

Chicago, USA
dmeatinger@uchicago.edu

Diana Franklin
University of Chicago

Chicago, USA
dmfranklin@uchicago.edu

David Weintrop
University of Maryland

College Park, USA
weintrop@umd.edu

ABSTRACT

Open-ended tasks can be both beneficial and challenging to students

learning to program. Such tasks allow students to be more creative

and feel ownership over their work, but some students struggle

with unstructured tasks and, without proper scaffolds, this can lead

to negative learning experiences. Scratch is a widely used coding

platform to teach computer science in classrooms and is designed

to support learner creativity and expression. With its open-ended

nature, Scratch can be used in various ways in the classroom tomeet

the needs of schools and districts. One challenge of using Scratch in

classrooms is supporting learners in exploring their interests and

fostering creativity while still meeting the instructional goals of a

lesson and ensuring all students are engaged with, and understand,

focal concepts and practices.

In this paper, we investigate the use of planning sheets to fa-

cilitate novice programmers designing and implementing Scratch

programs based on open-ended prompts. To evaluate the plan-

ning sheets, we look at how closely students’ implemented Scratch

projects match their plans and whether the implemented Scratch

projects met the technical requirements for the given lesson. We

analyzed 303 Scratch projects from 155 middle grade students (ages

10-14) who were introduced to programming via the Scratch Encore

Curriculum. Completed Scratch projects that used planning sheets

(202) were qualitatively coded to evaluate how closely they matched

the initial plan, and Scratch programs (303) were analyzed with an

automated grader to check if technical project requirements were

met. Our results reveal that students that used planning sheets met

significantly more technical project requirements and had more

complex structures than those that did not have planning sheets.

Results differ based on teacher and type of planning sheet used

(physical vs. virtual). This work suggests that planning sheets are

a helpful tool for young learners when completing open-ended

coding projects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9194-8/22/08. . . $15.00
https://doi.org/10.1145/3501385.3543972

CCS CONCEPTS

· Social and professional topics → K-12 education; Comput-

ing education.

KEYWORDS

computer science education, planning, K-8

ACM Reference Format:

David Gonzalez-Maldonado, Alex Pugnali, Jennifer Tsan, Donna Eatinger,

Diana Franklin, and DavidWeintrop. 2022. Investigating the Use of Planning

Sheets in Young Learners’ Open-Ended Scratch Projects. In Proceedings of

the 2022 ACM Conference on International Computing Education Research V.1

(ICER 2022), August 7ś11, 2022, Lugano and Virtual Event, Switzerland. ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/3501385.3543972

1 INTRODUCTION

As the computer science education community continues to work

towards the goal of CSforAll, it is important for us to research the

most effective ways to scaffold students’ learning, especially with

younger learners. A common approach to introducing younger

learners to computer science is through the use of block-based

programming environments like Scratch [83], often by inviting

them to author programs based on their own ideas and interests

through the use of open-ended tasks [58]. While some students

excel on such ill-defined tasks, there are some potential drawbacks

to this approach. For example, some students may struggle with the

open-ended, unconstrained nature of the task and have difficulty

getting started on a project. Alternatively, students may envision

programs beyond the capabilities of the tool or their abilities, or

start out on a project that would require a significant amount of

time and skill to implement. Further, such open-ended activities

can be in tension with formal curricula with specific learning goals.

While it is important to support and encourage individual creativity

and agency as part of learning to program, it is equally important

to provide scaffolds for struggling students, so they can have posi-

tive CS experiences. Drawing from other fields that have similar

opportunities for open-ended activities, such as writing, this work

explores how planning scaffolds may help address these challenges

by supporting learners in thinking through what the program will

do and how they will implement it.

In open-ended writing tasks, planning has been shown to be

an important part of the pre-writing process and led to improved

writing artifacts [7, 69]. In other subjects, such as reading [56], math

247

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland McCartney, et al.

[33, 77], and science [34], planning scaffolds are often used as an

instructional technique for young children. Across different sub-

jects, planning scaffolds have shown to be effective for all students,

and are especially helpful for neurodiverse learners [15, 34, 38] and

English language learners [33, 35, 56]. CS education researchers

have explored the use of planning scaffolds with high school [44]

and undergraduate students [11, 70]; however, relatively little work

has been done to investigate ways to scaffold younger learners’

planning when learning to program.

Inspired by reading and writing graphic organizers, such as 5W

(Who,What,Where,When,Why) Questions and StoryMap [12, 33,

59], we developed a series of scaffolds in the form of planning sheets

to help students articulate their vision for Scratch programs within

a structure that targets an appropriate level of difficulty and relevant

technical content. These types of graphic organizers are often used

in elementary/primary (grades K-5, ages 5-11) classrooms, which

allow us to harness teachers’ and students’ familiarity of using such

scaffolds.

To understand the impact of using planning sheets, we incor-

porated them into the Scratch Encore Curriculum, a middle grade

(ages 10-14, spanning the border between late primary and early sec-

ondary school) CS curriculum that uses the Use→Modify→Create

pedagogical approach [41] to provide opportunities for both struc-

tured and open-ended programming challenges. In previous work

[74], we investigated how students’ used the planning sheets to

structure their envisioned Scratch programs, finding high rates of

planning sheet completion with all grade levels. However, differ-

ences occurred in planning sheet completion based on the format

of the sheet (physical vs. virtual) and the teacher.

In this paper, we aim to extend this work by investigating how

the student-authored planning sheets impacted the Scratch pro-

grams they wrote, specifically with respect to how closely the

implemented projects adhere to the initial plans and to what degree

the authored Scratch projects meet the assignment requirements.

More concretely, this paper answers the following three research

questions:

• RQ1: After completing a planning sheet, how, and to what

extent, do learners implement the Scratch projects they plan?

• RQ2: How, and to what extent, does using a planning sheet

impact completeness of project requirements?

• RQ3: How do the factors of plan format, grade level, and teacher

influence the implementation of plan and completion of project

requirements?

To better understand how planning can scaffold novice program-

mers as part of early programming instruction, we conducted a

classroom-based study which included five teachers and 103 stu-

dents who used planning sheets and one teacher with 52 students

who did not use planning sheets prior to coding Scratch projects.

Through a mixed-methods analysis of completed student planning

sheets and Scratch projects, we investigated how often students

implemented their planning aspects in their projects. Additionally,

we used automated analysis to determine the percentage of require-

ments and extensions each Scratch project met, how complex the

projects were (based on total blocks and unique blocks) and further

analyzed the results based on whether the students used a plan-

ning sheet prior to coding. Finally, we investigated differences in

project implementation and requirements met based on the

format of the plan (physical vs. virtual), grade level, and teacher.

This paper contributes to our knowledge of ways to support novices

in learning to program through open-ended tasks and identifies the

benefits of providing scaffolded planning materials to aid novices.

In doing so, this work advances our understanding of planning as

an instructional strategy to help young learners have positive early

experiences in programming.

2 THEORETICAL ORIENTATION

In this work, we examine the role of external scaffolds as a means

to help novices plan and implement Scratch programs, and in doing

so, provide opportunities for early, positive experiences writing

programs that include foundational computer science concepts and

employ essential programming practices. To understand the role

and importance of the planning sheets, we use two, complemen-

tary theoretical lenses. First, we use a distributed cognition lens

to understand the ways that the planning sheets are supporting

learners and the role the sheets play in structuring the cognitive ex-

ercise of authoring a program in response to an open-ended prompt

[13, 29]. Second, the learning activities are a part of the Scratch

Encore Curriculum, which was designed using a constructionist

design approach.

