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A common goal in statistics and machine learning is to learn models that
can perform well against distributional shifts, such as latent heterogeneous
subpopulations, unknown covariate shifts or unmodeled temporal effects. We
develop and analyze a distributionally robust stochastic optimization (DRO)
framework that learns a model providing good performance against pertur-
bations to the data-generating distribution. We give a convex formulation
for the problem, providing several convergence guarantees. We prove finite-
sample minimax upper and lower bounds, showing that distributional robust-
ness sometimes comes at a cost in convergence rates. We give limit theorems
for the learned parameters, where we fully specify the limiting distribution so
that confidence intervals can be computed. On real tasks including generaliz-
ing to unknown subpopulations, fine-grained recognition and providing good
tail performance, the distributionally robust approach often exhibits improved
performance.

1. Introduction. In many applications of statistics and machine learning, we wish to
learn models that achieve uniformly good performance over almost all input values. This is
important for safety- and fairness-critical systems such as medical diagnosis, autonomous
vehicles, criminal justice and credit evaluations, where poor performance on the tails of the
inputs leads to high-cost system failures. Methods that optimize average performance, how-
ever, often produce models that suffer low performance on the “hard” instances of the popu-
lation. For example, standard regressors obtained from maximum likelihood estimation can
lose predictive power on certain regions of covariates [67], and high average performance
comes at the expense of low performance on minority subpopulations. In this work, we study
a procedure that explicitly optimizes performance on tail inputs that suffer high loss.

Modern datasets incorporate heterogeneous (but often latent) subpopulations, and a nat-
ural goal is to perform well across all of these [23, 67, 79]. While many statistical models
show strong average performance, their performance often deteriorates on minority groups
underrepresented in the dataset. For example, speech recognition systems are inaccurate for
people with minority accents [5]. In numerous other applications—such as facial recogni-
tion, automatic video captioning, language identification, academic recommender systems—
performance varies significantly over different demographic groupings, such as race, gender
or age [20, 45, 49, 81, 92].

In addition to latent heterogeneity in the population, distributional shifts in covariates [12,
87] or unobserved confounding variables (e.g., unmodeled temporal effects [46]) can con-
tribute to changes in the data generating distribution. Performance of machine learning mod-
els degrades significantly on domains that are different from what the model was trained
on [19, 29, 46, 80, 93] and even when new test data are constructed following identical data
construction procedures [74]. Domain adaptation [11, 12, 87] and multitask learning meth-
ods [26] can be effective in situations where (potentially unlabeled) data points from the target
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domain are available. The reliance on a priori fixed target domains, however, is restrictive, as
the shifted target distributions are usually unknown before test time and it is impossible to
collect data from the targets.

To mitigate these challenges, we consider unknown distributional shifts, developing and
analyzing a loss minimization framework that is explicitly robust to local changes in the
data-generating distribution. Concretely, let ! ⊆ Rd be the parameter (model) space, P0 be
the data generating distribution on the measure space (X ,A), X be a random element of X
and " : !×X → R be a loss function. Rather than minimizing the average loss EP0["(θ;X)],
we study the distributionally robust problem

(1) minimize
θ∈!

{
Rf (θ;P0) := sup

Q%P0

{
EQ

[
"(θ;X)

] : Df
(
Q||P0

) ≤ ρ
}}

,

where the hyperparameter ρ > 0 modulates the distributional shift. Here,

Df
(
Q||P0

) :=
∫

f

(
dQ

dP0

)
dP0

is the f -divergence [4, 28] between Q and P0, where f : R → R+ = R+ ∪ {∞} is a convex
function satisfying f (1) = 0 and f (t) = +∞ for any t < 0.

The worst-case risk (1) upweights regions of X with high losses "(θ;X), and thus for-
mulation (1) optimizes performance on the tails, as measured by the loss on “hard” ex-
amples. In our motivating scenarios of distribution shift or latent subpopulations, as long
as the alternative distribution Q remains ρ-close to the data-generating distribution P0,
the model θ% ∈ ! that minimizes the worst-case formulation (1) evidently guarantees that
EQ["(θ%;X)] ≤ Rf (θ%;P0) and provides the smallest such bound; as we show shortly, this
is equivalent to controlling the tail-performance under P0. In our subsequent discussion, we
refer to this behavior as uniform performance. Letting P̂n denote the empirical measure on

Xi
i.i.d.∼ P0, our approach to minimizing objective (1) is via the plug-in estimator

(2) θ̂n ∈ argmin
θ∈!

{
Rf (θ; P̂n) := sup

Q%P̂n

{
EQ

[
"(θ;X)

] : Df
(
Q||P̂n

) ≤ ρ
}}

.

To build intuition for the worst-case formulation (1), we begin our discussion (in Sec-
tion 2) by showing that protection against distributional shifts is equivalent to controlling
the tail-performance of a model. The modeler’s choice of f determines the tail performance
she wants to control, and this dual interpretation provides intuition for the appropriate choice
of f and ρ. To concretely understand the types of distributional shifts the worst-case for-
mulation (1) protects against, we provide (in Section 2.1) explicit calculations suggesting
appropriate choices of f in some situations. Given nontrivial modeling freedom in choosing
f and ρ, we begin our study in Section 3 with experiments that substantiate our intuitive
explanations. Our experimental and theoretical work demonstrates that the distributionally
robust estimator θ̂n trades performance on the tails of the data-generating distribution with
average-case performance—which empirical risk minimization optimizes. Empirically, we
observe in a number of scenarios that such gains in tail-performance (e.g., hard inputs) come
at moderate degradation to the average-case performance, so that the robust estimator (2)
achieves fairly low loss uniformly across the input space X . For nonworst-case distribution
shifts, the worst-case formulation (1) prima-facie does not guarantee better performance than
empirical risk minimization; the duality between it and tail losses to come suggests that for
light-tailed data, distributional robustness comes at little cost to typical-case performance.
While work in finance and operations research [15] highlights the benefits of robustness, it
is important to investigate the typical shifts one might expect in statistical learning scenarios.
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To this end, we see in our experiments that the robust estimator (2) sacrifices some average-
case performance (which empirical risk minimization optimizes) for lower losses on difficult
subpopulations, covariate shift and other latent confounding.

Although we view a general theoretical characterization of the “right” choice of f and ρ
as an important open question, we provide two heuristics for this choice and evaluate their
performance on simulation experiments in Section 3. First, as a general approach, we advo-
cate splitting training data nonexchangeably into multiple validation sets, then using these to
validate choices f and ρ; we will expand on this later in the paper with concrete examples
and experiments. As brief examples, we may group data by its loss or, in supervised learning
scenarios with outcome/label Y , by values of Y ; when an auxiliary dataset on worse-than-
average subpopulations is available, we could use this. The intuition is to use variability
within the available data as a proxy for potential departures from the data-generating distri-
bution.

Motivated by our empirical findings in Section 3, the main theoretical component of this
work is to study finite sample and asymptotic properties of the plug-in estimator (2). We first
provide an efficiently minimizable (finite-dimensional) dual formulation which also forms the
basis of our above tail-performance interpretation of distributional robustness (Section 2). We
give convergence guarantees for the plug-in estimator (2) (Section 4), and prove that it is rate
optimal (Section 5), thereby providing finite-sample minimax bounds on the optimization
problem (1). Because the formulation (1) protects against gross departures from the average
loss, we observe a degradation in minimax convergence rates that is effectively a consequence
of needing to estimate high moments of random variables. More quantitatively, our conver-
gence guarantees show that for f -divergences with f (t) * tk as t → ∞, where k ∈ (1,∞),
the empirical minimizer θ̂n satisfies

Rf (θ̂n;P0) − inf
θ∈!

Rf (θ;P0) = OP
(
n− 1

k∗∨2 logn
)
,

where k∗ = k
k−1 (Section 4). We provide minimax lower bounds matching these rates in n up

to log factors. These results quantify fundamental statistical costs for protecting against large
distributional shifts (the worst-case region {Q : Df (Q||P0) ≤ ρ} becomes larger as k → 1, or
k∗ → ∞).

Since these minimax guarantees do not necessarily reflect the typical behavior of the es-
timators, we complete our theoretical analysis in Section 6 with an asymptotic analysis. The
estimator θ̂n is consistent under mild (and standard) regularity conditions (Section 6.1). Un-
der suitable differentiability conditions on Rf , θ̂n is asymptotically normal at the typical√

n-rate, allowing us to obtain calibrated confidence intervals (Section 6.2).

Related work. Distributional shift arise in many guises across statistics, machine learn-
ing, applied probability, simulation and optimization; we give a necessarily abridged survey
of the many strains of work and their respective foci. Work in domain adaptation seeks mod-
els that receive data from one domain and are tested on a specified target; typical approach is
to reweight the distribution P0 to make it “closer” to the known target distribution Ptarget [16,
50, 87, 89, 90, 94]. In this vein, one interpretation of the worst-case formulation (1) is as
importance-weighted loss minimization without a known target domain, that is, without as-
suming even unlabeled data from the target domain. The formulation (1) is more conservative
than most domain adaptation methods, as it considers shifts in the joint distribution of pre-
dictors X and target variable Y instead of covariate shifts.

Other scenarios naturally give rise to structural distributional changes. Time-varying ef-
fects are a frequent culprit [46], and time-varying-coefficient models are effective when time
indices are available [24, 38]. When one believes there may be latent subpopulations, mix-
ture model approaches can model latent membership directly [3, 25, 39, 66]. In contrast,
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our worst-case approach (1) does not directly represent (or require) such latent information,
and—especially in the case of mixture models—can maintain convexity because of the focus
on uniform performance guarantees.

