Session: Teachers

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

An Analysis of Middle Grade Teachers’ Debugging Pedagogical
Content Knowledge

Jennifer Tsan
University of Chicago
Chicago, IL, USA
jennifertsan@uchicago.edu

ABSTRACT

There is an increasing need for knowledgeable K-12 computer sci-
ence (CS) teachers. It is necessary to inform teachers how to debug
and help their students debug programs. Research has shown that
debugging is difficult for novices because the process requires dif-
ferent skills from creating programs and instructing students how
to debug can help them acquire these skills. To this end, we de-
veloped a CS professional development for middle grade teachers
(grades 5th-8th/ages 10-13) that includes lessons on debugging. The
teachers completed debugging activities that involved finding bugs
in Scratch programs and explaining how they would help their
students in debugging. We qualitatively analyzed their responses
and found that teachers successfully identified the problem but
they struggled to locate it in the code. In considering how they
would help students who had such a bug, the teachers often fo-
cused on helping the student find a solution for the bug rather than
on identifying the problem or its source. Finally, teachers’ ability to
identify bugs and the pedagogical strategies to engage students in
this process differed based on CS teaching experience and prior CS
knowledge. This work contributes to our understanding of teachers’
debugging abilities and advances our knowledge on how to support
teachers in teaching their students how to debug their programs.

CCS CONCEPTS

« Social and professional topics — K-12 education; Comput-
ing education;

KEYWORDS
debugging, K-8, teachers

ACM Reference Format:

Jennifer Tsan, David Weintrop, and Diana Franklin. 2022. An Analysis of
Middle Grade Teachers’ Debugging Pedagogical Content Knowledge. In
Proceedings of the 27th ACM Conference on Innovation and Technology in
Computer Science Education Vol 1 (ITiCSE 2022), July 8-13, 2022, Dublin,
Ireland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.
3524770

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9201-3/22/07...$15.00
https://doi.org/10.1145/3502718.3524770

David Weintrop
University of Maryland
College Park, MD, USA

weintrop@umd.edu

533

Diana Franklin
University of Chicago
Chicago, IL, USA
dmfranklin@uchicago.edu

1 INTRODUCTION

Bugs are a common part of writing programs regardless of whether
the program is being written by a novice in Scratch or a professional
programmer in Python or C++. However, when programmers start
debugging their code, the differences between novices and experts
become obvious [23, 45]. Identifying bugs in code is difficult for
novices. This is in part due to the fact that replicating and isolating
bugs requires skills that are different from programming knowledge
[12, 25]. These skills include an understanding of the programming
language being used, general knowledge about programming and
how programs execute, and knowledge about common bugs and
effective debugging strategies [12].

Since debugging is difficult for novices, students may need help
from teachers to get “unstuck” [32]. Studies have shown that pro-
viding debugging instruction is effective for helping students learn
debugging skills [9, 10]. While researchers have explored ways
to teach students debugging methods [31, 33, 34], there has been
little research on teaching CS teachers how to debug or to teach
debugging, especially at the K-12 level [26]. As with any subject,
teachers both need the skill themselves and knowledge on how
to teach it in order to effectively teach debugging. Additionally,
there is a gap in debugging research on how teachers at the K-12
level currently teach their students debugging. To this end, we de-
veloped a computer science (CS) professional development (PD)
program for middle grade teachers (grades 5th-8th/ages 10-14) that
includes activities to develop teachers’ debugging pedagogical con-
tent knowledge. As part of the PD, teachers complete debugging
activities that involved finding bugs in Scratch programs and are
asked to explain how they would help their students debug those
same Scratch programs. More specifically, in this paper we pursue
the following research questions:

o After being introduced to the “WHAT?!? A MESS” strategy,
are teachers able to identify bugs in Scratch programs?

o Are there differences in the ability to identify bugs between
novice and more experienced teachers?

e What strategies do teachers plan on using to support stu-
dents in identifying and fixing bugs?

o Are there differences in teacher support type between novice
and more experienced CS teachers?

To answer these questions, we qualitatively analyzed the work
teachers produced during our PD and their responses to open-ended
prompts about their approaches to helping their students find bugs.
Additionally, we used teachers’ pre-knowledge assessments, years
teaching CS and years teaching overall to identify similarities and
differences in their debugging skills and their debugging pedagog-
ical strategies based on prior experience. This work contributes
to our understanding of teachers’ abilities to help their students

Session: Teachers

learn how to debug and shed light on the role of prior experience
in developing teachers’ debugging pedagogical content knowledge.

2 PRIOR WORK

In this section, we review our theoretical framework and prior work
on debugging. Our work builds upon research on novices versus
experts in debugging and debugging instruction.

