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Route Recommendations for Intelligent
Transportation Services

Yong Ge, Huayu Li and Alexander Tuzhilin

Abstract—The accumulated large amount of mobility data and the ability to track moving people or objects have enabled us to
develop advanced mobile recommendations, which are essentially to recommend a sequence of locations to an individual user on
the move. In this paper, we study a particular case of mobile recommendations, route recommendations to drivers, by utilizing
vehicle GPS data. Specifically, we formulate a new Route Recommendation with Relaxed Assumptions (RR-RA) problem, the
goal of which is to recommend a sequence of locations to a driver based on his current location in order to maximize his business
success. To make our recommendation practical and scalable for real practice, we need to produce recommendation results in a
timely fashion once a request emerges. Therefore, we propose an efficient algorithm to efficiently generate recommendations.
Furthermore, we identify and address a destination-oriented route recommendation (DORR) problem. Without solving DORR
problem, RR-RA alone does not work well in practice because drivers may encounter the destination constraint on a daily basis.
We develop a dedicated and efficient algorithm for solving DORR problem. The package of solutions for both RR-RA and DORR
problems provide a comprehensive approach for route recommendations to drivers. We evaluate our methods using both
real-world GPS data and synthetic data, and demonstrate the effectiveness and efficiency of proposed methods with different
evaluation metrics.

Index Terms—Recommender Systems, GPS Data, Mobile Recommendations, Intelligent Transportation
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1 Introduction
Mobile recommendations aim to provide recommendations
to users on the move, such as route recommendations to
taxi drivers, POI recommendations to tourists. Mobile rec-
ommendations constitute a growing and important sub-area
in the field of recommender systems [1] due to the following
factors: (a) existence of a rich and diverse class of applications
requiring mobile recommendations; (b) establishment and
maturity of mobile infrastructure, including proliferation and
wide adoption of various mobile devices that generate rich and
useful data of high quality; (c) many mobile recommendation
problems are still underexplored, and development of novel
methods is required to solve these problems. All the afore-
mentioned three factors constitute a perfect storm and make
the emerging area of mobile recommendations an important
and rich topic of research. Some of the manifestations of
this phenomenon include a growing set of papers published
on mobile recommender systems over the last few years [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11] and the organization of
workshops dedicated to this topic [12], [13].

In this paper, we focus on a particular aspect of this diverse
and multifaceted field and study the problem of providing
route recommendations to the drivers of different types of
vehicles, including taxis, private cars, and tour buses. Such
transportation application is important because it can: (a)
recommend more efficient routes to drivers, especially the
less experienced ones, and help them save time, money and
possibly increase vehicle occupancy and utilization rates, (b)
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help economize fuel consumption which will result in energy
savings and produce less traffic and pollution. Among the
diverse class of transportation applications, the one that will
stand to benefit the most from our study is taxi driving. This
particular transportation application is important because
taxis provide mobility in urban areas and play an impor-
tant role in today’s public transportation. However, current
taxi service is still facing several practical challenges. First,
although today’s online taxi transportation companies (such
as Uber, DiDi, Lyft) provide support to connect drivers with
passengers, their solution mainly works as a request-based
passive dispatch, where drivers are routed to different pick-up
locations based on the real-time active pick-up requests by
users. It does not pay much attention to potential passengers
who may need services in near future. When there is no active
pick-up requests nearby a empty cab, such request-based
passive dispatch solution will not work, as it can not guide
the empty cab to proactively search for future passengers.
Second, most empty cab drivers plan their routes for searching
for passengers based on their own experience when there
is no service request available, which could lead to low
occupancy rate. Effective and efficient recommendations of
driving routes to drivers could increase this rate, which leads
to more earnings and increased efficiency and effectiveness. To
address these problems, Uber and Lyft are trying to develop
some helpful solutions for drivers to better search for future
passengers [14], [15], [16]. Their methods use physical sensing
techniques to sense nearby potential passengers and send their
location information to taxi cabs on which physical receiver
are installed. Besides the privacy and cost issues [17], [18],
these methods could not capture passengers who do not use
their applications and cannot be detected.

To address these problems, we proposed and studied a
mobile sequential recommendation (MSR) problem with fixed
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length constraint in [6]. Although our solutions provide a
proactive way for taxi drivers to better search potential
passenger(s), there are two important assumptions in that
study. The first assumption is that we fix the number of pick-
up locations of candidate route and only search optimal route
from these ones. The second one is that the travel distance,
when a driver cannot pick up any passenger after passing
the last pick-up location of candidate route, is assumed to be
a large constant and that this constant is the same for all
candidate routes. However, both assumptions barely hold in
real applications (we will provide more discussions about both
assumptions in Section 3). Therefore, in this paper, we relax
both assumptions and introduce a new route recommendation
problem.

Specifically we formulate a new Route Recommendation
with Relaxed Assumptions (RR-RA) problem, which essen-
tially recommends a sequence of pick up locations to an empty
cab based on potential pick up locations mined from historical
taxi GPS data and current location of the empty cab. This
recommendation is in the form of driving routes which makes
the problem particularly challenging. We develop a novel
approach to solve this problem. The goal of our approach
is to generate driving routes that could minimize the travel
distance before picking up passenger(s). While our intelligent
route recommendation provides a new way for taxi drivers to
improve their business performance, the computing process is
very computationally expensive. It is challenging to make such
recommendations practical for real taxi businesses because
the results need to be produced online in a timely fashion to
meet the real-time requests of drivers. Therefore, we develop
a pruning-based algorithm for efficiently searching optimal
route to recommend.

Furthermore, we identify and address an important des-
tination constraint that taxi drivers may frequently face,
and propose a destination-oriented route recommendation
(DORR) problem in this paper. The DORR problem is
crucial for any practically successful solution to driver’s route
recommendation problem. Without solving DORR problem,
the solution for RR-RA can not be very practical for real
application because drivers frequently run into DORR prob-
lem (we will explain this in detail in Section 4). Although
DORR problem shares similar inputs as RR-RA problem,
there is a destination constraint that has to be considered for
route recommendation. Thus, we develop a new recommen-
dation approach for solving DORR problem. As it also calls
for efficient algorithms to make the online recommendation
practical, we develop a dedicated and efficient algorithm
to search for optimal route in this destination-constrained
scenario. By solving DORR problem, we strengthen RR-RA
problem and make our approaches more practical because the
combined solutions for both RR-RA and DORR problems
provide a comprehensive way for route recommendations to
taxi drivers. We would like to note that as we focus on
providing routing recommendations for empty-taxi drivers
when there is no active pick-up request nearby, both RR-
RA and DORR problems exclude the consideration of active
pick-up requests.

We evaluate the efficiency of our methods for RR-RA and
DORR problems using both real-world and synthetic data.
The experimental results demonstrate that our methods could
significantly save computing time for online recommendation

compared with baseline methods. Furthermore, it is impor-
tant to validate how effective the recommended routes are.
While the ideal way for validating this is to conduct the
field study (a.k.a., A/B testing) via collaborating with taxi
and ride sharing companies, it is very difficult to provide
such validations for several reasons. Therefore, we evaluate
the effectiveness of our recommendations offline by using the
traditional machine learning paradigm. The empirical results
demonstrate that our route recommendations could greatly
help drivers search for potential passengers, and reduce their
driving without passenger by around 18%.

Overall, the contributions and implications of this paper
are summarized as follows.

• We present a technically challenging and practically
important RR-RA problem and develop an advanced
method for solving this problem.

• We formulate a DORR problem and develop an advanced
solution to solve it. By solving RR-RA and DORR
problems, we are able to provide a “complete package”
solution for route recommendations to taxi drivers.

• We conduct empirical tests to evaluate the performance
of our methods with large-scale real-world taxi GPS data.
We also use simulations to demonstrate practical value
of our route recommendations.

