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ANALYSIS AND OPTIMIZATION OF CERTAIN PARALLEL MONTE
CARLO METHODS IN THE LOW TEMPERATURE LIMIT\ast 

PAUL DUPUIS\dagger AND GUO-JHEN WU\ddagger 

Abstract. Metastability is a formidable challenge to Markov chain Monte Carlo methods. In
this paper we present methods for algorithm design to meet this challenge. The design problem we
consider is temperature selection for the infinite swapping scheme, which is the limit of the widely
used parallel tempering scheme obtained when the swap rate tends to infinity. We use a recently
developed tool for the analysis of the empirical measure of a small noise diffusion to transform the
variance reduction problem into an explicit optimization problem. Our first analysis of the opti-
mization problem is in the setting of a double-well model, and it shows that the optimal selection
of temperature ratios is a geometric sequence except possibly the highest temperature. In the same
setting we identify two different sources of variance reduction and show how their competition de-
termines the optimal highest temperature. In the general multiwell setting we prove that the same
geometric sequence of temperature ratios as in the two-well case is always nearly optimal, with a
performance gap that decays geometrically in the number of temperatures.

Key words. parallel tempering, infinite swapping, Monte Carlo, large deviations, Gibbs mea-
sures, variance reduction
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1. Introduction. Monte Carlo methods are among the most general purpose
stochastic simulation methods currently available. However, rare events present a
particular challenge for the design of efficient Monte Carlo methods. There is a
relatively long history of the use of large deviation ideas in the design of algorithms
for estimating probabilities of single rare events [6, 12], since large deviation results
can be used to determine how the rare events are most likely to occur. But less is
known on how to overcome the impact of rare events on Markov chain Monte Carlo
(MCMC).

Parallel tempering (PT) [21, 16], also known as replica exchange, and a scheme
obtained as a suitable limit and known as infinite swapping (INS) [11] are methods for
accelerating MCMC. They work by coupling reversible Markov chains with different
``temperatures"" to enhance the sampling properties of the ensemble. An important
question that remains to be answered is how to choose the temperatures in these
algorithms.

In this paper, we apply recently developed methods for the analysis of the em-
pirical measure of a small noise diffusion to characterize the optimal temperatures in
the low temperature limit, which is the setting where the difficulties caused by rare
events and related metastable behaviors are most severe. The analysis is done for the
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INS scheme, which is itself an optimized limit of parallel tempering, in part because of
this optimality, and also in part because the large deviation properties needed for the
analysis take a simpler form for INS than for PT. However, the conclusions regarding
optimal temperature placements will also be at least approximately valid for parallel
tempering if the swap rate is high enough that it approximates infinite swapping.

In the course of the analysis we are able to identify mechanisms that produce
variance reduction, and we find that it has two sources. As will be discussed in
detail later, one source of improved sampling is the increased mobility obtained by
lowering the maximum energy barriers. A second and less obvious source of variance
reduction is due to certain weights appearing in INS, which play a role reminiscent
of the likelihood ratios that appear in importance sampling (see section 4.2). As it
turns out, it is the weights that are responsible for most of the variance reduction,
and which ultimately determine the proper placement of the temperatures in the low
temperature limit.

The paper is organized as follows. The problem of interest is described in section 2.
Various Monte Carlo methods, including PT and INS, are discussed in section 3, as
are the performance measure we will use to characterize good performance. Section 4
states the main theoretical results of the paper and also includes a discussion of the
mechanisms that produce variance reduction in the accelerated Monte Carlo methods.
The proofs of our main results, Theorems 4.10 and 4.11 are given in sections 5 and 6,
respectively. Moreover, a subsection in section 5 (subsection 5.2) gives examples and
discusses bounds on crucial parameters that appear in Theorem 4.10. The appendix
proves properties of certain zero cost trajectories associated with the INS process.

2. Problem formulation. We are concerned with computing integrals with
respect to a Gibbs measure on the state space Rd. The measure takes the form

(2.1) \mu \varepsilon (dx)
.
=

1

Z\varepsilon 
\mu 

e - 
V (x)

\varepsilon dx,

where the notation ``
.
="" is understood as ``is defined as"" throughout the paper,

V : Rd \rightarrow R is the potential of a complex physical system, \varepsilon > 0 is proportional
to a parameter that is interpreted as temperature in physical systems, and the nor-
malization constant Z\varepsilon 

\mu is typically unknown.1 As an elementary example, one would

like to estimate \mu \varepsilon (A) for a set A \subset Rd which does not contain the global minimum
of V , with \partial A regular. Problems of this general sort occur in chemistry, physics,
statistics, Bayesian statistics and elsewhere.

Under proper conditions on V, one can check using detailed balance that \mu \varepsilon is
the unique stationary distribution of the diffusion process \{ X\varepsilon (t)\} t\geq 0 satisfying the
stochastic differential equation (SDE)

(2.2) dX\varepsilon (t) =  - \nabla V (X\varepsilon (t)) dt+
\surd 
2\varepsilon dW (t) ,

where W is a d-dimensional standard Wiener process.
The empirical measure of \{ X\varepsilon (t)\} t\geq 0 over the time interval [0, T ] is defined by

(2.3) \lambda \varepsilon ,T (dx)
.
=

1

T

\int T

0

\delta X\varepsilon (t) (dx) dt,

1To be precise, in a physical system one would have \varepsilon = kBT , where T is the temperature and
kB is Boltzmann's constant, but we abuse terminology and simplify notation by referring to \varepsilon as a
temperature.
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222 PAUL DUPUIS AND GUO-JHEN WU

where \delta x is the Dirac measure at x. The ergodic theorem [3] implies that \lambda \varepsilon ,T gives
an approximation to \mu \varepsilon , and strictly speaking it is the use of discrete time analogues
in this context that is known as MCMC, though we will also use the term for the
continuous time model. For the particular problem of approximating \mu \varepsilon (A), we have
the estimator

(2.4) \theta \varepsilon ,TMC
.
= \lambda \varepsilon ,T (A) =

1

T

\int T

0

1A (X\varepsilon (t)) dt.

We think of \theta \varepsilon ,TMC as the most straightforward MCMC estimator of \mu \varepsilon (A), and since
we will later introduce more complicated estimators, a subscript (e.g., MC) will be
used to distinguish the different estimators.

In many applications (e.g., chemistry, physics, Bayesian inference, and counting
[18, 20]), V (x) is a complicated surface which contains multiple local minima of varying
depths. The diffusion \{ X\varepsilon (t)\} t\geq 0 can be trapped within these deep local minima for a
long time before moving out to other parts of the state space, a phenomena sometimes
referred to as metastability [2]. As a result, it requires a very long (exponential in
1/\varepsilon ) simulation time for \lambda \varepsilon ,T to approximate the equilibrium \mu \varepsilon when \varepsilon is small.

Our analysis of the performance of computational approximations for \mu \varepsilon will be
based on recently derived large deviation approximations for variances associated with
empirical measures such as (2.4) [13]. Following the convention of [15, Chapter 6], [13]
considers in place of, say, (2.2) a small noise diffusion that takes values in a compact
and connected manifold M \subset Rd of dimension r < d and with smooth boundary
(precise regularity assumptions forM are given on [15, p. 135]). This is also consistent
with how MCMC algorithms for a process such as (2.2) are often implemented. To be
precise one uses periodic boundary conditions with the boundary far removed from
the regions of interest and the potential V taking a large value on the boundary. For
purposes of mathematics it is more convenient to identify the periodic domain with
a smooth manifold in a space of larger dimension, such as a circle in R2 in place
of a one-dimensional periodic domain or a torus in R3 for a square with periodic
boundary conditions. However, for ease of discussion we will keep the notation of the
SDE model, but with the understanding that we mean a diffusion process with the
same local characteristics that takes values in the compact space M , with M locally
equivalent to a Euclidean space.

Remark 2.1. In this paper we focus on the problem of computing integrals with
respect to a Gibbs measure on a continuous state space. However, analogous results
for discrete state systems are expected. See [7] for the formulation of infinite swapping
for discrete state Markov process models.

3. Accelerated MCMC. In this section we introduce various alternative es-
timators of \mu \varepsilon (A) as in (2.1). Consider an ergodic Markov process \{ \=X\varepsilon (t)\} t \subset \=M
and suppose that \nu \varepsilon \in \scrP ( \=M) is the unique stationary distribution of \{ \=X\varepsilon (t)\} t. As an
example, \=M could be K \in N products of the M just introduced. If we define \theta \varepsilon ,T by

(3.1) \theta \varepsilon ,T
.
=

1

T

\int T

0

f\varepsilon 
\bigl( 
\=X\varepsilon (t)

\bigr) 
dt

for a bounded and measurable function f\varepsilon : \=M \rightarrow R such that\int 
\=M

f\varepsilon (\=x) \nu \varepsilon (d\=x) = \mu \varepsilon (A),
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then by the ergodic theorem [3], \theta \varepsilon ,T \rightarrow \mu \varepsilon (A) with probability 1 (w.p.1) as T \rightarrow \infty ,
which means one can also consider \theta \varepsilon ,T as an approximation to \mu \varepsilon (A).We will consider
several classes of estimators that are of the general form (3.1).

3.1. Passage from parallel tempering to infinite swapping. Parallel tem-
pering is an algorithm used to speed up the sampling of a ``slowly converging"" Markov
process, i.e., one for which the empirical measure converges slowly to the stationary
distribution. Specifically, the idea of two-temperature parallel tempering is to intro-
duce a higher temperature \varepsilon /\alpha in addition to \varepsilon with \alpha \in (0, 1). If W1 and W2 are
independent Wiener processes, then the empirical measure of the pair

(3.2)

\biggl\{ 
dX\varepsilon 

1 =  - \nabla V (X\varepsilon 
1)dt+

\surd 
2\varepsilon dW1,

dX\varepsilon 
2 =  - \nabla V (X\varepsilon 

2)dt+
\sqrt{} 
2\varepsilon /\alpha dW2

gives an approximation to the Gibbs measure on Rd \times Rd with density \psi \varepsilon (x1, x2) \propto 
e - V (x1)/\varepsilon e - \alpha V (x2)/\varepsilon for all x1, x2 \in Rd, where ``\propto "" means ``is proportional to."" We will
often suppress the argument t of X\varepsilon 

1 , X
\varepsilon 
2 , especially when it appears in a wide display,

and later on we will sometimes suppress t for other processes as well. If we allow swaps
between X\varepsilon 

1 and X\varepsilon 
2 , i.e., X

\varepsilon 
1 and X\varepsilon 

2 exchange locations with the state-dependent
intensity a (1 \wedge [\psi \varepsilon (x2, x1)/\psi 

\varepsilon (x1, x2)]), where a is a positive constant and known
as the swap rate, then we have a Markov jump-diffusion (X\varepsilon ,a

1 , X\varepsilon ,a
2 ). Moreover, it

is straightforward to check whether this new particle swapped process still satisfies
detailed balance with respect to \psi \varepsilon (x1, x2) if this swapping intensity is used, and so
can be used for numerical approximations.

It has been shown that various rates of convergence, such as the large deviation
empirical measure rate [11] and the asymptotic variance, can be optimized by letting
a \rightarrow \infty . This suggests one should consider the limit of (X\varepsilon ,a

1 , X\varepsilon ,a
2 ) as a \rightarrow \infty (the

infinite swapping limit). This cannot be done directly with the particle swapped
process (X\varepsilon ,a

1 , X\varepsilon ,a
2 ) since, as discussed in [11], this process is not tight and hence

does not converge in a meaningful way. An alternative perspective is to consider a
temperature swapped process and approximate \psi \varepsilon (x1, x2)dx1dx2 by a corresponding
weighted empirical measure instead (see [11] for details). The advantage of doing so
is that we have a well-defined weak limit process as a \rightarrow \infty , though as noted the
empirical measure is replaced by a weighted analogue. The limit model is as follows.
We define (Y \varepsilon 

1 , Y
\varepsilon 
2 ) as the solution to\biggl\{ 

dY \varepsilon 
1 =  - \nabla V (Y \varepsilon 

1 )dt+
\sqrt{} 

2\varepsilon \rho \varepsilon ,\alpha (Y \varepsilon 
1 , Y

\varepsilon 
2 ) + 2\varepsilon \rho \varepsilon ,\alpha (Y \varepsilon 

2 , Y
\varepsilon 
1 )/\alpha dW1,

dY \varepsilon 
2 =  - \nabla V (Y \varepsilon 

2 )dt+
\sqrt{} 
2\varepsilon \rho \varepsilon ,\alpha (Y \varepsilon 

1 , Y
\varepsilon 
2 )/\alpha + 2\varepsilon \rho \varepsilon ,\alpha (Y \varepsilon 

2 , Y
\varepsilon 
1 )dW2

(3.3)

and then define the weighted empirical measure of (Y \varepsilon 
1 , Y

\varepsilon 
2 ) and its permutation

(Y \varepsilon 
2 , Y

\varepsilon 
1 ) by

\zeta \varepsilon ,T (dx1dx2)
.
=

1

T

\int T

0

\bigl[ 
\rho \varepsilon ,\alpha (Y \varepsilon 

1 , Y
\varepsilon 
2 )\delta (Y \varepsilon 

1 ,Y \varepsilon 
2 )(dx1dx2)+\rho 

\varepsilon ,\alpha (Y \varepsilon 
2 , Y

\varepsilon 
1 )\delta (Y \varepsilon 

2 ,Y \varepsilon 
1 )(dx1dx2)

\bigr] 
dt,

where

\rho \varepsilon ,\alpha (x1, x2) =
e - 

1
\varepsilon [V (x1)+\alpha V (x2)]

e - 
1
\varepsilon [V (x1)+\alpha V (x2)] + e - 

1
\varepsilon [V (x2)+\alpha V (x1)]

.