2.1 Distributed Cognition

Distributed cognition posits that cognition is externalized and dis-

tributed through interactions of:

(1) An individual with other people

(2) An individual’s tools and artifacts

(3) Earlier events with later events[29ś31]

In this way, the theory challenges the notion that cognition re-

sides solely inside an individual’s head and instead provides a way

to understand cognition that recognizes the essential roles that

external artifacts (like tools and individuals) play in contributing

to a cognitive task. Through examining the artifacts, effects of, and

process of this distribution, we can gain insight into human cogni-

tion [30]. The individual, everyone, and everything the individual

interacts with to complete a task, is part of a system of knowledge

representations, both internal and external [32]. The external knowl-

edge representation also helps individuals in łholdingž knowledge

that would normally be difficult to keep in an individual’s mind.

For example, in our context, students may struggle to remember:

every sprite they plan to use, which events and actions they asso-

ciate with each sprite, and what the project requirements are. The

scaffolds we provide them, in this case, planning sheets, provide a

means for learners to externally define these aspects of their project.

By externally defining them, learners can refer to them and use

them as an integral component of the cognitive task of authoring a

program. In that way, the scaffolds also carry cognition; the way we

designed the planning sheet and requirements list shape the way

students view and complete the activities [53]. Because distributed

cognition łoffers access to the social, material, cultural, embodied,

and mental richness of activity and learning,’; [13], researchers call

on the learning community to reorient themselves to łfacilitating

individualsž responsive and novel uses of resources for creative and

intelligent activity alone and in collaborationž [53].

248

In CS research, distributed cognition has been used in software

engineering to analyze team interactions [66, 67] and how software

engineering tools can support cognition [79]. Distributed cogni-

tion has also been used as a framework in the human-computer

interaction field [25, 85], which includes an investigation into how

students collaborate on and design tasks [78]. In computer science

education research, distributed cognition is a fairly new theoretical

framework [71]. Deitrick et al., used distributed cognition to ana-

lyze interactions in music programming tasks in a middle school

classroom [13]. They analyzed student interactions with teachers,

and tools, both physical and virtual. Knobelsdorf and Frede ana-

lyzed students’ collaborative interactions while solving CS proofs

through a distributed cognition lens [39]. To our knowledge, CS

ed researchers have not yet analyzed material scaffolds, such as

planning sheets, through a distributed cognition lens.

In our work, we draw on previous research in CS education

and writing research to investigate how students externalize and

distribute their ideas from the planning stage to the completed CS

project. Using a distributed cognition theoretical lens helps justify

our research focus on external resources (e.g., the planning sheets)

as playing is a central role in the cognitive task of learning to

program. Further, it helps structure how we attend to the specific

roles the planning sheets play in the cognitive task and can help us

identify the links between the knowledge stored on the planning

sheets and how that knowledge is used for authoring the student

Scratch projects.

2.2 Constructionism

The design of the Scratch Encore Curriculum was informed by the

constructionist design approach [50, 52]. Constructionist design,

grounded in Piaget’s constructivist learning theory [55], empha-

sizes focusing on the powerful ideas of a discipline and foregrounds

learning-by-doing, giving learners opportunities to construct per-

sonally meaningful artifacts [49]. Learning experiences designed

through the constructionist lens prioritize self-directed learning

and exploration, with the goal of giving the learner agency over

their learning [37, 51]. Constructionism also emphasizes the idea

of having the learners create artifacts that are public and shareable

[37, 51]. As a result, the curriculum provides many opportunities

for learners to modify existing and create new programs as a means

for them to develop an understanding of the concept at hand while

retaining agency to do so in a way that is consistent with their inter-

ests and identity. We will return to these ideas when we introduce

the Scratch Encore Curriculum.

3 PRIORWORK

In this section, we review three areas of relevant prior work: 1)

planning in CS and outside CS, 2) students learning to program in

Scratch, and 3) automated feedback for Scratch projects.

3.1 Teaching Planning

In this subsection, we cover relevant literature on teaching planning,

starting with literature fromCS education. Then, we cover literature

on planning in subjects such as reading, writing, math, and science.

Many in the CS education community, including ourselves, have

the goal of creating equitable CS learning experiences. One im-

portant step to take in reaching this goal is to consider and meet

the needs of students who are neurodiverse and students who are

English language learners (ELL). Planning is especially helpful for

those who are neurodiverse [15, 34, 38] or ELL [33, 35, 56] but is

also beneficial for all students. Although our paper does not focus

on the above-mentioned populations of students (due to restric-

tions on the data we could collect), developing effective planning

scaffolds will help us reach our goal.

Computer Science. In CS education, instructors and researchers

have often focused on two ways of helping students plan: 1) var-

ious planning format/strategies, and 2) tools such as Intelligent

Tutoring Systems (ITSs) to assist students in planning. Common

planning formats include Unified Modeling Language (UML) di-

agrams, [2, 54, 70], flow charts [24, 46], and pseudocode [22, 57].

Storyboarding is also used in areas such as Human-Computer In-

teraction [72, 73]. Newer planning formats and strategies focus on

supporting students in decomposing and chunking programming

problems [11, 61]. Tools that have been developed to support plan-

ning include ITSs and software that provides automated feedback

to users [2, 22, 26, 36, 47, 64]. Researchers have also developed

tools using block-based programming environments [27, 81]. One

such tool was a gallery of code examples integrated Snap! [81].

The researchers investigated how undergraduate students’ use of

code examples in an open-ended programming task correlated with

their planning behavior. These researchers found that students

with plans that were more complex (had more unique features)

integrated more code examples into their projects.

We must also investigate how to best support young learners in

planning their projects. Common CS planning formats such as UML

diagrams are likely too complex for students aged 14 and younger.

Of the work we reviewed, only three publications addressed teach-

ing planning to K-12 students [44, 61, 74]. Much more recent work

involved scaffolds developed for high school (secondary, ages 14-18)

[44] and undergraduate [9] (post-secondary) students in game de-

sign. These scaffolds had students identify aspects of their projects

such as the backstory, actors, important scenes, mechanics, player

goal, and aesthetics. Work with middle grades (ages 10-14) include

an exploratory analysis of young Scratch learners’ use of plan-

ning scaffolds for their open-ended projects [74]. Similar to the

works of Card et al. [9], and Milliken et al. [44], we also support

students in identifying and recording visual (sprites/actors, setting)

and functional (events, and actions/backstory) elements of their

programs.

Outside of Computer Science. At the K-12 level, students of-

ten use planning and comprehension scaffolds in reading [12, 21, 56],

writing [7, 14, 33], math [77, 80], and science [10, 34, 38, 60]. Plan-

ning and comprehension scaffolds take many forms, including

graphic organizers [28]. Graphic organizers are visual displays

that show the relationships between facts or concepts. They are

often used in writing, reading, and science [15, 35, 56]. Types of

graphic organizers include concept maps [34, 48], story-maps, and

vee diagrams [4, 23]. Most relevant to our work are the 5Ws (Who,

What, Where, When, Why) and story-mapping, which have been

shown to improve student reading comprehension [12, 59] and

writing [33, 75]. We drew upon these formats for many reasons:

249

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland McCartney, et al.

