
An Analysis of Middle Grade Teachers’ Debugging Pedagogical
Content Knowledge

Jennifer Tsan
University of Chicago

Chicago, IL, USA
jennifertsan@uchicago.edu

David Weintrop
University of Maryland
College Park, MD, USA
weintrop@umd.edu

Diana Franklin
University of Chicago

Chicago, IL, USA
dmfranklin@uchicago.edu

ABSTRACT

There is an increasing need for knowledgeable K-12 computer sci-

ence (CS) teachers. It is necessary to inform teachers how to debug

and help their students debug programs. Research has shown that

debugging is difficult for novices because the process requires dif-

ferent skills from creating programs and instructing students how

to debug can help them acquire these skills. To this end, we de-

veloped a CS professional development for middle grade teachers

(grades 5th-8th/ages 10-13) that includes lessons on debugging. The

teachers completed debugging activities that involved finding bugs

in Scratch programs and explaining how they would help their

students in debugging. We qualitatively analyzed their responses

and found that teachers successfully identified the problem but

they struggled to locate it in the code. In considering how they

would help students who had such a bug, the teachers often fo-

cused on helping the student find a solution for the bug rather than

on identifying the problem or its source. Finally, teachers’ ability to

identify bugs and the pedagogical strategies to engage students in

this process differed based on CS teaching experience and prior CS

knowledge. This work contributes to our understanding of teachers’

debugging abilities and advances our knowledge on how to support

teachers in teaching their students how to debug their programs.

CCS CONCEPTS

· Social and professional topics → K-12 education; Comput-

ing education;

KEYWORDS

debugging, K-8, teachers

ACM Reference Format:

Jennifer Tsan, David Weintrop, and Diana Franklin. 2022. An Analysis of

Middle Grade Teachers’ Debugging Pedagogical Content Knowledge. In

Proceedings of the 27th ACM Conference on Innovation and Technology in

Computer Science Education Vol 1 (ITiCSE 2022), July 8ś13, 2022, Dublin,

Ireland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.

3524770

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8ś13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524770

1 INTRODUCTION

Bugs are a common part of writing programs regardless of whether

the program is being written by a novice in Scratch or a professional

programmer in Python or C++. However, when programmers start

debugging their code, the differences between novices and experts

become obvious [23, 45]. Identifying bugs in code is difficult for

novices. This is in part due to the fact that replicating and isolating

bugs requires skills that are different from programming knowledge

[12, 25]. These skills include an understanding of the programming

language being used, general knowledge about programming and

how programs execute, and knowledge about common bugs and

effective debugging strategies [12].

Since debugging is difficult for novices, students may need help

from teachers to get łunstuckž [32]. Studies have shown that pro-

viding debugging instruction is effective for helping students learn

debugging skills [9, 10]. While researchers have explored ways

to teach students debugging methods [31, 33, 34], there has been

little research on teaching CS teachers how to debug or to teach

debugging, especially at the K-12 level [26]. As with any subject,

teachers both need the skill themselves and knowledge on how

to teach it in order to effectively teach debugging. Additionally,

there is a gap in debugging research on how teachers at the K-12

level currently teach their students debugging. To this end, we de-

veloped a computer science (CS) professional development (PD)

program for middle grade teachers (grades 5th-8th/ages 10-14) that

includes activities to develop teachers’ debugging pedagogical con-

tent knowledge. As part of the PD, teachers complete debugging

activities that involved finding bugs in Scratch programs and are

asked to explain how they would help their students debug those

same Scratch programs. More specifically, in this paper we pursue

the following research questions:

• After being introduced to the łWHAT?!? A MESSž strategy,

are teachers able to identify bugs in Scratch programs?

• Are there differences in the ability to identify bugs between

novice and more experienced teachers?

• What strategies do teachers plan on using to support stu-

dents in identifying and fixing bugs?

• Are there differences in teacher support type between novice

and more experienced CS teachers?