(Note that \rho \varepsilon ,\alpha (x1, x2) + \rho \varepsilon ,\alpha (x2, x1) = 1, and that since we have passed to the limit
we do not interpret (Y \varepsilon 

1 , Y
\varepsilon 
2 ) as corresponding to any particular swap rate.) One can

show that \zeta \varepsilon ,T (dx1dx2) has precisely the same distribution as what one would obtain
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224 PAUL DUPUIS AND GUO-JHEN WU

by forming the ordinary empirical measure of the particle swapped process with swap
rate a and by letting a\rightarrow \infty .

Furthermore, as shown in [11], one can consider the parallel tempering algorithm
with more than two temperatures, and then by applying an analogous reasoning,
there exists a corresponding limit process and a weighted empirical measure. These
are presented in the next subsection.

Remark 3.1. We see that the infinite swapping scheme uses a symmetrized version
of the original dynamics together with a weighted empirical measure to construct
approximations to \mu \varepsilon (dx1)\mu 

\varepsilon /\alpha (dx2). As noted previously, the weights \rho \varepsilon ,\alpha will play
an important role in the reduction of variance and are in some sense analogous to the
likelihood ratio appearing in importance sampling [14].

3.2. Infinite swapping for \bfitK temperatures. In this subsection we introduce
the K-temperature INS estimator for K  - 1 \in N, which is the main object of study.
We use the following notation: \bfitx 

.
= (x1, . . . , xK) denotes an element in MK ; d\bfitx 

denotes dx1 \cdot \cdot \cdot dxK ; \Sigma K is the collection of all permutations on \{ 1, . . . ,K\} ; for any
permutation \sigma \in \Sigma K and \bfitx \in MK , \bfitx \sigma denotes (x\sigma (1), . . . , x\sigma (K));

\Delta 
.
=
\bigl\{ 
(x1, . . . , xK) \in RK : 1 = x1 \geq x2 \geq \cdot \cdot \cdot \geq xK > 0

\bigr\} 
;

\bfitalpha 
.
= (\alpha 1, . . . , \alpha K) \in \Delta denotes the K-temperature multiplication factors appearing

in the definition of the K-temperature INS estimator. We note that \bfitx is only used
for an element in the space MK , and an element in any other space, such as Rd,M,
and \=M , is denoted by x.

To define the K-temperature INS estimator for a given \bfitalpha , we consider the (sym-
metric) diffusion process \{ \bfitX \varepsilon (t)\} t\geq 0 = \{ (X\varepsilon 

1(t), . . . , X
\varepsilon 
K(t))\} t\geq 0 on MK satisfying

(3.4)

\left\{         
dX\varepsilon 

1 =  - \nabla V (X\varepsilon 
1) dt+

\surd 
2\varepsilon 
\sqrt{} 
\rho \varepsilon 11/\alpha 1 + \rho \varepsilon 12/\alpha 2 + \cdot \cdot \cdot + \rho \varepsilon 1K/\alpha KdW1,

dX\varepsilon 
2 =  - \nabla V (X\varepsilon 

2) dt+
\surd 
2\varepsilon 
\sqrt{} 
\rho \varepsilon 21/\alpha 1 + \rho \varepsilon 22/\alpha 2 + \cdot \cdot \cdot + \rho \varepsilon 2K/\alpha KdW2,

...

dX\varepsilon 
K =  - \nabla V (X\varepsilon 

K) dt+
\surd 
2\varepsilon 
\sqrt{} 
\rho \varepsilon K1/\alpha 1 + \rho \varepsilon K2/\alpha 2 + \cdot \cdot \cdot + \rho \varepsilon KK/\alpha KdWK ,

where W1, . . . ,WK are independent Wiener processes and, for any i, j \in \{ 1, . . . ,K\} 
and \sigma \in \Sigma K , \rho 

\varepsilon 
ij denotes \rho \varepsilon ij(\bfitX 

\varepsilon (t);\bfitalpha ) with

\rho \varepsilon ij (\bfitx ;\bfitalpha )
.
=

\sum 
\sigma :\sigma (j)=i

w\varepsilon (\bfitx \sigma ;\bfitalpha ) ,

and with

(3.5) w\varepsilon (\bfitx ;\bfitalpha )
.
=

exp[ - 1
\varepsilon 

\sum K
\ell =1 \alpha \ell V (x\ell )]\sum 

\sigma \in \Sigma K
exp[ - 1

\varepsilon 

\sum K
\ell =1 \alpha \ell V (x\sigma (\ell ))]

.

Notice that when K = 2, the SDE (3.4) is the same as (3.3).
Using detailed balance, one can show that for each \varepsilon \in (0,\infty ), \nu \varepsilon is the unique

stationary distribution of \{ \bfitX \varepsilon (t)\} t\geq 0, where

(3.6) \nu \varepsilon (d\bfitx )
.
=

1

K!Z\varepsilon 
\nu 

\sum 
\sigma \in \Sigma K

exp

\biggl[ 
 - 1

\varepsilon 

\sum K

\ell =1
\alpha \ell V (x\sigma (\ell ))

\biggr] 
d\bfitx 

with

Z\varepsilon 
\nu 
.
=

\int 
MK

exp

\biggl[ 
 - 1

\varepsilon 

\sum K

\ell =1
\alpha \ell V (x\ell )

\biggr] 
d\bfitx .
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Remark 3.2. For any \sigma \in \Sigma K , we also have

Z\varepsilon 
\nu =

\int 
MK

exp

\biggl[ 
 - 1

\varepsilon 

\sum K

\ell =1
\alpha \ell V (x\sigma (\ell ))

\biggr] 
d\bfitx .

Let \zeta \varepsilon ,T (d\bfitx ) be the weighted empirical measure of \{ \bfitX \varepsilon (t)\} t\geq 0 over the time
interval of length T given by

\zeta \varepsilon ,T (d\bfitx )
.
=

1

T

\int T

0

\sum 
\sigma \in \Sigma K

w\varepsilon (\bfitX \varepsilon 
\sigma (t) ;\bfitalpha ) \delta \bfitX \varepsilon 

\sigma (t)
(d\bfitx )dt.

It then follows from the ergodic theorem that \zeta \varepsilon ,T converges in the topology of weak
convergence of probability measures (and in fact in the stronger \tau -topology [5]) to
\mu \varepsilon /\alpha 1 \times \mu \varepsilon /\alpha 2 \times \cdot \cdot \cdot \times \mu \varepsilon /\alpha K w.p.1 as T \rightarrow \infty . The K-temperature INS estimator of
\mu \varepsilon (A) with parameter \bfitalpha over time T is therefore defined by

\theta \varepsilon ,TINS
.
= \zeta \varepsilon ,T (A\times MK - 1) =

1

T

\int T

0

\sum 
\sigma \in \Sigma K

w\varepsilon (\bfitX \varepsilon 
\sigma (t) ;\bfitalpha ) 1A(X

\varepsilon 
\sigma (1)(t))dt.(3.7)

Remark 3.3. Besides \mu \varepsilon (A) for various choices of A, one is also interested in
estimating risk-sensitive functionals of the form\int 

M

e - 
1
\varepsilon F (x)\mu \varepsilon (dx)

for some nice (e.g., bounded and continuous) function F :M \rightarrow R as well as the anal-
ogous integrals with respect to some or all of the higher temperatures \varepsilon /\alpha \ell . However,
it is the lowest temperature \varepsilon /\alpha 1 which is most challenging, and thus we focus on the
problem of estimating \mu \varepsilon (A) = \mu \varepsilon /\alpha 1(A) (recall that \alpha 1 = 1) but seek rates of decay
for the relative error that are in some sense uniform in A.

Before discussing a property which makes it heuristically clear why one would
expect \theta \varepsilon ,TINS to do better than \theta \varepsilon ,TMC, we introduce the notion of implied potential.

Definition 3.4. Given a probability measure \mu \varepsilon (dx) = \phi \varepsilon (x)dx on Rd, we define
the implied potential of \mu \varepsilon to be  - \varepsilon log \phi \varepsilon .

Example 3.5. If \mu \varepsilon is a Gibbs measure as in (2.1), then up to an additive constant
the implied potential of \mu \varepsilon is V , the potential appearing in the dynamics (2.2).

From Example 3.5 we see that implied potential generalizes the notion of poten-
tial. By comparing the implied potential of \nu \varepsilon as in (3.6) and the implied potential
of the product measure \mu \varepsilon /\alpha 1 \times \cdot \cdot \cdot \times \mu \varepsilon /\alpha K with \mu \varepsilon as in (2.1), one can show that the
maximum barrier of the implied potential of the former is smaller than that of the
latter, provided that \alpha \ell < 1 for some \ell \in \{ 2, . . . ,K\} [19]. Since as is well known the
barrier heights determine the exponential time scale of transitions between neighbor-
hoods of local minima of the implied potential, this lowering of the energy barriers is
expected to enhance the sampling of the entire space.

While it is intuitive that lowering energy barriers is helpful, it does not by itself
lead to schemes that are in any sense optimal at low temperatures. A more important
and open question in the design of the K-temperature INS estimator is how to select
the ensemble of multiplicative factors \bfitalpha . In this paper we not only characterize the
low temperature performance of a K-temperature INS estimator with a fixed set of
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temperature factors \bfitalpha , but we also provide optimal and nearly optimal temperatures
for problems of interest in the same low temperature limit. As we will see, the
optimal temperature schedule is dominated by a geometric relation, and moreover is
fairly insensitive to the particular numerical quantity of interest.

3.3. Performance measure. In this subsection we discuss the performance
measure that will be used to characterize good performance of an estimator. Let
\{ \=X\varepsilon \} \varepsilon \in (0,\infty ) \subset C([0, T ] : \=M) be a sequence of stochastic processes that will be used
to define an estimator. For complicated potentials V we expect these processes to
exhibit metastability, which means that the time required for \=X\varepsilon to visit the various
parts of the state space that are needed for good estimation scales like T \varepsilon = e

1
\varepsilon c for

some c > 0. As a consequence, if we wish to compare algorithms after they have
become reasonably accurate we should assume the simulation interval scales in this
way. Moreover, we will assume T \varepsilon = e

1
\varepsilon c for some c \in (0,\infty ) throughout this paper,

though the value of c will depend on the particular context.
As noted in Remark 3.3, we focus on the problem of estimating \mu \varepsilon (A) for some

set A \subset M , and assume there is a large deviation limit (i.e., lim\varepsilon \rightarrow 0 \varepsilon log \mu 
\varepsilon (A) exists).

Definition 3.6. An estimator \theta \varepsilon ,T
\varepsilon 

of \mu \varepsilon (A) is called essentially unbiased if
there is c0 \in (0,\infty ) such that for any x \in \=M

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log
\Bigl( \bigm| \bigm| \bigm| Ex\theta 

\varepsilon ,T \varepsilon 

 - \mu \varepsilon (A)
\bigm| \bigm| \bigm| \Bigr) \geq lim

\varepsilon \rightarrow 0
 - \varepsilon log \mu \varepsilon (A) + c0,

where Ex is the conditional expectation given \=X\varepsilon (0) = x.

This says that the bias of \theta \varepsilon ,T
\varepsilon 

(i.e., the difference between Ex\theta 
\varepsilon ,T \varepsilon 

and \mu \varepsilon (A))
decays strictly faster than \mu \varepsilon (A) as \varepsilon \rightarrow 0.

Definition 3.7. Given an estimator \theta \varepsilon ,T
\varepsilon 

, the lower bound on the decay rate of
the variance per unit time of \theta \varepsilon ,T

\varepsilon 

is defined as

inf
x\in \=M

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log
\Bigl( 
Varx

\Bigl( 
\theta \varepsilon ,T

\varepsilon 
\Bigr) 
T \varepsilon 
\Bigr) 
,

where Varx is the conditional variance given \=X\varepsilon (0) = x. If the lim inf is a limit that
does not depend on x, then we call it the decay rate of the variance per unit time.

Remark 3.8. In this paper, we seek to optimize the decay rate of the variance per
unit time (often referred to simply as the decay rate of the variance), but only among
estimators that are essentially unbiased. A criticism is that essential unbiasedness
depends on the time scaling T \varepsilon = e

1
\varepsilon c, which may itself depend on the estimator.

One may be concerned that improving the decay rate somehow lengthens the time
till essential unbiasedness, namely, requiring larger c. While this is in fact possible,
as we discuss in detail in Remark 4.12, this potential competition affects only the
selection of the highest temperature, i.e., the choice of \alpha K , and is in fact not of great
consequence at all.

Remark 3.9. We will take as our ideal performance benchmark a decay rate of the
variance exactly twice lim\varepsilon \rightarrow 0  - \varepsilon log \mu \varepsilon (A). The reason is as follows. Suppose that
we measure errors by the standard deviation (and assume essential unbiasedness).
If we achieve this best possible decay rate, then the amount of time needed for the
numerical error \theta \varepsilon ,T

\varepsilon  - \mu \varepsilon (A) to be comparable to \mu \varepsilon (A) itself becomes subexponential
in \varepsilon . See Remark 4.12 for more details.