When we know and can identify heterogeneous populations within the data, Bühlmann,
Meinshausen and colleagues connect methods that achieve good performance on all subpop-
ulations with causal interventions. In this vein, they study maximin effects on heterogeneous
datasets and learn linear models that maximize relative performance over the worst (observed)
subgroup [67], which connects to minimax regret in linear models [14, 23, 37, 78, 79]. With-
out access to information about particular subpopulations, the worst-case formulation (1) is
more conservative than their approaches, but can still achieve good performance, as we see
in our experimental evaluation.

The idea to build predictors robust to perturbation of an underlying data-generating distri-
bution has a long history across multiple fields. In dynamical systems and control, Petersen,
James and Dupuis [72] build worst-case optimal controllers for systems whose uncertain dy-
namics are described by Kullback–Leibler (KL) divergence balls. In econometrics, Hansen
and Sargent [47] study systems in which rational agents dynamically make decisions assum-
ing worst-case (dynamics) model misspecification, where the misspecification is bounded by
an evolving KL-divergence quantity. There is also substantial work in characterizing worst-
case sensitivity of risk measures to distributional misspecification [9, 36, 42, 43, 59, 60].
A common goal in such sensitivity calculations is an asymptotic expansion of a risk measure
as the radius ρ of the region of misspecification decreases to 0. In contrast, we study sta-
tistical properties of the worst-case formulation (1) given observations drawn from the data
generating distribution P0, so that we must both address statistical uncertainty and challenges
of robustness.

In the optimization literature, a body of work studies distributionally robust optimization
problems. Several authors investigate worst-case regions arising out of moment conditions
on the data vector X [15, 31, 54]. Other work [13, 15, 34, 59, 61, 70] studies a scenario
similar to our f -divergence formulation (1). In this line of research, the empirical plug-in
procedure (2) with radius ρ/n provides a finite sample confidence set for the population
objective EP0["(θ;X)]; the focus there is on the true distribution P0 and does not consider
distributional shifts. Duchi, Glynn and Namkoong [34] and Lam and Zhou [61] show how
such approximations correspond to generalized empirical likelihood [71] confidence bounds
on EP0["(θ;X)]. These procedures are identical to the plug-in (2) except that the radius
decreases as ρ/n. Thus, the magnitude of this radius depends on whether the modeler’s goal
is good performance with respect to EP0["(θ;X)] (radius shrinks as ρ/n), or—as is the case
here—robustness under distributional shifts (radius ρ is fixed).

An alternative to our f -divergence based sets {Q : Df (Q||P0) ≤ ρ} are Wasserstein
balls [17, 18, 40, 65, 68, 73, 82, 88, 100, 101]. Such approaches are satisfying, as Wasserstein
balls allow worst-case distributions with different support from the data-generating distribu-
tion P0. This power, however, means that tractable reformulations are only available under
restrictive scenarios [68, 82, 88], and they remain computationally challenging. Furthermore,
most guarantees [17, 68, 82] for these problems also consider approximation only of the
canonical (population) loss EP0["(θ;X)] using shrinking radius ρn → 0. In comparison, our
f -divergence formulation is computationally efficient to solve, even in large-scale learning
scenarios [69, 70].

Notation. For a sequence of random variables Z1,Z2, . . . in a metric space Z , we say

Zn
d! Z if E[h(Zn)] → E[h(Z)] for all bounded continuous functions h, and Zn

p→ Z for
convergence in probability. We let "∞(Z) the space of bounded real-valued functions on Z
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equipped with the supremum norm. We let Dχ2(P ||Q) = 1
2

∫
(dP/dQ − 1)2 dQ be the χ2-

divergence. For Z ∼ P , ess supP Z is its essential supremum. We make the dependence on
the underlying measure explicit when we write expectations (e.g., EP [X]), except for when
P = P0. For k ∈ (1,∞), we let k∗ := k/(k − 1). By ∇"(θ;X), we mean differentiation with
respect to the parameter vector θ ∈ Rd .

2. Formulation. We begin our discussion by presenting dual reformulations for the
worst-case objective Rf (θ;P0), deferring formulation in terms of worst subpopulations to
Example 3 to come. The dual form gives a single convex minimization problem for com-
puting the empirical plug-in estimator (2) in place of the minimax formulation, and it makes
explicit the role that t 0→ f (t) plays in defining such a risk-averse version of the usual av-
erage loss EP0["(θ;X)]. This provides an equivalence between distributional robustness and
tail-performance, which we draw on subsequently both statistical and computational reasons.
Defining the uncertainty region

UP := {
Q : Df

(
Q||P ) ≤ ρ

}
,

we may use the likelihood ratio L(x) := dQ(x)/dP0(x) to reformulate our distributionally
robust problem (1) via

Rf (θ;P0) = sup
P

{
EP

[
"(θ;X)

] : P ∈ UP0

}

= sup
L≥0

{
EP0

[
L(X)"(θ;X)

] | EP0

[
f

(
L(X)

)] ≤ ρ,EP0

[
L(X)

] = 1
}
,

(3)

where the supremum is over measurable functions. We now recall Ben-Tal et al. [13] and
Shapiro’s [85] dual reformulation of the quantity (3), where f ∗(s) := supt {st − f (t)} is the
usual Fenchel conjugate.

PROPOSITION 1 (Shapiro [85], Section 3.2). Let P be a probability measure on (X ,A)
and ρ > 0. Then

Rf (θ;P) = inf
λ≥0,η∈R

{
EP

[
λf ∗

(
"(θ;X) − η

λ

)]
+ λρ + η

}
(4)

for all θ . Moreover, if the supremum on the left-hand side is finite, there are finite λ(θ) ≥ 0
and η(θ) ∈ R attaining the infimum on the right-hand side.

For convex losses θ 0→ "(θ;X), the dual form (4) is jointly convex in (θ,η,λ). While
interior point methods [22] are powerful tools for solving such problems, they may be slow
in settings where n, the sample size, and d , the dimension of θ ∈ !, are large. More direct
methods can directly solve the primal form, including gradient descent or stochastic gradient
algorithms [69, 70].

Divergence families. Much of our development centers on two families of divergences.
The Rényi α-divergence [97] between distributions P and Q is

(5) Dα
(
P ||Q) := 1

α − 1
log

∫ (
dP

dQ

)α

dQ,

where the limit as α → 1 satisfies D1(P ||Q) = Dkl(P ||Q). For analytical reasons, we use
the equivalent Cressie–Read family of f -divergences [27]. These are parameterized by k ∈
(−∞,∞) \ {0,1}, k∗ = k

k−1 , with

(6) fk(t) := tk − kt + k − 1
k(k − 1)

so f ∗
k (s) := 1

k

[(
(k − 1)s + 1

)k∗
+ − 1

]
.
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We let fk(t) = +∞ for t < 0, and we define f1 and f0 as their respective limits as k → 0,1.
The family of divergences (6) includes χ2-divergence (k = 2), empirical likelihood f0(t) =
− log t + t −1, and KL-divergence f1(t) = t log t − t +1, and we frequently use the shorthand

(7) Rk(θ;P) := sup
Q%P

{
EQ

[
"(θ;X)

] : Dfk

(
Q||P ) ≤ ρ

}
.

While most of our results generalize to other values of k, we focus temporarily on k ∈
(1,∞) for ease of exposition (only our finite-sample guarantees in Section 4 require k ∈
(1,∞)). By minimizing out λ ≥ 0 in the dual form (4), we obtain a simplified formulation
for the Cressie–Read family (6).

LEMMA 1. For any probability P on (X ,A), k ∈ (1,∞), k∗ = k/(k − 1), any ρ > 0,
and ck(ρ) := (1 + k(k − 1)ρ)

1
k , we have for all θ ∈ !,

(8) Rk(θ;P) = inf
η∈R

{
ck(ρ)EP

[(
"(θ;X) − η

)k∗
+

] 1
k∗ + η

}
.

See Section 8.1 of the Supplementary Material [35] for the proof. The simplified dual
form (8) shows that protecting against worst-case distributional shifts is equivalent to opti-
mizing the tail-performance of a model; the worst-case objective Rk(θ;P) only penalizes
losses above the optimal dual variable η%(θ). The Lk∗(P )-norm upweights these tail val-
ues of "(θ;x), giving a worst-case objective that focuses on “hard” regions of X . Equa-
tion (8) also makes explicit the relationship between the growth fk and the worst-case ob-
jective Rk(θ;P): as growth of fk(t) for large t becomes steeper (k ↑ ∞), the f -divergence
ball {Q : Dfk(Q||P) ≤ ρ} shrinks, and the risk measure Rk(θ;P) becomes less conservative
(smaller). Since the dual form (8) quantifies this with the Lk∗(P )-norm of the loss above
the quantile η, we see that fk with k ∈ (1,∞) is a possible choice if the loss has finite k∗-
moments under the nominal distribution P0. In contrast, the worst-case formulation (1) cor-
responding to the KL-divergence (k = 1) is finite only when the moment generating function
of the loss exists [2].1

An extensive literature on coherent risk measures defines utility functions that exhibit “sen-
sible” tail risk preference [7, 57, 76, 86]; there is a duality between distributionally robust op-
timization and coherent risk measures (e.g., [86], Theorem 6.4). In this sense, the distribution-
ally robust problem (1) is a risk-averse formulation of the canonical stochastic optimization
problem of minimizing EP0["(θ;X)]. Indeed, Krokhmal [57] proposes the dual form (8) as a
higher-order generalization of the classical conditional value-at-risk [76], which corresponds
to Rk(θ;P) defined with k = ∞ (or k∗ = 1) in our notation.

2.1. Examples. While—as we note in the Introduction—we do not provide precise rec-
ommendations for the choice of f -divergence, it is instructive to consider a few examples for
motivation and to connect to our worst-case subpopulation considerations (Examples 3–5).
We begin with a generic description and specialize subsequently, deferring heuristic proce-
dures for choosing f and ρ (and empirical efficacy evaluations) to the next section.