2.1 Theoretical Framework: PCK

In this work, we will frame our analysis and results using the Peda-
gogical Content Knowledge (PCK) framework [41]. Content knowl-
edge refers to teachers’ knowledge about the content they teach
(e.g. knowledge of and ability to use specific productive debugging
strategies). Pedagogical knowledge involves teachers knowledge
about how to teach and support students in learning (e.g. Con-
structionism). Finally, pedagogical content knowledge refers to
knowing the pedagogical practices in teaching the specific content
(e.g. knowledge of how to teach others to understand how, when,
and why to use particular debugging strategies).

Studying PCK in CS education is not new [3], but has seen a
resurgence [20, 22, 48]. Hubbard calls for additional research on PCK
in CS [20] and researchers recently used PCK to analyze teacher
PD data [21, 46]. Yadav and Berges developed a survey to measure
teachers’ CS PCK through the use of vignettes [48]. They found
differences in teachers’ responses to the vignettes based on their
level of overall and CS teaching experiences [48]. These researchers
have contributed to the community’s understanding of how to best
help teachers learn and teach CS. Researchers have yet to use PCK
to evaluate teacher debugging skills and pedagogical approaches.

2.2 Novices Vs. Experts

Early debugging research found that experts are more successful
and faster than novices at finding bugs in a program [23]. Experts
often pick a debugging strategy rather than switching frequently
between strategies [45]; they were also able to debug the programs
by viewing the system of the program as a whole [45] and the code
in order of execution [23]. In contrast, novices tend to use erratic
approaches to debugging [45], often read programs line-by-line
[23], and seemed to focus on fixing the bug rather than taking the
time to understand how the programs function [45].

Much of the recent research on debugging has focused on learn-
ing more about how novices debug code. Echoing findings from
previous work, Fitzgerald et al. concluded that finding the bug is
the most difficult part of debugging [14] and once students found
the bug, they were often able to fix the problem [15]. Novices do
not often have pre-existing skills that they can use to debug code
[43] and use a variety of strategies to find bugs [38], including trial-
and-error [25, 27, 49]. Alqadi and Maletic found that students who
used trial-and-error were likely to introduce new bugs while they
tried to fix existing ones [2]. Research has found that specific strate-
gies were more helpful than others. Examples include encouraging
novices to focus on understanding the program [14] and to make
small to medium sized targeted changes to the code rather than
making substantial changes to the code [24]. Researchers found
there was an overlap in strategies and that some student seemed
to use debugging strategies ineffectively [38]. Additionally, while

534

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

many good novice debuggers were also good programmers, the op-
posite was often not true [15], which furthers the argument about
the need to teach debugging skills.

Of the existing research on novices learning debugging, few
researchers have focused on CS teachers. When debugging, novice
teachers did not focus first on understanding the program [26].
Instead, they started by examining the output. Additionally, some
teachers deleted segments of code rather than trying to fix them
and those that did fix their code did not necessarily understand
why the error occurred and why their changes fixed the code [26].

2.3 Debugging Instruction

Research on debugging instruction ranges from direct instruction
to debugging games. Research on direct instruction has found a
decrease in debugging time [10] and improvements on students’
ability to find and correct bugs [33], even in K-6 (ages 5-12) [5].

Much of the work on supporting students while debugging fo-
cused on tools that were created to help with the debugging process
[4, 11, 28, 36, 42]. These tools showed varying degrees of success
in helping students with their debugging skills. To our knowledge,
few researchers have explored ways for instructors to support their
students while debugging. Wilson explored the use of Socratic
approach where the instructor asks the student questions that en-
courages the student to change their perspective on the problem
[47]. The goal is to guide the student towards understanding the
problem and whether the proposed solution would work without
explicitly explaining it to the student. Wilson also specified that the
instructor should move from asking questions about the student’s
goal to how they believe their goal could be achieved (goal-oriented
to procedure-oriented) [47]. Brusilovsky described a technique that
involved providing students with various levels of assistance as
needed [7]. The instructor starts with the least amount of assis-
tance by showing the students the current buggy code and the
results produced. Then, the instructor continues to give additional
assistance, moving towards increasing levels of assistance until the
student understands the error. This method has also been used to
help middle school students learning Scratch [16].

Another area of debugging instruction involves exercises and
activities. One activity involved having students work in teams to
compete in finding bugs [8]. Another activity had students scaffold-
ing in the form of worksheets to have students practice debugging
strategies [9]. Students have also been tasked with finding and
fixing bugs in the code of games in a game-design program [1].
Additionally, researchers have had students create projects with
bugs for their peers to solve [13, 35]. These activities have shown
varying levels of success in improve students’ debugging skills and
perspectives on software testing.

Some of the more recent work on debugging has introduced
the idea of teaching debugging through games. Researchers devel-
oped Gidget [30, 31] and RoboBUG [34] for novice programmers.
Including personified character who needs help with debugging
code helped users solve more bugs in less time [30]. Additionally,
including in-game assessments in Gidget increased engagement in
users and led users to solve bugs more quickly [31]. An evaluation
of RoboBUG revealed evidence of the game helping users learn

Session: Teachers

debugging techniques, fix buggy code, and was most helpful for
those who scored lower on pre-test scores [34].