1) they are used in K-12 schools in the U.S., and we know that

they are appropriate for our age-group, 2) they are used in the

U.S., the students are likely to be familiar with this process, and 3)

the Create projects are open-ended and story-based, which makes

the task somewhat similar to a writing task. Both formats scaffold

students in identifying elements of their stories (characters/who,

settings/where, actions/what, and other elements) and organizing

the story plot.

3.2 Evaluating Learning in Scratch

With the rise in CS education in primary and secondary school

[65, 76] many educators have a need for platforms with which

to teach coding to students. As a free, online, block-based pro-

gramming platform with millions of users that allows users to

create open-ended and creative coding projects [42], Scratch has

fulfilled that need for many educators. Learning in Scratch is often

focused on how students gain knowledge of programming con-

cepts by analyzing and evaluating the code that students create

(e.g. [1, 84]). Observation and field notes [19, 43], peer evaluation

[17, 82], and student interviews [3] are also used alongside stu-

dent code as important sources when looking at how students gain

programming knowledge. In response to this trend of evaluating

learning in Scratch through student programs, Salac and Franklin

explored the relationship between concepts implemented in code

and students’ responses in written assessments. This study found

a weak correlation between coding concepts being present in stu-

dents code, and students understanding it. It also suggests that

using student programs may not be an effective measure of eval-

uating student learning and understanding when using Scratch

[62].

3.3 Automatic Feedback for Scratch Projects

As the popularity of Scratch exploded in K-12 CS education, there

have been several efforts aimed at analyzing student projects in

order to provide meaningful feedback to both students and teachers.

Moreno-León and Robles developed Dr. Scratch, a public facing web

app that parses Scratch projects and generates a gamified report

ranking how the project scored on several high level CS skills

(Flow Control, Data representation, Parallelism, etc.) [45]. Similarly,

Hairball developed by Boe et al is a łlint-likež tool for Scratch that

is able to identify patterns such as infinite loops and unmatched

broadcast/receive blocks in addition to providing a framework for

extensible plugins [5]. Another tool worth mentioning is Scrape,

originally developed by Burke and Kafai for use during a seven-

week middle school Scratch workshop. Scrape is a visualization tool

aimed at analysis of multiple Scratch projects [8]. The automated

assessment tools developed by the Scratch Encore Curriculum build

upon the work done by these projects, providing feedback on both

an individual level to students and a classroom level to teachers via

a web app, while also being extensible enough so that hundreds of

projects can easily be evaluated at once.

4 CURRICULUM

Before detailing the methods for the study presented in this work,

we first provide an overview of the curriculum and the planning

sheets used to scaffold project requirements and story elements of

Scratch projects.

This study took place in classrooms that used the Scratch En-

core Curriculum. As a part of the curriculum, students are intro-

duced to CS concepts (e.g. events, animation, conditional loops,

etc.) and asked to program in the Scratch [58] environment. The

Scratch Encore Curriculum includes 15 modules (one per CS con-

cept), with each module taking between 3-5 lessons to complete.

Lesson length varies from 60 - 120 minutes, which can be spilt

into different class sessions if necessary.Each module employs

the Use→Modify→Create [41] pedagogical approach where stu-

dents are first introduced to the CS concept through a teacher-led

mini-lesson or animated video, both of which engage students with

real-life examples of the focal CS concept. Students then use the

TIPP&SEE [63] strategy to observe an existing project through a

łuserž lens and make predictions and explore the code from a łpro-

grammerž lens. Using the same project, students will then modify

the project by adding to or changing the code using the lesson’s fo-

cal CS concept. Finally, students create open-ended Scratch projects

that incorporate the focal CS concepts.

Students are supported throughout the create activity through

scaffolds such as project idea prompts and planning sheets that

are tailored to each module. In this work, we focus on the create

projects for Module 2 (M2) and Module 3 (M3), where students

learn about Events and Animation, respectively. Before each project,

students complete a planning sheet. The planning sheet consists

of two sections: 1) the project requirement task list, and 2) the

5W Questions. Due to COVID-19 virtual and hybrid learning, two

versions of the planning sheets are available: paper (physical) for in-

person and Google Form (virtual) for in-person and virtual learners.

4.1 Planning Sheets: Project Requirements
Section

Included in the create planning sheets for all modules of the Scratch

Encore Curriculum are lists of tasks necessary to complete the

project, depicted on the top right side of Figure 1. Project require-

ments are based on the focal CS concept of the module. The project

requirement task list reminds students to include aesthetic fea-

tures (backdrops, sprites, and costumes) in their projects, and it

identifies the coding requirements (blocks and scripts) needed to

complete the project. For M2, the focal CS concept is user events,

so the list includes a task requiring the use of different events in

the project along with other coding and aesthetic tasks. M2 Project

requirements are listed below:

• Choose a backdrop

• Include three sprites

• Use all three types of events (when green flag clicked, when

sprite clicked, and when _ key pressed)

• Sprites say things and move

• At least one sprite changes size

For M3, the focus is on animating sprites both in place and across

the screen, so the project requirement task list includes two tasks

that check for animation. M3 requirements are listed below:

• Choose a backdrop

• Include three sprites

• At least two sprites animated in place (w/o movement)

250

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland McCartney, et al.

Figure 4: Project Implementation of Plan aspects

Distributions of project implementation were not similar for all

sections (Figure 4). The mean ranks of project implementation were

statistically significantly different between sections, χ2(3) = 480.639,

p < 0.001.

Pairwise comparisons were performed using Dunn’s [16] proce-

dure with a Bonferroni correction for multiple comparisons. Ad-

justed p-values are presented. This post hoc analysis revealed sta-

tistically significant differences in project implementation between:

the łWhyž and all other sections (p < 0.001 in all cases); the łActionsž

section and the łSpritesž, łBackgroundž, and łProject Choicež sections

(p < 0.001 in all cases); and the łEventsž section and the łSpritesž,

łBackgroundž, and łProject Choicež (p = 0.003 in all cases).

Figure 4 depicts how different sections of the planning sheet

were implemented in projects. For the łSpritesž, łBackgroundž,

and łProject Choicež sections, almost all (87%-90%) of the project

implementations were at 100%. For the łWhyž section, almost all

(87%) the project implementations were at 0%. Actions and Events

are more spread out, and fewer students implemented the Actions

(68.99%) and Events (65.02%) overall. A possible reason that the

Sprites, Backgrounds and Project Choice were implemented more

often is that backgrounds and Sprites are fairly easy to include

in Scratch projects, whereas, coding different Events and Actions

may prove more challenging. Additionally, some students may have

planned actions that were later found to be challenging to code (e.g.,

łkicking a soccer ballž which might include attending to costumes,

motion and timing). We hypothesize that the łWhyž aspect may

not have been implemented due to student confusion about how

and where to integrate this information in their Scratch stories.

6.2 RQ2: What is the Relationship between
Planning Sheets and Project Requirements
Completion?

For RQ2, we begin by exploring the relationship between com-

pleted planning sheets and project requirements on a case study

basis and quantitative individual student basis. We then explore dif-

ferences between completed projects (requirements met and project

complexity) on a classroom basis, comparing classrooms that used

planning sheets and those that did not.

Finding 2: Plans expressed on planning sheets do not al-

ways satisfy project requirements.