EXAMPLE 1 (Generic distributional shift). Consider data in pairs (X,Y ), where X is
a feature (covariate) vector and Y is a dependent variable (e.g., label) we wish to model
from X. Let U be a latent (unobserved) confounding variable, and assume that the pair (X,Y )

1This correspondence between higher moments and divergences holds in more generality in that if f (t) grows
asymptotically as tk as t → ∞, then the dual exhibits similar k∗th moment behavior; see Supplementary Ap-
pendix 8.2 [35].
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jointly follows P0(· | U = u). For a marginal distribution µ on U , let Pµ((X,Y ) ∈ A) :=∫
P0((X,Y ) ∈ A | U = u)dµ(u). We have the essentially tautological correspondence

{
P | Df

(
P ||P0

) ≤ ρ
} =

{
Pµ

∣∣∣
∫

f

(
dPµ(x, y)

dP0(x, y)

)
dP0(x, y) ≤ ρ

}
.

The robustness set is a family of distributional interventions on U . We leave characterizing
the precise form of such interventions as an open question.

For well-specified linear models, it is frequently the case that the robust parameter θdro ∈
argminθ Rf (θ;P) minimizing the objective (1) coincides with the true parameter, though its
plug-in estimator may be less efficient than standard ordinary least-squares estimators (we do
not discuss this efficiency here).

EXAMPLE 2 (Regression and stochastic domination). To make things precise, recall
stochastic orders [83]: for two R-valued random variables U and V , we say that V stochas-
tically dominates U if P(U ≥ t) ≤ P(V ≥ t) for all t ∈ R, written U 3 V ; this is equiv-
alent to the condition that E[g(U)] ≤ E[g(V )] for all nondecreasing g. For any problem
with data in pairs (X,Y ) and a loss "(θ;X,Y ), if there exists a parameter θ% such that
"(θ%;X,Y ) 3 "(θ;X,Y ) for all θ , we then have θ% ∈ argminθ Rf (θ;P) for all f -divergences,
as Rf is a coherent risk measure (cf. [86], Chapter 6.3). Existence of such θ% is a strong con-
dition, but holds in a few important cases.

For concreteness consider linear regression, where (x, y) ∈ Rd × R and "(θ;x, y) =
1
2(θT x − y)2. First, we consider the case that the model is well specified, so that Y =
XT θ% + ε, where E[ε | X] = 0. If the distribution of ε given X = x is symmetric and log
quasiconcave (unimodal), then Anderson’s theorem [6, 41], Theorem 11.1, implies that

P
(∣∣xT θ − Y

∣∣ ≥ t | X = x
) = P

(∣∣xT (θ − θ%) − ε
∣∣ ≥ t | X = x

) ≥ P
(|ε| ≥ t | X = x

)

for all t ∈ R, and so "(θ%;X,Y ) 3 "(θ;X,Y ) for all θ , and θ% ∈ argminθ Rf (θ;P).
In a different vein, we can consider the case that X,Y are jointly Gaussian and mean zero,

(X,Y ) ∼ N

(

0,

[
+ γ

γ T σ 2

])

.

Then for any θ we have (XT θ − Y) ∼ N(0, θT +θ − 2θT γ + σ 2), and the ordinary least-
squares solution θols = +−1γ = E[XXT ]−1E[XY ] evidently uniformly minimizes the vari-
ance of (XT θ − Y). Once again, we thus have the stochastic dominance "(θols;X,Y ) 3
"(θ;X,Y ) for all θ , and so the robust solutions coincide with standard estimators.

EXAMPLE 3 (Worst-case minority performance and CVaR). For 0 < α ≤ 1, the condi-
tional value-at-risk [76] (CVaR) is

CVaRα(θ;P0) := inf
η∈R

{
α−1EP0

[(
"(θ;X) − η

)
+

] + η
}
.

This corresponds to an uncertainty set arising out of limiting f - or Rényi divergences. Recall-
ing the Rényi divergence (5), we have D∞(P ||Q) := limα→∞ Dα(P ||Q) = ess sup log dP

dQ ,
and if we define f∞,c(t) = 0 for 0 ≤ t ≤ c and +∞ otherwise, then the uncertainty region

UP0 :=
{
P | D∞

(
P ||P0

) ≤ log
1
α

}
= {

P | Df∞,α−1

(
P ||P0

) ≤ 1
}

= {
P | there exists Q,β ∈ [α,1] s.t. P0 = βP + (1 − β)Q

}

by a calculation [86], Example 6.19. The uncertainty set corresponds to distributions with
minority subpopulations of size at least α, and CVaRα(θ;P0) = supP∈UP0

EP ["(θ;X)] is the
expected loss of the worst α-sized subpopulation.
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The Kusuoka representation [58, 84] of risk measures shows that the robust formula-
tions (1) are worst-case CVaR mixtures, Rf (θ;P0) = supµ∈Mf

∫ 1
0 CVaRα(θ;P0) dµ(α) for

a set Mf of probability measures on [0,1]. They thus correspond to drawing a random sub-
population size α and measuring the loss of the worst subpopulation of P0 mass at least α.
Precisely connecting the subpopulation size and robustness set {P : Df (P ||P0) ≤ ρ} is chal-
lenging.

We now consider two examples in which data comes from latent mixtures of populations,
where within each subpopulation a model is well specified, though it is not globally. In both
of these cases—mean estimation and a linear regression problem—we see that as the ro-
bustness parameter ρ ↑ ∞ in the DRO formulation (1), the robust estimator converges to
the minimax estimator minimizing the worst-case loss across all subpopulations. This recalls
Meinshausen and Bühlmann [67], who consider min/max effects in heterogeneous regression
problems with known group identities, but here the DRO estimator recovers a minimax esti-
mator without such knowledge. The examples are stylized to give explicit limits, though they
convey the intuition that the robust estimators seek to do well on unknown subpopulations in
a reasonably precise way. In each example, we consider the conditional value at risk (Ex. 3)
for simplicity; the results for higher-order robustness measures are similar but tedious.

EXAMPLE 4 (Mixtures in mean estimation). Consider a finite number of distinct pop-
ulations on Rd indexed by v ∈ V , each appearing with probability pv > 0, where under
population v, we observe

Y = θv + ε, ε
i.i.d.∼ N(0, Id).

Letting the loss "(θ;y) = 1
2‖θ − y‖2

2, we define the minimax estimator

θminimax := argmin
θ

max
v∈V

‖θ − θv‖2
2 = argmin

θ
max
v∈V

Ev
[‖θ − Y‖2

2
]
.

The unique vector θminimax coincides with the Chebyshev center of the vectors {θv} [22],
Chapter 8.5; it also requires knowledge of the groups v ∈ V . In Supplementary Appendix 9.1
[35], we show that if θα = argminθ CVaRα("(θ;Y)), then

θ1 =
∑

v

pvθv and lim
α↓0

θα = θminimax.

Recalling from Example 3 that the parameter α is inversely proportional to the robustness
in the DRO formulation, we see the expected behavior: as robustness increases, the DRO
estimator converges to an estimator minimizing the worst subpopulation expected loss.

EXAMPLE 5 (Mixtures in linear regression). We expand the previous example to allow
covariates and potentially infinite subgroups. For groups indexed by v ∈ V , we draw v ∈ V

according to a probability measure µ on V , and then conditional on v draw

(9) X ∼ N(0,+v), εv ∼ N
(
0,σ 2

v

)
, Y = XT θv + εv,

assuming implicitly that all parameters are v-measurable. (To show the result in the most
straightforward way, we make the simplifying assumptions that 0 < infv σ 2

v ≤ supv σ 2
v <

∞, that the eigenvalues of +v are finite and bounded away from 0 uniformly in v, that
supv ‖θv‖ < ∞, and we also assume that for each θ ∈ Rd , we have ess supv(θ − θv)

T +v(θ −
θv) + σ 2

v = supv(θ − θv)
T +v(θ − θv) + σ 2

v . Each of these assumptions is trivial when there
are a finite number of groups.)
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Letting Ev denote expectation according to the model (9), let "(θ;x, y) = 1
2(xT θ − y)2 be

the standard squared error and consider the conditional value at risk

CVaRα
(
"(θ;X,Y )

) = inf
η

{ 1
α

∫
Ev

[(
"(θ;X,Y ) − η

)
+

]
dµ(v) + η

}
.

We define the minimax estimator to minimize the worst subpopulation risk

θminimax = argmin
θ

sup
v∈V

{
Ev

[(
θT X − Y

)2] = (θ − θv)
T +v(θ − θv) + σ 2

v

}
.

In this case, for the distributionally robust parameter θα := argminθ CVaRα("(θ;X,Y )) and
ordinary least squares solution θols = argminθ E["(θ;X,Y )], we show in Supplementary Ap-
pendix 9.2 [35] that

θols = θ1 =
∫

θv dµ(v) and lim
α↓0

θα = θminimax.

We again see the interpolation from an average parameter to one that minimizes the worst-
case subpopulation risk as the robustness increases (i.e., α ↓ 0).

3. Empirical analysis, validation and choice of uncertainty set. As this paper pro-
poses and argues for alternatives to empirical risk minimization and standard M-estimation—
workhorses of much of machine learning and statistics [52, 98, 99]—it is important that we
justify our approach. To that end, we first provide a number of experiments that illustrate the
empirical properties of the distributionally robust formulation (1). We test our plug-in estima-
tor (2) on a variety of tasks involving real and simulated data, and compare its performance
with the standard empirical risk minimizer

θ̂erm
n ∈ argmin

θ∈!
EP̂n

[
"(θ;X)

]
.