• Our developed approaches shed some light on solving
other transportation problems such as parking lot search
and routing for carpool. The techniques developed for
RR-RA and DORR problems will open a new range of
methods in the recommendation field and the developed
algorithms will lay a foundation for studying other mobile
recommendation problems.

2 Related Work
2.1 Recommendations for Mobile Users
Recommender systems in the mobile environments have been
studied before. The two surveys [1], [19] provide a broad
overview of this prior work that can be classified into the
research focused on mobile guides [19] and the other research
that goes beyond the mobile guides [1].

Historically, the area of mobile recommendations started
with the work on mobile guides that come in various ”forms
and shapes,” and [19] provide an extensive categorization
of the whole ranges of these guides according to their con-
nectivity to the Internet, being indoor (e.g., museums) or
outdoor, etc. Then [19] use this classification to develop a
set of mobile guide design principles that can be used by
application developers. The mobile guide systems typically
use temporal, location-based and other types of contextual
information (such as the current mood and interests of a
tourist, weather information, etc.) obtained either from the
user or extracted from the environment in order to query or
search a certain repository of resources (such as, restaurants,
museums and shows) and present the best matching resources
(e.g., nearby restaurants that are currently open) to the user.

One of the early examples of research on mobile tourist
guides is the Cyberguide project [20], which develops sev-
eral tour guide prototypes for different hand-held platforms.
[21] present a mobile tourist guide system COMPASS that
supports many standard tourism-related functions, such as
reserving a table at a restaurant or booking tickets for a
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show. COMPASS uses a similar type of the context-driven
querying and searching approach [22] as the Cyberguide
system [20]. Other examples of context-aware tourist guide
systems proposed in the literature include the GUIDE system
[23], the INTRIGUE system [24] and the MyMap system [25].

An alternative approach to mobile recommendations is
based on the contextual preference elicitation and discovery
[22], [26], [27], and it is being surveyed in [1]. As an example
of this approach, the UbiquiTO system implementing a
mobile tourist guide [28], provides intelligent adaptation of
recommendations not only based on the specific location-
based, temporal and other contextual information, but it also
uses various rule-based and fuzzy set techniques to adapt
the application content based on the user preferences and
interests. Other examples of contextual preference elicitation
and estimation approaches to mobile recommendations are
also available in [29], [30], [31], [32]. Further, different combi-
nations of these approaches could be achieved via a specially
developed integration module that also features a graphical
interface for mobile users [33]. Usefulness of such mobile
recommendations is demonstrated in [34] where a study of
155,000 customers of a mobile portal reveal that the use
of personalized recommendations instead of non-personalized
ones leads to a significant increase in viewed and sold items
in different navigational situations and to the overall sales
increase.

2.2 Analytics of Taxi Trajectory Data
The data mining research literature has witnessed a growing
interest in taxi trajectory data. The general goal of these
works is to understand and discover behaviors and patterns
that trajectories generate. For instance, Zhang et al. [35] ana-
lyze the taxi GPS data to study the impact of information on
driver behavior and economic outcome, and find heterogeneity
in individual learning behavior and driving decisions having
economic impact. Liu et al. [36] study how a taxi driver
gathers and learns information in an uncertain environment
through the use of his social network with massive taxi GPS
data. Although these studies reveal useful information and
knowledge about taxi driver behaviors, they could not provide
solution for navigating taxi drivers to earn more business. Le
et al. [37] analyze the decision process from social perspective
with trajectory data. Ge et al. [38] study the taxi driving fraud
behavior (i.e., overcharging passengers by taking unnecessary
detour) and develop detection methods for such fraud with
taxi GPS data. Other examples of discovering useful pattern
from trajectory data are also available in [39], [40], [41], [42].

2.3 Recommendations for Taxi Services
A few of research works have been done about recommen-
dation for taxi services. Ge et al. [6] formulate a mobile
sequential recommendation (MSR) problem, the objective
of which is to recommend driving route for taxi drivers in
order to minimize their driving distance without passenger(s).
MSR shares the same goal as RR-RA problem that we study
in this paper, but there are two important assumptions in
MSR problem [6] as discussed in Section 1. To better solve
MSR problem, Huang et al. [7] develop a new method for
improving pruning and computational efficiency of search
algorithm; Ye et al. [11] combine parallel computing and

simulated annealing with novel global and local searches to
further improve the computational efficiency of MSR problem.
However, these methods in [11], [7], and [6] work based on
the aforementioned two assumptions. Thus they cannot be
used for solving our RR-RA or DORR problem. Yuan et al.
[9] apply the constraint shortest path technique to find an
optimal path between taxi driver’s current position and one
parking place. Ma et al. [8] propose a single-side and a dual
side taxi searching technique for finding routes for additional
passengers to share a taxi. Both techniques in [9] and [8] are
designed to optimize a route between a starting point and
an ending point, and thus they are not applicable to RR-
RA problem. On the other hand, they did not address the
direction constraint in our DORR problem, and thus they are
not applicable to DORR problem either. In addition, Wang
et al. [10] propose TaxiRec for route recommendation with
road network information. Specifically, road network is first
segmented into a number of road clusters, and then a ranking-
based extreme learning machine (ELM) model is used to
evaluate passenger-finding potential of each road cluster [10].
Since TaxiRec focuses on providing effective recommendation
of top-k road segment clusters, rather than a sequence of
pick-up locations, their solutions are not applicable to either
RR-RA and DORR problem.

2.4 Vehicle Routing
This paper is also related to vehicle routing problem (VRP)
that the operation research community has studies for
decades [43]. The general goal of the VRP is to search
optimal routes for vehicles to traverse in order to reach a
set of customers. The traveling cannot be completed until all
customers are reached. Our RR-RA and DORR problem are
different from VRP in that it routes a driver for searching for
next passenger, and it is not needed to reach all potential
locations and the travel will stop once next passenger is
reached. Due to such inherent differences between VRP and
RR-RA/DORR problems, those solutions for the VRP could
not be used for solving our RR-RA and DORR problems.
Therefore, we develop novel data mining methods to solve
RR-RA and DORR problems. In addition, while the VRP is
often resolved offline [43], RR-RA and DORR problems need
to be solved online by using the real-time location information
of drivers. The efficiency of solution for RR-RA and DORR
problems is much more important than that for VRP problem.
Therefore, in this paper we aim to develop novel and efficient
algorithms for solving both problems.

3 Route Recommendation with Relaxed Assump-
tions
In this section, we introduce a new problem, i.e., Route
Recommendation with Relaxed Assumptions (RR-RA). Un-
like the problem we studied in [6], we relax two important
assumptions to make the problem more practical for real
applications.

3.1 Problem Statement
Given an empty cab’s location PoCab, there are a set of N
potential pick-up locations denoted as C = {C1, C2, · · · , CN}
nearby PoCab. For each pick-up location, there is estimated
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pick-up probability, denoted as Pi. Let us use P to denote
the set of probabilities P = {Pi}(i = 1, · · · , N), where
Pi(i = 1, · · · , N) is assumed to be independent to each
other. The objective of RR-RA problem is to search the
optimal route that has minimum expected driving distance
(EDD) before picking up passenger(s) and includes less
than L pick-up locations. Each candidate route is essen-
tially a sequence of potential pick-up locations. Following
the same practice in [6], we assume that all potential pick-
up locations in each candidate route are different. Let us
use
−→
R to denote one candidate route, and use D(

−→
R ) to

represent the expected driving distance before pick-up event
while a driver taking candidate route

−→
R . Based on these

notation, RR-RA problem is formally stated as follows.
RR-RA Problem
Given: An empty cab’s location PoCab, a set of N
potential pick-up points denoted as C = {Ci}(i =
1, · · · , N) nearby PoCab, and a set of pick-up prob-
ability at these N locations denoted as P = {Pi}(i =
1, · · · , N).
Objective: Recommending an optimal route −→R for the
empty cab, which minimizes expected driving distance
D(
−→
R ) before pick-up event and includes less than L

pick-up locations (L ≤ N).
Compared with MSR problem studied in [6] that only

searches optimal route with fixed L pick-up locations, we
relax this constraint in RR-RA problem. Such a relaxed
assumption brings two consequences. First, we make the
recommendation problem more practical because taxi drivers
may want to explore driving routes with different number
of pick-up locations, rather than a fixed number of ones.
The recommendation results will better meet the practical
needs of taxi drivers than those of MSR problem. Second, the
search space of RR-RA problem is much larger than that of
MSR in [6], which leads to more computational complexity.
Furthermore, we relax another assumption that we made
in the definition of PTD function in [6]. We will introduce
this relaxation of assumption in Section 3.3. Due to relaxing
both assumptions, the algorithms we developed in [6] actually
cannot work for RR-RA problem. Thus, we will develop a
dedicated method to solve RR-RA problem in this paper.