To answer RQ2, we first present a case study analyzing two

students’ completed planning sheets (Figure 1 and Figure 5) and the

resulting Scratch projects (Figure 6 and Figure 7). The individual

projects were selected as they are representative of two particularly

interesting types of projects encountered by the authors: projects

that are technically correct but aesthetically simple, and projects

that fail to meet all of the requirements yet demonstrate substantial

creative effort. In both instances, the students made use of the

planning sheets and implemented all aspects of their plans. In one

case, however, the student completed all of the project requirements

(Figure 3), while in the other case the student completed only 4 out

of 9 technical requirements (Figure 8).

Focusing first on the planning sheets, a significant distinction

between the high-scoring and low-scoring projects is the level of

detail of the planned actions. The high-scoring student followed

the instructions of the planning sheet completely: they first listed

out which action blocks each character would use, selected two

events for each character, specified a backdrop, and then wrote out

the dialog. The low-scoring student on the other hand did not fully

follow the directions of the planning sheets: they did not list specific

action blocks that would be used, they only used the łgreen flagž

event for all sprites, and they left the dialog portion blank. There

are several potential reasons for this. It is possible that the planning

sheet proved to be too vague, leading to confusion regarding what

is expected in each section. The fact that the switch from physical

planning sheets to virtual planning sheets that make more explicit

what type of input is expected in each section led to an overall

increase in project completion rates would certainly support this.

Similarly, since the authors of the high- and low-scoring projects

belonged to different classrooms, it is possible the manner in which

their teachers introduced the planning sheets and illustrated what

was expected in each section could also lead to different project

completion rates. This might also indicate that the high-scoring

student was using the planning sheet as a cognitive artifact that

assisted them in offloading the need to hold the entirety of their

plan in memory, while the low-scoring student treated the planning

sheets as an assignment to be completed rather than a design tool.

The most striking difference between the two projects from an

aesthetic perspective is the use of custom-made sprites in the low-

scoring project (Figure 7): it is evident that in the planning stage of

the project, the student had a very specific list of characters (three

celebrity chefs) that went beyond what is immediately available

by default in Scratch. By contrast, the high-scoring project only

utilizes assets that are immediately available within the Scratch

editor. This implies that in the implementation phase, the student

of the low-scoring project spent more time on finding their sprites

than that of the other student. While using custom sprites allow

for students to express their ideas, students may also need more

help in managing their time.

Turning to the projects requirements part of the planning sheets,

it is also interesting to note that in both instances the students

appear to be aware of the extent to which their projects were sat-

isfying the requirements. The author of the high-scoring project

accurately indicated that they had completed all requirements and

extensions, while the author of the low-scoring project seemed to

recognize that their project was incomplete.

254

Scaffolding Scratch Projects with Planning Sheets ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland

(a) Total Number of Blocks without and with Plans

(b) Total Number of Unique Blocks without and with Plans

Figure 11: Project Complexity of Projects without and with

Plans

We ran Mann-Whitney U tests to determine whether the projects

with a plan were more complex using two criteria: number of blocks

(Figure 11a) and number of unique blocks (Figure 11b). The median

number of total blocks was statistically significantly higher for the

plan (30 blocks) than the no plan (18 blocks) projects, U = 11711.500, z

= 4.249, p < 0.001. Additionally, the median number of unique blocks

was statistically significantly higher for programs based on a plan (10

blocks) than those without a plan (7 blocks), U = 12771.500, z = 5.897, p

< 0.001. This result suggests that the plans scaffolded students to use

more blocks and more types of blocks. One potential explanation

stems from the distributed cognition lens, which suggests that

since the plan was able to łrememberž the learners’ intentions, the

learners could focus on implementation while not needing to keep

track of everything they needed to add to their projects.

6.3 RQ3: Other Factors Influencing Project
Implementation and Requirements Met

Now we present the results of our final research question where

we compare students’ project implementation and requirements

met based on the format of the planning sheets, grade-level, and

teacher.

Figure 12: Project Implementation By Planning Sheet For-

mat: Overall

Finding 6: Student project implementation and requirements

met differed between planning sheet formats.

Project Implementation. A Mann-Whitney U test was run

to determine if there were differences in project implementation

percentage overall between physical and virtual planning sheets.

Distributions of the implementation percentage for physical and

virtual formats were not similar (Figure 12). Project implementation

percentage for physical (41.7%) were statistically significantly lower

than for virtual (58.3%), U = 6845.5, z = 4.358, p < .001.

We also investigated the differences in project implementation

percentage for each section between planning formats. We con-

ducted a Mann-Whitney U test for each section. We found that the

differences between the formats were statistically significant for the

łWhyž and łEventž sections.

For the łWhyž section (Figure 13a), the median project implemen-

tation percentage for physical sheet were statistically significantly

higher than for virtual version, U = 3739.5, z = -3.165, p = 0.002.

For the łEventž section, distributions of the project implementa-

tion percentage for planning formats were not similar (Figure 13b),

with the project implementation percentage for virtual sheets being

statistically significant higher (U = 6189.5, z = 4.423, p < 0.001).

As discussed in the case study, ambiguities in the physical ver-

sions of the planning sheets may have led to some students under-

utilizing the scaffolds. We believe that our shift to virtual planning

sheets made necessary by COVID-19 pandemic inadvertently ad-

dressed this issue. Our edits to the planning sheets (explained in

Section 4) made some prompts less open-ended while still allowing

students to make choices. This includes the modification of the

action section from asking łWhat is [the sprite] doing?ž to asking

the students to choose actions for each event for each sprite (e.g.,

łWhat does Sprite X do when the green flag is clicked?ž and łWhat

does Sprite X do when it is clickedž). This likely scaffolded the

students to think a step further and made the implementation part

of their projects easier.

Requirements Met. We conducted Mann-Whitney U tests to

determine if there were differences in the students’ completion

of the project requirements and extensions based on the different

planning formats. There were statistically significant differences in

three of the cases (M2 Ext: W = 3445, p < 0.001; M3 Req: W = 3140.5, p =

0.01; M3 Ext:W = 1084, p < 0.001).The differences inM2 requirements

257

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland McCartney, et al.

(a) Why Section

(b) Events Section

Figure 13: Project Implementation by Planning Sheet For-

mat

Figure 14: Requirements Met by Planning Sheet Format

met did not differ between the planning formats (W = 2723, p = 0.48).

The differences are shown in Figure 14, which shows the percentage

of requirements and extensions completed for the projects with

each planning sheet format. Overall, the projects completed using

the physical sheets had higher percentages of completion than the

projects with virtual sheets. However, the results across the projects

and requirements/extensions were not consistent. For M2Ext and

(a) Project implementation of Plan by Grade Level

(b) Requirements met Aspects by Grade Level

Figure 15: Grade Level Differences

M3Req, the physical planned projects (M2Ext median = 50%; M3Req

median = 77.78%) were higher than the virtual planned projects

(M2Ext median = 0%; M3Req median = 60%). The M3Ext completion

for the virtual (median = 50%) plan projects were much higher than

the physical plan (median = 0%) projects.

Finding 7: Student project implementation and requirements

met differed across grade levels.

Project Implementation. Student planswere fully implemented

approximately 75% of the time, regardless of grade level. A Kruskal-

Wallis H test was conducted to determine if there were differences in

student project implementation of their plans based on grade level.

Distributions of project implementation were not similar for all

grades (Figure 15a). The mean ranks of project implementation were

statistically significantly different between sections, χ2(3) = 28.879, p

< 0.001. Pairwise comparisons were performed using Dunn’s [16]

procedure with a Bonferroni correction for multiple comparisons.

