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ABSTRACT

There is an increasing need for knowledgeable K-12 computer sci-

ence (CS) teachers. It is necessary to inform teachers how to debug

and help their students debug programs. Research has shown that

debugging is difficult for novices because the process requires dif-

ferent skills from creating programs and instructing students how

to debug can help them acquire these skills. To this end, we de-

veloped a CS professional development for middle grade teachers

(grades 5th-8th/ages 10-13) that includes lessons on debugging. The

teachers completed debugging activities that involved finding bugs

in Scratch programs and explaining how they would help their

students in debugging. We qualitatively analyzed their responses

and found that teachers successfully identified the problem but

they struggled to locate it in the code. In considering how they

would help students who had such a bug, the teachers often fo-

cused on helping the student find a solution for the bug rather than

on identifying the problem or its source. Finally, teachers’ ability to

identify bugs and the pedagogical strategies to engage students in

this process differed based on CS teaching experience and prior CS

knowledge. This work contributes to our understanding of teachers’

debugging abilities and advances our knowledge on how to support

teachers in teaching their students how to debug their programs.
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1 INTRODUCTION

Bugs are a common part of writing programs regardless of whether

the program is being written by a novice in Scratch or a professional

programmer in Python or C++. However, when programmers start

debugging their code, the differences between novices and experts

become obvious [23, 45]. Identifying bugs in code is difficult for

novices. This is in part due to the fact that replicating and isolating

bugs requires skills that are different from programming knowledge

[12, 25]. These skills include an understanding of the programming

language being used, general knowledge about programming and

how programs execute, and knowledge about common bugs and

effective debugging strategies [12].

Since debugging is difficult for novices, students may need help

from teachers to get łunstuckž [32]. Studies have shown that pro-

viding debugging instruction is effective for helping students learn

debugging skills [9, 10]. While researchers have explored ways

to teach students debugging methods [31, 33, 34], there has been

little research on teaching CS teachers how to debug or to teach

debugging, especially at the K-12 level [26]. As with any subject,

teachers both need the skill themselves and knowledge on how

to teach it in order to effectively teach debugging. Additionally,

there is a gap in debugging research on how teachers at the K-12

level currently teach their students debugging. To this end, we de-

veloped a computer science (CS) professional development (PD)

program for middle grade teachers (grades 5th-8th/ages 10-14) that

includes activities to develop teachers’ debugging pedagogical con-

tent knowledge. As part of the PD, teachers complete debugging

activities that involved finding bugs in Scratch programs and are

asked to explain how they would help their students debug those

same Scratch programs. More specifically, in this paper we pursue

the following research questions:

• After being introduced to the łWHAT?!? A MESSž strategy,

are teachers able to identify bugs in Scratch programs?

• Are there differences in the ability to identify bugs between

novice and more experienced teachers?

• What strategies do teachers plan on using to support stu-

dents in identifying and fixing bugs?

• Are there differences in teacher support type between novice

and more experienced CS teachers?

To answer these questions, we qualitatively analyzed the work

teachers produced during our PD and their responses to open-ended

prompts about their approaches to helping their students find bugs.

Additionally, we used teachers’ pre-knowledge assessments, years

teaching CS and years teaching overall to identify similarities and

differences in their debugging skills and their debugging pedagog-

ical strategies based on prior experience. This work contributes

to our understanding of teachers’ abilities to help their students
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learn how to debug and shed light on the role of prior experience

in developing teachers’ debugging pedagogical content knowledge.

2 PRIORWORK

In this section, we review our theoretical framework and prior work

on debugging. Our work builds upon research on novices versus

experts in debugging and debugging instruction.

2.1 Theoretical Framework: PCK

In this work, we will frame our analysis and results using the Peda-

gogical Content Knowledge (PCK) framework [41]. Content knowl-

edge refers to teachers’ knowledge about the content they teach

(e.g. knowledge of and ability to use specific productive debugging

strategies). Pedagogical knowledge involves teachers knowledge

about how to teach and support students in learning (e.g. Con-

structionism). Finally, pedagogical content knowledge refers to

knowing the pedagogical practices in teaching the specific content

(e.g. knowledge of how to teach others to understand how, when,

and why to use particular debugging strategies).