There are two challenges to solve RR-RA problem. The
first one is how to obtain potential pick-up locations and
pick-up probability given an empty cab requesting recom-
mendation service. Second, it is how to timely search the
optimal route from all potential candidates to meet the
real-time request of route recommendation. In fact, if the
computational cost for one candidate route is Cox(

−→
R ) = 1,

the computational complexity of RR-RC problem is O(N !).
In the following two subsections, we introduce our solutions
for both challenges.

3.2 Generating Pick-up Location and Probability
In this section, we introduce how to generate potential pick-
up locations (i.e., C) and estimate pick-up probability at each
one (i.e., P) when the time and location of recommendation
request by one empty cab is given.

Generating Pick-up Location. Given the location PoCab
and time t (e.g., 2PM on Monday) of one empty cab that
requests the recommendation of driving route, we will extract

PoCab

C1

C2

C3
D3

D2

D1

(a) A Sample Route

PoCab

C1 C2 C4C3

C2 C3 C4

C2 C3

I D D

I D

(b) A Sample Tree Structure

Fig. 1: Two Illustration Examples

a set of raw pick-up points from historical taxi GPS data1.
Specifically, as long as one pick-up event happens within the
time range [t−α, t+α] on the same week day (e.g., Monday)
and the corresponding pick-up point locates within a spatial
range that has center as PoCab and radius as τ1, we will
extract this pick-up point. After getting all these raw pick-up
points, we will group them into different clusters based on the
driving distance calculated via Google Map APIs. Finally, the
centroids of these clusters are considered as potential pick-up
locations that will be used for generating recommendations.

Estimating Pick-up Probability. For each candidate pick-
up location (i.e., the centroid of pick-up location cluster), we
will estimate the probability of pick-up event around time t
(e.g., 2PM on Monday) based on historical data. The idea
is to measure how frequent pick-up event happens when cabs
travel across a pick-up location cluster Ci around time t on
the same week day. Specifically, we first count the number
of empty cabs that enter the spatial coverage of cluster Ci

within the time range [t − α, t + α] on the same week day
(e.g., Monday) from historical data, and denote it as #T .
Among these #T empty cabs, we count the number of pick-up
events #P that happen within the spatial coverage of cluster
Ci among the same time range. Finally, the probability of
pick-up event at Ci around time t is estimated as P t

i = #P
#T .

3.3 Method for Computing Optimal Route
First let us introduce how we define D(

−→
R ) for a candidate

route
−→
R . To simplify the introduction, let us consider an

example of candidate route
−→
R = PoCab → C1 → C2 → C3

as shown in Figure 1(a). When a driver takes this route, he
will have probability Pi (1 ≤ i ≤ 3) of picking up passenger(s)
at each location Ci (1 ≤ i ≤ 3). The driving distance before
picking up passenger could be D1 with probability P1, D1 +
D2 with probability P̄1P2, or D1+D2+D3 with probability
P̄1P̄2P3, where P̄i is defined as P̄i = 1 − Pi. In addition,
the probability of picking up no passenger by taking this
route is P̄1P̄2P̄3. We denote the driving distance beyond the
last pick-up location of candidate route

−→
R as D̃3. In the

definition of PTD function in [6], we assume D̃3 is a very big
constant and it is the same at the last pick-up location of
any candidate route. Based on this assumption, we identify
the monotone property of PTD function in [6], which leads
us to develop efficient algorithms for solving MSR problem.

1. Taxi GPS data records its location, timestamp and status every
seconds. The status is either occupied or empty. When the status
changes from empty to occupied, the corresponding location is a raw
pick-up point
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However, this assumption barely holds in reality. First, as D̃i

denotes the distance that a taxi driver needs to drive to find
passenger from location Ci, it could be different at different
pick-up location Ci. Second, the value of D̃i may not be big
at some locations such as those around crowd POIs (e.g.,
station, hotel). Therefore, we relax this assumption in this
paper to make the problem more practical. Specifically, we
leverage historical taxi GPS data to estimate D̃i for each
pick-up location Ci offline. Instead of being a large constant,
the estimated value of D̃i (1 ≤ i ≤ N) may vary at different
locations and around different times. Given this relaxation,
the monotone property of PTD function in [6] will not hold,
and thus pruning algorithms developed in [6] will not work.
Given the above statement, we derive the expected driving
distance (EDD) D(

−→
R ) before pick-up event while a driver

taking route
−→
R = PoCab→ C1 → C2 → C3 as:

D(
−→
R ) = D1P1 + (D1 +D2)P̄1P2 + (D1+

D2 +D3)P̄1P̄2P3 + D̃3P̄1P̄2P̄3.
(1)

To search optimal route for a taxi driver, a straight-
forward method needs to compute D(

−→
R ) for each possible

candidate route with less than L pick-up locations, and then
pick the best one −→R that has minimum D(

−→
R ). This will

involve a lot of computation. In the following, we introduce
important monotone property of D(

−→
R ), which allows us to

prune many candidate routes without computing D(
−→
R ). Such

pruning will be done offline before the real-time request of
route recommendation occurs, and thus it will save us a lot of
time for real-time recommendation.

To introduce the monotone property, let us consider two
general candidate routes

−→
R1 = PoCab → C1 · · · → Ci and−→

R2 = PoCab → C1 · · · → Ci → Ci+1. The only difference
of
−→
R2 than

−→
R1 is that one more pick-up location Ci+1 is

appended. D(
−→
R1) and D(

−→
R2) can be derived as follows.

D(
−→
R1) = D1P1 + (D1 +D2)P̄1P2 + · · ·+

i∑
ii=1

DiiPi

i−1∏
ii=1

P̄ii + D̃i

i∏
ii=1

P̄ii.
(2)

D(
−→
R2) = D1P1 + (D1 +D2)P̄1P2+

· · ·+
i∑

ii=1

DiiPi

i−1∏
ii=1

P̄ii+

i+1∑
ii=1

DiiPi+1

i∏
ii=1

P̄ii + D̃i+1

i+1∏
ii=1

P̄ii.

(3)

We then derive the difference between D(
−→
R2) and D(

−→
R1) as

follows.

∆D = D(
−→
R2)−D(

−→
R1)

=

i∏
ii=1

P̄ii{Pi+1

i+1∑
ii=1

Dii + P̄i+1D̃i+1 − D̃i}

=

i∏
ii=1

P̄ii{Pi+1(

i+1∑
ii=1

Dii − D̃i+1) + (D̃i+1 − D̃i)}

(4)

From Equation 4, we could conclude the following two mono-
tone property: (a) if

∑i+1
ii=1 Dii > D̃i+1 and D̃i+1 > D̃i,

∆D should be bigger than 0, i.e., D(
−→
R2) > D(

−→
R1); (b) if∑i+1

ii=1 Dii < D̃i+1 and D̃i+1 < D̃i , ∆D should be less than
0, i.e., D(

−→
R2) < D(

−→
R1). For the convenience of presentation,

let us denote this two property as PR(a) and PR(b). In
other words, when we append one more pick-up location to
a candidate route, we may conclude EDD value will increase
if the condition of PR(a) is satisfied, or will decrease if the
condition of PR(b) is satisfied.