To answer these questions, we qualitatively analyzed the work

teachers produced during our PD and their responses to open-ended

prompts about their approaches to helping their students find bugs.

Additionally, we used teachers’ pre-knowledge assessments, years

teaching CS and years teaching overall to identify similarities and

differences in their debugging skills and their debugging pedagog-

ical strategies based on prior experience. This work contributes

to our understanding of teachers’ abilities to help their students

Session: Teachers ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

533



learn how to debug and shed light on the role of prior experience

in developing teachers’ debugging pedagogical content knowledge.

2 PRIORWORK

In this section, we review our theoretical framework and prior work

on debugging. Our work builds upon research on novices versus

experts in debugging and debugging instruction.

2.1 Theoretical Framework: PCK

In this work, we will frame our analysis and results using the Peda-

gogical Content Knowledge (PCK) framework [41]. Content knowl-

edge refers to teachers’ knowledge about the content they teach

(e.g. knowledge of and ability to use specific productive debugging

strategies). Pedagogical knowledge involves teachers knowledge

about how to teach and support students in learning (e.g. Con-

structionism). Finally, pedagogical content knowledge refers to

knowing the pedagogical practices in teaching the specific content

(e.g. knowledge of how to teach others to understand how, when,

and why to use particular debugging strategies).

Studying PCK in CS education is not new [3], but has seen a

resurgence [20, 22, 48]. Hubbard calls for additional research on PCK

in CS [20] and researchers recently used PCK to analyze teacher

PD data [21, 46]. Yadav and Berges developed a survey to measure

teachers’ CS PCK through the use of vignettes [48]. They found

differences in teachers’ responses to the vignettes based on their

level of overall and CS teaching experiences [48]. These researchers

have contributed to the community’s understanding of how to best

help teachers learn and teach CS. Researchers have yet to use PCK

to evaluate teacher debugging skills and pedagogical approaches.

2.2 Novices Vs. Experts

Early debugging research found that experts are more successful

and faster than novices at finding bugs in a program [23]. Experts

often pick a debugging strategy rather than switching frequently

between strategies [45]; they were also able to debug the programs

by viewing the system of the program as a whole [45] and the code

in order of execution [23]. In contrast, novices tend to use erratic

approaches to debugging [45], often read programs line-by-line

[23], and seemed to focus on fixing the bug rather than taking the

time to understand how the programs function [45].

Much of the recent research on debugging has focused on learn-

ing more about how novices debug code. Echoing findings from

previous work, Fitzgerald et al. concluded that finding the bug is

the most difficult part of debugging [14] and once students found

the bug, they were often able to fix the problem [15]. Novices do

not often have pre-existing skills that they can use to debug code

[43] and use a variety of strategies to find bugs [38], including trial-

and-error [25, 27, 49]. Alqadi and Maletic found that students who

used trial-and-error were likely to introduce new bugs while they

tried to fix existing ones [2]. Research has found that specific strate-

gies were more helpful than others. Examples include encouraging

novices to focus on understanding the program [14] and to make

small to medium sized targeted changes to the code rather than

making substantial changes to the code [24]. Researchers found

there was an overlap in strategies and that some student seemed

to use debugging strategies ineffectively [38]. Additionally, while

many good novice debuggers were also good programmers, the op-

posite was often not true [15], which furthers the argument about

the need to teach debugging skills.

Of the existing research on novices learning debugging, few

researchers have focused on CS teachers. When debugging, novice

teachers did not focus first on understanding the program [26].

Instead, they started by examining the output. Additionally, some

teachers deleted segments of code rather than trying to fix them

and those that did fix their code did not necessarily understand

why the error occurred and why their changes fixed the code [26].

2.3 Debugging Instruction

Research on debugging instruction ranges from direct instruction

to debugging games. Research on direct instruction has found a

decrease in debugging time [10] and improvements on students’

ability to find and correct bugs [33], even in K-6 (ages 5-12) [5].