3 PROFESSIONAL DEVELOPMENT

We held a virtual, 8-week PD program (summer ‘20). Core CS con-
cepts were taught through Scratch Encore, an intermediate Scratch
curriculum [17] with Use—Modify—Create [18, 29] learning mod-
ules. Each module introduces the concept, progresses with a heavily
scaffolded Use-Modify coding activity, and finishes with an open-
ended Create project. Teachers completed one module each week,
beginning with 30-minute synchronous introductory sessions that
presented technical and pedagogical content. Teachers completed
coding projects as asynchronous homework, and attended a one
hour session for teachers to work together.

We introduced debugging using “WHAT?!? A MESS” during
Module 3 (M3): Animation. Teachers were prompted to use it during
the associated Modify activity. In addition, in modules 4 (Condi-
tional Loops) and 5 (Decomposition), teachers completed scenario
reflections (SRs), where they practiced debugging and imagined
how they would help their students in debugging the programs.

“WHAT?!? A MESS” is a mnemonic instructional scaffold for
students to bootstrap the debugging process; it was devised from
patterns that emerged from analysis of the errors novice students
made acting out Scratch scripts [19]. Learners first identify the issue
at the user level: 1) What is the program trying to do?, 2) How did
it go wrong?, 3) Analyze what happened. After step 3, learners then
identify the bug’s location in the code: 3.1) Arguments, 3.2) Missing
blocks, 3.3) Extra blocks, 3.4) Scrambled blocks, 3.5) Substituted
blocks. Finally, if students are still stuck they are asked to use, 4)
Three before me (a common peer-first help-seeking strategy).

4 METHODS

We describe the debugging activities and details of our IRB-approved
research study.

4.1 Debugging Activities

M3 Activity. For the M3 Modify task, teachers were given a buggy
Scratch project and the following objective: “The programmer
wanted both basketball players to dribble all the way across the
basketball court” The teachers answered four multiple choice ques-
tions to identify which sprite(s) contained a bug, which event(s) had
a bug, how the sprites’ behaviors differed, and the code source of
the bug (e.g., missing blocks). The teachers then fixed the program.

M4 and M5 Scenario Reflections. For each SR assignment, the
teachers were given two scenarios, two buggy projects, the projects’
goals, and pictures of the relevant code and the stage. The teachers
were asked to identify the bug and discuss how they would help
their student debug each program; both questions were open-ended.
An example prompt is: “A student is very frustrated with his project.
He thinks that he has done all of the coding correctly with a condi-
tional loop and a wait until block, but when he triggers the project,
the player sprite never stops, it just chases the cliff across the stage!”
The accompanying code is displayed in Figure 1.

535

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Player Code Stairs Code
S|]
wox €D » €D

move () steps

switch costume to costumel v

Figure 1: Scratch code provided for scenario reflection.

4.2 Participants and Data Collection

Forty-two teachers participated in our PD; 26 female, 14 male, 1
non-binary/third gender, and 1 preferred not to state. Twenty-nine
participants were white, 7 were Black or African American, 2 were
Hispanic or Latino(a), 2 were Asian, and 2 preferred not to state.

We collected several types of data throughout the PD: a pre-
survey (including demographics and years teaching CS questions),
pre- and post-assessments to measure CS content knowledge, M3
debugging worksheets, and the M4 and M5 SRs.

4.3 Data Analysis

M3 Worksheets. The debugging worksheets allowed the teachers
to select multiple answers, therefore, answers could contain cor-
rect and incorrect selections. To assess the teachers in a way that
accounted for all combinations of correct/incorrect answers, we
adapted a grading rubric from [39]. Q1, Q2, and Q4 each had one
correct answer; we graded the answers accordingly: NO corr.: Cir-
cled none of the correct answers, BOTH corr. & incorr.:, Circled
some corr. and some incorr. answers, ALL corr.: Circled all the correct
and none of the incorrect answers. For Q3, there were two correct
options and ONLY corr.: Circled correct but not incorrect answers
was added to the grading scheme. Two researchers graded every
answer independently and achieved a k of 0.98.

Scenario Reflections. Two researchers coded 40% of the data in-
dependently and compared the results. We coded the first part
(identifying the bug) as correct or incorrect. The agreement for this
question was 79-82%.