Adjusted p-values are presented. This post hoc analysis revealed

statistically significant differences in project implementation between

grades 5 and 6 (p < 0.001), and grades 5 and 7 (p < 0.001). No other

statistically significant differences were found. The 6th grade stu-

dents implemented their projects closest to their plans, while the

5th grade students implemented their projects furthest from their

plans.

258

Scaffolding Scratch Projects with Planning Sheets ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland

Requirements Met. A Kruskal-Wallis H test was conducted to

determine if there were differences in student requirements met

based on grade level. Distributions of requirements met were not

similar for all grades (Figure 15b). The mean ranks of requirements

met were statistically significantly different between sections, χ2(3)

= 36.953, p < 0.001. Pairwise comparisons were performed using

Dunn’s [16] procedure with a Bonferroni correction for multiple

comparisons. Adjusted p-values are presented. This post hoc analy-

sis revealed statistically significant differences in requirements met

between grades 5 and 7 (p < 0.001), and grades 5 and 8 (p < 0.001).

No other statistically significant differences were found. The 5th

grade students met the most requirements and extensions, while

the 7th and 8th grade students met the least. The results on grade-

level differences further supports our findings from earlier in this

paper on the mismatch between the percentage of student project

implementation and requirements met (Finding 6).

Finding 8: Student project implementation and requirements

met differed by teacher.

Project Implementation. A Kruskal-Wallis H test was con-

ducted to determine if there were differences in student implemen-

tation of their plans based on teacher. Distributions of project im-

plementation were not similar for all grades (Figure 16a). The mean

ranks of project implementation were statistically significantly differ-

ent between sections, χ2(3) = 33.082, p < 0.001. Pairwise comparisons

were performed using Dunn’s [16] procedure with a Bonferroni cor-

rection for multiple comparisons. Adjusted p-values are presented.

This post hoc analysis revealed statistically significant differences in

project implementation between teachers B and D, C, and E (p < 0.001

for B-C, B-E; p = 0.018 for B-D), and teachers A and E (p = 0.005). No

other statistically significant differences were found. Teacher B’s

students had the lowest percentage of the project implementation

matching the plan (median = 33.33%). Teacher E’s students had the

highest percentage of the projects matching the plans (median =

77%).

Requirements Met. A Kruskal-Wallis H test was conducted to

determine if there were differences in student requirements met

based on teacher. Distributions of requirements met were not sim-

ilar for all teachers (Figure 16b). The mean ranks of requirements

met were statistically significantly different between sections, χ2(3)

= 88.168, p < 0.001. Pairwise comparisons were performed using

Dunn’s [16] procedure with a Bonferroni correction for multiple

comparisons. Adjusted p-values are presented. This post hoc analy-

sis revealed statistically significant differences in requirements met

between teachers C and A, B, D, and E (p < 0.001 for all), and teachers F

and A, B, D, and E (p < 0.001 for all). No other statistically significant

differences were found. Teachers F and C’s students had the lowest

percentage of the requirements met matching the plan (medians =

22.22%, 33.33%). Teacher D’s students had the highest percentage

of the projects matching the plans (median = 100%).

It is interesting to note that similar to our findings about differ-

ences in project implementation and requirements met by grade

level, the differences by teacher were not the same for the project

implementation as they were for the project requirements met. This

is another piece of evidence showing a lack of correlation between

levels of project implementation and requirements met, a trend we

will return to in the discussion.

(a) Project Implementation by Teacher

(b) Requirements Met by Teacher

Figure 16: Teacher Differences

7 DISCUSSION

Having presented the data and individual results related to each

research question, we now take a cross-cutting look at the entire

set of results and how it relates to the original research questions.

In this study, we investigated how young programmers used their

planning sheets in their project implementation and how the sheets

related to the students meeting the project requirements. Through

the lens of distributed cognition, we hypothesize that the act of

writing down and organizing their thoughts in a scaffolded sheet

helped the students create their Scratch projects. In what ways,

however, did it help them? To plan, implement, both, or neither?

RQ1: After completing a planning sheet, how, and to what extent,

do learners implement the Scratch projects they plan?

Our results show that students are faithful to their plans of

Sprites, Backgrounds, and Project Choice.What is the distinction be-

tween these sections and the others (Events / Actions)? The straight-

forward answer is that students fairly faithfully implemented the

aesthetic choices much more than the coding aspects. This could

be because during the planning stage, students do not realize the

complexity in programming some actions (e.g. kicking a ball), so

they have high aspirations but must adjust due to programming

difficulty. In addition, some mismanage their time, focusing on aes-

thetics rather than functionality (as seen in the case study student).

259

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland McCartney, et al.

This raises two potential challenges that students face in all open-

ended projects, well beyond computer science: planning projects of

appropriate difficulty and managing their time in order to complete

required technical elements.

RQ2: How, and to what extent, does using a planning sheet impact

completeness of project requirements?

Exploring the relationship between planning sheets and corre-

sponding Scratch projects requirements brought up several inter-

esting issues. Due to the lack of correlation between the extent to

which students implemented their plan and the extent to which

they completed requirements, one might conclude that the plan-

ning documents were not useful. On the other hand, the data was

clear that being in a classroom with the planning documents helped

students meet project requirements as well as create more com-

plex projects. Put another way, while, on an individualized level,

a student’s project implementation (i.e., how often their final

programs included the features they had planned to include) does

not correlate with requirements met (i.e., how well they accom-

plished the specific objects of the assignment), at the classroom

level the act of planning consistently led to projects that better

implemented the technical requirements as well as projects that

were more complex (as measured by number of and distinct types

of blocks used). Since only two classrooms (one teacher) did not to

use planning documents, we do not knowwhether it is the planning

documents themselves or the teacher’s instruction that makes the

difference.

To help resolve this conundrum, we use the existence of the

planning sheet to disambiguate between student plans versus stu-

dent implementations. Our case study showed an example of two

students who fully implemented their plans, but one student’s plan

did not fulfill the requirements (that were specified on the planning

sheet). Coupled with the finding that there was no correlation be-

tween the extent to which students implemented their plans and

how well the resulting programs met the project requirements, this

points to the possibility that shortcoming of the plans, not short-

comings of the implementations, is a critical factor in not meeting

requirements.

This tension is at the heart of constructionist design. Our goal

in Create projects is to give learners agency in customizing their

projects and making them personally meaningful while still using

specific computing concepts. In the 5WQuestions portion of the plan-

ning sheet, we included specific directions to ensure that students’

plans would meet the requirements. For example, the instructions in

the physical version of M2 planning sheet for the łWhenž question

included łChoose at least two [Events] for each sprite. All three

events need to be chosen at least once.ž The students were to circle

their chosen events for each sprite. However, we also find that some

students still make plans that do not satisfy all of the requirements.

Perhaps some requirements are too detailed for some students, or

they do not pay close attention to the łsmall printž. This could be

further supported by a plan checker that points out when aspects of

their plan do not satisfy the requirements. However, the planning

documents led to both more complex projects and a higher require-

ment completion rate, so they have been helpful in obtaining our

desired balance between technical coverage and creativity.

RQ3: How do the factors of plan format, grade level, and teacher

influence the implementation plan and completion of project require-

ments?

Our results also suggest that some changes we made while shift-

ing from the physical planning sheets to the virtual planning sheets

may have inadvertently addressed some problems with helping

students create plans that more closely met requirements. In partic-

ular, our changes made more explicit what type of answers were

expected in each section. For example, the virtual version of the

M2 planning sheet had students select their event choices using

a checkbox rather than a textbox. This implies that there may be

worthwhile gains in further improving the planning document

and/or checking plans prior to implementation.