Much of the work on supporting students while debugging fo-

cused on tools that were created to help with the debugging process

[4, 11, 28, 36, 42]. These tools showed varying degrees of success

in helping students with their debugging skills. To our knowledge,

few researchers have explored ways for instructors to support their

students while debugging. Wilson explored the use of Socratic

approach where the instructor asks the student questions that en-

courages the student to change their perspective on the problem

[47]. The goal is to guide the student towards understanding the

problem and whether the proposed solution would work without

explicitly explaining it to the student. Wilson also specified that the

instructor should move from asking questions about the student’s

goal to how they believe their goal could be achieved (goal-oriented

to procedure-oriented) [47]. Brusilovsky described a technique that

involved providing students with various levels of assistance as

needed [7]. The instructor starts with the least amount of assis-

tance by showing the students the current buggy code and the

results produced. Then, the instructor continues to give additional

assistance, moving towards increasing levels of assistance until the

student understands the error. This method has also been used to

help middle school students learning Scratch [16].

Another area of debugging instruction involves exercises and

activities. One activity involved having students work in teams to

compete in finding bugs [8]. Another activity had students scaffold-

ing in the form of worksheets to have students practice debugging

strategies [9]. Students have also been tasked with finding and

fixing bugs in the code of games in a game-design program [1].

Additionally, researchers have had students create projects with

bugs for their peers to solve [13, 35]. These activities have shown

varying levels of success in improve students’ debugging skills and

perspectives on software testing.

Some of the more recent work on debugging has introduced

the idea of teaching debugging through games. Researchers devel-

oped Gidget [30, 31] and RoboBUG [34] for novice programmers.

Including personified character who needs help with debugging

code helped users solve more bugs in less time [30]. Additionally,

including in-game assessments in Gidget increased engagement in

users and led users to solve bugs more quickly [31]. An evaluation

of RoboBUG revealed evidence of the game helping users learn

Session: Teachers ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

534











REFERENCES
[1] Mete Akcaoglu. 2014. Learning problem-solving through making games at the

game design and learning summer program. Educational Technology Research
and Development 62, 5 (2014), 583ś600.

[2] Basma S Alqadi and Jonathan I Maletic. 2017. An empirical study of debugging
patterns among novices programmers. In Proceedings of the 2017 ACM Technical
Symposium on Computer Science Education. 15ś20.

[3] Juliet Alice Baxter. 1987. Teacher explanations in computer programming: A study
of knowledge transformation. Ph.D. Dissertation. Stanford University.

[4] Brett A Becker, Kyle Goslin, and Graham Glanville. 2018. The effects of enhanced
compiler error messages on a syntax error debugging test. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 640ś645.

[5] Marina Umaschi Bers, Louise Flannery, Elizabeth R Kazakoff, and Amanda Sul-
livan. 2014. Computational thinking and tinkering: Exploration of an early
childhood robotics curriculum. Computers & Education 72 (2014), 145ś157.

[6] Sigrid Blömeke and Seán Delaney. 2014. Assessment of teacher knowledge across
countries: A review of the state of research. International perspectives on teacher
knowledge, beliefs and opportunities to learn (2014), 541ś585.

[7] Peter Brusilovsky. 1993. Program visualization as a debugging tool for novices. In
INTERACT’93 and CHI’93 Conference Companion on Human Factors in Computing
Systems. 29ś30.

[8] Renee Bryce. 2011. Bug Wars: a competitive exercise to find bugs in code. Journal
of Computing Sciences in Colleges 27, 2 (2011), 43ś50.

[9] Chiung-Fang Chiu and Hsing-Yi Huang. 2015. Guided debugging practices of
game based programming for novice programmers. International Journal of
Information and Education Technology 5, 5 (2015), 343.

[10] Ryan Chmiel and Michael C Loui. 2004. Debugging: from novice to expert. Acm
SIGCSE Bulletin 36, 1 (2004), 17ś21.

[11] Benjamin Cosman, Madeline Endres, Georgios Sakkas, Leon Medvinsky, Yao-
Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley Weimer. 2020. PABLO:
Helping Novices Debug Python Code Through Data-Driven Fault Localization. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
1047ś1053.