Strictly speaking, 2 lim\varepsilon \rightarrow 0  - \varepsilon log \mu \varepsilon (A) is not the best possible decay rate of the
variance, but rather the best practically achievable decay rate. Indeed, in analogy
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with the zero variance estimator that one can define when using importance sampling
for rare event estimation [4, 1], it is possible to define estimators with a larger decay
rate. But these are not useful since they require information that is not typically
available, such as knowing \mu \varepsilon (A). Hence the aim in the design of an INS algorithm is
to obtain a lower bound on the decay rate of the variance that is close to this maximum
practical value, while at the same time reducing the growth rate of T \varepsilon that is needed
for essential unbiasedness.

4. Statement of the main results. In this section we state the main results on
the performance and optimal design of the INS scheme in the low temperature limit.
The proofs involve applying the results of [13] and then simplifying the variational
problem that characterizes the decay rate of the variance.

We present two main results. The first considers the restricted setting of a simple
two-well model. In this case we can obtain a very precise reduction of the variational
problem. Using this simplified expression, we can then probe in some detail the
question of how INS achieves variance reduction. Our interest in this model is twofold.
One reason is that with an exact expression (rather than a tight bound) for the solution
to the variational problem we can explore issues relating to how variance reduction is
obtained through swapping. The second is that it properly suggests very useful bounds
for the general model. (While exact simplifications are possible there as well, the
number of cases quickly becomes unwieldy as the number of local minima increases.)
Since the proof of the reduction is long, we refer the reader to [22] for details.

The second and more important result is concerned with temperature selection
when there are an arbitrary number of wells. Owing to this generality, we do not
attempt to find the exact optimizer, but rather show that the geometric relation for
temperatures suggested by the two-well model allows one to meet the design goal
stated in Remark 3.9 at the end of the last section. In particular, there is a choice
so that the rate of decay is arbitrarily close to the benchmark stated there, with the
``gap"" no larger than (1/2)K - 2V (A), where V (A)

.
= infx\in A V (x), and the parameter

c in the assertion of essential unbiasedness can be made small geometrically in K.
To apply the results of [13] we need to know that the INS process defined in (3.4)

satisfies a large deviation principle (LDP) on C([0, T ] :MK) for arbitrary T \in (0,\infty ).
This is not straightforward, owing to the fact that the diffusion coefficients involve
w\varepsilon (\bfitx ;\bfitalpha ) defined in (3.5), which become discontinuous in \bfitx as \varepsilon \rightarrow 0. Hence one is
concerned with the large deviation properties of processes with discontinuous statistics
[10, 9].

The sorts of discontinuities encountered are in fact analogous to those encountered
in the large deviation analysis of stochastic networks, such as multiclass queuing
networks. A general approach to proving that a large deviation principle holds for
stochastic networks appears in [9] and can be adapted to the INS model (3.4). It
is important to note that we do not need the precise form of the rate function, but
only that the LDP holds with some rate function and basic qualitative properties.
This is because with the INS model we already have an expression for the stationary
distribution. Various quantities are defined in [13] using the rate function that allow
the identification of the Freidlin--Wentzell quasipotential and related objects. For the
INS model the explicit formula for the stationary distribution directly identifies the
quasipotential, thereby eliminating the need for the explicit form of the rate function.
The technique of [9] is in fact ideally suited to showing the existence of an LDP
without necessarily having an expression for the rate function, and in this paper we
will simply assume that an LDP holds with some rate function.
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228 PAUL DUPUIS AND GUO-JHEN WU

4.1. Two-well model. Our first result considers the setting of a double-well
potential. Let V : R \rightarrow R (d = 1) be as in Figure 1.

xL xR

x

hL

hR

Fig. 1. Asymmetric two-well model.

Assume V satisfies the following condition.

Condition 4.1. V is a bounded C2 function and
\bullet V is defined on a compact interval D \subset R and extended periodically as a C2

function;
\bullet V has only two local minima at xL and xR with values V (xL) < V (xR);
\bullet V has only one local maximum at 0 \in (xL, xR);
\bullet V (xL) = 0, V (0) = hL and V (xR) = hL  - hR > 0;
\bullet infx\in \partial D V (x) > hL.

Remark 4.2. As noted previously, the use of periodic boundary conditions is com-
mon in numerical implementation. It is assumed that the boundary is away from the
neighborhoods of the equilibrium points of interest, and that the potential at the
boundary is high enough that transitions across the boundary are unimportant. For
our purposes, this means that the relevant large deviation calculations involve only
paths that remain in D.

Remark 4.3. In the analysis of \theta \varepsilon ,T
\varepsilon 

INS we will assume T \varepsilon satisfies T \varepsilon = e
1
\varepsilon c with

c > \alpha KhL. Recall that \alpha K is the smallest of the \alpha \ell , and hence determines the highest
temperature. As we will see, this condition ensures asymptotic unbiasedness.

The next result follows from [13, Theorems 4.3 and 4.5]. The theorem, in par-
ticular, characterizes the decay rate of the variance for the INS estimator for a given
\bfitalpha . The proof of the theorem is analogous to the proof of Theorem 4.10, and so is
omitted.

Theorem 4.4. Assume Condition 4.1 and that the process defined by (3.4) sat-
isfies a large deviation principle that is uniform with respect to initial conditions [4,
section 1.2]. Then for any closed interval A \subset D with xL /\in A and A = \=A\circ ,

(4.1) \theta \varepsilon ,T
\varepsilon 

INS =
1

T \varepsilon 

\int T \varepsilon 

0

\sum 
\sigma \in \Sigma K

w\varepsilon (\bfitX \varepsilon 
\sigma (t) ;\bfitalpha ) 1A(X

\varepsilon 
\sigma (1)(t))dt
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is an essentially unbiased estimator of \mu \varepsilon (A), where w\varepsilon (\bfitx ;\bfitalpha ) is given by (3.5). More-
over, for any \bfitalpha \in \Delta and \bfitx \in RK , we have

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log
\Bigl( 
Var\bfitx 

\Bigl( 
\theta \varepsilon ,T

\varepsilon 

INS

\Bigr) 
T \varepsilon 
\Bigr) 
\geq 
\biggl\{ 

\^r1 (\bfitalpha ) \wedge \^r3 (\bfitalpha ) if A \subset ( - \infty , 0],
\^r1 (\bfitalpha ) \wedge \^r2 (\bfitalpha ) if A \subset [0,\infty ),

where

\^r1 (\bfitalpha )
.
= inf\bfitx \in A\times RK - 1

\Biggl[ 
2

K\sum 
\ell =1

\alpha \ell V (x\ell ) - min
\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} \Biggr] 
,

\^r2 (\bfitalpha )
.
= min

i\in \{ 2,...,K+1\} 

\Biggl\{ 
2V (A) +

\Biggl[ 
i - 2\sum 
\ell =1

\alpha K - \ell +1  - \alpha K - i+2

\Biggr] 
(hL  - hR)

\Biggr\} 
 - \alpha KhR,

and
\^r3 (\bfitalpha )

.
= 2V (A) - \alpha KhL.

Remark 4.5. As mentioned in [13, Conjecture 4.11], we expect that the lower
bound is tight. The proof of the conjecture for a special case is outlined in [13,
section 11].

Recall that the optimal decay rate of the variance per unit time is twice the large
deviation decay rate of \mu \varepsilon (A), which is V (A). The next result identifies optimizers
over \bfitalpha for the relevant variational problems. Note that in all cases we can get close
to the best possible decay rate by choosing K appropriately, and in fact the gap goes
to zero geometrically in K. For example, K = 7 will get within 2\% of the maximum
rate of 2V (A). As we mentioned in the beginning of this section, since the proof of
the variance reduction is long, we refer the reader to [22] for details.

Theorem 4.6. Assume the conditions of Theorem 4.4. For any closed set A \subset 
( - \infty , 0] with xL /\in A, if V (A) \geq hL, then

sup
\bfitalpha \in \Delta 

[\^r1 (\bfitalpha ) \wedge \^r3 (\bfitalpha )] = 2V (A) - (1/2)
K - 1

V (A)

with the optimal \bfitalpha \ast = (1, 1/2, . . . , (1/2)
K - 2

, (1/2)
K - 1

) \in \Delta . If V (A) \leq hL, then

sup
\bfitalpha \in \Delta 

[\^r1 (\bfitalpha ) \wedge \^r3 (\bfitalpha )] = 2V (A) - (1/2)
K - 2

\biggl( 
hL

V (A) + hL

\biggr) 
V (A)

with the optimal \bfitalpha \ast = (1, 1/2, . . . , (1/2)
K - 2

, V (A)
V (A)+hL

(1/2)
K - 2

) \in \Delta cl, where \Delta cl is

the closure of \Delta .
For any closed set A \subset [0,\infty ) and if hL \geq 2hR or V (A) \geq hL, then

sup
\bfitalpha \in \Delta 

[\^r1 (\bfitalpha ) \wedge \^r2 (\bfitalpha )] = 2V (A) - (1/2)
K - 1

(V (A) \vee hL)

with the optimal \bfitalpha \ast = (1, 1/2, . . . , (1/2)
K - 2

, (1/2)
K - 1

) \in \Delta . If hL \leq 2hR and V (A) \in 
[hL  - hR, hL], then

sup
\bfitalpha \in \Delta 

[\^r1 (\bfitalpha ) \wedge \^r2 (\bfitalpha )] = 2V (A) - (1/2)
K - 2

\biggl( 
hR

V (A) - (hL  - 2hR)

\biggr) 
V (A)

with the optimal \bfitalpha \ast = (1, 1/2, . . . , (1/2)
K - 2

, V (A) - (hL - hR)
V (A) - (hL - 2hR) (1/2)

K - 2
) \in \Delta cl.
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230 PAUL DUPUIS AND GUO-JHEN WU

Remark 4.7. According to Theorems 4.4 and 4.6, no matter what set A is con-
sidered, the optimal temperatures \bfitalpha \ast form a geometric sequence with common ratio
1/2, except possibly the last and smallest value, which corresponds to the highest
temperature.

Remark 4.8. By Theorem 4.6, if A \subset [0,\infty ), hL \leq 2hR, and V (A) = hL - hR, the
last component of the optimal temperature \bfitalpha \ast is 0. Of course the INS estimator is
not well-defined with \alpha \ast 

K = 0. However, since \^r1 (\bfitalpha )\wedge \^r2 (\bfitalpha ) is a continuous function
of \bfitalpha , we can always approach the optimal performance by using \bfitalpha , which is close to
\bfitalpha \ast , e.g., \bfitalpha = (1, 1/2, . . . , (1/2)

K - 2
, \delta (1/2)

K - 2
) for some \delta \in (0, 1).

Remark 4.9. Analogous results hold for a high-dimensional double-well potential
V : Rd \rightarrow R, where xL and xR are the two local minima (and the former is the unique
global minimum) and 0 is the unique local maximum. Moreover, one should interpret
( - \infty , 0] and [0,\infty ) as the closure of the domain of attraction of xL and that of xR,
respectively.

4.2. Sources of variance reduction. Here we make some remarks on the form
of the optimal \bfitalpha and its interpretation regarding how variance reduction is achieved by
INS. The remarks will also apply to parallel tempering to some extent if the swap rate
is sufficiently high, though in this case the weights \rho used in INS are then implicitly
computed by the algorithm, giving another sense in which INS is an optimized version
of PT.

To begin, we note that the most obvious qualitative change when adding a higher
temperature particle to one or more particles with lower temperature is that the
``mobility,"" by which we mean the ease with which it crosses energy barriers, of the
new particle is greater than that of all other particles. (What this means for INS
is that the particle with the currently highest value of V is essentially given this
temperature, with a slightly modified interpretation when two or more particles share
the highest V value.)

Hence it is tempting to explain the improved sampling of INS, especially with
respect to functionals that correspond to integration with respect to the lowest tem-
perature, as a consequence of this greater mobility being passed between higher tem-
peratures and lower temperatures. The mobility is passed via the swap mechanism
with PT, and by the \rho weights with INS. For example, with PT the argument would
be that the sharing of mobility between different temperatures obtained via swapping
makes it easier for the low temperature particle to overcome potential barriers, and
hence the empirical measure will converge more quickly. While plausible in a qualita-
tive way, it is not clear, for example, how to relate the claim of faster convergence of
the empirical measure to the properties of the variance. In fact, the situation is more
complex.

In order to understand the role played by ``mobility,"" in a previous paper [14] we
introduced and studied what we call INS for IID, which stands for infinite swapping
for independent and identically distributed random variables. The setting of that paper
considers the integral of a distribution with respect to some risk-sensitive functional
(including as a special case probabilities of sets with a positive large deviation rate,
as is the case of Theorems 4.4 and 4.6). Because straightforward Monte Carlo will
not work well, the paper follows the logic of parallel tempering but within the context
of INS. It is assumed that the distribution (say \mu \varepsilon ) is indexed by a parameter \varepsilon that
corresponds to temperature here, and that a large deviation principle holds for \{ \mu \varepsilon \} 
with a known rate function. This measure is then coupled with measures indexed by
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higher values of the temperature using a parameter exactly analogous to \bfitalpha , and using
symmetrization in the same way as INS one can define an estimator for integrals with
respect to the lowest temperature using \rho weights in the way (suitable for the static
setting) that is exactly analogous to what is done in the present paper for the Markov
setting. Knowledge of the large deviation rate function is what allows for the explicit
computation of the analogues of the \rho weights. This produces unbiased estimators
analogous to those of the Markov setting, but for this purely static setting.