Our results also show that teacher-level differences played a large

role in their students’ outcomes, which is consistent with previous

literature [20, 74]. While we do not currently have the data to fully

understand the ways in which teacher differences affected their

students’ completed projects (such as recordings of the classes),

we encountered evidence of teacher feedback on some physical

planning sheets that we believe to be relevant. In the case of one

instructor, this was merely a check mark at the top of the page. In

other cases, it appeared that the teacher wrote specific suggestions.

Figure 17 shows that at some point the students submitted their

planning sheets for review. The teacher from the paper on the left

correctly identified that the student had skipped the why section of

the planning sheet yet provided no further instructions/suggestions

on how to improve the project. On the right side of Figure 17, we

see writing in a different color and handwriting saying łChange

costume to sprites to animatež and ładd text to tell viewer what to

do.ž That the virtual planning sheets led to a significant increase

in project completion was somewhat surprising to the authors, as

there was concern that teachers would no longer be able to spot-

check and provide feedback in the same immediate way as they

were able to on the physical versions.

7.1 A Holistic View of Designing for
Computing Education

Another contribution of this work is to broaden the conversation

around the design of introductory programming environments.

Historically, a significant portion of the design-related discussion

related to introducing novices to programming has focused on the

design of the technical programming environment (e.g., the design

of programming environments [42], the role of block-based pro-

gramming [83], features of programming languages [68]) while

less emphasis has attended to scaffolds that live outside the pro-

gramming environment itself. While there is a growing body of

research evaluating various aspects of and pedagogical strategies

(e.g., [41], TIPP&SEE [63]) and introductory curricula [6, 18], this

work adds yet another consideration to designing for novices -

that of scaffolds that live alongside programming environments

in support of the act of programming. The distributed cognition

lens is particularly useful for this larger framing, as it now extends

the cognitive system beyond the individual and the programming

environment to include a fuller set of scaffolds that can contribute

to the cognitive task of writing a program. In doing so, this work

seeks to open the door to further scholarship investigating the role

260

Scaffolding Scratch Projects with Planning Sheets ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland

Figure 17: Feedback from two different teachers.

that designed artifacts beyond the programming environment itself

play in helping novices learn to program.

7.2 Relevance and Future Work

By analyzing the impact of planning sheets on completed program-

ming project, we believe we have identified compelling evidence

that adequate planning scaffolds can play a beneficial role in early

CS education: scaffolds such as our planning sheets allow students

creative control and ownership over their own ideas while at the

same time directing towards projects that reinforce the technical

concepts they are learning.

We have also identified several areas for future work on the topic.

The discrepancies in student performance for virtual v.s. physical

planning documents was a particularly interesting finding for the

authors, however, since the switch from virtual to physical was

driven primarily by the urgent need of curriculum materials that

could be taught during the emergency period of remote learning

instigated by the COVID-19 pandemic, a more rigorous effort to

study the specific affordances being exploited by high performing

students in each condition is required.

Similarly, the discovery of student projects that demonstrate

high levels of technical and creative competence yet meet only a

portion of the techincal requirements suggessts that the planning

scaffolds provided might need further refinements: are low scoring

students unaware of what the technical requirements are? Of how

to implement? Or perhaps the current scaffolds are inadvertently

driving some students to plan projects that are too complex to be

implemented within the constraints of the Scratch environment.

7.3 Limitations

While we think the study design and data collected positioned us

well to make claims about the role of planning sheets in supporting

novice programmers, it is not without its limitations. For exam-

ple, the number of students and teachers who participated in the

study was relatively small. This may introduce some confounds,

especially when the full set of participants was subdivided (such

as the plan/no-plan analysis). Additionally, one of the five teach-

ers participated in the study both years and was therefore more

familiar with the curriculum than some other teachers. However,

this reflects the conditions of a real school environment, where

teachers will have varying levels of experience and skills. Second,

as with all qualitative studies, there is a potential of researcher

bias. We worked together to minimize those biases through dis-

cussion. Finally, some teachers were teaching Module 3 around

February/March 2020 and the COVID-19 pandemic may have af-

fected the students’ work. The pandemic and the switch to digital

planning sheets likely also affected their work: some students might

have experienced substantially different work environments dur-

ing the periods of remote learning, the amount/quality of teacher

feedback provided could also have been different to what students

before the pandemic received, etc.

Another set of potential limitations is in how teacher decisions

shaped the structure of the data we analyzed. For example, the

division of classrooms into plan/no plan groups was incidental

rather than an intervention: one of the teachers who participated in

the study decided to have their students start programming without

using the planning sheets and using only the project requirements

as a guide. As such, it is impossible to conclusively separate the

effects of planning with confounding variables such as teacher

effects.

On a more technical level, while the automated assessment tools

were designed to be fairly robust, it is possible for a student project

to contain code that satisfies the spirit of a requirement, yet is

accomplished in an unconventional way so the autograder fails

261

ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland McCartney, et al.

to recognize the behavior as correct or valid. Cases such as these

are extremely rare in student code, as the overwhelming major-

ity of projects follow the conventions taught in the curriculum,

specifically those of the module being tested. Furthermore, the auto

graders were custom made for each specific module and student

projects were spot checked and compared with the autograder

output as part of this analysis.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1738758.

REFERENCES
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and how we

know: An exploratory study on the Scratch repository. In Proceedings of the 2016
ACM conference on international computing education research. 53ś61.

[2] Sohail Alhazmi, Charles Thevathayan, and Margaret Hamilton. 2021. Learning
UML sequence diagrams with a new constructivist pedagogical tool: SD4ED. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
893ś899.

[3] Yasemin Allsop. 2019. Assessing computational thinking process using a multiple
evaluation approach. International journal of child-computer interaction 19 (2019),
30ś55.

[4] Marino C Alvarez and Victoria J Risko. 2007. The use of vee diagrams with third
graders as a metacognitive tool for learning science concepts. (2007).

[5] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Franklin Diana. 2015. Hairball: lint-inspired static analysis of scratch projects.
In Proceedings of the Workshop in Primary and Secondary Computing Education.
132ś133.

[6] K Brennan, M Chung, and J Hawson. [n. d.]. Creative com-
puting: A design-based introduction to computational thinking.
https://creativecomputing.gse.harvard.edu/guide/ ([n. d.]).

[7] Marjorie Brown. 2011. Effects of Graphic Organizers on Student Achievement in
the Writing Process. Online Submission (2011).

[8] Quinn Burke and Yasmin B Kafai. 2012. The writers’ workshop for youth program-
mers: digital storytelling with scratch in middle school classrooms. In Proceedings
of the 43rd ACM technical symposium on Computer Science Education. 433ś438.

[9] Alexander Card, Wengran Wang, Chris Martens, and Thomas Price. 2021. Scaf-
folding Game Design: Towards Tool Support for Planning Open-Ended Projects in
an Introductory Game Design Class. In 2021 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1ś5.

[10] Christina R Carnahan, Pamela Williamson, Nicole Birri, Christopher Swoboda,
and Kate K Snyder. 2016. Increasing comprehension of expository science text for
students with autism spectrum disorder. Focus on Autism and Other Developmental
Disabilities 31, 3 (2016), 208ś220.

[11] Umberto Costantini, Violetta Lonati, and Anna Morpurgo. 2020. How plans
occur in novices’ programs: A method to evaluate program-writing skills. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
852ś858.