For concreteness, we focus on the Cressie–Read (equivalently Rényi) divergence family (6)
with k ∈ (1,∞), experimenting on three related challenges:

1. Domain adaptation and distributional shifts, in which we fit predictors on a training
distribution differing from the test distribution

2. Performance on tail losses, where we measure quantiles of a model’s loss rather than
its expected losses

3. Data coming from multiple heterogeneous subpopulations, where we study perfor-
mance on each subpopulation (or worst-case subpopulations).

If our intuition on the distributionally robust risk is accurate, we expect results of roughly
the following form: as we decrease k in the Cressie–Read divergence (6), fk(t) ∝ tk − 1,
the solutions should exhibit more robustness while trading against average-case empirical
performance, as the set {Q : Df (Q||P0) ≤ ρ} gets larger. Thus, such models should have
better tail behavior or generalization on rare or difficult subpopulations compared to standard
average-case procedures. We expect increasing ρ to exhibit similar effects, and we shall see
the ways this intuition bears out in our experiments.

Since the choice of f and ρ governs the trade-off between average and tail performance,
we propose two heuristics for choosing ρ and k, evaluating their performance on simulated
examples. Our heuristics aim to provide uniform performance over difficult inputs by consid-
ering proxy subpopulations constructed from the training data, though to be clear, the only
formal guarantees on robustness they provide is robustness to shifts contained in specified by
fk for the chosen and k (the duality relationships (4) and (8) makes the robustness less sensi-
tive to ρ). Our first heuristic splits the training dataset into s equi-sized groups based on the
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values of the response variable Y , where Y has highest values in the first group, and the lowest
values in the last sth group. We split each of the s groups into 80%/20% training/validation
splits, and reunify all of the 80% splits to give a new training dataset with 80% of the original
data. We train our robust models (2) (varying ρ and k) on the new training dataset, evaluating
these models on the unused data from each group (20%), giving s different empirical losses
for a given model. A model’s score is then its empirical loss on the worst of the s held-out
sets. We use s = 5 groups since this consistently gives a good selection procedure across dif-
ferent settings. As our second heuristic, we consider scenarios where more is known about
the problem. If a small auxiliary dataset collected from a worse-than-average subpopulation
is available, we tune ρ and k on this auxiliary dataset so that heuristically, the resulting model
performs uniformly well against all subpopulations of a similar size (the worst-case formu-
lation (2) optimizes performance only over large enough subpopulations, e.g., Example 3).
Empirically, we observe that the second heuristic performs well even on rare subgroups that
are far from the subpopulation generating the auxiliary dataset. On simulation examples,
we observe good worst-case subpopulation performance for both procedures, with moderate
degradation in the average-case performance.

We begin with simulation experiments that touch on all three of above challenges in Sec-
tion 3.1. To investigate these challenges on different real-world datasets, in Section 3.2 we
study domain adaptation in the context of predictors trained to recognize handwritten digits,
then test them to recognize typewritten digits. In Section 3.3, we study tail prediction per-
formance in a crime prediction problem. In our final experiment, in Section 3.4, we study
a fine-grained recognition problem, where a classifier must label images as one of 120 dif-
ferent dog breeds; this highlights a combination of items 2 and 3 on tail performance and
subpopulation performance.

To efficiently solve the empirical worst-case problem (2) for the Cressie–Read family (6),
we employ two approaches. For small datasets (small n and d), we solve the dual form (8)
directly using a conic interior point solver; we extended the open-source Julia package con-
vex.jl to implement power cone solvers [95] (the package now contains our implementa-
tion). For larger datasets (e.g., n ≈ 103–105 and d ≈ 102–104), we apply gradient descent
with backtracking Armijo line-searches [22]. The probability vector Q∗ = {q∗

i }ni=1 ∈ Rn
+

achieving the supremum in the definition (7) is unique as long as the loss vector ["(θ;Xi)]ni=1
is nonconstant, which it is in all of our applications, so Rk is differentiable [48], Theo-
rem VI.4.4.2, with

∇Rk(θ, P̂n) =
n∑

i=1

q∗
i ∇"(θ;Xi) and Q∗ = argmax

Q:Dfk
(Q||P̂n)≤ρ

{
n∑

i=1

qi"(θ;Xi)

}

.

We use a fast bisection method [70] to compute Q∗ at every iteration of our first-order
method; see https://github.com/hsnamkoong/robustopt for the implementation.

3.1. Simulation. Our first experiments use simulated data, where we fit linear models for
binary classification and prediction of a real-valued signal. We train our models with different
values of f -divergence power k and tolerance ρ, testing them on perturbations of the data-
generating distribution.

3.1.1. Domain adaptation and distributional shifts. We investigate distributional shifts
via a binary classification experiment using the hinge loss "(θ; (x, y)) = (1 − yx8θ)+, where
y ∈ {±1} and x ∈ Rd with d = 5. We choose a vector θ%

0 ∈ R5 uniformly on the unit sphere
and generate data

(10) X
i.i.d.∼ N(0, Id) and Y | X =

{
sign

(
X8θ%

0
)

w.p. 0.9,

− sign
(
X8θ%

0
)

w.p. 0.1.

https://github.com/hsnamkoong/robustopt
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FIG. 1. (a) Hinge losses (average and 90th percentile in solid and dashed lines, resp.) under distributional
shifts from θ%

0 to θ%
t = θ%

0 · cos t +v · sin t . The horizontal axis indexes perturbation t . (b) Losses on minority group
(solid-line) and majority group (dotted-line) under the distribution (11). We define the minority group as those
with X1 ≤ z0.95.

(Our below observations still hold when varying these probabilities.) We train our models on
ntrain = 100 training data points, where we use ρ = 0.5 and vary values of k ∈ {1.5,2,4} for
our distributionally robust procedure (2). To simulate distributional shift, we take a uniformly
random vector v ⊥ θ%

0 , v ∈ Sd−1, and for s ∈ [0,π] define θ%
s = θ%

0 · cos s + v · sin s, so that
θ%
π = −θ%

0 . For each perturbation, we generate ntest = 100,000 test examples using the same
scheme (10) with θ%

t replacing θ%
0 .

We measure both average and 90%-quantile losses for our problems. Based on our intu-
ition, we expect that the lower k is (recall that fk(t) ∝ tk), the better the fitted model should
perform on high quantiles of the loss, with potentially worse average performance. Moreover,
for s = 0, we should see that ERM and large k solutions exhibit the best average performance,
with growing s reversing this behavior. In Figure 1(a), we plot the average loss (solid line) and
the 90%-quantile of the losses (dotted line) on the shifted test sets, where the horizontal axis
displays the rotation s ∈ [0,π]. The plot bears out our intuition: the distributionally robust
solution θ̂n has worse mean loss on the original distribution than empirical risk minimization
(ERM) while achieving significantly smaller loss on the distributional shifts. The ordering
of the mean performance of the different solutions inverts as the perturbation grows: under
no perturbation (s = 0), the least robust method (ERM) has the best performance, while the
most robust method (corresponding to k = 3

2 ) performs the best under large distributional
perturbations (s large).

3.1.2. Tail performance. We transition now to regression, investigating performance on
rare examples, where the goal is to predict y ∈ R from x ∈ Rd and we use loss "(θ; (x, y)) =
1
2(y − x8θ)2. In this case, we take d = 5 and generate data X

i.i.d.∼ N(0, Id), ε ∼ N(0,0.01),

(11) Y =
{
X8θ% + ε ifX1 ≤ z0.95 = 1.645,

X8θ% + X1 + ε otherwise,

where we choose θ% uniformly on the unit sphere Sd−1 and X1 denotes the first coordinate
of X. (We use very small noise to highlight the more precise transition between average-case
and higher percentiles.) As the effect of X1 changes only 5% of the time (when it is above
z0.95), we expect ERM to have poor performance on rare events when X1 ≥ 1.645, or in
the tails generally. In addition, a fully robust solution is θ rob = θ% + 1

2e1, as this minimizes
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worst-case expected loss across the two cases (11); we expect that for high robustness pa-
rameters (ρ large) the robust model should have worse average performance but about half
of the losses at higher quantiles. We simulate ntrain = 2000 training data points, and train the
distributionally robust solution (2) with ρ ∈ {0.001,0.01,0.1,0.5,4.5}, and k ∈ {1.5,2,4}. In
Figure 1(b), we plot the mean loss under the data generation scheme (11) as solid lines and
the 90%-quantile as a dotted line. We see once again that the robust solutions trade tail per-
formance for average-case performance. The tail performance (90% -quantile loss) improves
with increasing robustness level ρ, with slight degradation in average case performance.

3.1.3. Performance on different subpopulations. For our final small-scale simulation,
we study item 3 (subpopulation performance) by considering a two-dimensional regression
problem with heterogeneous subpopulations. We consider two scenarios: a two-group setting
and an infinite number of groups. In each scenario, we demonstrate the performance of our
heuristic procedure for choosing ρ and k; these subpopulation scenarios are appropriate for
succinctly characterizing the trade-off between average and tail subpopulations. Our tuning
procedure provides good performance on the (latent) worst-case subpopulation even when
the proxy subpopulation for tuning ρ and k is far from the rare subpopulation. In what fol-
lows, we denote by “YSplit” our first proposal that chooses ρ and k based on sorted values
of Y .

3.1.3.1. Two groups. In our first scenario, for θ%
0 = (1,0.1), θ%

1 = (1,1), we generate

(12) Y = X8(
(1 − G)θ%

0 + Gθ%
1
) + ε,

where X ∼ N(0, I2), ε ∼ N(0,0.01), and G ∈ [0,1] indicates a random latent group. We
assume that X, G and ε are mutually independent. Both the distributionally robust proce-
dure (2) and ERM are oblivious to the label G, where we think of G = 1 as the majority
group, and G = 0 as the minority group. We simulate ntrain = 1000 training data points, and
train ERM and robust models (2) on varying values of k and ρ. We let

(13) G =
{

0 with probability 0.1 (minority),

1 with probability 0.9 (majority).