A key observation is the following. Since the setting of [14] does not involve any
dynamics, the notion that any variance reduction is due to ``increased mobility"" is
not possible. Indeed, as is discussed in [14] the \rho weights act in a way similar to the
likelihood ratio in a well-designed importance sampling scheme, helping to cluster the
values of the unbiased estimate around the true value, thereby reducing variance. We
argue that the analogous property holds here, and that the primary role of the higher
temperatures (except possibly the highest temperature) is to provides this variance
reduction, and that solving the variational problems as in Theorem 4.6 tells us how
to do this in the low temperature limit. Indeed, we obtain exactly the same geometric
spacing of all temperatures (save the highest) in the low temperature limit in the
Markovian setting as was obtained in the static setting. An analogous claim could
be made regarding PT in the high swap rate setting, though as noted for PT the
computation of the weights is carried out implicitly via the swaps and averaging in
time.

While this motivates the form of the lower temperatures, it leaves out the highest
temperature. Here we find a variety of behaviors that depend on the particular
quantity that is being estimated, and one might argue that it is here that the mobility
of a particle plays a role in determining the value of \alpha K . In all the cases of Theorem
4.6, we find that the optimal \alpha K is less than or equal to (1/2)K - 1, which is the value
one finds in the static setting. However, Theorem 4.6 is concerned only with the decay
rate of the variance per unit time. As noted in Remark 4.3, to reduce the constant c
appearing in essential unbiasedness we would want to make \alpha K as small as possible.
Given the relatively small impact that \alpha K has on the decay rate of the variance, one
may prefer in practice to select its value so that the highest temperature particle is not
impacted greatly by metastability, if such a temperature can be estimated or guessed.

4.3. Multiple-well model. The second main result considers a finite but oth-
erwise arbitrary number of wells. While it is possible that one could derive results
analogous to Theorem 4.6 which identify the optimizer appearing in the lower bound
of Theorem 4.4, we will instead settle for showing that the geometric spacing sug-
gested by the two-well model leads to a variance decay rate that can be made close
to the optimum of 2V (A).

For the following theorem, we assume that V : M \rightarrow R is a smooth multiwell
potential with a unique global minimum y1 \in M , and without loss of generality we
normalize V so that V takes value 0 at y1 (i.e., V (y1) = 0 and V (x) > 0 for all
x \in M). Let H be the index set for equilibrium points of V , and let yi \in M be
the equilibrium corresponding to index i \in H. We assume that the gradient of V
is Lipschitz continuous, and we also assume that there exists a finite collection of
points \{ Oi\} i\in L \subset MK with L

.
= \{ 1, 2, . . . , l\} for some l \in N, such that \cup i\in L\{ Oi\} 

coincides with the \omega -limit set of the zero noise analogue of (3.4), so that \cup i\in L\{ Oi\} =
\{ y1, . . . , y| H| \} K , where | H| is the total number of elements in H. This imposes some
additional structure on V , and in particular rules out open regions on which V is a
constant.
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Theorem 4.10. Assume that the process defined by (3.4) satisfies a large devi-
ation principle that is uniform with respect to initial conditions. Then there exists
B \in (0,\infty ) such that the following hold. Consider any \bfitalpha \in \Delta and \bfitx \in MK , and let

T \varepsilon = e
1
\varepsilon c for some c > \alpha KB. For any closed set A \subset M , define \theta \varepsilon ,T

\varepsilon 

INS by (4.1) with

this \bfitalpha . Then \theta \varepsilon ,T
\varepsilon 

INS is essentially unbiased, and

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log
\Bigl( 
Var\bfitx (\theta 

\varepsilon ,T \varepsilon 

INS )T \varepsilon 
\Bigr) 
\geq r(\bfitalpha ) - \alpha KB,

where

r(\bfitalpha )
.
= inf

\bfitx \in A\times MK - 1

\Biggl\{ 
2

K\sum 
\ell =1

\alpha \ell V (x\ell ) - min
\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} \Biggr\} 
.

The parameter B that appears in the Theorem 4.10 depends only on V and K
and is identified in Remark 5.13. In particular, it does not depend on \varepsilon . As will be
illustrated by examples in subsection 5.3, B contains interesting information on how
the geometry and other properties of the original potential V affect the rate of decay
of the variance. For example, if the well that corresponds to the global minimum
O1 is also the most difficult well to escape from, then the situation of the multiple-
well model is very similar to that of the two-well model. However, when this is not
the case one can have B > V (A), and B will depend on how the local minima are
interconnected.

The next result identifies the optimizer of r(\bfitalpha ) over (\alpha 2, . . . , \alpha K - 1) with a fixed
\alpha K (recall that \alpha 1 = 1).

Theorem 4.11. For any closed set A \subset M , K  - 1 \in N and any \alpha K \in (0, 1],

sup
(\alpha 2,...,\alpha K - 1)\in [\alpha K ,1]K - 2

r(\alpha 1, \alpha 2, . . . , \alpha K - 1, \alpha K)

=

\biggl\{ 
(2 - \alpha K)V (A) if \alpha K \in [(1/2)K - 1, 1],

(2 + \alpha K  - (1/2)K - 2)V (A) if \alpha K \in (0, (1/2)K - 1].

If \alpha K \in (0, (1/2)K - 1], then the supremum is achieved at (\alpha \ast 
2, . . . , \alpha 

\ast 
K - 1) with \alpha \ast 

\ell =

(1/2)\ell  - 1 for \ell \in \{ 2, . . . ,K - 1\} . If \alpha K \in ((1/2)m, (1/2)m - 1] for some m \in \{ 1, . . . ,K - 
1\} , then the supremum is achieved at (\alpha \ast 

2, . . . , \alpha 
\ast 
K - 1) with

\alpha \ast 
\ell =

\biggl\{ 
(1/2)\ell  - 1 if 2 \leq \ell \leq m,

\alpha K if m+ 1 \leq \ell \leq K  - 1.

Remark 4.12. Theorem 4.10 provides a lower bound for the decay of variance per
unit time of an INS estimator with arbitrary \bfitalpha . Combining this with Theorem 4.11,
for any given \alpha K one finds an associated optimal sequence of lower temperatures and
the performance with such optimal temperatures. It remains to decide the value of \alpha K .
As in the two-well case there is some conflict, in that by Theorem 4.10 we reduce the
exponential time horizon required for essential unbiasedness by taking \alpha K small, while
maximizing the decay rate for the variance requires \alpha K = (1/2)K - 1. Since in all cases
we end up with \alpha K \in (0, (1/2)K - 1], the selection of the lower temperatures as decided
by Theorem 4.11 is unambiguous. However, given the geometric dependence in K of
the coefficient of V (A) in Theorem 4.11, one may choose to make \alpha K small to reduce
the time required for essential unbiasedness. Also as in the two-well case, a natural
interpretation of \alpha K = 0 is that \varepsilon /\alpha K should be large enough that the corresponding
single temperature process easily moves between different important local minima,
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and one might choose to make this ratio independent of \varepsilon (so that \alpha K tends to zero
as \varepsilon \rightarrow 0). Lastly we note the effect that increasing K has on c, where c is chosen to
satisfy c > \alpha KB (for essential unbiasedness) and c > ((1/2)K - 2  - \alpha K)V (A) + \alpha KB
(for bounded relative error, see Remark 3.9). It is easily checked that regardless of
the choice of \alpha K \in (0, (1/2)K - 1], c decays exponentially in K.

Remark 4.13. From Remark 4.12 we know that regardless of the complexity of an
energy landscape, in the low temperature regime the INS estimator with a geometric
sequence of temperatures (save the highest temperature, for which we require \alpha K \in 
(0, (1/2)K - 1]) performs well and reaches the optimal decay rate exponentially fast as
K \rightarrow \infty . This suggests that the process defined by (3.4) with a geometric sequence
of temperatures explores the landscape in an organized and meaningful way, and
therefore could be useful in finding the global minimum of V . The use of INS for
global optimization was first suggested in [8]. We conjecture here that INS and related
processes in the low temperature regime with the geometric sequence of temperatures
given in Theorem 4.11 will perform especially well in function minimization problems,
and we will consider such issues in future work.

5. Proof of Theorem 4.10. We first recall notation from subsection 3.2 and
introduce additional notation. Given K  - 1 \in N, for any \bfitalpha \in \Delta we consider the
diffusion process \{ \bfitX \varepsilon (t)\} t\geq 0 = \{ (X\varepsilon 

1(t), . . . , X
\varepsilon 
K(t))\} t\geq 0 on MK satisfying (3.4), and

we denote O1
.
= (y1, . . . , y1), where y1 is the unique global minimum of V . Figure 2

illustrates the points \cup i\in L\{ Oi\} when V is the Franz potential and K = 2, with
O1, O3, O7, and O9 local minima in the multidimensional potential defined in (5.1),
O2, O4, O6, and O8 saddle points, and O5 a local maximum.
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Fig. 2. Franz potential \theta = 0.85 and equilibrium points of INS K = 2.

In order to prove Theorem 4.10, we will utilize the large deviation results devel-
oped in [13], and to apply those results, we need to introduce several quantities that
are constructed in terms of the Freidlin--Wentzell quasipotential. The quasipotential
for (3.4) is easy to identify because the system is reversible with \nu \varepsilon \in \scrP (MK) defined
by (3.6) as its unique stationary distribution. Thus if for \bfitx \in MK we define

(5.1) U(\bfitx )
.
= min

\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} 
,

then U corresponds to a potential, and it is easy to see that U(O1) = 0. Figure 3
depicts U for the Franz potential when K = 2.
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234 PAUL DUPUIS AND GUO-JHEN WU

Fig. 3. Symmetrized potential for K = 2.

Since we assume that \{ \bfitX \varepsilon (t)\} 0\leq t\leq T satisfies a large deviation principle on C([0, T ] :
MK) with rate function IT : C([0, T ] : MK) \rightarrow [0,\infty ] for arbitrary T \in (0,\infty ), the
quasipotential Q(\bfitx ,\bfity ) is defined for all \bfitx ,\bfity \in MK by

Q(\bfitx ,\bfity )
.
= inf \{ IT (\phi ) : \phi (0) = \bfitx , \phi (T ) = \bfity , T <\infty \} .

(In fact the specific form of the quasipotential is already known since we know the
rate function for the stationary distributions \{ \nu \varepsilon \} .)

Next we give a definition from graph theory which will be used in the proofs of
the main results.

Definition 5.1. Given a subset W \subset L = \{ 1, . . . , l\} , a directed graph consisting
of arrows i \rightarrow j (i \in L \setminus W, j \in L, i \not = j) is called a W -graph on L if it satisfies the
following conditions:

1. Every point i \in L \setminus W is the initial point of exactly one arrow.
2. For any point i \in L \setminus W, there exists a sequence of arrows leading from i to

some point in W.

We note that we can replace the second condition by the requirement that there
are no closed cycles in the graph. We denote by G(W ) the set of W -graphs; we shall
use the letter g to denote graphs.

Remark 5.2. We use G(i) to denote G(\{ i\} ), and G(i, j) to denote G(\{ i, j\} ).
Definition 5.3. For all j \in L, define

(5.2) W (Oj)
.
= min

g\in G(j)

\left[  \sum 
(m\rightarrow n)\in g

V (Om, On)

\right]  ,

(5.3) W (O1 \cup Oj)
.
= min

g\in G(1,j)

\left[  \sum 
(m\rightarrow n)\in g

V (Om, On)

\right]  ,D
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and

(5.4) W (\bfitx )
.
= min

i\in L
[W (Oi) +Q(Oi,\bfitx )] .

Remark 5.4. Heuristically, if we interpret V (Om, On) as the ``cost"" of moving
from Om to On, then W (Oj) is the ``least total cost"" of reaching Oj from every Oi

with i \in L \setminus \{ j\} .
We next prove a lemma that ties up the relation between W and U . The relation

will also be used later on for solving the optimization problem

Lemma 5.5. For any \bfitx ,\bfity \in MK , W (\bfitx ) - W (\bfity ) = U (\bfitx ) - U (\bfity ) .

Proof. Since we know that the stationary distribution \nu \varepsilon of \{ \bfitX \varepsilon (t)\} t\geq 0 is given
by (3.6), we can apply [15, Theorem 4.3, Chapter 6] to find that for any \eta > 0 and
for sufficiently small neighborhoods of \bfitx and \bfity ,

\nu \varepsilon (B\delta (\bfitx ))

\nu \varepsilon (B\delta (\bfity ))
\leq 

exp
\bigl\{ 
 - 1

\varepsilon (W (\bfitx ) - mini\in LW (Oi) - \eta )
\bigr\} 

exp
\bigl\{ 
 - 1

\varepsilon (W (\bfity ) - mini\in LW (Oi) + \eta )
\bigr\} = e - 

1
\varepsilon (W (\bfitx ) - W (\bfity ) - 2\eta )

and

\nu \varepsilon (B\delta (\bfitx ))

\nu \varepsilon (B\delta (\bfity ))
\geq 

exp
\bigl\{ 
 - 1

\varepsilon (W (\bfitx ) - mini\in LW (Oi) + \eta )
\bigr\} 

exp
\bigl\{ 
 - 1

\varepsilon (W (\bfity ) - mini\in LW (Oi) - \eta )
\bigr\} = e - 

1
\varepsilon (W (\bfitx ) - W (\bfity )+2\eta ).