To assess the second part where the teachers describe them-
selves helping their students, we began by open-coding [40] and
developed a three-dimensional coding scheme based on the open
codes. Focus attends to where the teacher would try to guide the
students towards the solution, problem, or process. Level identifies
the level of help the teacher described: the program at an outcome
(what the program should do) or code level (the code blocks them-
selves). Action explained what actions the teachers described (e.g.
explaining concepts/solution, demonstrating concepts/solutions).
Table 1 includes a full list of the codes and an example of each
code. There is at least one code per dimension for each entry. For
example, the example for the Problem code (focus) was coded as &
Code, Outcome (level) & Ask, Guide (action). The agreement for the
categories ranged from 68% to 100% agreement. The researchers

Session: Teachers

NO Corr.
100%

BOTH Corr. & Incorr. ® ONLY Corr. ® ALL Corr.

75%

50%

25%

0%
Overall Q1. Sprite Q2. Event Q3.

Behavior

Q4. Error
Type

Figure 2: M3 debugging activity teacher responses.

coded the remaining 60% of the data independently. The codes for
all submissions were resolved to complete agreement.

Teacher Knowledge Scores and Teaching Experience. To determine
which teacher factors related their debugging skills and their strate-
gies to help the students with debugging, we divided the teachers
based on the average pre-assessment score (88.5%), average number
of years (5.6 years) teaching CS, and number of years teaching (0-10,
11-20, 21-31). Nineteen and 17 teachers were in the high- and low-
assessment score categories, respectively. Fourteen and 19 teach-
ers were in the high- and low- CS teaching experience categories,
respectively. Ten, 19, and 12 teachers were in the high-, mid-, and
low- teaching experience categories, respectively.

We compared the teachers’ strategies for each of the factors based
on CS knowledge, CS teaching experience, and overall teaching
experience using the Chi-square test of independence or its non-
parametric alternative, Fisher’s exact test. These tests compare the
proportions of the values of the variables (e.g., number of teaches
using each strategy for each CS knowledge level).

5 RESULTS

In this section, we first present the results of the debugging activi-
ties and compare novice and advanced teachers. Then, we present
the teachers’ approaches to help their students with debugging
problems and how novice and advanced teachers’ strategies differ.
Our organization of findings is informed by our orienting theoreti-
cal framework in that we are first attending to Content Knowledge
and then attending to Pedagogical Knowledge and PCK.

5.1 Content Knowledge: Identifying Bugs

Finding 1: Teachers successfully identified bugs in programs
using “WHAT?!? A MESS”. The majority of the M3 answers (Fig-
ure 2) were completely correct (64.10%) or only contained correct
selections (17.95%). Answers that included correct and incorrect
selections or no correct selections comprised about 18% of the data.

For the M4 and M5 reflections, 80% of the submissions correctly
identified the bugs. Twenty-three correctly identified all four bugs
(26 total completed both worksheets). Of the 14 teachers that com-
pleted one worksheet, 10 identified both bugs on the worksheet they
completed. Teachers appeared to struggle more with the M5 bugs
(accuracy 68%)than the M4 bugs (accuracy 92%). The results from
the activities suggest that the teachers had the content knowledge
that is necessary to debug programs.

536

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

NO = BOTH ™ ONLY Correct M ALL Correct

100%
75%
50%
25%

0%

(/;LQ

O
SRt o

S
WY

Q 9 Q
o \Nfﬁ’((’ \X@\Y’*

R
WY e W

\e;\é«

Figure 3: M3 activity results by teacher group.

Finding 2: Teachers were able to identify the sprite and event
with the bug and at least one behavior and bug code location
but had difficulty identifying all differences in the sprites’
behaviors and where in the code the bug was located. Figure 2
shows the breakdown of the graded answers by question. Q1 had
the most completely correct answers (89.74%) while Q3 had the
fewest completely correct answers (20.51%). Q2 and Q4 have the
most completely incorrect answers: 10.26% and 15.38%, respectively.
This shows that the teachers had trouble identifying all the ways
two sprites’ behaviors differed (Q3) but most were able to identify
at least one difference correctly. Teachers also had more completely
incorrect answers for Q4.

Finding 3: Teachers’ ability to identify bugs differed based
on overall teaching experience. Figure 3 shows the teachers’ M3
activity performance in the comparison groups. The two leftmost
bars show the level of CS knowledge. The next two show the level
of CS teaching experience. Finally, the rest show the level of overall
teaching experience. From darkest to lightest, the bars represent
the percentage of questions that were: completely correct; only
correct; correct and incorrect; and completely incorrect.

That teachers performed similarly on the debugging activities re-
gardless of prior CS knowledge (p=0.64, chi-square) and CS teaching
experience (p=0.69, chi-square). There was, however, a statistically
significant difference in performance based on overall teaching ex-
perience (p=0.002, fisher’s). We completed post hoc pairwise com-
parisons to find the differences between the groups. The Bonferroni
adjusted P value was p=0.0167. The difference between the high-
and mid- experience teachers was statistically significant (p=0.0002)
however, the differences between the high and low (p=0.7459), and
mid and low, were not (p=0.02).