In this two-group setting, we also consider the maximin effects estimator [67]

θ̂maximin
n = argmax

θ
min
g=0,1

{
2θ8+̂n,gθ

%
g − θ8+̂n,gθ

}

as a benchmark, where +̂n,g is the empirical covariance matrix of the Xi with Gi = g, which
maximizes the explained variance for each group [67]. The oracle estimator θ̂maximin

n requires
knowledge of the labels Gi and the group-specific regressors θ%

g for g = 0,1.
In Figure 2(a) and (b), we plot the average and minority group losses for the different

methods, respectively. Here, the robust methods interpolate between the empirical risk min-
imizing (ERM) solution—which has the best average loss and worst minority group loss—
and the maximin estimator θ̂maximin

n , which sacrifices performance on the average loss for
strong minority group performance. The distributionally robust estimators θ̂n exhibit trade-
offs between the two regimes, improving performance on the minority population at smaller
degradation in the average loss. The parameters ρ and k allow flexibility in achieving these
tradeoffs, though they of course must be set appropriately in applications. Our first heuristic
(“YSplit”) chooses ρ and k based on groups formed by sorted values of Y , and improves
minority performance while sacrificing very little average-case performance.
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FIG. 2. Two groups: Figures (a) and (b) plots average and minority group losses under the distribution (13).
“YSplit” is the performance of the model whose ρ and k was chosen based on groups formed by sorted values
of Y .

3.1.3.2. Infinite groups. For our last scenario, we again generate X and Y following the
equation (12), but with

(14) G ∼ PG with density pG(g) ∝ (1 − g)−
1
3 ,

so small values of G again correspond to rare minority subpopulations. To study how k and
ρ can be tuned if a small auxiliary dataset is available, we generate a small auxiliary dataset
from the distribution (12) with group G = 0.5, which we interpret as a particular group inter-
vention; we simulate nauxiliary = 100 observations from G = 0.5, which is small compared to
ntrain = 1000 training examples. We refer to choosing k and ρ with the least prediction error
on this auxiliary validation data as the “G = 0.5” method.

As earlier, we plot in Figure 3(a) and (b) the average and minority group (G = 0) losses for
the different methods. The minority group G = 0 now never appears in the training set, and
small values of G are rare under the distribution (14). Our first heuristic “YSplit” chooses a
model that balance average and minority performance, although it is somewhat conservative.
Our second proposal, the G = 0.5 method, achieves good performance on the rare minority
group while sacrificing little average performance, despite the fact that the auxiliary data was
collected from the group G = 0.5 that is far from the minority group G = 0.

FIG. 3. Infinite groups: Figures (a) and (b) plot average and minority group losses under the distribution (14).
“YSplit” is the performance of the model whose ρ and k was chosen based on groups formed by sorted values of
Y , and “G = 0.5” chose k and ρ based on auxiliary data with intervention G = 0.5.
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3.2. Domain generalization for classification and digit recognition. In this first of our
real experiments, we consider a multiclass digit classification example, investigating domain
generalization, though we conflate this with item 3 (multiple subpopulations). We construct
our training set as a mixture of MNIST handwritten digits [32] (majority population) and
typewritten digits consisting of different fonts [30] (minority population). We fix the number
of training examples, and vary the minority proportions of typewritten digits from 0–10% of
the training data. In the MNIST handwritten training dataset comprising of ntrain = 60,000
digits, we replace n ∈ {0,6,10,60,100,600} images per digit by randomly drawn digits from
the typewritten dataset (with the same label).

Our classifiers have no knowledge of whether an image is handwritten or typewritten, and
our goal is to learn models that perform uniformly well across both majority (hand-written)
and minority (typewritten) subpopulations. We compare our procedure (2) with k = 2 against
the ERM solution θ̂erm

n , where we vary ρ and the latent minority proportion. We evaluate our
classifiers on both hand and typewritten digits on held-out test sets.

For y ∈ {0, . . . ,9} and x ∈ Rd , we use the multiclass logistic loss "(θ; (x, y)) =
log(

∑k
i=0 exp((θi − θy)

8x)), where θi ∈ Rd . For our feature vector X, we use the d = 4509-
dimensional output of the final fully connected layer of LeNet [63] after 104 stochastic gradi-
ent steps on the training dataset (see [53] for detailed hyperparameter settings). We constrain
our parameter matrix [θ0, . . . , θ9] to lie in the Frobenius norm ball of radius r = 5, chosen by
cross validation on ERM (ρ = 0).

Returning to the justification for our development, we expect our robust models to ex-
hibit better performance on rare and difficult test data when compared against ERM models.
This prediction is mostly consistent with our observations, though the effects are not always
strong. We suspect this is because the test data we construct is different from the worst-case
scenario; the procedure (2) can be conservative as it guarantees uniform performance by op-
timizing the worst-case performance. In Figure 4, we plot the classification errors over the
minority proportion as we vary ρ (so that ρ = 0 corresponds to ERM), summarizing the clas-
sification errors in Table 1. In Figure 4(a), we observe virtually the same performance on
the handwritten test set (majority) across different radii ρ (error below 1%, with a decrease
in accuracy of at most 0.1–0.2%). On a test set of all typed digits (Figure 4(b)), the robust
solutions exhibit a 1–2% improvement over the nonrobust (ERM) solution in each mixture of
typewritten digits (minority proportions) into the training data, which is larger than the per-
sistent 0.1–0.2% degradation on handwritten recognition. The trend of robust improvements
on typewritten digits is more pronounced on the harder classes: the gap between θ̂erm

n and θ̂n

widens up to 9% on the digit 9 (see Table 1 and Figure 4(d)). We observe that θ̂n consistently
performs well on the latent minority (typewritten) subpopulation by virtue of upweighting
the hard instances in the training set.

3.3. Tail performance in a regression problem. We consider a linear regression prob-
lem using the communities and crime dataset [8, 75], studying the performance of
distributionally robust methods on tail losses. Given a 122-dimensional attribute vector X
describing a community, the goal is to predict per capita violent crimes Y (see [75]). We use
the absolute loss "(θ; (x, y)) = |θ8x − y| and compare method (2) with constrained forms of
lasso, ridge and elastic net regularization [103], taking constraints of the form

! = {
θ ∈ Rd : a1‖θ‖1 + a2‖θ‖2 ≤ r

}
.

We vary a1, a2, and r : for "1-constraints we take a1 = 1, a2 = 0 and vary r1 ∈ {0.05,0.1,
0.5,1,5}; for "2-constraints we take a1 = 0, a2 = 1 and vary r2 ∈ {0.5,1,5,10,50}; for elas-
tic net we take a1 = 1, a2 = 10 and set r = r1 + r2. We compare these regularizers with the
distributionally robust procedure (2) with k = 2, and the same procedure coupled with the
"2-constraint (a1 = 1, a2 = 0) with r = 0.05, where we vary ρ ∈ {0.001,0.01,0.1,1,10}.
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FIG. 4. (a) Test error on the handwritten digits (MNIST test dataset). (b)–(d) Test errors on typewritten digits.
Models were trained on data consisting of MNIST handwritten digits with 0–10% replaced by typewritten digits.
The horizontal axis of each plot denotes percentage of typewritten digits (relative to handwritten) in training.
Each of the six lines represents a different value of ρ used in training, where ρ = 0 corresponds to empirical risk
minimization (ERM). (b) Classification error on entire test set of typewritten digits. (c) Classification error on
digit 3 of the typewritten digits. (d) Classification errors for digit 9 of the typewritten digits.

In Figure 5, we plot the quantiles of the training and test losses with respect to different
values of regularization or ρ. The horizontal axis in each figure indexes our choice of reg-
ularization value. We observe that θ̂n shows very different behavior than other regularizers;
θ̂n attains median losses similar or slightly higher than the regularized ERM solutions, and
achieves much smaller loss on the tails of the inputs. As ρ grows, the robust solution exhibits

TABLE 1
Test error on typewritten digits (%)

Minority
proportion

All digits Digit 9 (hard) Digit 6 (hard) Digit 3 (easy)

ERM ρ = 50 ERM ρ = 50 ERM ρ = 50 ERM ρ = 50

0 17.35 16.78 30.12 25.98 35.63 38.39 6.69 6.69
0.1 12.14 10.4 21.95 17.03 21.06 14.27 6.89 6.99
0.17 11.05 9.48 19 10.83 19.69 12.8 6.89 7.19
1 6.01 5.18 10.73 5.81 7.97 7.97 4.92 3.54
1.67 5.07 3.82 9.35 4.13 6.59 5.91 4.63 3.54

10 2.1 0.61 3.44 0.59 1.77 0.39 2.66 0.69
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FIG. 5. Median and maximal loss |Y − Z8θ | evaluated on training and test datasets. Values of the x-axis
corresponds to different indices for the values of ρ and r , so that “x-axis = 1” for the "1-constrained problem
corresponds to r = 5, and for the distributionally robust method (2) it corresponds to ρ = 0.001. Error bars
correspond to standard error.

increasing median loss—though slowly—and decreasing maximal loss. To validate our ex-
periments, we made 50 independent random partitions of our dataset with n = 2118 samples.
For each random partition, we divide the dataset into training set with ntrain = 1800 and a test
set with ntest = 318.

3.4. Fine-grained recognition and challenging subgroups. Finally, we consider the fine-
grained recognition task of the Stanford Dogs dataset [55], where the goal is to classify
an image of a dog into one of 120 different breeds. There are 20,580 images, ntrain = 12,000
training examples, with 100 training examples for each class. We use the default histogram
of SIFT features in the dataset [96], resulting in vectors x ∈ Rd with d = 12,000.