[12] Tim Crabtree, Sheila R Alber-Morgan, and Moira Konrad. 2010. The effects of
self-monitoring of story elements on the reading comprehension of high school
seniors with learning disabilities. Education and Treatment of Children (2010),
187ś203.

[13] Elise Deitrick, R Benjamin Shapiro, Matthew P Ahrens, Rebecca Fiebrink, Paul D
Lehrman, and Saad Farooq. 2015. Using distributed cognition theory to analyze
collaborative computer science learning. In Proceedings of the eleventh annual
international conference on international computing education research. 51ś60.

[14] Laura Nicole Delrose. 2011. Investigating the use of graphic organizers for writing.
(2011).

[15] Douglas D Dexter and Charles A Hughes. 2011. Graphic organizers and students
with learning disabilities: A meta-analysis. Learning Disability Quarterly 34, 1
(2011), 51ś72.

[16] Olive Jean Dunn. 1964. Multiple comparisons using rank sums. Technometrics 6,
3 (1964), 241ś252.

[17] Hatice Yildiz Durak and Tolga Guyer. 2019. Programming with Scratch in primary
school, indicators related to effectiveness of education process and analysis of
these indicators in terms of various variables. Gifted Education International 35,
3 (2019), 237ś258.

[18] Diana Franklin, Phillip Conrad, Gerardo Aldana, and Sarah Hough. 2011. Animal
tlatoque: attracting middle school students to computing through culturally-
relevant themes. In Proceedings of the 42nd ACM technical symposium on Computer
science education. 453ś458.

[19] Diana Franklin, Phillip Conrad, Bryce Boe, Katy Nilsen, Charlotte Hill, Michelle
Len, Greg Dreschler, Gerardo Aldana, Paulo Almeida-Tanaka, Brynn Kiefer, et al.

2013. Assessment of computer science learning in a scratch-based outreach
program. In Proceeding of the 44th ACM technical symposium on Computer science
education. 371ś376.

[20] Diana Franklin, Jean Salac, Zachary Crenshaw, Saranya Turimella, Zipporah
Klain, Marco Anaya, and Cathy Thomas. 2020. Exploring student behavior using
the TIPP&SEE learning strategy. In Proceedings of the 2020 ACM Conference on
International Computing Education Research. 91ś101.

[21] Linda B Gambrell and Ann Dromsky. 2000. Fostering reading comprehension.
Beginning reading and writing (2000), 143ś153.

[22] Stuart Garner. 2007. A program design tool to help novices learn programming.
ICT: Providing choices for learners and learning (2007), 321ś324.

[23] D Bob Gowin. 1981. Educating. Cornell University Press.
[24] Dee Gudmundsen, Lisa Olivieri, and Namita Sarawagi. 2011. Using visual logic©:

three different approaches in different courses-general education, CS0, and CS1.
J. Comput. Sci. Coll 26, 6 (2011), 23ś29.

[25] James Hollan, Edwin Hutchins, and David Kirsh. 2000. Distributed cognition:
toward a new foundation for human-computer interaction research. ACM Trans-
actions on Computer-Human Interaction (TOCHI) 7, 2 (2000), 174ś196.

[26] Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Farrah Dina Yusop, and
S-J Horng. 2015. A flowchart-based intelligent tutoring system for improving
problem-solving skills of novice programmers. Journal of Computer Assisted
Learning 31, 4 (2015), 345ś361.

[27] Minjie Hu, Michael Winikoff, and Stephen Cranefield. 2012. Teaching novice
programming using goals and plans in a visual notation. In Proceedings of the
Fourteenth Australasian Computing Education Conference-Volume 123. 43ś52.

[28] Charles A Hughes, Paula Maccini, and Joseph Calvin Gagnon. 2003. Interventions
that positively impact the performance of students with learning disabilities in
secondary general education classrooms. (2003).

[29] Edwin Hutchins. 1995. Cognition in the Wild. MIT press.
[30] Edwin Hutchins. 2000. Distributed cognition. International Encyclopedia of the

Social and Behavioral Sciences. Elsevier Science 138 (2000).
[31] Edwin Hutchins. 2006. The distributed cognition perspective on human in-

teraction. Roots of human sociality: Culture, cognition and interaction 1 (2006),
375.

[32] Edwin Hutchins and Tove Klausen. 1996. Distributed cognition in an airline
cockpit. Cognition and communication at work (1996), 15ś34.

[33] Salem Saleh Khalaf Ibnian. 2010. The Effect of Using the Story-Mapping Tech-
nique on Developing Tenth Grade Students’ Short Story Writing Skills in EFL.
English Language Teaching 3, 4 (2010), 181ś194.

[34] Elizabeth M Jackson and Mary Frances Hanline. 2020. Using a concept map with
RECALL to Increase the comprehension of science texts for children with autism.
Focus on Autism and Other Developmental Disabilities 35, 2 (2020), 90ś100.

[35] Xiangying Jiang and William Grabe. 2007. Graphic organizers in reading instruc-
tion: Research findings and issues. (2007).

[36] Wei Jin, Albert Corbett, Will Lloyd, Lewis Baumstark, and Christine Rolka. 2014.
Evaluation of guided-planning and assisted-coding with task relevant dynamic
hinting. In International Conference on Intelligent Tutoring Systems. Springer,
318ś328.

[37] Yasmin B Kafai and Mitchel Resnick. 2012. Constructionism in practice: Designing,
thinking, and learning in a digital world. Routledge.

[38] Victoria F Knight, Fred Spooner, Diane M Browder, Bethany R Smith, and
Charles L Wood. 2013. Using systematic instruction and graphic organizers
to teach science concepts to students with autism spectrum disorders and intel-
lectual disability. Focus on autism and other developmental disabilities 28, 2 (2013),
115ś126.

[39] Maria Knobelsdorf and Christiane Frede. 2016. Analyzing student practices in
theory of computation in light of distributed cognition theory. In Proceedings of
the 2016 ACM Conference on International Computing Education Research. 73ś81.

[40] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159ś174.

[41] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32ś37.

[42] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1ś15.

[43] John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie
Rusk. 2008. Programming by choice: urban youth learning programming with
scratch. In Proceedings of the 39th SIGCSE technical symposium on Computer
science education. 367ś371.

[44] Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
et al. 2021. PlanIT! A New Integrated Tool to Help Novices Design for Open-
ended Projects. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 232ś238.

[45] Jesús Moreno-León and Gregorio Robles. 2015. Dr. Scratch: a Web Tool to Auto-
matically Evaluate Scratch Projects. In Proceedings of the Workshop in Primary

262

Scaffolding Scratch Projects with Planning Sheets ICER 2022, August 7ś11, 2022, Lugano and Virtual Event, Switzerland

and Secondary Computing Education. 132ś133.
[46] Isaac Nassi and Ben Shneiderman. 1973. Flowchart techniques for structured

programming. ACM Sigplan Notices 8, 8 (1973), 12ś26.
[47] Mark J Nelson and Michael Mateas. 2008. An interactive game-design assistant.

In Proceedings of the 13th international conference on Intelligent user interfaces.
90ś98.

[48] Joseph D Novak. 1990. Concept maps and Vee diagrams: Two metacognitive
tools to facilitate meaningful learning. Instructional science 19, 1 (1990), 29ś52.

[49] Seymour Papert. 1980. " Mindstorms" Children. Computers and powerful ideas
(1980).

[50] S. Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc.