Thus

lim sup
\varepsilon \rightarrow 0

 - \varepsilon log
\biggl( 
\nu \varepsilon (B\delta (\bfitx ))

\nu \varepsilon (B\delta (\bfity ))

\biggr) 
\leq W (\bfitx ) - W (\bfity ) + 2\eta 

and

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log
\biggl( 
\nu \varepsilon (B\delta (\bfitx ))

\nu \varepsilon (B\delta (\bfity ))

\biggr) 
\geq W (\bfitx ) - W (\bfity ) - 2\eta .

On the other hand, for \bfitw = \bfitx ,\bfity the definition of U implies\int 
B\delta (\bfitw )

exp

\biggl\{ 
 - 1

\varepsilon 
U (\bfitz )

\biggr\} 
d\bfitz \leq 

\int 
B\delta (\bfitw )

\Biggl[ \sum 
\sigma \in \Sigma K

exp

\Biggl\{ 
 - 1

\varepsilon 

K\sum 
\ell =1

\alpha \ell V
\bigl( 
z\sigma (\ell )

\bigr) \Biggr\} \Biggr] 
d\bfitz 

\leq K! \cdot 
\int 
B\delta (\bfitw )

exp

\biggl\{ 
 - 1

\varepsilon 
U (\bfitz )

\biggr\} 
d\bfitz .

Therefore

lim
\varepsilon \rightarrow 0

 - \varepsilon log
\biggl( 
\nu \varepsilon (B\delta (\bfitx ))

\nu \varepsilon (B\delta (\bfity ))

\biggr) 

= lim
\varepsilon \rightarrow 0

 - \varepsilon log

\left(  \int B\delta (\bfitx )

\Bigl[ \sum 
\sigma \in \Sigma K

exp
\Bigl\{ 
 - 1

\varepsilon 

\sum K
\ell =1 \alpha \ell V

\bigl( 
z\sigma (\ell )

\bigr) \Bigr\} \Bigr] 
d\bfitz \int 

B\delta (\bfity )

\Bigl[ \sum 
\sigma \in \Sigma K

exp
\Bigl\{ 
 - 1

\varepsilon 

\sum K
\ell =1 \alpha \ell V

\bigl( 
z\sigma (\ell )

\bigr) \Bigr\} \Bigr] 
d\bfitz 

\right)  
= lim

\varepsilon \rightarrow 0
 - \varepsilon log

\Biggl( \int 
B\delta (\bfitx )

exp
\bigl\{ 
 - 1

\varepsilon U (\bfitz )
\bigr\} 
d\bfitz \int 

B\delta (\bfity )
exp

\bigl\{ 
 - 1

\varepsilon U (\bfitz )
\bigr\} 
d\bfitz 

\Biggr) 
= min

\bfitu \in B\delta (\bfitx )
U (\bfitu ) - min

\bfitu \in B\delta (\bfity )
U (\bfitu ) ,

where we obtain the last equality from Laplace's principle. Hence min\bfitu \in B\delta (\bfitx ) U (\bfitu ) - 
min\bfitu \in B\delta (\bfity ) U (\bfitu ) is between W (\bfitx )  - W (\bfity ) \pm 2\eta . Sending \eta \rightarrow 0 (and thus \delta \rightarrow 0),
we find W (\bfitx ) - W (\bfity ) = U (\bfitx ) - U (\bfity ) .
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Remark 5.6. By (5.4) and Lemma 5.5,

U(\bfitx ) = min
i\in L

[U(Oi) +Q(Oi,\bfitx )] .

We can now state the main result of [13]. The result stated in [13] assumes a
fixed function f , but the result as stated below follows from this and the uniform
convergence f\varepsilon \rightarrow f . The uniformity of a large deviation principle with respect to the
initial condition is discussed in [4, section 1.2]. Let

(5.5) h
.
= min

i\in L\setminus \{ 1\} 
Q(O1, Oi) and w

.
=W (O1) - min

i\in L\setminus \{ 1\} 
W (O1 \cup Oi).

The quantity h is related to the time that it takes for the process to leave a neigh-
borhood of O1, and W (O1)  - W (O1 \cup Oi) is related to the transition time from a
neighborhood of Oi to one of O1. The roles of h and w will be further explained in
subsection 5.2.

Theorem 5.7. Assume that the process defined by (3.4) satisfies a large deviation
principle that is uniform with respect to initial conditions, and let \nu \varepsilon be its unique
stationary distribution and let T \varepsilon = e

1
\varepsilon c for some c > h \vee w. Suppose that for each

\varepsilon > 0, f\varepsilon :M
K \rightarrow R, and that for a continuous function f :MK \rightarrow R we have f\varepsilon \rightarrow f

uniformly on MK . Then for any compact set A \subset MK and \bfitx \in MK ,

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log

\bigm| \bigm| \bigm| \bigm| \bigm| E\bfitx 

\Biggl( 
1

T \varepsilon 

\int T \varepsilon 

0

e - 
1
\varepsilon f\varepsilon (X

\varepsilon 
t )1A (X\varepsilon 

t ) dt

\Biggr) 
 - 
\int 
MK

e - 
1
\varepsilon f\varepsilon (\bfitx )1A (\bfitx ) \nu \varepsilon (d\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\geq inf

\bfitx \in A
[f (\bfitx ) +W (\bfitx )] - W (O1) + c - (h \vee w)

and

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log

\Biggl( 
T \varepsilon \cdot Var\bfitx 

\Biggl( 
1

T \varepsilon 

\int T \varepsilon 

0

e - 
1
\varepsilon f\varepsilon (X

\varepsilon 
t )1A(X

\varepsilon 
t )dt

\Biggr) \Biggr) 

\geq 

\Biggl\{ 
mini\in L(R

(1)
i \wedge R(2)

i ) if h \geq w,

mini\in L(R
(1)
i \wedge R(2)

i \wedge R(3)
i ) otherwise,

where for i \in L

R
(1)
i

.
= inf

\bfitx \in A
[2f(\bfitx ) +Q(Oi,\bfitx )] +W (Oi) - W (O1),

R
(2)
1

.
= 2 inf

\bfitx \in A
[f(\bfitx ) +Q(O1,\bfitx )] - h,

for i \in L \setminus \{ 1\} 

R
(2)
i

.
= 2 inf

\bfitx \in A
[f(\bfitx ) +Q(Oi,\bfitx )] +W (Oi) - 2W (O1) +W (O1 \cup Oi),

and for i \in L

R
(3)
i

.
= 2 inf

\bfitx \in A
[f(\bfitx ) +Q(Oi,\bfitx )] + 2W (Oi) - 2W (O1) - w.D
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Proof of Theorem 4.10. After introducing all the necessary notation and results,
we can now start the proof of Theorem 4.10, which consists of three steps:

\bullet apply Theorem 5.7 to the INS model;

\bullet bound R
(1)
i , R

(2)
i , and R

(3)
i for every i \in L in subsection 5.1;

\bullet bound h and w in subsection 5.2.
For the first step, we note that the definition of \theta \varepsilon ,T

\varepsilon 

INS involves the sum of a finite
number of integrals of the form

1

T \varepsilon 

\int T \varepsilon 

0

w\varepsilon (\bfitX \varepsilon 
\sigma (t);\bfitalpha )1A(X

\varepsilon 
\sigma (1)(t))dt,

where w\varepsilon (\bfitx ;\bfitalpha ) is defined in (3.5). In addition, we note that \mu \varepsilon (A) has an analogous
decomposition:\int 
MK

\Biggl( \sum 
\sigma \in \Sigma K

w\varepsilon (\bfitx \sigma ;\bfitalpha )1A(x\sigma (1))

\Biggr) 
\nu \varepsilon (d\bfitx ) = K!

\int 
MK

w\varepsilon (\bfitx ;\bfitalpha ) 1A(x1)\nu 
\varepsilon (d\bfitx )

=
1

Z\varepsilon 
\nu 

\int 
MK

exp

\biggl[ 
 - 1

\varepsilon 

\sum K

\ell =1
\alpha \ell V (x\ell )

\biggr] 
1A(x1)d\bfitx 

=
1

Z\varepsilon 
\mu 

\int 
M

e - 
1
\varepsilon V (x1)1A(x1)dx1 = \mu \varepsilon (A),

where the first equality comes from the fact that \nu \varepsilon is permutation-invariant and

the third equality holds since Z\varepsilon 
\nu = Z\varepsilon 

\mu \times Z
\varepsilon /\alpha 2
\mu \times \cdot \cdot \cdot \times Z

\varepsilon /\alpha K
\mu . Thus it will be

enough to obtain bounds on the differences of the corresponding terms. Also, since
the difference is independent of the permutation, for simplicity of notation we take \sigma 
to be the identity.

Since V is bounded and continuous, it follows from standard features of the mol-
lification used in the definition of w\varepsilon in (3.5) that if we write w\varepsilon (\bfitx ;\bfitalpha ) in the form

e - 
1
\varepsilon 

\sum K
\ell =1 \alpha \ell V (x\ell )+

1
\varepsilon g\varepsilon (\bfitx ,\bfitalpha ), then as \varepsilon \rightarrow 0

(5.6) g\varepsilon (\bfitx ,\bfitalpha ) \rightarrow U(\bfitx )
.
= min

\sigma \in \Sigma K

\Biggl[ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr] 
uniformly in \bfitx \in MK (see, e.g., [4, Lemma 14.7]). Define

f(\bfitx ,\bfitalpha ) =
K\sum 
\ell =1

\alpha \ell V (x\ell ) - U(\bfitx ).

We can then apply Theorem 5.7 with the function f\varepsilon (\bfitx ,\bfitalpha ) =
\sum K

\ell =1 \alpha \ell V (x\ell ) - g\varepsilon (\bfitx ,\bfitalpha )
and the compact set A\times MK - 1 \subset MK , to find that

lim inf
\varepsilon \rightarrow 0

 - \varepsilon log

\bigm| \bigm| \bigm| \bigm| \bigm| E\bfitx 
1

T \varepsilon 

\int T \varepsilon 

0

w\varepsilon (\bfitX \varepsilon (t);\bfitalpha )1A(X
\varepsilon 
1(t))dt - 

\int 
MK

w\varepsilon (\bfitx ;\bfitalpha ) 1A(x1)\nu 
\varepsilon (d\bfitx )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\geq inf

\bfitx \in A\times MK - 1
[f (\bfitx ,\bfitalpha ) +W (\bfitx )] - W (O1) + c - (h \vee w)

= inf
\bfitx \in A\times MK - 1

[f (\bfitx ,\bfitalpha ) + U (\bfitx )] + c - (h \vee w)

= inf
\bfitx \in A\times MK - 1

\Biggl[ 
K\sum 
\ell =1

\alpha \ell V (x\ell )

\Biggr] 
+ c - (h \vee w) \geq V (A) + c - (h \vee w).

(5.7)
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Combining (5.7) with the facts that  - \varepsilon log \mu \varepsilon (A) \rightarrow V (A) and c > h \vee w shows that

\theta \varepsilon ,T
\varepsilon 

INS is essentially unbiased. Moreover, we find that lim inf\varepsilon \rightarrow 0  - \varepsilon log(T \varepsilon \cdot Var\bfitx (\theta \varepsilon ,T
\varepsilon 

INS ))

is bounded below by either mini\in L(R
(1)
i (\bfitalpha )\wedge R(2)

i (\bfitalpha )) or mini\in L(R
(1)
i (\bfitalpha )\wedge R(2)

i (\bfitalpha )\wedge 
R

(3)
i (\bfitalpha )), depending on whether h \geq w or w > h.

We can now complete the proof assuming bounds proved in the next two sections.
Specifically, by Lemma 5.9 we find that both minima are bounded below by r(\bfitalpha ) - h\vee w
with

r(\bfitalpha )
.
= inf

\bfitx \in A\times MK - 1

\Biggl\{ 
2

K\sum 
\ell =1

\alpha \ell V (x\ell ) - min
\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} \Biggr\} 
.(5.8)

The lower bound on the variance as stated in the theorem can then be obtained by
using Lemmas 5.10 and 5.11 to bound h and w, respectively, and the constant B can
then be identified easily and is displayed in Remark 5.13.

In the next subsection, we will establish the aforementioned lower bound for these
two minima.

Remark 5.8. As mentioned in Remark 3.3, we are also interested in estimating
risk-sensitive functionals of the form\int 

M

e - 
1
\varepsilon F (x)\mu \varepsilon (dx) .

We can apply Theorem 5.7 to the associated INS estimator in this case as well by
using the function f\varepsilon (\bfitx ,\bfitalpha ) = F (x1) +

\sum K
\ell =1 \alpha \ell V (x\ell )  - g\varepsilon (\bfitx ,\bfitalpha ) and the compact

set MK . Moreover, one can modify the arguments in subsection 5.1 to derive an
analogous version of Theorem 4.10 for the risk-sensitive functional case.