We train 120 one-versus-rest classifiers, one each class, and combine their predictions by
taking the k predictions with largest scores for a given example x. For each binary classifi-
cation problem, we use the binary logistic loss, regularized with lasso (in constrained form)
so that !one-vs-rest = {θ ∈ Rd : ‖θ‖1 ≤ r}. Thus, for each class i, we represent a pair (x, y)
by y = 1 if x is of breed i, and −1 otherwise, fitting a binary classifier θi for each class. We
use r = 1.0 for all of our methods based on cross-validation for ERM (ρ = 0). As we predict
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FIG. 6. (a) Top-5 error against ρ on train and test. (b) Standard deviation of top-5 accuracy across 120 different
classes against ρ. (c) Test top-5 accuracy on the worst-c classes under each model, that is, c classes with lowest
accuracy under each model. (d) Test top-5 accuracy on the worst-c classes ordered by accuracy of ERM model
(ρ = 0).

using the m highest scores, we measure performance with respect to top-m accuracy, which
counts the number of test examples in which the true label was among these m predictions.
As ρ grows larger, we expect better performance on challenging classes, sacrificing perfor-
mance on easier classes, and due to uniform performance, for the variance in the classwise
accuracies to be smaller, though we do not necessarily expect that average accuracies should
improve as ρ increases.

In Figure 6, we present top-5 accuracies; top-1 and top-3 accuracies are similar. Over-
all accuracy improves moderately as ρ grows (Figure 6(a)), and the standard deviation of
the top-5 accuracy across the classes decreases as ρ increases (Figure 6(b)), consistent with
our hypothesis that the robust formulations should yield more uniform performance across
different subpopulations. In Figure 6(c), we plot the accuracy averaged over c-classes that
suffer the lowest accuracy under each model, varying c on the horizontal axis; the accuracy
at c = 120 is simply the average top-5 accuracy of the models. For c small, meaning for
classes on which the respective models perform most poorly, we observe that the ensemble
of one-vs.-rest θ̂n’s outperform the ensemble of ERM solutions θ̂erm

n ’s. In Figure 6(d), we
plot the accuracy averaged over the first c-classes that have the lowest accuracy under the
ERM model. We see that robust solutions θ̂n improve performance on classes that ERM does
poorly on; such tail-performance improves monotonically with ρ up to ρ = 10; we conjecture
the degradation for higher ρ is a consequence of overly conservative estimates. Figure 6(c)
shows that the gap between the robust classifier performance and nonrobust classifier goes
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from 0.17 vs. 0.03 (hardest class accuracy) to 0.38 vs. 0.28 (overall accuracy), so that relative
performance gains of the robust approach seem largest on the hardest classes. Although it is
hard to draw conclusions from this experiment due to improved overall performance when
increasing ρ, we conjecture that is due to the regularization effect for relatively small values
of ρ described by many previous authors [34, 44, 59, 61, 70].

4. Convergence guarantees. Our empirical experiments in the previous section evi-
dence the potential statistical benefits of the distributionally robust estimator (2). As a conse-
quence, we view it as important to develop some of its theoretical properties, so we investigate
its performance under a variety of conditions on the f -divergence, providing finite sample
convergence guarantees for f -divergences with f (t) * tk with k ∈ (1,∞). Recalling the def-
inition (7) of worst-case risk Rk(θ;P0) for the Cressie–Read divergences (6), we show that
the empirical minimizer θ̂n for the plug-in (2) satisfies Rf (θ̂n;P0) − infθ∈! Rf (θ;P0) ≤
Cn− 1

k∗∨2 with high probability, where k∗ = k
k−1 and C is a problem dependent constant. As

we show in Section 5, the n−1/(k∗∨2) rate is optimal in n. The departure from parametric rates
as the uncertainty set becomes large, meaning k ↓ 1 or k∗ = k

k−1 ↑ ∞, is a consequence of
the fact that in the worst case, it is challenging to estimate Lk∗-norms of random variables X
for k∗ > 2; that is, the minimax rate for such estimation is n−1/k∗ for k∗ > 2.

Throughout this section, we assume that for any θ ∈ ! and x ∈ X , we have "(θ;x) ∈
[0,M] for some M ≥ 1, and restrict attention to the Cressie-Read family of divergences (6)
with k ∈ (1,∞). We first show pointwise concentration of the finite sample objective
Rk(θ; P̂n) to its population counterpart Rk(θ;P0); we use convex concentration inequali-
ties [21, 91] to show concentration of Rk(θ; P̂n) to E[Rk(θ; P̂n)], and then carefully bound
the bias of E[Rk(θ; P̂n)] in estimating the population risk Rk(θ;P0).

THEOREM 2. Assume that "(θ;x) ∈ [0,M] for all θ ∈ ! and x ∈ X , and define ck(ρ) :=
(k(k −1)ρ +1)1/k . For a fixed θ ∈ ! and t > 0, whenever n ≥ k ∨3, with probability at least
1 − 2e−t

∣∣Rk(θ; P̂n) − Rk(θ;P0)
∣∣ ≤ 10n− 1

k∗∨2 ck(ρ)2M

(
ck(ρ)

ck(ρ) − 1
∨ 2

)(1
k

+
√

t + 2 logn

)
.

See Section 10.1 of the Supplementary Material [35] for the proof. Relaxing the bound-
edness assumption "(θ;x) ∈ [0,M] to sub-Gaussian or subexponential tails, or providing
similar finite-sample guarantees for general f -divergences are topics of future research.

Given the pointwise concentration result (Theorem 2), we can use a simple covering argu-
ment to obtain its uniform counterpart. Our uniform guarantees rely on covering numbers for
the model class {"(θ; ·) : θ ∈ !} (e.g., [99]). A collection v1, . . . , vN is an ε-cover of a set V
in norm ‖·‖ if for each v ∈ V , there exists vi such that ‖v − vi‖ ≤ ε. The covering number is

N
(
V, ε,‖·‖) := inf

{
N ∈ N | there is an ε-cover of V with respect to ‖·‖}

.

For F := {"(θ, ·) : θ ∈ !} equipped with sup-norm ‖h‖L∞(X ) := supx∈X |h(x)|, a covering
argument gives a uniform concentration result, where we use

εt,n,k(ρ) := n− 1
k∗∨2 ck(ρ)2

(
ck(ρ)

ck − 1
∨ 2

)(1
k

+
√

t + 2 logn

)
.

COROLLARY 1. Let "(θ;x) ∈ [0,M] for all θ ∈ ! and x ∈ X . Then for any t > 0,
whenever n ≥ k ∨ 3, with probability at least 1 − 2N(F,

εt,n,k(ρ)
3 ,‖·‖L∞(X ))e

−t

sup
θ∈!

∣∣Rk(θ; P̂n) − Rk(θ;P0)
∣∣ ≤ 30Mεt,n,k(ρ).
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See Section 10.2 of the Supplementary Material [35] for the proof. From Corollary 1, we
immediately get below.

COROLLARY 2. Let "(θ;x) ∈ [0,M] for all θ ∈ ! and x ∈ X . Then for any t > 0,
whenever n ≥ k ∨ 3, with probability at least 1 − 2N(F,

εt,n

3 ,‖·‖L∞(X ))e
−t

Rk(θ̂n;P0) ≤ inf
θ∈!

Rk(θ;P0) + 60n− 1
k∗∨2 c2

kM

(
ck

ck − 1
∨ 2

)(1
k

+
√

t + 2 logn

)
.

As an example, let θ 0→ "(θ;x) be L-Lipschitz for all x ∈ X , with respect to some norm
‖·‖ on !. Assuming D := supθ,θ ′∈! ‖θ − θ ′‖ < ∞, a standard bound [99], Chapter 2.7.4, is

N
(
F, ε,‖·‖L∞(X )

) ≤ N

(
!,

ε

L
,‖·‖

)
≤

(
1 + DL

ε

)d

.

If there exists θ0 ∈ ! and M0 > 0 such that |"(θ0;x)| ≤ M0 for all x ∈ X , we have |"(θ;X)| ≤
LD + M0, and Corollary 2 implies that

Rk(θ̂n;P0) ≤ inf
θ∈!

Rk(θ;P0)+ 60n− 1
k∗∨2 c2

k(LD +M0)

(
ck

ck − 1
∨ 2

)(1
k

+
√

t + 2d log(2n)

)

with probability at least 1 − 2 exp(−t). Replacing covering numbers in the above guaran-
tees with Rademacher averages or their localized variants [10] and leveraging Rademacher
contraction inequalities [64] remain open.

5. Lower bounds. To complement our uniform upper bounds, we provide mini-
max lower bounds showing they are rate optimal, though developing optimal dimension-
dependent bounds remains open. For a collection P of distributions and f -divergence f , we
define the minimax risk

(15) Mn(P, f,") := inf
θ̂n

sup
P0∈P

EP n
0

[
Rf

(
θ̂n

(
Xn

1
);P0

) − inf
θ∈!