[12] M Ducasse and A-M Emde. 1988. A review of automated debugging systems:
Knowledge, strategies and techniques. In Proceedings.[1989] 11th International
Conference on Software Engineering. IEEE Computer Society, 162ś163.

[13] Deborah A Fields, Yasmin B Kafai, Luis Morales-Navarro, and Justice T Walker.
2021. Debugging by design: A constructionist approach to high school students’
crafting and coding of electronic textiles as failure artefacts. British Journal of
Educational Technology (2021).

[14] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93ś116.

[15] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390ś396.

[16] Diana Franklin et al. 2013. Assessment of computer science learning in a scratch-
based outreach program. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. 371ś376.

[17] Diana Franklin et al. 2020. Scratch Encore: The design and pilot of a culturally-
relevant intermediate Scratch curriculum. In Proceedings of the 51st ACMTechnical
Symposium on Computer Science Education. 794ś800.

[18] Diana Franklin, Merijke Coenraad, Jennifer Palmer, Donna Eatinger, Anna Zipp,
Marco Anaya, Max White, Hoang Pham, Ozan Gökdemir, and David Weintrop.
2020. An Analysis of Use-Modify-Create Pedagogical Approach’s Success in Bal-
ancing Structure and Student Agency. In Proceedings of the 2020 ACM Conference
on International Computing Education Research. 14ś24.

[19] Diana Franklin, Jean Salac, Cathy Thomas, Zene Sekou, and Sue Krause. 2020.
Eliciting Student Scratch Script Understandings via Scratch Charades. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education.
780ś786.

[20] Aleata Hubbard. 2018. Pedagogical content knowledge in computing education:
A review of the research literature. Computer Science Education 28, 2 (2018),
117ś135.

[21] Aleata Hubbard and Katie D’Silva. 2018. Professional learning in the midst
of teaching computer science. In Proceedings of the 2018 ACM Conference on
International computing education research. 86ś94.

[22] Peter Hubwieser, Marc Berges, Johannes Magenheim, Niclas Schaper, Kathrin
Bröker, Melanie Margaritis, Sigrid Schubert, and Laura Ohrndorf. 2013. Peda-
gogical content knowledge for computer science in German teacher education
curricula. In Proceedings of the 8th workshop in primary and secondary computing
education. 95ś103.

[23] Robin Jeffries. 1982. A comparison of the debugging behavior of expert and
novice programmers. In Proceedings of AERA annual meeting.

[24] Chaima Jemmali, Erica Kleinman, Sara Bunian, Mia Victoria Almeda, Elizabeth
Rowe, and Magy Seif El-Nasr. 2020. MAADS: Mixed-Methods Approach for the
Analysis of Debugging Sequences of Beginner Programmers. In Proceedings of

the 51st ACM Technical Symposium on Computer Science Education. 86ś92.
[25] Claudius M Kessler and John R Anderson. 1986. A model of novice debugging in

LISP. In Papers presented at the first workshop on empirical studies of programmers
on Empirical studies of programmers. 198ś212.

[26] ChanMin Kim, Jiangmei Yuan, Lucas Vasconcelos, Minyoung Shin, and Roger B
Hill. 2018. Debugging during block-based programming. Instructional Science 46,
5 (2018), 767ś787.

[27] Amy J Ko, Thomas D LaToza, Stephen Hull, Ellen A Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. 2019. Teaching explicit
programming strategies to adolescents. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 469ś475.

[28] Eric Larson and Rochelle Palting. 2013. Mdat: A multithreading debugging and
testing tool. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education. 403ś408.

[29] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32ś37.

[30] Michael J Lee and Amy J Ko. 2011. Personifying programming tool feedback im-
proves novice programmers’ learning. In Proceedings of the seventh international
workshop on Computing education research. 109ś116.