5.1. Bounds for the optimization problem. In this subsection we provide

suitable lower bounds for mini\in L(R
(1)
i (\bfitalpha )\wedge R(2)

i (\bfitalpha )) and mini\in L(R
(1)
i (\bfitalpha )\wedge R(2)

i (\bfitalpha )\wedge 
R

(3)
i (\bfitalpha )). Define r(\bfitalpha ) by (5.8), which is the same as inf\bfitx \in A\times MK - 1 \{ 2f(\bfitx ,\bfitalpha ) + U(\bfitx )\} ,

where f(\bfitx ,\bfitalpha )
.
=
\sum K

\ell =1 \alpha \ell V (x\ell ) - U(\bfitx ). We will show that both minima are bounded
below by quantities slightly smaller than r(\bfitalpha ). Actually, we will find lower bounds

for mini\in LR
(k)
i (\bfitalpha ) for k = 1, 2, and 3, individually. The precise statement is given in

the following lemma.

Lemma 5.9. For any \bfitalpha \in \Delta , we have mini\in LR
(1)
i (\bfitalpha ) = r(\bfitalpha ), mini\in LR

(2)
i (\bfitalpha ) \geq 

r(\bfitalpha ) - h \vee w, and mini\in LR
(3)
i (\bfitalpha ) \geq r(\bfitalpha ) - w.

Proof. First note that

min
i\in L

R
(1)
i (\bfitalpha ) = min

i\in L

\biggl( 
inf

\bfitx \in A\times MK - 1
\{ 2f(\bfitx ,\bfitalpha ) +Q(Oi,\bfitx )\} +W (Oi) - W (O1)

\biggr) 
= inf

\bfitx \in A\times MK - 1

\biggl\{ 
2f(\bfitx ,\bfitalpha ) + min

i\in L
[Q(Oi,\bfitx ) +W (Oi)] - W (O1)

\biggr\} 
= inf

\bfitx \in A\times MK - 1
\{ 2f(\bfitx ,\bfitalpha ) +W (\bfitx ) - W (O1)\} 

= inf
\bfitx \in A\times MK - 1

\{ 2f(\bfitx ,\bfitalpha ) + U(\bfitx )\} = r(\bfitalpha ),

where we use (5.4) for the third equality and Lemma 5.5 for the fourth equality.
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Moreover, since

min
i\in L\setminus \{ 1\} 

R
(2)
i (\bfitalpha )

= min
i\in L\setminus \{ 1\} 

\biggl[ 
2 inf
\bfitx \in A\times MK - 1

[f(\bfitx ,\bfitalpha ) +Q(Oi,\bfitx )] +W (Oi) - 2W (O1) +W (O1 \cup Oi)

\biggr] 
\geq inf

\bfitx \in A\times MK - 1
[2f(\bfitx ,\bfitalpha ) + min

i\in L\setminus \{ 1\} 
\{ Q(Oi,\bfitx ) +W (Oi) - W (O1)\} ]

 - W (O1) + min
i\in L\setminus \{ 1\} 

W (O1 \cup Oi)

= inf
\bfitx \in A\times MK - 1

[2f(\bfitx ,\bfitalpha ) + min
i\in L\setminus \{ 1\} 

\{ Q(Oi,\bfitx ) + U(Oi)\} ] - w,

using U(O1) = 0 and Q \geq 0 we obtain

min
i\in L

R
(2)
i (\bfitalpha ) = R

(2)
1 (\bfitalpha ) \wedge 

\biggl( 
min

i\in L\setminus \{ 1\} 
R

(2)
i (\bfitalpha )

\biggr) 
\geq 
\biggl( 

inf
\bfitx \in A\times MK - 1

[2f(\bfitx ,\bfitalpha ) +Q(O1,\bfitx )] - h

\biggr) 
\wedge 
\biggl( 

inf
\bfitx \in A\times MK - 1

[2f(\bfitx ,\bfitalpha ) + min
i\in L\setminus \{ 1\} 

\{ Q(Oi,\bfitx ) + U(Oi)\} ] - w

\biggr) 
\geq inf

\bfitx \in A\times MK - 1
[2f(\bfitx ,\bfitalpha ) + min

i\in L
\{ Q(Oi,\bfitx ) + U(Oi)\} ] - h \vee w

= inf
\bfitx \in A\times MK - 1

[2f(\bfitx ,\bfitalpha ) + U(\bfitx )] - h \vee w

= r(\bfitalpha ) - h \vee w,

where the second equality is from Remark 5.6. Lastly,

min
i\in L

R
(3)
i (\bfitalpha ) = min

i\in L

\biggl\{ 
2 inf
\bfitx \in A\times MK - 1

[f(\bfitx ,\bfitalpha ) +Q(Oi,\bfitx )] + 2W (Oi) - 2W (O1) - w

\biggr\} 
= min

i\in L

\biggl\{ 
2 inf
\bfitx \in A\times MK - 1

[f(\bfitx ,\bfitalpha ) +Q(Oi,\bfitx )] + 2U(Oi)

\biggr\} 
 - w

= 2 inf
\bfitx \in A\times MK - 1

[f(\bfitx ,\bfitalpha ) + min
i\in L

\{ Q(Oi,\bfitx ) + U(Oi)\} ] - w

= 2 inf
\bfitx \in A\times MK - 1

[f(\bfitx ,\bfitalpha ) + U(\bfitx )] - w

\geq inf
\bfitx \in A\times MK - 1

[2f(\bfitx ,\bfitalpha ) + U(\bfitx )] - w

= r(\bfitalpha ) - w.

5.2. Bounds on the error terms \bfith and \bfitw . Lemma 5.9 shows that for any
collection of temperature ratios \bfitalpha \in \Delta , lim inf\varepsilon \rightarrow 0  - \varepsilon log(T \varepsilon \cdot Varx(\theta \varepsilon ,T

\varepsilon 

INS )) is always
bounded below by r(\bfitalpha )  - h \vee w. In this subsection, it will be shown that we can
bound h and w for the INS model by quantities depending only on \alpha K . This will
identify the constant B appearing in Theorem 4.10.

Recall that H is the index set for equilibrium points of V and yi \in M is the
equilibrium point corresponding to index i \in H. Additionally, we assumed y1 is the
unique global minimum of V . Let b1 be the minimum barrier height of y1, namely,

(5.9) b1
.
= min

j\in H\setminus \{ 1\} 
\^Q(yj , y1),
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where \^Q is the quasipotential associated with the original diffusion (2.2), and \^W is
defined analogously to W but for this process.

Lemma 5.10. h
.
= mini\in L\setminus \{ 1\} Q(O1, Oi) = \alpha Kb1.

Proof. Letting D1 be the domain of attraction of O1, we define

QD1 (\bfitx ,\bfity )
.
= inf \{ IT (\phi ) : \phi (0) = \bfitx , \phi (T ) = \bfity , \phi (t) \in D1 for all 0 \leq t \leq T, T <\infty \} .

Recall that Q (\bfitx ,\bfity ) is defined by

Q (\bfitx ,\bfity )
.
= inf \{ IT (\phi ) : \phi (0) = \bfitx , \phi (T ) = \bfity , T <\infty \} .

Now since O1 is the only equilibrium point in D1, this implies that

h
.
= min

i\in L\setminus \{ 1\} 
Q(O1, Oi) \geq inf

\bfitx \in \partial D1

QD1
(O1,\bfitx ) .

Moreover, we can apply [15, Theorem 4.3, Chapter 4] and (5.1) to find

inf
\bfitx \in \partial D1

QD1
(O1,\bfitx ) =  - lim

\varepsilon \rightarrow 0
\varepsilon log

\biggl( 
\nu \varepsilon (\partial D1)

\nu \varepsilon (D1)

\biggr) 
= inf

\bfitx \in \partial D1

U(\bfitx ) - inf
\bfitx \in D1

U (\bfitx )

= U(O2) - U(O1) = U(O2) = \alpha KV (y2) = \alpha Kb1,

where O2
.
= (y1, . . . , y1, y2) \in \partial D1 with y2 being an unstable equilibrium point such

that b1 = \^Q(y1, y2) = V (y2). Thus, we have h \geq \alpha Kb1. For the other direction, we
use the definitions of QD1 and Q, and we apply [15, Theorem 4.3, Chapter 4] again
to find

h \leq Q (O1, O2) \leq QD1
(O1, O2) = U(O2) - U(O1) = \alpha Kb1.

Recall that w
.
= W (O1)  - mini\in L\setminus \{ 1\} W (O1 \cup Oi). We provide an upper bound

for w in the next lemma. To state the lemma, we need some more definitions. Let
\^G(1) denote the collection of graphs on \{ yi\} i\in H that end at y1. Let \^Gm(1) denote
the subset of such graphs with the property that for every local maximum or saddle
point y there is a local minimum z such that \^Q(y, z) = 0. We know that \^Gm(1) is
nonempty since it contains the optimizing \^g in the definition of \^W (y1) [15, Lemma
4.3(a), Chapter 6]. Given \^g \in \^Gm(1), let H\^g \subset H\setminus \{ 1\} be the indices which are
starting points, i.e., k \in H\^g means that there is no arrow in the graph that leads to
yk. Given k \in H\^g, let C\^g(k) be the cost along the path i1 = k, i2, . . . , im = 1 in \^g
leading from k to 1:

C\^g(k) =
m - 1\sum 
j=1

\^Q
\bigl( 
yij , yij+1

\bigr) 
.

Lemma 5.11. w \leq K\alpha K min\^g\in \^Gm(1) maxk\in H\^g
C\^g(k).

Remark 5.12. Note that always min\^g\in \^Gm(1) maxk\in H\^g
C\^g(k) \leq \^W (y1), and that

min\^g\in \^Gm(1) maxk\in H\^g
C\^g(k) can in some cases be much smaller than \^W (y1). For ex-

ample, this is often the case when H is large but all equilibrium points of V can reach
y1 while passing through only a few intermediate equilibrium points. The lemma is
useful owing to the scaling in K that is obtained, but unlike the expression for h it is
not tight.

Proof. We will show that for any i \in L \setminus \{ 1\} and any \^g \in \^Gm(1), Q(Oi, O1) \leq 
K\alpha K maxk\in H\^g

C\^g(k). If this is true, then from the definition of W (O1 \cup Oi) we can
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construct a graph to use in the definition of W (O1) that givesW (O1) \leq W (O1\cup Oi)+
Q(Oi, O1) for any i \in L \setminus \{ 1\} . Combining these two inequalities with the definition
of w in (5.5) complete the proof.

To prove the upper bound for Q(Oi, O1) we fix a graph \^g \in \^Gm(1) and note that
for any y\ell with \ell \in H\^g, there is a unique sequence of arrows (containing no loop)
that leads from y\ell to y1 with cost C\^g(\ell ). Furthermore, we know that in this \^g, every

local maximum or saddle point will lead to a local minimum with zero \^Q-cost. Using
these facts, we design a route from Oi to O1 through points from (\{ yi\} i\in H)K in the
following way:

\bullet We change only one component at a time.
\bullet We change the component with the largest V -value and replace it by the
next equilibrium point suggested by the graph \^g. If there is more than one
component with the largest V -value, then we can move any one of them.

\bullet Then repeat the process until all the components reach y1, i.e., Oi reaches
O1.

Next we analyze the Q-cost for each single step. For notational convenience, sup-
pose without lose of generality that it is the first component that takes the largest V -
value. Then we will move from (x1, x2 . . . , xK) to some (z1, x2, . . . , xK), with V (x1) \geq 
V (x\ell ) for all \ell \not = 1, and (x1 \rightarrow z1) \in \^g. We claim thatQ((x1, x2 . . . , xK), (z1, x2 . . . , xK))
is always equal to \alpha K

\^Q(x1, z1).
We first consider the case when x1 is a saddle point or a local maximum of V . In

this case then we know that z1 must be a local minimum of V such that \^Q(x1, z1) = 0,
so it is easy to see that we can construct a zero Q-cost trajectory from (x1, x2 . . . , xK)
to (z1, x2 . . . , xK), and this gives

Q((x1, x2 . . . , xK), (z1, x2 . . . , xK)) = 0 = \alpha K
\^Q(x1, z1).

On the other hand, if x1 is a local minimum of V , then V (z1) must be larger than
V (x1) (which is larger than V (x\ell ) for all \ell \not = 1), and hence according to the definition
of U

Q((x1, x2 . . . , xK), (z1, x2 . . . , xK)) = U(z1, x2 . . . , xK) - U(x1, x2 . . . , xK)

= \alpha KV (z1) - \alpha KV (x1)

= \alpha K
\^Q(x1, z1).

As a result, the overall cost for each component to reach y1 is not larger than
\alpha K maxk\in H\^g

C\^g(k), and because there are K components in total, we conclude that

Q(Oi, O1) \leq K\alpha K maxk\in H\^g
C\^g(k). We then minimize on \^g \in \^Gm(1).

Remark 5.13. A consequence of Lemmas 5.10 and 5.11 is that for any temperature
ratios \bfitalpha \in \Delta , if T \varepsilon = ec/\varepsilon with c > \alpha KB, then lim inf\varepsilon \rightarrow 0  - \varepsilon log(T \varepsilon \cdot Var\bfitx (\theta \varepsilon ,T

\varepsilon 

INS )) is
bounded below by r(\bfitalpha ) - \alpha KB, where

B
.
= b1 \vee (K min

\^g\in \^Gm(1)
max
k\in H\^g

C\^g(k)).