Next we introduce how we use these two property to
prune candidate routes in advance without computing EDD
function. To make the introduction easy to follow, let us
consider a set of 4 pick-up locations and specify L = 3.
There are totally 24 possible candidate routes with less
than 3 pick-up locations. In Figure 1(b), we show partial
possible candidate routes with a tree structure. Let us
consider route PoCab → C1. As there is only one pick-
up location, there is no need to apply property PR(a) and
PR(b). Next let us consider all routes that include one more
appended pick-up location to route PoCab → C1, which
include PoCab → C1 → C2, PoCab → C1 → C3, and
PoCab → C1 → C4. We could check the conditions of
property PR(a) and PR(b) for each of these three. Take route
PoCab → C1 → C2 as an example, if D1 + D2 > D̃2 and
D̃2 > D̃1, we can conclude EDD of route PoCab→ C1 → C2

will increase compared with that of route PoCab → C1. Let
us use I to tag this conclusion at pick-up location C2. This tag
indicates that route PoCab → C1 → C2 can not be optimal
route because route PoCab → C1 is better than it, thus we
do not need to compute EDD for route PoCab→ C1 → C2.
Similarly, if the condition of PR(b) (i.e., D1 +D2 < D̃2 and
D̃2 < D̃1) is satisfied, we use D to tag the conclusion at
C2, i.e., EDD of route PoCab → C1 → C2 will decrease
compared with that of route PoCab → C1. The tag D
indicates that route PoCab→ C1 can not be optimal because
route PoCab → C1 → C2 is better than it, thus we do not
need to compute EDD for route PoCab→ C1.

Given PoCab, N potential pick-up locations and L, we
will first generate all possible candidate routes and store them
with a tree structure as shown in Figure 1(b). We will then
conduct the same process over all candidate routes (from
ones with 1 pick-up locations to those with L ones) on the
tree structure. Finally we will be able to tag partial pick-up
locations with either I or D. Please note that many pick-up
locations may not have any tag if conditions of both PR(a)
and PR(b) are neither satisfied, and that we do not need
to tag any pick-up location which appears as the first one
of candidate route. In Figure 1(b), we show some hypothetic
tags for partial pick-up locations of shown candidate routes.
Based on these tags, we can conduct the following two pruning
strategies: (a) if I is tagged to one pick-up location Ci, the
candidate route ending with Ci can be pruned, i.e., removing
from consideration for optimal route; (b) if D is tagged to
one pick-up location Ci, the candidate route ending with the
parent node (i.e., pick-up location) of Ci can be pruned. As
many candidate routes may be pruned based both strategies
and pruning takes less time, we will be able to save a lot of
computation of EDD for them.

In fact, we can build the tree structure as shown in
Figure 1(b) offline before we know the position of an empty
cab requesting recommendation service. We could obtain N
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potential pick-up locations at different times in a region offline
based on historical data. We then build the tree structure
(excluding PoCab) with these locations and user-specified
L. Based on the tree structure, we could conduct the same
pruning strategies as described above. Once PoCab of one
empty cab is given, we can search the optimal one from
remaining candidate routes. Since many candidate routes have
been pruned offline, we will only need to compute EDD for
remaining candidate routes and pick the optimal one with
minimum EDD. Thus, we will save a lot of computation for
the online recommendation.

4 Destination-Oriented Route Recommendations
(DORR)
In this section, we introduce a destination-oriented route
recommendation (DORR) problem. Compared to RR-RA
problem, there is a destination-driven direction constraint
in DORR problem, which makes the methods for RR-RA
problem not work.

4.1 Problem Statement
In the real-world taxi business, a driver of empty cab may
want to quickly go to an area from a far-away location and
he may also expect opportunity to pick up a customer on the
way back. A taxi driver may have such desire under several
scenarios. For instance, a driver in New York City (NYC)
may usually operate in the downtown area; after delivering a
passenger to a hotel in the uptown area, he wants to quickly
drive back to the downtown area and expects to earn some
business on the way back. In fact, in big urban areas, many
taxi drivers usually have their typical or familiar operation
areas and they tend to drive back after they happen to
travel to a far-away location. As another scenario, many taxi
drivers in metropolitan areas live in places which are often far
away from their operation areas, and they want to pick up
customers on the way to their operation area when they leave
home and start their work daily. Since a particular driver
usually has a destination constraint during his driving, we
name this practical challenge as a destination-orient route
recommendation (DORR) problem.

We observe two main constrains imbedded in DORR
problem. First, we have to take into account the specific
destination where a driver wants to go back for addressing this
DORR problem. Second, in the destination-constrained sce-
nario, drivers have more concern about the driving direction
which may be detoured after picking up a customer, because
they want to go back to their operation areas within some
reasonable time. The request-based passive dispatch solution
provided by today’s online taxi transportation companies
(e.g., Uber and DiDi) could not work in this scenario because
they have not considered both constraints at all. To meet this
specific need, we develop a dedicated method for addressing
this DORR problem. In the following, let us first state this
DORR problem in a formal way.

Let us denote one location as E which represents an area
where the driver Di usually operates, and another location
as S which is a place that is far away from E , and the
driver Di wants to go back to E from S. From historical
data, we could obtain a set of N potential pick-up points,
C = {C1, C2, · · · , CN}, along the way from S to E , and the

estimated pick-up probability Pi associated with each pick-up
point Ci. Let P = {P1, P2, · · · , PN} denote the probability
set. In additional to the probability, we could also get the
direction information associated with each pick-up point. For
each pick-up point Ci, we first gather all historical pick-up
events TCi at this pick-up point. We denote all pick-up events
associated with the pick-up point set C as TC. Each pick-up
event is actually a location trace, which indicates that a taxi
driver delivers passenger(s) from this pick-up point to another
location. We represent each pick-up event as a directed arrow
staring from this pick-up point as shown in Figure 2 (a).
This arrow reflects the direction toward a particular location
where the driver drops off passenger(s). For each pick-up point
Ci, we summarize the potential direction of pick-up events
happening at Ci into 8 bins as shown in Figure 2 (b).

Comparing with the direct travel from S to E , it will
certainly increase the travel distance for driver Di to inten-
tionally pass several pick-up points on the way from S to
E . We can calculate this certainly increased travel distance
based on the passed pick-up points. We denote the certainly
increased travel distance as certain cost. Furthermore, when
driver Di picks up passenger(s) at a pick-up point on his
way from S to E , this pick-up event may cause the driver to
travel more distance. We denote such potentially increased
travel distance as uncertain cost. Given all pick-up events
associated with one pick-up point, we are able to estimate
this uncertain cost. We first compute the exactly-increased
travel distance for each historical pick-up event, such as a
pick-up event at A in Figure 3 (a). Then the average of
exactly-increased travel distance over all pick-up events at
one pick-up point may be an estimation of such uncertain
cost. Thus, there are such two aspects of cost associated with
each pick-up point. Of course, the driver has some chance
to earn business by passing pick-up points. Given all pick-up
points and their associated information, we can generate many
candidate routes consisting of different pick-up points from S
to E . For example, in Figure 3 (a), we can have sequences
like S → A → B → E or S → A → C → D → E. We
represent the set of all possible routes as R, each of which
leads to different uncertain and certain cost, and business
success.