[31] Michael J Lee, Amy J Ko, and Irwin Kwan. 2013. In-game assessments increase
novice programmers’ engagement and level completion speed. In Proceedings
of the ninth annual international ACM conference on International computing
education research. 153ś160.

[32] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67ś92.

[33] Tilman Michaeli and Ralf Romeike. 2019. Improving Debugging Skills in the
Classroom: The Effects of Teaching a Systematic Debugging Process. In Pro-
ceedings of the 14th Workshop in Primary and Secondary Computing Education.
1ś7.

[34] Michael A Miljanovic and Jeremy S Bradbury. 2017. Robobug: a serious game
for learning debugging techniques. In Proceedings of the 48th ACM Technical
Symposium on Computer Science Education. 93ś100.

[35] Luis Morales-Navarro, Deborah A Fields, and Yasmin B Kafai. 2021. Growing
Mindsets: Debugging by Design to Promote Students’ Growth Mindset Practices
in Computer Science Class. In Proceedings of the 15th International Conference of
the Learning Sciences-ICLS 2021. International Society of the Learning Sciences.

[36] Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008. Backstop:
a tool for debugging runtime errors. ACM SIGCSE Bulletin 40, 1 (2008), 173ś177.

[37] Laurie Murphy, Sue Fitzgerald, Brian Hanks, and Renee McCauley. 2010. Pair de-
bugging: a transactive discourse analysis. In Proceedings of the Sixth international
workshop on Computing education research. 51ś58.

[38] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirkyśa
qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin 40, 1 (2008),
163ś167.

[39] Jean Salac, Max White, Ashley Wang, and Diana Franklin. 2019. An Analysis
through an Equity Lens of the Implementation of Computer Science in K-8
Classrooms in a Large, Urban School District. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. 1150ś1156.

[40] Johnny Saldaña. 2021. The coding manual for qualitative researchers. SAGE
Publications Limited.

[41] Lee S Shulman. 1986. Those who understand: Knowledge growth in teaching.
Educational researcher 15, 2 (1986), 4ś14.

[42] Natalia Silvis-Cividjian, Marc Went, Robert Jansma, Viktor Bonev, and Emil
Apostolov. 2021. Good Bug Hunting: Inspiring and Motivating Software Testing
Novices. In Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1. 171ś177.

[43] Beth Simon, Dennis Bouvier, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney,
and Kate Sanders. 2008. Common sense computing (episode 4): Debugging.
Computer Science Education 18, 2 (2008), 117ś133.

[44] Stephanie D Teasley. 1997. Talking about reasoning: How important is the peer
in peer collaboration? In Discourse, tools and reasoning. Springer, 361ś384.

[45] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459ś494.

[46] Rebecca Vivian and Katrina Falkner. 2019. Identifying Teachers’ Technological
Pedagogical Content Knowledge for Computer Science in the Primary Years. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 147ś155.

[47] Judith D Wilson. 1987. A Socratic approach to helping novice programmers
debug programs. ACM SIGCSE Bulletin 19, 1 (1987), 179ś182.

[48] Aman Yadav and Marc Berges. 2019. Computer science pedagogical content
knowledge: Characterizing teacher performance. ACMTransactions on Computing
Education (TOCE) 19, 3 (2019), 1ś24.

[49] Ching-Zon Yen, Ping-Huang Wu, and Ching-Fang Lin. 2012. Analysis of experts’
and novices’ thinking process in program debugging. In International Conference
on ICT in Teaching and Learning. Springer, 122ś134.

Session: Teachers ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

539


	Abstract
	1 Introduction
	2 Prior Work
	2.1 Theoretical Framework: PCK
	2.2 Novices Vs. Experts
	2.3 Debugging Instruction

	3 Professional Development
	4 Methods
	4.1 Debugging Activities
	4.2 Participants and Data Collection
	4.3 Data Analysis

	5 Results
	5.1 Content Knowledge: Identifying Bugs
	5.2 PCK: Scenario Reflections

	6 Discussion
	7 Conclusions
	8 Acknowledgements
	References