5.3. Examples.

Example 5.14. We first consider the situation depicted in Figure 4. If we use INS
with two temperatures, i.e., K = 2 and 1 = \alpha 1 \geq \alpha 2 > 0, then some algebra shows
h = \alpha 2b1 = 4\alpha 2 and w = W (O1)  - mini\not =1W (O1 \cup Oi) = 3\alpha 2, and therefore h > w.
The outcome h > w reflects the fact that the well containing y1 is the hardest to
escape from and also contains the global minimum.
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V (y1) = 5

V (y2) = 9

V (y3) = 7

V (y4) = 11

V (y5) = 8

y1 y2 y3 y4 y5

Fig. 4. A case with h > w.

Example 5.15. In this example, we consider the situation depicted in Figure 5.
With the same two-temperature setting as in the last example, one finds h = \alpha 2b1 =
4\alpha 2 and w = W (O1)  - mini\not =1W (O1 \cup Oi) = 5\alpha 2, which gives w > h. Here we
see that there is a secondary well from which escape is harder than from that which
contains y1. Moreover, in this case min\^g\in \^Gm(1) maxk\in H\^g

C\^g(k) = \^W (y1) = 7, and

K\alpha K min\^g\in \^Gm(1) maxk\in H\^g
C\^g(k) = 14\alpha 2 is strictly larger than w = 5\alpha 2. Thus the

bound for w from Lemma 5.11 is not tight, though it is still good enough to show the
deviation from optimality decays geometrically in K.

V (y1) = 7

V (y2) = 11

V (y3) = 9

V (y4) = 13

V (y5) = 8

y1 y2 y3 y4 y5

Fig. 5. A case with h < w.

Example 5.16. The next example we consider is a potential V with a unique
global minimum y1 in the deepest well which is surrounded by N collections of wells
of the same form as depicted in Figure 5, with y1 common to all collections, and
each collection arranged in a radial direction out from y1. Let \{ yni , i = 1, . . . , 5, n =
1, . . . , N\} with yn1 = y1 denote the equilibrium points of V . Let \^g be the graph with
all arrows pointing in along the radial direction. In this case H\^g has N vertices, and
with n indexing such a vertex let C\^g(n) = V (yn4 )  - V (yn5 ) + V (yn2 )  - V (yn3 ). With
this example, so long as we have a uniform bound on C\^g(n) there is a bound on w
that is independent of N . Note that if there are large barriers between the radial
collections, then we will also have \^W (y1) =

\sum 
1\leq n\leq N C\^g(n), which in this case will be

much larger than max1\leq n\leq N C\^g(n), a situation noted in Remark 5.12.
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-1.5 -1 -0.5 0.5 1 1.5

-0.5

0.5

1

1.5

2

(a)

-1.5 -1 -0.5 0.5 1 1.5

-0.5

0.5

1

1.5

2

(b)

-1.5 -1 -0.5 0.5 1 1.5

-0.5

0.5

1

1.5

2

(c)

Fig. 6. (a) \=V , (b) S with \delta = 1/9, k = 2, and h = 0.25, (c) V .

Example 5.17. In this example we show that the definition of w is in some sense
robust with respect to the appearance of insignificant secondary wells on top of V . For
simplicity of statement the function we construct will be piecewise affine (a smooth
analogue is easily constructed), as depicted in Figure 6. We let \=V be piecewise affine
with a local minimum of 0 at  - 1, a local minimum of 1 at 1, and a maximum of 2
at 0. If we denote w associated to \=V by w \=V , then it is straightforward to check that
w \=V = 1.

We next add to \=V a continuous triangle wave function S that is equal to zero
outside [ - 1, 1], with maxima and minima of \pm h for some h \in (0, 1), and a space
between successive maxima (and minima) of 4\delta > 0 so that the derivative of S equals
h/\delta in absolute value, a.e. Finally we assume \delta is such that S(0) = S( - 1 + \delta ) =
S(1  - \delta ) = h. If h/\delta < 6, then V = \=V + S has a local minimum of 0 at  - 1, a local
minimum of 1 at 1, and a global maximum of 2+h at 0. This requires 2k\cdot 4\delta +2\delta = 2 for
some k \in N (where the 2\delta are from the ends of the interval). Moreover, depending on
the value of h/\delta , V could have many secondary local minima which appear due to the
perturbation by S. These local minima are at 1 - (3+4m)\delta for m \in \{ 0, 1, . . . , 2k - 1\} .
If we construct the analogue of w for the function V , denoted by wV , we find that
wV = 1 + h, since one can show that wV =W (\{  - 1\} ) - W (\{  - 1\} \cup \{ 1\} ) and

W (\{  - 1\} ) = k[2h+ 2\delta ] + k[2h - 4\delta ] + [h+ \delta ],

W (\{  - 1\} \cup \{ 1\} ) = k[2h - 4\delta ] + k[2h - 2\delta ].

Thus wV  - w \=V = h.
From these calculations we see that the difference between w \=V and wV is minor

as long as the perturbation magnitude h is small, and also that the difference is
independent of the number of local minima introduced, which is controlled by \delta .

6. Proof of Theorem 4.11. Recall that

r(\bfitalpha )
.
= inf

\bfitx \in A\times MK - 1

\Biggl\{ 
2

K\sum 
\ell =1

\alpha \ell V (x\ell ) - min
\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} \Biggr\} 
.

In this section we provide the proof of Theorem 4.11. An important step of the
proof is to reformulate r(\bfitalpha ) as in the next lemma. Although a version of the lemma
appears in [14], we include a somewhat simpler proof of a special case owing to its
central role.
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Lemma 6.1. For any \bfitalpha \in \Delta , we have r(\bfitalpha ) = \=r(\bfitalpha ), where

\=r (\bfitalpha )
.
= inf

V1\in D
\{ (V1,...,VK):V\ell \in [0,V1] for \ell \geq 2\} 

\Biggl[ 
2

K\sum 
\ell =1

\alpha \ell V\ell  - min
\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha V\sigma (\ell )

\Biggr\} \Biggr] 
,

with D
.
= \{ V (x) : x \in A\} . Moreover,

\=r (\bfitalpha ) = inf
V1\in D

\{ \bfitV :0\leq V2\leq \cdot \cdot \cdot \leq VK\leq V1\} 

\Biggl[ 
(2\alpha 1  - \alpha K)V1 +

K\sum 
\ell =2

(2\alpha \ell  - \alpha \ell  - 1)V\ell 

\Biggr] 
(6.1)

and

\=r (\bfitalpha ) = inf
V1\in D

\{ \bfitV :0\leq V2\leq \cdot \cdot \cdot \leq VK\leq V1\} 

\Biggl[ 
(2\alpha 1  - \alpha K)V1 +

K - 1\sum 
\ell =2

\alpha \ell (2V\ell  - V\ell +1) + 2\alpha KVK  - V2

\Biggr] 
.

(6.2)

Proof. The first step is to decompose A\times MK - 1 as \cup \tau \in \Sigma K
N\tau , where

N\tau 
.
=
\bigl\{ 
\bfitx \in A\times MK - 1 : V (x\tau (1)) \leq V (x\tau (2)) \leq \cdot \cdot \cdot \leq V (x\tau (K))

\bigr\} 
.

For any \tau \in \Sigma K there exists i \in \{ 1, . . . ,K\} which depends on \tau such that 1 = \tau (i) .
We will use the rearrangement inequality [17, section 10.2, Theorem 368], which
says that if \bfitx \in N\tau , then since \alpha \ell is nonincreasing in \ell the minimum in U(\bfitx )

.
=

min\sigma \in \Sigma K
\{ 
\sum K

\ell =1 \alpha \ell V (x\sigma (\ell ))\} is at \sigma = \tau . Thus,

inf
\bfitx \in A\times MK - 1

\Biggl[ 
2

K\sum 
\ell =1

\alpha \ell V (x
\ell 
) - U(\bfitx )

\Biggr] 

= min
\tau \in \Sigma K

\Biggl\{ 
inf

\bfitx \in N\tau 

\Biggl[ 
2

K\sum 
\ell =1

\alpha \ell V (x
\ell 
) - min

\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} \Biggr] \Biggr\} 

= min
\tau \in \Sigma K

\Biggl\{ 
inf

\bfitx \in N\tau 

\Biggl[ 
K\sum 
\ell =1

\bigl( 
2\alpha \tau (\ell )  - \alpha \ell 

\bigr) 
V (x\tau (\ell ))

\Biggr] \Biggr\} 
.

Let \beta \ell 
.
= 2\alpha \tau (\ell )  - \alpha \ell , and for each \tau (and using that i is the index such that

\tau (i) = 1), we define the sets

N i
\tau 
.
=
\bigl\{ \bigl( 
x\tau (1), . . . , x\tau (i)

\bigr) 
: \bfitx \in N\tau 

\bigr\} 
and

\=N i
\tau (\bfity )

.
=
\bigl\{ \bigl( 
x\tau (i), . . . , x\tau (K)

\bigr) 
: \bfitx \in N\tau and

\bigl( 
x\tau (1), . . . , x\tau (i)

\bigr) 
= \bfity 

\bigr\} 
.

Then

inf
\bfitx \in N\tau 

\Biggl[ 
K\sum 
\ell =1

\beta \ell V (x\tau (\ell ))

\Biggr] 
= inf

(y1,...,yi)\in Ni
\tau 

\Biggl[ \sum i - 1
\ell =1 \beta \ell V (y\ell ) + \beta iV (yi)

+ inf(zi,...,zK)\in \=Ni
\tau (y1,...,yi)

\Bigl[ \sum K
\ell =i+1 \beta \ell V (z\ell )

\Bigr] \Biggr] .
Next we show that given (y1, . . . , yi) (and noting that by definition zi = yi),

(6.3) inf
(zi,...,zK)\in \=Ni

\tau (y1,...,yi)

\Biggl[ 
K\sum 

\ell =i+1

\beta \ell V (z\ell )

\Biggr] 
=

\Biggl( 
K\sum 

\ell =i+1

\beta \ell 

\Biggr) 
V (yi) .
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Recall that \alpha 1 \geq \alpha 2 \geq \cdot \cdot \cdot \geq \alpha K > 0. Therefore, \beta K = 2\alpha \tau (K)  - \alpha K \geq 2\alpha K  - 
\alpha K = \alpha K > 0. More generally, since \tau (\ell ), . . . , \tau (K) are distinct values drawn from
\{ 1, . . . ,K\} , for each \ell 

\beta \ell + \cdot \cdot \cdot + \beta K = 2
K\sum 
j=\ell 

\alpha \tau (j)  - 
K\sum 
j=\ell 

\alpha j \geq 2
K\sum 
j=\ell 

\alpha j  - 
K\sum 
j=\ell 

\alpha j > 0.

Using \beta K \geq 0 and the fact that (zi, . . . , zK) \in \=N i
\tau (y1, . . . , yi) implies the restriction

V (zi) \leq V (zi+1) \leq \cdot \cdot \cdot \leq V (zK) ,

we can rewrite the infimum as

inf
(zi,...,zK)\in \=Ni

\tau (y1,...,yi)

\Biggl[ 
K - 2\sum 
\ell =i+1

\beta \ell V (z\ell ) + (\beta K - 1 + \beta K)V (zK - 1)

\Biggr] 
.

Iterating, we have (6.3). Recalling D
.
= \{ V (x) : x \in A\} ,

inf
\bfitx \in A\times MK - 1

\Biggl[ 
2

K\sum 
\ell =1

\alpha \ell V (x
\ell 
) - min

\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V (x\sigma (\ell ))

\Biggr\} \Biggr] 

= min
\tau \in \Sigma K

\Biggl\{ 
inf

\bfitx \in N\tau 

\Biggl[ 
K\sum 
\ell =1

\bigl( 
2\alpha \tau (\ell )  - \alpha \ell 

\bigr) 
V (x\tau (\ell ))

\Biggr] \Biggr\} 

= min
\tau \in \Sigma K

\Biggl\{ 
inf

(x\tau (1),...,x\tau (i))\in Ni
\tau 

\Biggl[ 
i - 1\sum 
\ell =1

\beta \ell V (x\tau (\ell )) +

\Biggl( 
K\sum 
\ell =i

\beta \ell 

\Biggr) 
V (x\tau (i))

\Biggr] \Biggr\} 

= min
\tau \in \Sigma K

\left\{       inf
V\tau (i)\in D

\{ (V\tau (1),...,V\tau (i - 1)):V\tau (1)\leq V\tau (2)\leq \cdot \cdot \cdot \leq V\tau (i)\} 

\Biggl[ 
i - 1\sum 
\ell =1

\beta \ell V\tau (\ell ) +

\Biggl( 
K\sum 
\ell =i

\beta \ell 

\Biggr) 
V\tau (i)

\Biggr] \right\}       .