Our goal is to search an optimal sequence of pick-up
points for a taxi driver in order to maximize his business
success with constraint on certain and uncertain cost. Let us
use a function G to assess the two aspects of cost for each
candidate route. For example, for a particular sequence Ri

(Ri ∈ R), we denote the function as G(Ri, S, E, PRi , T
Ri),

where TRi and PRi represent the associated pick-up events
and probability information of Ri. In other words, for a
specific sequence, the function G depends on source and
end nodes, pick-up points along the sequence, and all as-
sociated information of these pick-up points. The business
success of taxi driver in this destination-constrained scenario
may be measured in different ways. In Section 4.2, we will
introduce two ways for measuring the business success and
the specific formula of function G. Given the above state-
ment, we can formally define the DORR problem as follows.
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The DORR Problem
Given: An original location S and an destination loca-
tion E , a pick-up point set C and associated probability
set P, the associated pick-up event set TC, a taxi driver
who locates at S and wants to go back to E quickly,
a cost constraint TC that is essentially to limit the
potentially travel distance.
Objective: Recommending an optimal sequence of pick-
up points for the taxi driver, which could maximize the
business success under the given cost constraint.

Similar as RR-RA problem, we assume that a driver would not
visit a pick up location more than once in the DORR problem.
In other words, there is no duplicate pick-up location in each
candidate route.

To solve this problem, we have the same two challenges as
those of RR-RA problem: (1) how to obtain reliable pick-up
locations and associated probability, and (2) how to efficiently
search optimal driving routes. We will use almost the same
method described in Section 3.2 to solve the first challenge.
The only difference is we will set a different spatial range
based on the two locations, S and E , to extract raw pick-up
locations. Specifically, let us denote the latitude and longitude
of S and E as (latS , lngS) and (latE , lngE), respectively. We
consider the raw pick-up points within the spatial range that
has the centre as ( latS+latE

2 , lngS+lngE
2 ) and the radius as τ2.

Suppose the computational cost for one candidate route is
Cox(G) = 1. The computational complexity of this DORR
problem is O(N !). In the following section, we introduce the
proposed method for solving the second challenge.

4.2 Cost Function and Business Success
In this section, we introduce the formulation of function G
and the measurements of business success.

Suppose there are totally K historical pick up events hap-
pening at Ci. Let us denote each of them as TCi

k (1 ≤ k ≤ K).
Also let us denote the corresponding drop off location of each
pick up event as DrCi

k (1 ≤ k ≤ K). If a driver only visits
one pick up location Ci while traveling from S to E , he
may pick up a customer at Ci and deliver this passenger
to different locations. Our idea is to leverage the average of
historical K pick-up events to estimate the travel distance.
Thus driver’s driving route could be S → Ci → DrCi

k → E
(1 ≤ k ≤ K). We represent the driving distance of each
route as Dk(Ci) (1 ≤ k ≤ K). The average of K routes is
D(Ci) =

∑K
k=1 Dk(Ci)/K, which is used to estimate the

driver’s potential driving distance if he picks up a customer
at Ci. In fact, as the travel distance DS→Ci

from S to Ci

remains the same for each pick up event TCi

k (1 ≤ k ≤ K)
at Ci, we may rewrite D(Ci) as D(Ci) = DS→Ci

+D
u
Ci→E ,

where D
u
Ci→E denotes the average driving distance from Ci

to E when the driver picks up a customer at Ci. It can be
estimated with the historical pick up events at Ci as well.
Let us use D

Ci→Dr
Ci
k →E

(1 ≤ k ≤ K) denote the distance
of each pick event k. Then D

u
Ci→E could be computed as

D
u
Ci→E =

∑K
k=1 DCi→Dr

Ci
k →E

/K.
To simplify the further introduction about cost function

G, let us look at an example of driving route: S → C1 →
C2 → C3 → E . When a driver takes this sample route, he
may pick up a customer at C1, C2 and C3 with probability
as P1, (1− P1)P2, and (1− P1)(1− P2)P3, respectively. We
get the cost function G for estimating the potential driving
distance as: G = P1D(C1)+(1−P1)P2D(C2)+(1−P1)(1−
P2)P3D(C3)+(1−P1)(1−P2)(1−P3)D, where D represents
the driving distance if a driver does not pick up a customer
at any of three locations. In other words, D is the actual
driving distance along the route S → C1 → C2 → C3 → E .
D(C2) and D(C3) are the estimated driving distances when
the driver picks up a customer at C2 and C3, respectively.

When a driver follows a route S → C1 → C2 → C3 → E ,
the probability of picking up passenger(s) on the route is
1 − (1 − P1)(1 − P2)(1 − P3), which is the measurement
of business success used in this paper. Alternatively, the
potential earning could also be one measurement of business
success. For instance, if there are totally K historical pick
up events at Ci, let us denote the earning of each historical
pick up event as ECi

k . The average of earnings at Ci is
E(Ci) =

∑K
k=1 E

Ci

k /K. Consequently, for the example route
S → C1 → C2 → C3 → E , the potential earning can be
estimated as P1E(C1) + (1 − P1)P2E(C2) + (1 − P1)(1 −
P2)P3E(C3).

4.3 Computing Algorithm
In this section, we present an efficient computing algorithm
for searching the optimal route of DORR problem.

If a driver takes a route S → C1 → E as shown in Figure 3
(b), the potential driving distance D1 for this route can be
denoted as D1 = P1(DS→C1

+D
u
C1→E)+(1−P1)(DS→C1

+
DC1→E) based on the defined function G, where DS→C1

(
or DC1→E) is driving distance from S to C1 (or from C1

to E). If the driver takes another route S → C1 → C2 →
E , which is obtained by simply adding a pick up location
after C1, the potential driving distance D12 for this route can
be similarly represented as D12 = P1(DS→C1

+ D
u
C1→E) +

(1 − P1)P2(DS→C1
+ DC1→C2

+ D
u
C2→E) + (1 − P1)(1 −

P2)(DS→C1
+DC1→C2

+DC2→E). By carefully deriving, we
may find that D12 can not be smaller than D1. In fact, we
may obtain the following general monotone property.

Lemma 1. Given a candidate route R1 = S → C1 → · · · →
Ci → E , and another candidate route with an added pick
up location following Ci as R2 = S → C1 → · · · →
Ci → Ci+1 → E , the potential driving distance for taking
R1 and R2 is denoted as D1,··· ,i and D1,··· ,i+1 respectively.
Then we can infer D1,··· ,i ≤ D1,··· ,i+1. In other words, the
potential driving distance can not decrease when one more
pick up location is appended to a candidate route. (We provide
detailed proof for this lemma in online supplement.)
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This monotone property could greatly help us save the
computational cost when we search the optimal sequence of
pick up locations for a taxi driver in the real time, because
after we conclude that the potential driving distance of one
candidate route R is over the threshold of cost (i.e.,TC), we
do not need to consider those extended candidate routes which
include the candidate route R in the beginning.

Furthermore, we identify another monotone property that
is also useful for computing potential driving distance. Let us
still take the route S → C1 → C2 → E in Figure 3 (b) as
an example, where we have D12 = P1(DS→C1

+D
u
C1→E) +

(1 − P1)P2(DS→C1
+ DC1→C2

+ D
u
C2→E) + (1 − P1)(1 −

P2)(DS→C1
+DC1→C2

+DC2→E). We identify that D12 will
monotonely increase as DC1→C2

, Du
C2→E or P2 increases. In

general, we have the following monotone property.

Lemma 2. Given a candidate route R = S → C1 →
· · · → Ci−1 → Ci → E , the potential driving distance for
taking route R is denoted as D1,··· ,i. We can infer that
D1,··· ,i monotonely increases as DCi−1→Ci

, D
u
Ci→E or Pi

increases. (We provide detailed proof for this lemma in online
supplement.)