5.2 PCK: Scenario Reflections

Here, we focus on teachers’ answers to how they would help a
student who is having trouble finding bugs in a program. The goal
is to explore the strategies teachers planned to use to help their
students. We will present the results of our analysis in the categories
that were introduced in Section 4: focus, level, and action.
Finding 4: Teacher responses tended to focus on the solu-
tion, was at the code level, and involved many types of actions.

5.2.1 Focus. The first aspect of the teachers’ answers that we were
interested in was the focus. We found that a majority, 61.36%, of
responses given at least partially focused on the solution (Figure 4).

Session: Teachers

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Code Description Examples
. Help focused on the solution or involves | . . »
» | Solution| "~ . I would ask her if she had tried other argument values/blocks:
8 giving the student the solution
S “I would ask him to think about where the car needs to be when the green
flag is clicked and then ask him to look through his code and tell me what
Problem| Help focused on the problem/bug happens right after the green flag is clicked, hoping he would realize that he
was missing the go to block”
Process Help focused on a debugging strategy | “Use the WHAT? debugging strategy and help him to see that adding a new
or process event will help reset the car to the original location”
@ | Code Feedbacl/help on the code/coding con- “I would show him that a go to block starts off just about every problem”
2 cepts or changes to the code
= Func Feedback/help on the outcome of the | “Ask where should the car begin always? Where is the starting line? How
une. program can you get the car to always go back to the starting line?”
.| Tell the student about problem, the so- | “I would tell the student that all sprites are actors and need to be told their
Explain . . . - »
- lution, or the process starting postions when the green flag is clicked.
° Suggest or ask the student to make spe- | “I would suggest that she clicks the color then the dropper and click on the
S | Suggest | . . . »
g cific changes or follow specific actions | gem to get the exact color
Ask Ask leading question that identifies the | “I would ask the student where the code tells the car to start at the beginning.
bug concept or block Since there is no code the student should notice to add it under the flag”
Demo. Sh(?w the student how to comp lete. a1 < would show him that a go to block starts off just about every problem”
action or show the student the solution.
Walk through the actions without show-
Guide ing them. Student and teacher work to- | “How would help her go through the Analyze step and eventually help her
gether to find the problem/solution with | to see she could use the substitute step and replace the sensing block”
back and forth interaction implied.

Table 1: Three-dimensional Coding Scheme

B Solution ® Problem ® Process = Other

100%

75%

50%

25%

0%

Overall High-CSExp Low-CSExp

Figure 4: Teachers’ Response Focus: CS Teaching Experience

Fewer answers involved the problem (35.61%) and process (17.42%).
About 19% of the answers focused on multiple aspects.

Finding 5: There were differences in the teachers’ focus based
on CS teaching experience (Figure 4). There were no statistically
significant differences based on CS knowledge (p=0.055) or overall
teaching experience (p=0.59) in terms of the focus of the teach-
ers’ help. However, the teachers differed in this area based on CS
teaching experience (p=0.0004). The teachers with less CS teaching
experience focused on the solution more and on the problem less
than the teachers with more CS teaching experience.

5.2.2 Level The next aspect we investigated the level of help and
whether their feedback direct students attention towards code or
outcome. A majority of the answers (75%) discussed the code and
38.64% of the answers discussed the outcome.

537

Finding 6: There were no statistically significant differences
based on CS knowledge (p=0.59), CS teaching experience (p=0.85),
or overall teaching experience (p=0.91) in terms of the level of
the teachers’ responses.

5.2.3 Action. Finally, we explored the actions the teachers de-
scribed. As shown in Figure 5, ask was the most common strategy
the teachers wrote about (29.55%). Suggesting was the next most
common (27.27%) followed by guiding (20.45%). The two least com-
mon strategies were explaining and demoing at 15.15% and 6.82%,
respectively. Unfortunately, 26.52% of the answers were ambiguous,
where we were unable to interpret how the teacher intended to
help the student. These were often written as if the teacher was
explaining how they would solve the problem themselves. For ex-
ample, “Try using a different color or an actual character to have
the cat stop at” Our results show that teachers vary in the way
they approach helping students with debugging problems. Actions
such as explain, suggest, ask, and guide are not necessarily CS or
debugging specific where demonstration is likely to be closer to a
CS pedagogical strategy. Further qualitative coding could reveal
more information about which actions are PCK and which are PK.

Finding 7: There were differences in the teachers’ actions
based on pre-assessment scores. There were no statistically sig-
nificant differences based on CS teaching experience (p=0.37) or
overall teaching experience (p=0.48) in terms of the teachers’ focus.
However, teachers differed in this area based on CS knowledge
(p<0.001) (Figure 5). The teachers in the low-know group had a
greater percentage of answers with suggestions and demonstrations.

Session: Teachers

W Explain ® Suggest ™ Ask Demo. Guide ~ Other
100%
75%
50%
. II 1 II
0%
Overall High-Know Low-Know

Figure 5: Teachers’ Proposed Actions: CS Knowledge.