The last equality holds because V is continuous.
We claim that the last display coincides with

\=r (\bfitalpha )
.
= inf

V1\in D
\{ \bfitV :V\ell \in [0,V1] for \ell \geq 2\} 

\Biggl[ 
2

K\sum 
\ell =1

\alpha \ell V\ell  - min
\sigma \in \Sigma K

\Biggl\{ 
K\sum 
\ell =1

\alpha \ell V\sigma (\ell )

\Biggr\} \Biggr] 

= min
\tau \in \Sigma K

\left\{       inf
V\tau (i)\in D

\{ (V\tau (1),\cdot \cdot \cdot ,V\tau (K)):V\tau (1)\leq V\tau (2)\leq \cdot \cdot \cdot \leq V\tau (K)\leq V\tau (i)\} 

\Biggl[ 
K\sum 
\ell =1

\bigl( 
2\alpha \tau (\ell )  - \alpha \ell 

\bigr) 
V\tau (\ell )

\Biggr] \right\}       .

Since \bfitV \in N\tau implies V\tau (\ell ) \geq V\tau (i) and hence V\tau (\ell ) = V\tau (i) for i < \ell \leq K,

inf
V\tau (i)\in D

\{ (V\tau (1),...,V\tau (K)):V\tau (1)\leq V\tau (2)\leq \cdot \cdot \cdot \leq V\tau (K)\leq V\tau (i)\} 

\Biggl[ 
K\sum 
\ell =1

\beta \ell V\tau (\ell )

\Biggr] 

= inf
V\tau (i)\in D

\{ (V\tau (1),...,V\tau (i - 1)):V\tau (1)\leq V\tau (2)\leq \cdot \cdot \cdot \leq V\tau (i)\} 

\Biggl[ 
i - 1\sum 
\ell =1

\beta \ell V\tau (\ell ) +

\Biggl( 
K\sum 
\ell =i

\beta \ell 

\Biggr) 
V\tau (i)

\Biggr] 
,

which establishes the claim.
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Now rewrite \=r (\bfitalpha ) by noticing that since V1 is the largest value in the set \bfitV ,

min\tau \in \Sigma K
\{ 
\sum K

\ell =1 \alpha \ell V\tau (\ell )\} obtains the minimum at some \tau \in \Sigma K with \tau (K) = 1.
Therefore

\=r (\bfitalpha ) = inf
V1\in D

\{ \bfitV :V\ell \leq V1 for \ell \geq 2\} 

\Biggl[ 
(2\alpha 1  - \alpha K)V1 + 2

K\sum 
\ell =2

\alpha \ell V\ell  - min
\tau \in \Sigma K ,\tau (K)=1

\Biggl\{ 
K - 1\sum 
\ell =1

\alpha \ell V\tau (\ell )

\Biggr\} \Biggr] 
.

Suppose we are given any K - 1 numbers and assign them to \{ V\ell \} \ell =2,...,K in a certain
order. Then the value of

min
\tau \in \Sigma K ,\tau (K)=1

\Biggl\{ 
K - 1\sum 
\ell =1

\alpha \ell V\tau (\ell )

\Biggr\} 

is independent of the order. But since \alpha 1 \geq \cdot \cdot \cdot \geq \alpha K > 0, by the rearrangement
inequality, the smallest value of

\sum K
\ell =2 \alpha \ell V\ell is obtained by taking the V\ell , \ell \geq 2, in

increasing order. By choosing this ordering of \{ V\ell \} \ell =2,...,K ,

min
\tau \in \Sigma K ,\tau (K)=1

\Biggl\{ 
K - 1\sum 
\ell =1

\alpha \ell V\tau (\ell )

\Biggr\} 
=

K\sum 
\ell =2

\alpha \ell  - 1V\ell .

Thus we obtain (6.1):

\=r (\bfitalpha ) = inf
V1\in D

\{ \bfitV :0\leq V2\leq \cdot \cdot \cdot \leq VK\leq V1\} 

\Biggl[ 
(2\alpha 1  - \alpha K)V1 + 2

K\sum 
\ell =2

\alpha \ell V\ell  - 
K\sum 
\ell =2

\alpha \ell  - 1V\ell 

\Biggr] 

= inf
V1\in D

\{ \bfitV :0\leq V2\leq \cdot \cdot \cdot \leq VK\leq V1\} 

\Biggl[ 
(2\alpha 1  - \alpha K)V1 +

K\sum 
\ell =2

(2\alpha \ell  - \alpha \ell  - 1)V\ell 

\Biggr] 
.

Using summation by parts and \alpha 1 = 1 gives (6.2).

Proof of Theorem 4.11. Let \alpha K \in (0, (1/2)K - 1]. Since V is continuous and bound-
ed from below, there is V0\in D such that V0=V (A). Let\bfitalpha \ast .=

\bigl( 
1, 1/2, . . . , (1/2)K - 2, \alpha K

\bigr) 
and \bfitV \ast = (V \ast 

1 , . . . , V
\ast 
K) , with V \ast 

1
.
= V0, V

\ast 
\ell 
.
= (1/2)K - \ell V0 for \ell = 2, . . . ,K. We have

the following inequalities, which are explained after the display:\bigl( 
2 + \alpha K  - (1/2)K - 2

\bigr) 
V0

= inf
V1\in D

\{ \bfitV :0\leq V2\leq \cdot \cdot \cdot \leq VK\leq V1\} 

\Biggl[ 
(2 - \alpha K)V1 +

K\sum 
\ell =2

\bigl( 
2\alpha \ast 

\ell  - \alpha \ast 
\ell  - 1

\bigr) 
V\ell 

\Biggr] 
= \=r (\bfitalpha \ast )

\leq sup
(\alpha 2,...,\alpha K - 1)\in [\alpha K ,1]K - 2

\=r (1, \alpha 2, . . . , \alpha K - 1, \alpha k)

\leq sup
(\alpha 2,...,\alpha K - 1)\in [\alpha K ,1]K - 2

\Biggl[ 
(2\alpha 1  - \alpha K)V \ast 

1 +
K - 1\sum 
\ell =2

\alpha \ell 

\bigl( 
2V \ast 

\ell  - V \ast 
\ell +1

\bigr) 
+ 2\alpha KV

\ast 
K  - V \ast 

2

\Biggr] 
=
\bigl( 
2 + \alpha K  - (1/2)K - 2

\bigr) 
V0.

The first equality follows from 2\alpha \ast 
\ell  - \alpha \ast 

\ell  - 1 = 0 for \ell = 2, . . . ,K  - 1 and \alpha K \in 
(0, (1/2)K - 1]; the second equality comes from (6.1); the second inequality is from
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(6.2); the third equality uses \alpha 1 = 1, 2V \ast 
\ell  - V \ast 

\ell +1 = 0 for \ell = 2, . . . ,K  - 1, V \ast 
1 =

V0 = V \ast 
K , and V \ast 

2 = (1/2)K - 2V0. In addition, since r(\bfitalpha ) = \=r(\bfitalpha ) for any \bfitalpha \in \Delta from
Lemma 6.1, we therefore obtain

sup
(\alpha 2,...,\alpha K - 1)\in [\alpha K ,1]K - 2

r (1, \alpha 2, . . . , \alpha K - 1, \alpha k) =
\bigl( 
2 + \alpha K  - (1/2)K - 2

\bigr) 
V (A) .

If \alpha K \in ((1/2)K - 1, 1], then \alpha K \in ((1/2)m, (1/2)m - 1] for somem \in \{ 1, . . . ,K - 1\} .
We can apply an analogous argument for each m with \bfitalpha \ast = (1, \alpha \ast 

2, . . . , \alpha 
\ast 
K - 1, \alpha K)

and \bfitV \ast = (V0, 0, . . . , 0) , where

\alpha \ast 
\ell =

\biggl\{ 
(1/2)\ell  - 1 if 2 \leq \ell \leq m,

\alpha K if m+ 1 \leq \ell \leq K  - 1,

to show that

sup
(\alpha 2,...,\alpha K - 1)\in [\alpha K ,1]K - 2

r (1, \alpha 2, . . . , \alpha K - 1, \alpha k) = (2 - \alpha K)V (A) .

7. Appendix. The results of [13] use the large deviation principle for a small
noise diffusion process to characterize large deviation properties of the variance of the
empirical measure in the limit as the time horizon tends to infinity and the strength
of the noise tends to zero. One use of the rate function on path space is to determine
probabilities of transitions between equilibrium points of the noiseless system. As
noted previously for the INS model this is not needed, in that the known form of the
stationary distribution hands us this information directly. Because of this, all that is
needed is that the LDP hold with some rate function that is uniform with respect to
initial conditions, which we assume, and certain bounds on the rate function.

One bound that is needed is an upper bound on the cost to go from any point \bfitx 
to any nearby point \bfity , i.e., inf\{ IT (\phi ) : \phi (0) = \bfitx , \phi (T ) = \bfity , T \in (0,\infty )\} , which shows
that this cost can be made small by making the distance between \bfitx and \bfity small (a
controllability type condition). Such a bound follows easily from the nondegeneracy
of the noise and boundedness of \nabla V by making comparison with the case of Brownian
motion.

The other bound needed is used to show that for many calculations what happens
away from neighborhoods of the equilibrium points is not so important, in that the
process spends very little time (in a relative sense) on any place but in the union
of these neighborhoods. For this, the key property of the rate function is a result
that shows that if \delta > 0, then all zero cost trajectories (i.e., paths \phi such that
IT (\phi ) = 0 for all T \in (0,\infty )) that start outside the union of the \delta -neighborhoods of
the equilibrium points must reach that set in a time that is uniformly bounded over
all initial conditions and paths. Two conditions that are sufficient to show that the
time spent away from \delta -neighborhoods of the equilibrium points are the following:

1. There is a measurable function \=L : MK \times (Rd)K \rightarrow [0,\infty ) that is uniformly
bounded on each compact subset, such that for all absolutely continuous
\psi \in C([0, T ] : MK), the rate function IT for the INS model discussed in the
next subsection of the appendix satisfies\int T

0

\=L(\psi , \.\psi )ds \leq IT (\psi ),

and in all other cases IT (\psi ) = \infty .
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2. For each \delta > 0 there is f : [0,\infty ) \rightarrow [0,\infty ) that satisfies f(t) \rightarrow \infty as
t \rightarrow \infty , and if \psi : [0,\infty ) \rightarrow MK is absolutely continuous and if \psi (t) avoids
the \delta -neighborhoods of all the equilibrium points \{ yi, i \in H\} K , then

(7.1)

\int T

0

\=L(\psi , \.\psi )ds \geq f(T ).

Given that an LDP holds with rate function IT (\phi ), it follows from the general
large deviation upper bound proved in [10] that IT (\phi ) \geq JT (\phi ), with JT (\phi ) giving

the upper bound rate and with JT (\phi ) =
\int T

0
\=L(\phi , \.\phi )ds of the following form. For each

point \bfitx \in MK there is a finite collection of functions

Hj(\bfitx ,\bfitgamma )
.
=

K\sum 
k=1

\Bigl[ 
\langle  - \nabla V (xk), \gamma k\rangle + cjk \| \gamma k\| 

2
\Bigr] 
=

K\sum 
k=1

\langle  - \nabla V (xk), \gamma k\rangle + \=Hj(\bfitx ,\bfitgamma ),

j = 1, . . . , J , where each \gamma k \in Rd and for each j the cjk take distinct values from
\{ \alpha  - 1

1 , . . . , \alpha  - 1
K \} , and the equality defines \=Hj(\bfitx ,\bfitgamma ). Note that each \=Hj(\bfitx ,\bfitgamma ) is qua-

dratic and positive definite (i.e., greater than zero if \bfitgamma \not = 0). For \bfitbeta = (\beta 1, . . . , \beta K)
with each \beta k in the tangent space to M at xk (the only values where \=L(\bfitx ,\bfitbeta ) will be
finite), we then have that

\=L(\bfitx ,\bfitbeta ) = sup
\{ \bfitgamma k\} 

\Biggl[ 
K\sum 

k=1

\langle \beta k, \gamma k\rangle +
K\sum 

k=1

\langle \nabla V (xk), \gamma k\rangle  - \vee J
j=1

\=Hj(\bfitx ,\bfitgamma )

\Biggr] 

= sup
\{ \bfitgamma k\} 

\Biggl[ 
K\sum 

k=1

\langle (\beta k +\nabla V (xk)), \gamma k\rangle  - \vee J
j=1

\=Hj(\bfitx ,\bfitgamma )

\Biggr] 
.

From standard theory of the Legendre--Fenchel transform, \=L(\bfitx ,\bfitbeta ) \geq 0 with equality
if and only if \bfitbeta + \bfitv is in the set of subdifferentials of \vee J

j=1
\=Hj(\bfitx ,\bfitgamma ) in the \bfitgamma variable

at \bfitgamma = 0, with \bfitv being the vector of components \nabla V (xk). Since the subdifferentials
of \vee J

j=1
\=Hj(\bfitx ,\bfitgamma ) at \bfitgamma = 0 are precisely \{ 0\} , we get that \=L(\phi , \.\phi ) = 0 if and only if each

component of \phi = (\phi 1, \phi 2, . . . , \phi K) satisfies \.\phi k =  - \nabla V (\phi k). Since we assume there are
only finitely many equilibrium points of V it must be true that each component reaches
the \delta -neighborhood of one of the equilibrium points in finite time. The reference
[10] also proves that JT (\phi ) has compact level sets. Since the equilibrium points of
the combined system are just \{ yi, i \in H\} K , the claimed property (7.1) follows from
standard calculations (see, e.g., [15, Lemma 2.2, Chapter 4]).
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