Rf (θ;P0)
]
,

where the outer infimum is over all (X1, . . . ,Xn)-measurable functions and the inner supre-
mum is over probability measures in P , where the loss is implicit in the risk Rf . Whenever
f (t) " tk as t ↑ ∞, we show there exist losses for which n−1/(k∗∨2) is a lower bound on the
minimax distributionally robust risk (15) where k∗ = k/(k − 1). Thus there is a necessary
transition from parametric

√
n-type rates to n1/k∗ when k is small, that is, when we seek

protection against large distributional shifts.
It is of interest both to estimate the value of the risk Rf —see the literature on risk

measures we reference in the Introduction—and to minimize it. Consequently, we divide
our lower bounds into estimation rates on the value Rf (θ;P0) and on the actual minimax
risk (15) for the optimization problem (1), which build out of these results (Sections 5.1
and 5.2, resp.). Within each section, we initially present our results for the Cressie–Read
family (6) with k ∈ (1,∞), allowing explicit constants, then provide lower bounds for gen-
eral f -divergences using the same techniques. The rough intuition for our approach is as fol-
lows: we consider Bernoulli variables Z ∈ {0,M}, where the probability that Z = M is small,
though this probability has substantial influence on the risk Rf . This highlights the reason
for the potentially slow rates of convergence: one must sometimes observe rarer events to
estimate or optimize the risk Rf .
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5.1. Lower bounds on estimation of the robust risk value. For the rest of this subsection,
we fix any θ ∈ !, and consider Z(x) := "(θ;x), abusing notation by writing Rf (Z) :=
supDf (Q||P0)≤ρ EQ[Z] and Rk(Z) := Rf (Z) if f = fk is a Cressie–Read divergence (6). We
are interested here in the minimax error for estimating the robust risk Rf (Z) itself, rather
than any optimization over θ (justifying our abuse Z(x) = "(θ;x)), studying

(16) Mn(P, f ) := inf
R̂

sup
P0∈P

EP n
0

∣∣R̂
(
Zn

1
) − Rf (Z)

∣∣,

where Z ∼ P0 and Zn
1

i.i.d.∼ P0, and the outer infimum is over R̂ : {0,M}n → R. Throughout
this section, we let P be the collection of distributions on Z ∈ {0,M} for a fixed M > 0.

We first establish a lower bound for estimating Rk(Z) = Rk(θ;P0) under the Cressie–
Read family fk (6); see Section 11.1 of the Supplementary Material [35] for the proof. Our
proof uses Le Cam’s method [62, 102], by noting that if Z takes two values z1 < z2, then
Rk(Z) = z2 holds if and only if P0 places enough mass on z2; we compute the precise
threshold at which the worst-case region contains a point mass, quantifying the fundamental
difficulty in estimating Rk(Z).

THEOREM 3. Let ρ > 0 be arbitrary but fixed. Define ck(ρ) := (1 + k(k − 1)ρ)1/k ,
pk := (1 + k(k − 1)ρ)−1/(k−1), and βk = k(k−1)ρ

2(1+k(k−1)ρ) . Then

Mn(P, fk) ≥ M max
{ 1

8k∗pk

(√
pk(1 − pk)

8n
∧ 1

2
(1 − pk) ∧ pk

)
,

1
8
β

1
k
k ck(ρ)

( 1
4n

∧ pk ∧ (
1 − (1 − βk)

1−k∗pk
)) 1

k∗
}
.

For general f -divergences, we can provide a similar result, showing that the growth of
the function f defining the divergence Df fundamentally determines worst-case rates of
convergence; when f (t) grows slowly as t ↑ ∞, the robust formulation (1) is conservative, so
rates of convergence are slower. First, we give canonical 1(n−1/2) lower bounds. We assume
that f is strictly convex at t = 1, meaning that f (λt0 + (1 − λ)t1) < λf (t0) + (1 − λ)f (t1)

whenever t0 < 1 < t1. To state our results, we define the binary divergence

hf (q;p) := pf

(
q

p

)
+ (1 − p)f

( 1 − q

1 − p

)
.

As f is strictly convex at t = 1, for q ≥ p the function q 0→ hf (q;p) is strictly increasing
on its domain and continuous, so there exists a unique

(17) q(p) := sup
q≥p

{
q : hf (q;p) ≤ ρ

}
.

(Moreover, q is nondecreasing and concave in p, so it is a.e. differentiable.) We then have
the following 1(n−1/2) lower bound.

PROPOSITION 4. Let f : (0,∞) → R ∪ {+∞} be strictly convex at t = 1. Assume there
exists p ∈ (0,1) such that f is C1 in a neighborhood of q(p)

p and 1−q(p)
p . Then for any such

p,

lim inf
n→∞

√
nMn(P, f ) ≥ M

√
p(1 − p)

8
−∂phf (q(p);p)

∂qhf (q(p);p)
> 0.
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See Section 11.2 of the Supplementary Material [35] for the proof. The final ratio is pos-
itive, as the (strict) convexity of f and joint convexity of hf imply ∂qhf (q(p);p) > 0 ∈
∂qhf (p;p) and ∂phf (q(p);p) < 0 ∈ ∂phf (q(p);q(p)).

If the asymptotic growth of f is at most tk , we can give an 1(n−1/k∗) lower bound, which
we prove in Section 11.3 of the Supplementary Material [35]. Letting f −1(s) := inf{t ∈
[0,1] : f (t) ≤ s} and m > 0, define

(18) Cf,ρ,m := m

ρ

(
1 ∧

(
ρ

2m

)−k∗(
1 − f −1

(
ρ

2

))k∗)−1
.

PROPOSITION 5. Let m > 0 and k ∈ (1,∞). If f (t) ≤ mtk for t ≥ {(n∨Cf,ρ,m)ρm−1} 1
k ,

then

Mn(P, f ) ≥ M

16

(
ρ

m

) 1
k
( 1

n ∨ Cf,ρ,m

) 1
k∗

.

5.2. Lower bounds on optimization. Our lower bounds on optimization build on those for
estimating Rf . We consider linear losses, which makes the situation closest to the estimation
of the risk results in the previous section (as we must still estimate kth norms of random vari-
ables), providing analogous lower bounds for optimizing the worst-case objective Rf (·;P0).
Using a standard notion of distance for proving lower bounds in stochastic optimization [1,
33], we construct a reduction from distributionally robust optimization to hypothesis testing.
Throughout, we let P be the set of distributions with x ∈ [−1,1] almost surely. We begin
by considering the lower bound for the Cressie–Read family (6) fk , whose proof we give in
Section 11.4 of the Supplementary Material [35].

THEOREM 6. Let "(θ;x) = θx where θ ∈ ! = [−M,M]. Define ck(ρ) := (1 + k(k −
1)ρ)1/k , pk := (1 + k(k − 1)ρ)−1/(k−1), and βk = k(k−1)ρ

2(1+k(k−1)ρ) . Then

Mn(P, fk,") ≥ M max
{ 1

16k∗pk

(√
pk(1 − pk)

n
∧ 1

2
(1 − pk) ∧ (1 − 2pk) ∧ pk

)
,

1
16

β
1
k
k ck(ρ)

( 1
4n

∧ pk ∧ (1 − pk) ∧ (
1 − (1 − βk)

1−k∗pk
)) 1

k∗
}
.

For general f -divergences, we can show a similar standard 1(n−1/2) lower bound for
optimization. We defer the proof of this result to Section 11.5 of the Supplementary Material
[35].

PROPOSITION 7. Let "(θ;x) = θx where θ ∈ ! = [−M,M] and X ∈ [−1,1]. If the
conditions on f of Proposition 4 hold,

lim inf
n→∞

√
nMn(P, f,") ≥ M

√
p(1 − p)

16q(p)

−∂phf (q(p);p)

∂qhf (q(p);p)
> 0.

For f -divergences with f (t) = O(tk) as t → ∞, we can again prove a 1(n−1/k∗) lower
bound on optimizing Rf (·;P0). Recalling the definition (18) of Cf,ρ,m, we obtain the fol-
lowing result, whose proof we give in Section 11.6 of the Supplementary Material [35].

PROPOSITION 8. Let "(θ;x) = θx where θ ∈ ! = [−M,M] and X ∈ [−1,1]. If the
conditions on f of Proposition 5 hold,

Mn(P, f,") ≥ M

16

(
ρ

m

) 1
k
{( 1

n ∨ Cf,ρ,m

) 1
k∗ ∧

(
ρ

2m

) 1
k∗

((2
3

)k−1
∧

(1
2

) 1
k∗ 2m

ρ

)}
.



LEARNING MODELS WITH UNIFORM PERFORMANCE VIA DRO 1399

In terms of rates in n, there is a tradeoff between convergence rates and robustness,
as measured by the asymptotic growth of the function f defining the robustness set {P :
Df (P ||P0) ≤ ρ}. In this sense, our finite sample convergence guarantees of Section 4 are
sharp. All results in this section can be stated in a probabilistic form that matches our high
probability guarantees in the previous section; see the remark in the beginning of Section 11
of the Supplementary Material [35].

6. Asymptotics. In the previous two sections, we studied convergence properties for the
robust formulation (1) that hold uniformly over collections of data generating distributions
P0, showing that robustness can incur nontrivial statistical cost. In this section, by contrast,
we turn to pointwise asymptotic properties of the empirical plug-in (2), applying to a fixed
distribution P0. This allows two contributions. First, we prove a general consistency result for
convex losses. Second, while the minimax convergence rates in the previous section exhibit
a departure from classical parametric rates, we show that under appropriate regularity condi-
tions the typical

√
n-rates of convergence and asymptotic normality guarantees are possible.

6.1. Consistency. In this section, we give a general set of convergence results, relying
on the powerful theory of epi-convergence [56, 77]. Our first results shows that Rf (θ; P̂n)

is pointwise consistent for its population counterpart Rf (θ;P0). See Section 12.1 of the
Supplementary Material [35] for the proof.

PROPOSITION 9. Let f be finite on (t0,∞) for some t0 < 1. For any θ ∈ !, if
E[f ∗(|"(θ;X)|)] < ∞ then Rf (θ; P̂n)

a.s.→ Rf (θ;P0) < ∞.

We now provide sufficient conditions for parameter consistency in the distributionally ro-
bust estimation problem (2). The main assumption is that the loss functions are closed and
the nonrobust population risk is coercive. (Weaker sufficient conditions are possible, but in
our view, a bit esoteric.)

ASSUMPTION A (Coercivity). For each x ∈ X , the function θ 0→ "(θ;x) is closed and
convex, and EP0["(θ;X)] + I(θ ∈ !) is coercive.