The teachers in the high-know. group had a greater percentage of
answers with asking leading questions and guiding the students.

6 DISCUSSION

Our goals for this work were to evaluate teachers’ debugging skills
and their intended strategies for supporting their students” debug-
ging learning process. Our analysis revealed that teachers showed
promising debugging skills over the course of the PD and they
proposed a variety of strategies to support their students. In this
section, we review our findings and discuss the implications for
future research and classroom practices.

Content Knowledge. Our work reveals that teachers show
promising debugging skills. Teachers were able to identify what was
wrong with a program, however, they struggled to locate the part of
the code with the bug, which is the most difficult part of debugging
and fixing programs [14, 15]. Teachers’ actions in the reflections
also differed based on prior CS knowledge. This suggests that the
content knowledge affected the pedagogical strategies the teachers
used, which is consistent with prior findings on the relationship
between content knowledge and PCK [6].

Some of the most notable differences we found were with the
teachers’ use of demonstration and guiding in their responses to
the scenario. High-know:. teachers did not use demonstration, while
low-know. teachers used demonstration in about 17% of their re-
sponses. High-know. teachers also used guiding strategies in 24% of
their answers compared to low-know. teachers who used guiding
in 11% of their responses. The guiding strategy is likely a more
effective strategy since it involves the student and teacher collabo-
rating with the teacher scaffolding the students’ debugging process.
Having the opportunity to reason through their thinking process is
important for learners [37, 44]. While demonstration is also a valid
pedagogical strategy, especially in CS, it likely needs to be paired
with other strategies (e.g., explanation).

Pedagogical Knowledge and PCK. Surprisingly, we did not
find differences in the strategies based on CS or overall teaching
experience. This differs from prior work which found differences in
teachers’ responses to vignettes based on their CS and overall teach-
ing experience [48]. Our results may differ because their vignettes
were focused on student misconceptions while our scenarios were
specific to debugging. Addressing student misconceptions likely
requires a different set of skills than helping students find a prob-
lem in code and fix it. This points to the need to identify which
pedagogical strategies are most effective for debugging.

538

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Additionally, we found that teachers with more CS teaching
experience had a more even number of responses that focused
on solutions (43%) and problems (38%) than teachers with less CS
teaching experience (solution: 57%, problem: 23%). Identifying the
problem and solution is important in debugging. Since identifying
the bug is more difficult than fixing the bug [14, 15], we hypothesize
that the teachers who have taught CS longer have more experience
and confidence in finding bugs, and therefore, are more comfortable
with helping their students identify the bugs. This further supports
the need to include debugging activities in training for CS teachers.

Supporting Novice CS Teachers. Our findings show that teach-
ers did not differ in debugging skills based on prior CS knowledge
and CS teaching experience. This differs from previous work where
researchers found evidence of differences in debugging skills be-
tween novice and experts in CS [43]. This suggests that our activi-
ties and the “WHAT?!? A MESS” strategy are appropriate scaffolds
for teachers new to CS and teaching CS, which is important since
novices struggle with choosing and using debugging strategies
[25, 27, 38]. We did however, find differences in debugging skills
based on overall teaching experience.

Our findings echo previous findings on the connection between
CK and PCK. In developing future materials for training novice CS
teachers, it is important to include exercises where they learn how
to debug and effective debugging pedagogical strategies.

Limitations. While this work provides insight into how teach-
ers will potentially help their students debug in the classroom, we
do not currently have data on the teachers’ strategies when they
are in classroom. Additionally, a portion of the teachers’ answers
for the scenario reflections were ambiguous in their action and
were coded as other. Finally, as a qualitative study, there is always
a potential of researcher bias. We worked together to resolve our
differences through discussion in order to minimize those biases.

7 CONCLUSIONS

Teachers learning CS and how to teach CS need to simultaneously
develop debugging skills (content knowledge) and skills to support
their students in debugging (PCK). Without enough experience,
teachers may struggle to do both in their classrooms. Our PD in-
cluded explicit instruction for the teachers to learn and practice
debugging and activities to reflect on how they may help their
students complete debugging problems. We found that the teachers
were able to identify the bugs in debugging activities regardless
of their pre-assessment scores or number of years teaching CS. In
their reflection activities, many teachers described multiple strate-
gies for helping the students, ranging from giving explanations to
guiding the students. Finally, we found that teachers differed in the
focus of their support and their strategy based on prior CS teaching
experience and knowledge. These results shed light on novice CS
teachers’ debugging content knowledge and PCK.

8 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1738758. Thank you to Merijke
Coenraad and Katie Sun for their help with this project.

Session: Teachers

REFERENCES

(1]

[2

=

(3]

&

[9

=

[10

[11]

[12]

(13

[14

=
i)

[16]

(17

[18

=
o

[20]

[21

[22

[23

[24]

Mete Akcaoglu. 2014. Learning problem-solving through making games at the
game design and learning summer program. Educational Technology Research
and Development 62, 5 (2014), 583-600.