[51] Seymour Papert. 1993. The children’s machine: Rethinking school in the age of the
computer. ERIC.

[52] Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism
36, 2 (1991), 1ś11.

[53] Roy D Pea. 1993. Practices of distributed intelligence and designs for education.
Distributed cognitions: Psychological and educational considerations 11 (1993),
47ś87.

[54] Marian Petre. 2013. UML in practice. In 2013 35th international conference on
software engineering (icse). IEEE, 722ś731.

[55] Jean Piaget andMargaret Trans Cook. 1952. The origins of intelligence in children.
(1952).

[56] SamD Praveen and Premalatha Rajan. 2013. Using Graphic Organizers to Improve
Reading Comprehension Skills for the Middle School ESL Students. English
language teaching 6, 2 (2013), 155ś170.

[57] Haider Ali Ramadhan. 2000. Programming by discovery. Journal of Computer
Assisted Learning 16, 1 (2000), 83ś93.

[58] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60ś67.

[59] D Ray Reutzel. 1985. Story maps improve comprehension. The Reading Teacher
38, 4 (1985), 400ś404.

[60] Veronica Roberts and Richard Joiner. 2007. Investigating the efficacy of concept
mapping with pupils with autistic spectrum disorder. British Journal of Special
Education 34, 3 (2007), 127ś135.

[61] Jean Salac. 2020. Diagramming as a Strategy for Primary/Elementary-Age Pro-
gram Comprehension. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 322ś323.

[62] Jean Salac and Diana Franklin. 2020. If they build it, will they understand it?
exploring the relationship between student code and performance. In Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer Science
Education. 473ś479.

[63] Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: A Learning Strategy to Guide Students through Use-Modify
Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. 79ś85.

[64] Joachim Schramm, Sven Strickroth, Nguyen-Thinh Le, and Niels Pinkwart. 2012.
Teaching UML skills to novice programmers using a sample solution based
intelligent tutoring system. In Twenty-Fifth International FLAIRS Conference.

[65] Sue Sentance, Erik Barendsen, and Carsten Schulte. 2018. Computer Science Edu-
cation: Perspectives on Teaching and Learning in School. Bloomsbury Publishing.

[66] Helen Sharp, Rosalba Giuffrida, and Grigori Melnik. 2012. Information flow
within a dispersed agile team: a distributed cognition perspective. In International
Conference on Agile Software Development. Springer, 62ś76.

[67] Helen Sharp, Hugh Robinson, Judith Segal, and Dominic Furniss. 2006. The Role
of Story Cards and the Wall in XP teams: a distributed cognition perspective. In

AGILE 2006 (AGILE’06). IEEE, 11śpp.
[68] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into pro-

gramming language syntax. ACM Transactions on Computing Education (TOCE)
13, 4 (2013), 1ś40.

[69] Nicole Strangman, THall, andAMeyer. 2003. Graphic organizers and implications
for universal design for learning: Curriculum enhancement report. National
Center on Accessing the General Curriculum (2003).

[70] Michael Striewe and Michael Goedicke. 2014. Automated assessment of UML
activity diagrams. In Proceedings of the 2014 conference on Innovation & technology
in computer science education. 336ś336.

[71] Josh Tenenberg and Maria Knobelsdorf. 2014. Out of our minds: a review of
sociocultural cognition theory. Computer Science Education 24, 1 (2014), 1ś24.

[72] Jakita O Thomas. 2018. The Computational Algorithmic Thinking (CAT) Capa-
bility Flow: An Approach to Articulating CAT Capabilities over Time in African-
American Middle-school Girls. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education. 149ś154.

[73] Khai N Truong, Gillian R Hayes, and Gregory D Abowd. 2006. Storyboarding: an
empirical determination of best practices and effective guidelines. In Proceedings
of the 6th conference on Designing Interactive systems. 12ś21.

[74] Jennifer Tsan, Donna Eatinger, Alex Pugnali, David Gonzalez-Maldonado, Diana
Franklin, and David Weintrop. 2022. Scaffolding Young Learners’ Open-Ended
Programming Projects with Planning Sheets. In Proceedings of the 2022 ACM
Conference on Innovation and Technology in Computer Science Education. in press.

[75] Kayo Tsuji. 2017. Implementation of the Writing Activity Focusing on 5W1H
Questions: An Approach to Improving StudentWriting Performance. LET Journal
of Central Japan 28 (2017), 1ś12.

[76] Jan Vahrenhold, Quintin Cutts, and Katrina Falkner. 2019. Schools (Kś12). Cam-
bridge University Press, 547ś583. https://doi.org/10.1017/9781108654555.019

[77] Delinda van Garderen and Amy M Scheuermann. 2015. Diagramming word
problems: A strategic approach for instruction. Intervention in School and Clinic
50, 5 (2015), 282ś290.

[78] Christina Vasiliou, Andri Ioannou, Agni Stylianou-Georgiou, and Panayiotis
Zaphiris. 2017. A glance into social and evolutionary aspects of an artifact
ecology for collaborative learning through the lens of distributed cognition.
International Journal of HumanśComputer Interaction 33, 8 (2017), 642ś654.

[79] Andrew Walenstein. 2002. Cognitive support in software engineering tools: A
distributed cognition framework. Ph.D. Dissertation. Citeseer.

[80] David WWalker and James A Poteet. 1990. A Comparison of Two Methods of
Teaching Mathematics Story Problem-Solving with Learning Disabled Students..
In National Forum of Special Education Journal, Vol. 1. ERIC, 44ś51.

[81] Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany Barnes,
Chris Martens, and Thomas Price. 2022. Exploring Design Choices to Support
Novices’ Example Use During Creative Open-Ended Programming. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education. 619ś625.

[82] Xiao-Ming Wang, Gwo-Jen Hwang, Zi-Yun Liang, and Hsiu-Ying Wang. 2017.
Enhancing students’ computer programming performances, critical thinking
awareness and attitudes towards programming: An online peer-assessment at-
tempt. Journal of Educational Technology & Society 20, 4 (2017), 58ś68.

[83] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22ś25.

[84] David Weintrop, Alexandria K Hansen, Danielle B Harlow, and Diana Franklin.
2018. Starting from Scratch: Outcomes of early computer science learning expe-
riences and implications for what comes next. In Proceedings of the 2018 ACM
conference on international computing education research. 142ś150.

[85] Peter CWright, Robert E Fields, and Michael D Harrison. 2000. Analyzing human-
computer interaction as distributed cognition: the resources model. Human-
Computer Interaction 15, 1 (2000), 1ś41.

263

	Abstract
	1 Introduction
	2 Theoretical Orientation
	2.1 Distributed Cognition
	2.2 Constructionism

	3 Prior Work
	3.1 Teaching Planning
	3.2 Evaluating Learning in Scratch
	3.3 Automatic Feedback for Scratch Projects

	4 Curriculum
	4.1 Planning Sheets: Project Requirements Section
	4.2 Planning Sheets: 5W Questions Section

	5 Methods
	5.1 Study Context and Participants
	5.2 Data Collection and Analysis

	6 Results
	6.1 RQ1: How, and to what extent, do Students Implement their Plans?
	6.2 RQ2: What is the Relationship between Planning Sheets and Project Requirements Completion?
	6.3 RQ3: Other Factors Influencing Project Implementation and Requirements Met

	7 Discussion
	7.1 A Holistic View of Designing for Computing Education
	7.2 Relevance and Future Work
	7.3 Limitations

	Acknowledgments
	References