With this monotone property, we may be able to prune one
candidate route by first checking these three values associated
with the last pick up location. For instance, given two
candidate routes R1 = S → C1 →→ C2 → C3 → C4 → E
and R2 = S → C1 →→ C2 → C3 → C5 → E , we can
derive that the potential driving distance of R2 is equal to
or bigger than that of R1 if we have DC3→C4 ≤ DC3→C5 ,
D

u
C4→E ≤ D

u
C5→E and P4 ≤ P5. Thus we do not need

to compute function G for R2 if we already concluded the
potential driving distance of R1 is over the threshold of cost.

Based on the two monotone properties, we will first
enumerate and check candidate routes with 1 pick up location.
Then we extend previously-considered routes by adding one
more pick up location and check each of extended routes until
we get |C| pick up locations in each route. When we extend
routes with l (1 ≤ l ≤ |C| − 1) pick-up locations, we will
apply Lemma 1 to avoid extending those routes whose travel
distance is already over the cost threshold; When we check
routes with l + 1 (1 ≤ l ≤ |C| − 1) pick-up locations, we
will apply Lemma 2 to prune possible candidates without
computing function G. Specifically, a sketch of our algorithm
is shown in Figure 5. A tree structure is used to illustrate the

A B C D E F

A B C D FB C D E F

A B D F

B D F

B C D E

A B D

 

Level 1

Level 2

Level 3

Level 4

Fig. 4: A Sample of Tree Structures

strategy of our algorithm as shown in Figure 4, where it is
assumed that there are totally six pick-up locations. The root
of tree denotes the empty set of candidate, which is essentially
a set of candidates with zero pick-up location. If a route at
the level l (i.e., containing l pick-up locations) has a potential
driving distance over the cost threshold, we do not need to
consider all of its extended routes. For instance, if the route
S → B → E on the level 1 is already pruned as its driving
distance is over the threshold, there is no need to extend this
route (i.e., adding a child to B). Also we may prune some
candidate routes on the same level using Lemma 2 and their
extended ones as well. For instance, if we conclude the travel
distance of route S → E → A→ E is over the cost threshold
and those three values of node B mentioned in Lemma 2
are bigger than those of node A respectively, we can directly
prune the route S → E → B → E without computing its
function G.

5 Experimental Results
In this section, we use both real-world and synthetic data to
evaluate the efficiency of developed search algorithms and the
effectiveness of route recommendations.

5.1 The Experimental Setup
Data and Parameters. In the experiments, we use real-world
taxi GPS data that were collected in San Francisco Bay Area.
This data set contains around 30-day GPS location traces
of approximately 500 taxis in San Francisco Bay Area. For
each recorded GPS point, there are four attributes: latitude,
longitude, fare identifier and time stamp. The fare identifier
could be 1 or 0, where 1 indicates taking passenger(s) and
0 means empty cab. In addition, we generate some synthetic
data (i.e., pick-up points and probabilities) for testing the
scalability of algorithms. Details about synthetic data will be
provided later. We set the parameters for generating pick-up
location and probability in Section 3.2 as: α = 30 minutes,
τ1 = 3.0 miles and τ2 = Dist(S ← E)/2, where Dist(S ←
E) is the driving distance from S to E .

Experimental Environment. The algorithms were imple-
mented in Python. All the experiments were conducted on a
Windows 10 with Intel Core i7 6-Core and 12.00GB RAM.
The search time for the optimal driving route is the major
metric we use to evaluate the efficiency of our algorithms.

Competing Methods. We compare our search algorithms
for RR-RA and DORR problems with two baseline methods.
To the best of our knowledge, existing works [7], [8], [9], [10],
[11] focus on addressing MSR problem proposed in [6] or other
different problems. There is no existing method for solving
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Input:
S: the original location
E : the destination location
C: a set of pick-up locations
P: a set of probabilities associated with C
TC: a set of pick-up events associated with C
TC: a cost threshold

Output:
The optimal route from S to E for a driver.

1. for l = 1 : C− 1
2. Enumerate all routes with l pick-up locations by adding one pick-up location to remaining

candidates with l − 1 pick-up locations; Avoid considering some routes with l pick-up
locations by applying lemma 1

3. Prune routes with l pick-up locations by applying Lemma 2
4. end for
5. Compute the function G for all remaining routes and prune those ones

with travel distance over TC
6. Compute the business success for all remaining routes
7. Sort them and pick the optimal one with the biggest business sucess

Fig. 5: The Algorithm for DORR

either RR-RA or DORR problem. Therefore, the two baselines
that we compare to are straight-forward methods for searching
optimal route of RR-RA and DORR problems. The idea of
baseline method for RR-RA is to directly compute potential
driving distance for all candidate routes and find the optimal
one with minimum value. The idea of baseline algorithm
for DORR is directly computing the business success and
cost for each possible candidate route and picking the one
with maximum business success and cost lower than the cost
constraint TC. All acronyms of evaluated algorithms are given
in Table 1.

TABLE 1: Acronyms of Competing Methods

SF-RR-RA: The baseline search algorithm for RR-RA
Pr-RR-RA: Our pruning-based search algorithm for RR-RA
SF-DORR: The baseline search algorithm for DORR
Pr-DORR: Our pruning-based search algorithm for DORR

5.2 Efficiency of Recommendations
5.2.1 Performances of RR-RA
In this subsection, we show the efficiency of different algo-
rithms for RR-RA problem. We randomly pick some taxi cabs
that are empty around 4pm on Friday from our historical GPS
data and compute the optimal route for each of them based
on its location PoCab. To demonstrate the efficiency of our
algorithm Pr-RR-RA, we compare its performance with that
of baseline method SF-RR-RA.

As shown in Section 3.2, the number of pick-up locations
depends on the position and time of an empty cab that
requests recommendation service. For each selected empty
cab, we first use the method in Section 3.2 to generate the
pick-up locations and estimate their pick-up probabilities,
then estimate D̃i for each pick-up location, and finally com-
pute the optimal route with different algorithms and record
their running time. After recording the running time of each
algorithm for all cabs, we compute the average of running
time for the same number of pick-up points for individual
algorithm. In Table 2, we show the average running time

for three different numbers of pick-up locations. The running
time shown here does not include the time for generating pick-
up locations, their probabilities and D̃i for both algorithms.
From Table 2, we can find that our algorithm Pr-RR-RA
outperforms the baseline method significantly. Note that in
this set of results we set the max number of pick-up locations
of driving route as L = 4.

TABLE 2: Comparisons of Computational Time (Sec) (L =
4)

SF-RR-RA Pr-RR-RA
10 Pick-up Points

Computational Time 3.19 1.81
15 Pick-up Points

Computational Time 6.54 3.08
20 Pick-up Points

Computational Time 8.95 4.93

L is an important parameter that affects computation
complexity. Thus we demonstrate the efficiency of different
algorithms with different value of L. Specifically, we repeat
the same experiments as the above with different values of
L. In Table 3, we show the results with 10 pick-up points.
The results demonstrate that the computational time of both
algorithms generally increases with the increase of L and our
algorithm consistently outperforms the baseline one.