Basma S Alqadi and Jonathan I Maletic. 2017. An empirical study of debugging
patterns among novices programmers. In Proceedings of the 2017 ACM Technical
Symposium on Computer Science Education. 15-20.

Juliet Alice Baxter. 1987. Teacher explanations in computer programming: A study
of knowledge transformation. Ph.D. Dissertation. Stanford University.

Brett A Becker, Kyle Goslin, and Graham Glanville. 2018. The effects of enhanced
compiler error messages on a syntax error debugging test. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 640-645.
Marina Umaschi Bers, Louise Flannery, Elizabeth R Kazakoff, and Amanda Sul-
livan. 2014. Computational thinking and tinkering: Exploration of an early
childhood robotics curriculum. Computers & Education 72 (2014), 145-157.
Sigrid Blomeke and Sean Delaney. 2014. Assessment of teacher knowledge across
countries: A review of the state of research. International perspectives on teacher
knowledge, beliefs and opportunities to learn (2014), 541-585.

Peter Brusilovsky. 1993. Program visualization as a debugging tool for novices. In
INTERACT 93 and CHI'93 Conference Companion on Human Factors in Computing
Systems. 29-30.

Renee Bryce. 2011. Bug Wars: a competitive exercise to find bugs in code. Journal
of Computing Sciences in Colleges 27, 2 (2011), 43-50.

Chiung-Fang Chiu and Hsing-Yi Huang. 2015. Guided debugging practices of
game based programming for novice programmers. International Journal of
Information and Education Technology 5, 5 (2015), 343.

Ryan Chmiel and Michael C Loui. 2004. Debugging: from novice to expert. Acm
SIGCSE Bulletin 36, 1 (2004), 17-21.

Benjamin Cosman, Madeline Endres, Georgios Sakkas, Leon Medvinsky, Yao-
Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley Weimer. 2020. PABLO:
Helping Novices Debug Python Code Through Data-Driven Fault Localization. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
1047-1053.

M Ducasse and A-M Emde. 1988. A review of automated debugging systems:
Knowledge, strategies and techniques. In Proceedings.[1989] 11th International
Conference on Software Engineering. IEEE Computer Society, 162-163.

Deborah A Fields, Yasmin B Kafai, Luis Morales-Navarro, and Justice T Walker.
2021. Debugging by design: A constructionist approach to high school students’
crafting and coding of electronic textiles as failure artefacts. British Journal of
Educational Technology (2021).

Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93-116.

Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390-396.

Diana Franklin et al. 2013. Assessment of computer science learning in a scratch-
based outreach program. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. 371-376.

Diana Franklin et al. 2020. Scratch Encore: The design and pilot of a culturally-
relevant intermediate Scratch curriculum. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 794-800.

Diana Franklin, Merijke Coenraad, Jennifer Palmer, Donna Eatinger, Anna Zipp,
Marco Anaya, Max White, Hoang Pham, Ozan Gokdemir, and David Weintrop.
2020. An Analysis of Use-Modify-Create Pedagogical Approach’s Success in Bal-
ancing Structure and Student Agency. In Proceedings of the 2020 ACM Conference
on International Computing Education Research. 14-24.

Diana Franklin, Jean Salac, Cathy Thomas, Zene Sekou, and Sue Krause. 2020.
Eliciting Student Scratch Script Understandings via Scratch Charades. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education.
780-786.

Aleata Hubbard. 2018. Pedagogical content knowledge in computing education:
A review of the research literature. Computer Science Education 28, 2 (2018),
117-135.

Aleata Hubbard and Katie D’Silva. 2018. Professional learning in the midst
of teaching computer science. In Proceedings of the 2018 ACM Conference on
International computing education research. 86—94.

Peter Hubwieser, Marc Berges, Johannes Magenheim, Niclas Schaper, Kathrin
Broker, Melanie Margaritis, Sigrid Schubert, and Laura Ohrndorf. 2013. Peda-
gogical content knowledge for computer science in German teacher education
curricula. In Proceedings of the 8th workshop in primary and secondary computing
education. 95-103.

Robin Jeffries. 1982. A comparison of the debugging behavior of expert and
novice programmers. In Proceedings of AERA annual meeting.

Chaima Jemmali, Erica Kleinman, Sara Bunian, Mia Victoria Almeda, Elizabeth

Rowe, and Magy Seif El-Nasr. 2020. MAADS: Mixed-Methods Approach for the
Analysis of Debugging Sequences of Beginner Programmers. In Proceedings of

539

[25

[26

[27]

™~
&,

[29

[30

(31

[33

[34

[35

[39

[40

[41

[42

[43

[44

[45

[46

N
)

[48

[49

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

the 51st ACM Technical Symposium on Computer Science Education. 86-92.
Claudius M Kessler and John R Anderson. 1986. A model of novice debugging in
LISP. In Papers presented at the first workshop on empirical studies of programmers
on Empirical studies of programmers. 198-212.