Studying PCK in CS education is not new [3], but has seen a

resurgence [20, 22, 48]. Hubbard calls for additional research on PCK

in CS [20] and researchers recently used PCK to analyze teacher

PD data [21, 46]. Yadav and Berges developed a survey to measure

teachers’ CS PCK through the use of vignettes [48]. They found

differences in teachers’ responses to the vignettes based on their

level of overall and CS teaching experiences [48]. These researchers

have contributed to the community’s understanding of how to best

help teachers learn and teach CS. Researchers have yet to use PCK

to evaluate teacher debugging skills and pedagogical approaches.

2.2 Novices Vs. Experts

Early debugging research found that experts are more successful

and faster than novices at finding bugs in a program [23]. Experts

often pick a debugging strategy rather than switching frequently

between strategies [45]; they were also able to debug the programs

by viewing the system of the program as a whole [45] and the code

in order of execution [23]. In contrast, novices tend to use erratic

approaches to debugging [45], often read programs line-by-line

[23], and seemed to focus on fixing the bug rather than taking the

time to understand how the programs function [45].

Much of the recent research on debugging has focused on learn-

ing more about how novices debug code. Echoing findings from

previous work, Fitzgerald et al. concluded that finding the bug is

the most difficult part of debugging [14] and once students found

the bug, they were often able to fix the problem [15]. Novices do

not often have pre-existing skills that they can use to debug code

[43] and use a variety of strategies to find bugs [38], including trial-

and-error [25, 27, 49]. Alqadi and Maletic found that students who

used trial-and-error were likely to introduce new bugs while they

tried to fix existing ones [2]. Research has found that specific strate-

gies were more helpful than others. Examples include encouraging

novices to focus on understanding the program [14] and to make

small to medium sized targeted changes to the code rather than

making substantial changes to the code [24]. Researchers found

there was an overlap in strategies and that some student seemed

to use debugging strategies ineffectively [38]. Additionally, while

many good novice debuggers were also good programmers, the op-

posite was often not true [15], which furthers the argument about

the need to teach debugging skills.

Of the existing research on novices learning debugging, few

researchers have focused on CS teachers. When debugging, novice

teachers did not focus first on understanding the program [26].

Instead, they started by examining the output. Additionally, some

teachers deleted segments of code rather than trying to fix them

and those that did fix their code did not necessarily understand

why the error occurred and why their changes fixed the code [26].

2.3 Debugging Instruction

Research on debugging instruction ranges from direct instruction

to debugging games. Research on direct instruction has found a

decrease in debugging time [10] and improvements on students’

ability to find and correct bugs [33], even in K-6 (ages 5-12) [5].

Much of the work on supporting students while debugging fo-

cused on tools that were created to help with the debugging process

[4, 11, 28, 36, 42]. These tools showed varying degrees of success

in helping students with their debugging skills. To our knowledge,

few researchers have explored ways for instructors to support their

students while debugging. Wilson explored the use of Socratic

approach where the instructor asks the student questions that en-

courages the student to change their perspective on the problem

[47]. The goal is to guide the student towards understanding the

problem and whether the proposed solution would work without

explicitly explaining it to the student. Wilson also specified that the

instructor should move from asking questions about the student’s

goal to how they believe their goal could be achieved (goal-oriented

to procedure-oriented) [47]. Brusilovsky described a technique that

involved providing students with various levels of assistance as

needed [7]. The instructor starts with the least amount of assis-

tance by showing the students the current buggy code and the

results produced. Then, the instructor continues to give additional

assistance, moving towards increasing levels of assistance until the

student understands the error. This method has also been used to

help middle school students learning Scratch [16].

Another area of debugging instruction involves exercises and

activities. One activity involved having students work in teams to

compete in finding bugs [8]. Another activity had students scaffold-

ing in the form of worksheets to have students practice debugging

strategies [9]. Students have also been tasked with finding and

fixing bugs in the code of games in a game-design program [1].

Additionally, researchers have had students create projects with

bugs for their peers to solve [13, 35]. These activities have shown

varying levels of success in improve students’ debugging skills and

perspectives on software testing.

Some of the more recent work on debugging has introduced

the idea of teaching debugging through games. Researchers devel-

oped Gidget [30, 31] and RoboBUG [34] for novice programmers.

Including personified character who needs help with debugging

code helped users solve more bugs in less time [30]. Additionally,

including in-game assessments in Gidget increased engagement in

users and led users to solve bugs more quickly [31]. An evaluation

of RoboBUG revealed evidence of the game helping users learn
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