TABLE 3: Computational Time (Sec) with Different L

10 Pick-up Points
SF-RR-RA Pr-RR-RA

L = 4 3.19 1.81
L = 6 4.38 2.12
L = 8 7.23 4.02

For Pr-RR-RA algorithm, pruning plays an important role
to save computational time. We show the average percentage
of candidates that are pruned by our algorithm with different
values of L and different numbers of pick-up points in Table 4.
As can be seen, a large portion of candidates are pruned
without computing EDD value in our algorithm.
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TABLE 4: A Summary of Pruning Percentage

10 Pick-up Points
L = 4 L = 6 L = 8

Pr-RR-RA 39.7% 41.8% 48.5%
15 Pick-up Points

L = 4 L = 6 L = 8
Pr-RR-RA 42.1% 45.3% 51.2%

20 Pick-up Points
L = 4 L = 6 L = 8

Pr-RR-RA 41.7% 44.3% 50.5%

To examine the scalability of our algorithm for a large
number of pick-up points, we randomly generate potential
pick-up points within a specified area, the pick-up probability
and D̃i associated with each pick-up point. In total, we have
3 synthetic data sets with 50, 100 and 150 pick-up points,
respectively. Also we randomly generate 10 positions of empty
cab within the same area. For each synthetic data set, we
compute and recommend the optimal route for each position
of empty cab, and record the computational time of both
algorithms. Note that we use Euclidean distance instead of
driving distance to measure the traveling distance between
pick-up points. In total, we produce 10 recommendations for
each data set. We take the average of computational time of
these 10 recommendations and show the results in Table 5,
where we set parameter L as different values for the three
data sets. As can be seen, our algorithm could scale well with
more pick-up points and have more efficiency improvement
against the baseline method as the number of pick-up points
increases.

TABLE 5: Computational Time (Sec) on Synthetic Data

SF-RR-RA Pr-RR-RA
50 Pick-up Points, L = 4

Computational Time 44.27 21.09
100 Pick-up Points , L = 6

Computational Time 203.97 82.76
200 Pick-up Points , L = 8

Computational Time 487.33 158.47

5.2.2 Performances of DORR
In this section, we show the efficiency of different algorithms
for DORR problem. We randomly pick some taxi cabs that
are empty and far away from their common operation areas
around 4pm on Friday from our historical GPS data, and
then compute the optimal route for each of them. For each
selected cab, we use its current location around 4pm as the
original location and the central of its common operation area
as the destination location. To demonstrate the efficiency of
our algorithm in Figure 5, we compare its performance with
that of baseline algorithm SF-DORR.

The number of generated pick-up points depends on
original and destination locations. This number may vary
among all selected cabs. For each of them, we first generate
the pick-up locations and estimate their pick-up probabilities,
then we compute the optimal route with different algorithms
and record their running time. After recording the running
time of each algorithm for all cabs, we take the average of
running time with the same number of pick-up points for
individual algorithm, and finally show the results in Table 6.
Note that the running time shown here excludes the time for

clustering of pick up points and probability estimation that is
also a part of online search but is the same for all algorithms
compared here. By comparing with the baseline method, we
can see that our algorithm could consistently save significant
computation time over different numbers of pick-up points.
Also the computation cost of baseline method increases much
faster than that of our algorithm when the number of pick-up
points increases.

TABLE 6: Computational Time (Sec) with Different Numbers
of Pick-up Point

SF-DORR Pr-DORR
6 Pick-up Points

Computational Time 1.37 0.76
7 Pick-up Points

Computational Time 7.09 2.06
8 Pick-up Points

Computational Time 43.85 7.93

To demonstrate the pruning effect, we compute the aver-
age percentage of pruned candidates at different steps of our
algorithm in Table 7, where we use the same experimental
setting as in Table 6. As can be seen, while both Lemma 1
and Lemma 2 enable us to prune many candidates, Lemma 1
leads to more pruning percentage than Lemma 2 does.

TABLE 7: A Summary of Pruning Percentage

Pruning by Lemma 1 Pruning by Lemma 2
6 Pick-up Points

60.4% 18.7%
7 Pick-up Points

63.9% 19.6%
8 Pick-up Points

65.5% 20.9%

The cost constraint (i.e., TC) may affect the efficiency
because a lower (higher) value of TC leads to more (fewer)
candidates pruned in advance based on Lemma 1 and
Lemma 2. To show this effect, we repeat the same experiments
as the above yet with different values of TC and show the
results in Table 8, where the number of pick-up points is 8. In
general, the computation time decreases as the value of TC
increases for our algorithm. For real practice, we may need to
set up this cost constraint parameter based on the empirical
experience and possible input from end users. We may obtain
different optimal driving routes with different values of TC
with the same other inputs.

TABLE 8: Computational Time (Sec) with Different Values
of TC

Values of TC 50 Miles 40 Miles 30 Miles
Pr-DORR 7.93 6.87 5.69

As we mentioned above, the value of TC affects the
pruning effect of algorithm. To further demonstrate this, we
show the pruning percentage versus different values of TC in
Table 9. From Table 9, we could see higher values of TC lead
to more percentage of candidates pruned, and consequently
less computation time for our algorithm.

5.3 Effectiveness of Recommendations
Other than the computational advantage that we showed
above, we examine the effectiveness of our route recommenda-
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TABLE 9: A Summary of Pruning Percentage

Pruning by Lemma 1 Pruning by Lemma 2
8 Pick-up Points, TC = 8 Miles
65.5% 20.9%
8 Pick-up Points, TC = 7 Miles
67.7% 21.3%
8 Pick-up Points, TC = 6 Miles
70.3% 23.6%

tions. The purpose of this examination is to demonstrate that
the recommended driving routes could help taxi drivers pick
up customers. While the ideal way is to conduct field experi-
ments (a.k.a., A/B testing), it is very difficult to collaborate
with taxi drivers or taxi companies to run such experiments.
Usually, as the first step, offline empirical tests are conducted
using classical machine learning leave-out validation methods
on historical data, and we follow this approach in this paper.
The basic idea of leave-out method is to split historical GPS
data into training and testing sets along the time dimension,
obtain pick-up points and probabilities using training data,
compute the optimal routes for empty cabs in testing data,
and compare recommended optimal routes with the routes
actually taken by drivers in testing data. Specifically, we use
90% GPS data of each taxi cab as training data and hold
remaining 10% GPS data for testing.

5.3.1 Performances of RR-RA
In this experiment, we extract raw drop off locations from test-
ing data, and compute recommended route by treating each
drop off location as the origin of an empty cab (i.e., PoCab),
where we set the parameter L as 4. In testing data, we have
the route actually taken by cab starting from each selected
drop off location. We then compare each recommended route
with the corresponding actually-taken route by a cab. The
actually-taken route starting from an raw drop off location
may be longer than the corresponding recommended route.
To make them comparable, we cut the actually-taken route
to the same length as the corresponding recommended one.
Consequently, we measure similarity between each pair of
routes (i.e., the recommended route and the cut actually-
taken route) based on dynamic time warping algorithm in
[44]. In total, there are 42, 080 pairs of route. Because the
dynamic time warping algorithm for measuring trajectory
similarity is very time-consumption, we randomly sample 5%
of pairs for our evaluation. In total we have obtained 2, 104
pairs of route. For each actually-taken route, we know whether
there is a pick-up event or not within the cut length based
on GPS logs in testing data. Based on this indicator, we split
all samples of similarity between each pair of routes into two
groups: Group 1 including all similarity samples that has the
indicator indicating there is a pick-up event within the really-
taken route, and Group 2 including all similarity samples
that has the indicator indicating there is no pick-up event.
Finally, to get the quantitative measurement of effectiveness,
we use statistical t-test to examine the difference between
Group 1 and Group 2. There are 1046 similarity samples in
Group 1 and its mean is 0.69. On the contrary, there are
1058 similarity samples in Group 2 and its mean is 0.23. The
p-value of t-test is less than 0.01, which indicates that the
similarity between each pair of routes with actual pick-up
event (i.e., Group 1) is significantly bigger than that without

actual pick-up event (i.e., Group 2). From these results, we can
see that there is a strong correlation between the similarity
and the binary indicator. This suggests that recommended
routes are very close to the corresponding actually-taken
routes that include pick-up events, and that those actually-
taken routes that do not include pick-up events are very
different from the corresponding recommended routes.