ChanMin Kim, Jiangmei Yuan, Lucas Vasconcelos, Minyoung Shin, and Roger B
Hill. 2018. Debugging during block-based programming. Instructional Science 46,
5 (2018), 767-787.

Amy J Ko, Thomas D LaToza, Stephen Hull, Ellen A Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. 2019. Teaching explicit
programming strategies to adolescents. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 469-475.

Eric Larson and Rochelle Palting. 2013. Mdat: A multithreading debugging and
testing tool. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education. 403-408.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32-37.

Michael J Lee and Amy J Ko. 2011. Personifying programming tool feedback im-
proves novice programmers’ learning. In Proceedings of the seventh international
workshop on Computing education research. 109-116.

Michael J Lee, Amy J Ko, and Irwin Kwan. 2013. In-game assessments increase
novice programmers’ engagement and level completion speed. In Proceedings
of the ninth annual international ACM conference on International computing
education research. 153-160.

Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67-92.
Tilman Michaeli and Ralf Romeike. 2019. Improving Debugging Skills in the
Classroom: The Effects of Teaching a Systematic Debugging Process. In Pro-
ceedings of the 14th Workshop in Primary and Secondary Computing Education.
1-7.

Michael A Miljanovic and Jeremy S Bradbury. 2017. Robobug: a serious game
for learning debugging techniques. In Proceedings of the 48th ACM Technical
Symposium on Computer Science Education. 93-100.

Luis Morales-Navarro, Deborah A Fields, and Yasmin B Kafai. 2021. Growing
Mindsets: Debugging by Design to Promote Students’ Growth Mindset Practices
in Computer Science Class. In Proceedings of the 15th International Conference of
the Learning Sciences-ICLS 2021. International Society of the Learning Sciences.
Christian Murphy, Eunhee Kim, Gail Kaiser, and Adam Cannon. 2008. Backstop:
a tool for debugging runtime errors. ACM SIGCSE Bulletin 40, 1 (2008), 173-177.
Laurie Murphy, Sue Fitzgerald, Brian Hanks, and Renee McCauley. 2010. Pair de-
bugging: a transactive discourse analysis. In Proceedings of the Sixth international
workshop on Computing education research. 51-58.

Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky-a
qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin 40, 1 (2008),
163-167.

Jean Salac, Max White, Ashley Wang, and Diana Franklin. 2019. An Analysis
through an Equity Lens of the Implementation of Computer Science in K-8
Classrooms in a Large, Urban School District. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. 1150-1156.

Johnny Saldafa. 2021. The coding manual for qualitative researchers. SAGE
Publications Limited.

Lee S Shulman. 1986. Those who understand: Knowledge growth in teaching.
Educational researcher 15, 2 (1986), 4-14.

Natalia Silvis-Cividjian, Marc Went, Robert Jansma, Viktor Bonev, and Emil
Apostolov. 2021. Good Bug Hunting: Inspiring and Motivating Software Testing
Novices. In Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1. 171-177.

Beth Simon, Dennis Bouvier, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney,
and Kate Sanders. 2008. Common sense computing (episode 4): Debugging.
Computer Science Education 18, 2 (2008), 117-133.

Stephanie D Teasley. 1997. Talking about reasoning: How important is the peer
in peer collaboration? In Discourse, tools and reasoning. Springer, 361-384.

Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459-494.

Rebecca Vivian and Katrina Falkner. 2019. Identifying Teachers’ Technological
Pedagogical Content Knowledge for Computer Science in the Primary Years. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 147-155.

Judith D Wilson. 1987. A Socratic approach to helping novice programmers
debug programs. ACM SIGCSE Bulletin 19, 1 (1987), 179-182.

Aman Yadav and Marc Berges. 2019. Computer science pedagogical content
knowledge: Characterizing teacher performance. ACM Transactions on Computing
Education (TOCE) 19, 3 (2019), 1-24.

Ching-Zon Yen, Ping-Huang Wu, and Ching-Fang Lin. 2012. Analysis of experts’
and novices’ thinking process in program debugging. In International Conference
on ICT in Teaching and Learning. Springer, 122-134.

	Abstract
	1 Introduction
	2 Prior Work
	2.1 Theoretical Framework: PCK
	2.2 Novices Vs. Experts
	2.3 Debugging Instruction

	3 Professional Development
	4 Methods
	4.1 Debugging Activities
	4.2 Participants and Data Collection
	4.3 Data Analysis

	5 Results
	5.1 Content Knowledge: Identifying Bugs
	5.2 PCK: Scenario Reflections

	6 Discussion
	7 Conclusions
	8 Acknowledgements
	References