It is possible to replace the convexity assumption with a Glivenko–Cantelli property on
the collection {f ∗("(θ; ·))}θ∈!; for example, if θ 0→ "(θ;X) is continuous and ! is compact,
then a similar consistency result holds, though computation of the plug-in (2) may be difficult.
Coercivity guarantees the existence and compactness of the set of optima for Rf (θ;P0).

Define the inclusion distance, or the deviation, from a set A to B as

d⊂(A,B) := sup
y∈A

dist(y,B) = inf
ε

{
ε ≥ 0 : A ⊂ {

y : dist(y,B) ≤ ε
}}

.

This is an one-sided notion of the Hausdorff distance dH (A,B) = max{d⊂(A,B), d⊂(B,A)}.
For any ε ≥ 0 and distribution P , define the set of ε-approximate minimizers

SP (!, ε) :=
{
θ ∈ !

∣∣ Rf (θ;P) ≤ inf
θ∈!

Rf (θ;P) + ε
}
,

where we let SP (!) = SP (!,0) for shorthand. The following consistency result shows that
approximate empirical optimizers are eventually nearly in the population optima SP0(!); we
provide its proof in Section 12.2 of the Supplementary Material [35].



1400 J. C. DUCHI AND H. NAMKOONG

PROPOSITION 10. Let f be finite on (t0,∞) for some t0 < 1, and assume
E[f ∗(|"(θ;X)|)] < ∞ on a neighborhood of SP0(!). Under Assumption A,

inf
θ∈!

Rf (θ; P̂n)
a.s.→ inf

θ∈!
Rf (θ;P0),

and for any sequence εn ↓ 0, with probability 1 we have SP̂n
(!, εn) == ∅ eventually and

d⊂(SP̂n
(!, εn), SP0(!)) → 0.

6.2. Asymptotic normality. The worst-case minimax results are sometimes pessimistic,
so we provide a central limit result for the empirical optimizer θ̂n ∈ argminθ∈Rd R(θ; P̂n)

to the population optimizer θ% = argminθ∈Rd R(θ; P̂n) under appropriate smoothness condi-
tions on the risk. Given that in the general formulation of our problem, the supremum over
distributions P near P0 act as nuisance parameters, it seems challenging to give the most
generic conditions under which asymptotic normality of θ̂n should hold. Accordingly, we as-
sume simpler conditions that allow an essentially classical treatment with a brief proof, based
on the dual formulation (4).

Throughout this section, we assume that the population optimizer

θ% = argmin
θ∈Rd

R(θ; P̂n)

is unique. We begin with a smoothness assumption.

ASSUMPTION B (Smoothness and growth). For some k > 1, the function f satisfies
lim inft→∞ f (t)/tk > 0. There exists a neighborhood U of θ% s.t.

1. There exists L : X → R+ such that |"(θ0;x) − "(θ1;x)| ≤ L(x)‖θ0 − θ1‖2 for all θi ∈
U , where E[L(X)2k∗] < ∞ (we again use k∗ = k

k−1 ).
2. E[|"(θ%;X)|2k∗] < ∞, and the function θ 0→ "(θ;x) is differentiable on U .

Recalling the dual (4), for shorthand define

gP (θ,λ,η) := λEP

[
f ∗

(
"(θ;X) − η

λ

)]
+ ρλ + η.

ASSUMPTION C (Strong identifiability). The objective gP0 is C2 near (θ%,λ%,η%) =
argmingP0(θ,λ,η) with positive definite Hessian, and P0("(θ

%;X) − η% > 0) > 0.

The second condition of Assumption C guarantees λ% > 0. For Cressie–Read diver-
gences (6), a sufficient condition for uniqueness of (η%,λ%) follows.

LEMMA 2. Let f be the Cressie–Read divergence (6) with parameter k ∈ (1,∞), and
θ0 ∈ !. If "(θ0;X) is nonconstant under P and EP [|"(θ;X)|k∗] < ∞ near θ0, then (λ0,η0) =
argminλ≥0,η gP0(θ0,λ,η) is unique.

See Supplementary Appendix 13.1 [35] for a proof. Sufficient conditions for differentiabil-
ity are similar to the classical conditions for asymptotic normality of quantile estimators [98];
for example, if "(·;X) is C2 near some θ0 and P("(θ;X) = η) = 0 for θ,η near θ0,η0, then
the dual formulation gP0 is C2 in a neighborhood of (θ0,η0,λ0) whenever λ0 > 0. With this
brief discussion, we now provide an asymptotic normality result.
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THEOREM 11. Let Assumptions B and C hold. Let θ̂n be any sequence of approximate
optimizers to the empirical plug-in satisfying Rf (θ̂n; P̂n) ≤ infθ Rf (θ; P̂n)+ oP (1/n). Then

(19)
√

n
(
θ̂n − θ%) d! N

(
0,V Cov

(
f ∗′

(
"(θ%;X) − η%

λ%

)
∇"

(
θ%;X))

V

)
,

where V is the first d-by-d block of (∇2gP0(θ
%,λ%,η%))−1 ∈ R(d+2)×(d+2).

See Section 13.2 of the Supplementary Material [35] for the proof. Under the same as-
sumptions, it is straightforward to see that plug-in estimators for V and Cov(f ∗′( "(θ%;X)−η%

λ% )×
∇"(θ%;X)) are consistent. Combining these estimators with Theorem 11 gives an asymptot-
ically pivotal confidence region for θ% by Slutsky’s lemmas.

We can relax the assumption that ∇2gP0(θ
%,λ%,η%) > 0 in Assumption C to positive defi-

niteness of the Hessian of the map (η, θ) 0→ ck(EP0[("(θ;X) − η)
k∗
+ ]) 1

k∗ +η at (θ%,η%), which
is the dual objective gk with λ minimized out. We omit the proof with this relaxed condition
for brevity, as it is quite involved. Letting B = ("(θ%;X) − η%)+, under Assumption B and
the randomness conditions of Lemma 2, this relaxed condition holds if

(k − 1)EBk∗−2(
EBk∗EBk∗−2 − (

EBk∗−1)2)
E

[
Bk∗−1∇2"

(
θ%;X)]

− (
EBk∗−1)2E

[
Bk∗−2∇"

(
θ%;X)]

E
[
Bk∗−2∇"

(
θ%;X)]8 > 0,

(20)

and k ∈ (1,2). For k = 2, the relaxed condition holds if in addition to the bound (20), there
is a neighborhood of (θ%,η%) such that P("(θ;X) = η) = 0. Assumption C also requires
identifiability of nuisance variables λ%,η%. Whether directly analyzing the primal formula-
tion (1)—rather than our proof via the dual (4)—can relax this assumption remains open.

7. Discussion and further work. We have presented a collection of statistical prob-
lems that arise out of a distributionally robust formulation of M-estimation, whose purpose
is to obtain uniformly small loss and protect against rare but large losses. While our results
give convergence guarantees, and our experimental results suggest the potential of these ap-
proaches in a number of prediction problems, numerous questions remain.

In our view, the most important limitation is guidance in the choices of the robustness set,
that is, {Q : Df (Q||P0) ≤ ρ}. The analytic consequences of our choices are nice in that they
allow explicit dual calculations and algorithmic development; in the case in which the radius
ρ is instead shrinking with as ρ/n, asymptotic and nonasymptotic considerations [13, 34,
59, 61, 70] show that the robustness provides a type of regularization by variance of the loss
when f is smooth, no matter what choice of f . In our setting, such limiting similarity is not
the case, and it may be unrealistic to assume a user of the approach can justify the appropriate
choice of f . Although we provide heuristics for choosing f and ρ in Section 3, a principled
understanding of these adaptive procedures is an important future direction of research.

The minimax guarantees demonstrate tradeoffs in terms of the robustness we provide,
in the sense that larger robustness sets yield more difficult estimation and optimization prob-
lems. Our upper and lower bounds match up to rates in n of n−1/k∗ (up to logarithmic factors),
though not in dimension dependence, so our understanding of higher-dimensional robustness
is limited. Obtaining convergence guarantees (Section 4) with scale-sensitive model com-
plexity terms such as Rademacher complexity and its localized variants [10] is also a topic of
future research. In our asymptotic results (Section 6), we require an identifiability assumption
on the dual formulation, and it is open whether this assumption can be relaxed by analyzing
the primal problem directly.

The robust formulation (1) and its empirical formulation (2) are complementary to tradi-
tional robustness approaches in statistics arising out of Huber’s work [51, 52]. In the classical
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notions of Huber robustness, one wishes to obtain an estimate of a parameter θ of a distribu-
tion P0 contaminated by some Q; in our case, in contrast, we wish to obtain a parameter that
performs well for all contaminations Q, at least contaminations nearby in some f -divergence
ball. Developing a deeper understanding of the connections and contrasts between classical
contamination models and distributional robustness approaches will likely yield fruit.

Two related issues arise when we consider problems with covariates X and a outcome Y .
The distributionally robust formulation (1) considers shifts in the joint distribution (X,Y ) ∼
P0. Traditional domain adaptation approaches, in contrast, take a fixed conditional distribu-
tion P0,Y |X(y | x) and consider shifts to the marginal distribution P0,X (covariate shift). In
causal data analyses, one wishes to perturb only the distribution of the covariates X, observ-
ing the effect of such interventions on Y . Connecting these ideas and developing variants of
the formulation (1) that only protect against covariate shift or structural shifts on X may be
useful in many scenarios.
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C. Duchi was supported by National Science Foundation Award NSF-CAREER-1553086
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SUPPLEMENTARY MATERIAL

Proofs of results (DOI: 10.1214/20-AOS2004SUPP; .pdf). The supplementary material
contains proofs of our results.
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