5.3.2 Performances of DORR
We conduct the similar effectiveness evaluation for DORR
problem. However, unlike the evaluation of RR-RA, we need
to extract drop-off locations, each of which is far away from
the common operation area of the corresponding cab. In
total, we obtain 890 drop-off locations that belong to the
destination-constrained scenario. We consider each selected
drop-off location as original location (i.e., S), and the center
of the corresponding common operation area as destination
location (i.e., E). We search the optimal route to recommend
for each selected drop-off location. In total, we also obtain
890 recommended optimal routes. For each selected drop-off
location, we obtain the actually-taken route that starts from
the drop-off location from testing data. In total, we initially
get 890 pairs of recommended route and actually-taken route.
But, some actually-taken routes may end at different locations
than the corresponding destination locations (i.e., common
operation area). To make a fair comparison between each pair
of routes, we filter out those actually-taken routes that do
not share the same destination location as the corresponding
recommended route. After this filtering, we obtain 803 pairs
of recommended route and actually-taken route. We use
the same method as used in Section 5.3.1 to compare the
similarity between two routes of a pair. For each pair, we
could obtain a binary variable indicating whether there is
a pick-up event or not along the actually-taken route from
testing data. Similarly we split the similarity samples into two
groups: Group 1 including all similarity samples where there
is a pick-up event within the actually-taken route, and Group
2 including all similarity samples where there is no pick-up
event. We also use statistical t-test to examine the difference
between Group 1 and Group 2. There are 397 similarity
samples in Group 1 and its mean is 0.63. On the contrary,
there are 406 similarity samples in Group 2 and its mean
is 0.28. The p-value of t-test is less than 0.01. In summary,
these results suggest that recommended routes are very close
to actually-taken routes that include pick-up events, and those
actually-taken routes that do not include pick-up events are
very different from the corresponding recommended routes.

5.4 Practical Value of Route Recommendation
To further demonstrate the practical value of route recom-
mendation, we estimate the business improvement of our
recommendations that is measured as empty rate (ER). ER
is defined as the ratio of driving distance without passenger.
We can compute ER using historical GPS data for each taxi
driver. The lower value of ER means better business profit
of a taxi driver. In our data set, the average ER is 55%
over all drivers. 10% drivers have ER lower than 0.24, which
means that they carry passenger(s) and earn money for 76%
of their driving. 10% drivers have ER over 0.7. The goal of our
evaluation is to use a simulation method to examine whether
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we can significantly decrease ERs of taxi drivers with our
route recommendations.

Specifically, we randomly select 100 taxi cabs from testing
data set. For each taxi cab, we extract all driving routes
without passenger from 10% of historical GPS data in testing
data. For each of these routes, there are a drop-off location
at the beginning and one pick-up location in the end. In
total, we get 8, 030 routes, i.e., 8, 030 pairs of drop-off
and pick-up locations. We use each drop-off location as an
input to generate recommended route. Among these 8, 030
pairs, we identify 165 of them as corresponding to DORR
problem. For the remaining 7, 865 ones, we consider them as
corresponding to RR-RA problem. We use different recom-
mendation methods to search optimal routes for these two
groups. For each drop-off location in RR-RA group, assuming
the recommended optimal route is taken, we estimate the
driving distance before picking up next passenger(s) as the
EDD value. This estimated EDD value is considered as the
simulated driving distance before picking up next passenger(s)
when our recommended route is taken. It is expected that this
simulated driving distance is equal to or lower than the actual
driving distance prior to pick-up event. For each drop-off
location in DORR group, we similarly estimate the simulated
driving distance without passenger from S to E when our
recommended route is taken. Finally, for each of 100 taxi
cabs, we compute two ER values: one (denoted as ERi) is
obtained with the observed actual driving distance without
passenger; the other one (denoted as ERS

i ) is obtained with
the simulated driving distance without passenger. We then
further compute the decreasing percentage of ER value as
DPER

i = (ERi − ERS
i )/ERi (1 ≤ i ≤ 100). The average

of {DPER
i } is 0.18, which means our recommendations could

potentially decrease their empty rate of driving by 18%. The
t-test also shows that DPER

i is significantly bigger than 0
with p-value less than 0.01. Moreover, we visualize the values
of ERi and ERS

i (1 ≤ i ≤ 100) in Figure 6, where we sort all
100 taxi cabs according to ERi and align them along x axis.
From this figure, we can see that our route recommendations
lead to different levels of ER decrease (i.e., ERi − ERS

i )
for different drivers. The higher ERi is, the more decrease
of ER is achieved. All these results indicate that our route
recommendations could decrease ER and improve business
performance when they are accepted by taxi drivers.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced a Route Recommendation with
Relaxed Assumptions (RR-RA) problem and a Destination-
Oriented Route Recommendation (DORR) problem by ex-
ploiting massive GPS log, both of which aim to recommend
routes to taxi drivers when there is no active pick-up request.
The recommended routes can proactively navigate drivers to
potential passengers improving their business performance.
The package of methods for both RR-RA and DORR prob-
lems provides a complete solution for route recommendations:
when taxi drivers encounter the destination-oriented scenario,
they can obtain route recommendations via the solutions for
DORR problem; otherwise, they could get route recommen-
dations with the solutions for RR-RA problem. To generate
route recommendations in an efficient way, we developed
two smart algorithms for RR-RA and DORR problems,
respectively. Both algorithms work based on the identified
important monotone property of evaluation functions for
RR-RA and DORR problems. Our evaluation results with
large-scale GPS data demonstrate the improved efficiency of
proposed recommendation algorithms, and the practical value
of our route recommendations.

Our developed solutions have potential applications for
other transportation problems. The first one is carpool
service, which has been provided for many internet-based
transportation companies such as Uber, Waze, Takescoop.
In the setting of carpool service, many drivers usually have
fixed origin (e.g.,home) and destination (e.g., work place)
and expect to pick up passengers on the way from origin
to destination. How to recommend optimal routes for carpool
drivers is an interesting and practically important problem.
This routing problem can be essentially formulated as DORR
problem, where the objective is to find an optimal driving
route that could maximum carpooling probability under given
driving distance and direction constraints. The approaches
developed for DORR problem can be used for solving this
carpool routing problem. The second one is searching for
parking lot problem. Searching for parking lot is currently
a challenging problem in many big cities (such as LA in
the U.S.). Our solutions for RR-RA problem can be used for
solving this problem. We can replace the pick-up location and
pick-up probability with the parking spot location and spot
available probability, respectively. The objective of RR-RA in
this setting is then to search an optimal route that leads to
the minimum driving distance before finding a parking spot.
The recommendation methods and algorithms we developed
for RR-RA problem could be used for solving this parking lot
search problem. Due to the lack of real-world data, we can
not study these two route recommendation problems in this
paper.

Finally, we would like to discuss some the perspectives
about using the developed route recommendation solution
for future autonomous vehicles equipped with sophisticated
systems of perception (e.g., camera, LIDAR). With the future
autonomous taxi vehicles, computing the optimal driving
routes for empty cabs will be more critically needed due to
the lack of a driver. Our methods for both RR-RA and DORR
problems could provide a good solution to automatically nav-
igate empty driverless taxi cabs. Such automatic navigation
could greatly enhance business performance of driverless cabs,
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save energy and even improve the efficiency of overall trans-
portation systems in an urban area. However, we also realize
that there will be new challenges to address the problem of
searching optimal driving routes for empty driverless cabs
with sophisticated perception systems. More signals about the
potential passengers, connected taxi networks, and traffic may
be captured by the perception systems of future autonomous
vehicles. These signals could be analyzed and utilized for
computing the optimal driving routes for empty driverless
cabs. In this circumstance, searching optimal routes in the
two scenarios of RR-RA and DORR problems (studied in
this paper) will be more complicated because additional input
signals (e.g., the volume of crowd) captured via the perception
systems need to be considered, and consequently new methods
and computing algorithms will need to be developed.
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