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Abstract. We present a new construction of maliciously-secure, two-
round multiparty computation (MPC) in the CRS model, where the
first message is reusable an unbounded number of times. The security of
the protocol relies on the Learning Parity with Noise (LPN) assumption
with inverse polynomial noise rate 1/n'~¢ for small enough constant e,
where n is the LPN dimension. Prior works on reusable two-round MPC
required assumptions such as DDH or LWE that imply some flavor of
homomorphic computation. We obtain our result in two steps:

— In the first step, we construct a two-round MPC protocol in the silent
pre-processing model (Boyle et al. Crypto 2019). Specifically, the par-
ties engage in a computationally inexpensive setup procedure that
generates some correlated random strings. Then, the parties commit
to their inputs. Finally, each party sends a message depending on
the function to be computed, and these messages can be decoded to
obtain the output. Crucially, the complexity of the pre-processing
phase and the input commitment phase do not grow with the size
of the circuit to be computed. We call this multiparty silent NISC
(msNISC), generalizing the notion of two-party silent NISC of Boyle
et al. (CCS 2019). We provide a construction of msNISC from LPN
in the random oracle model.

— In the second step, we give a transformation that removes the pre-
processing phase and use of random oracle from the previous proto-
col. This transformation additionally adds (unbounded) reusability
of the first round message, giving the first construction of reusable
two-round MPC from the LPN assumption. This step makes novel
use of randomized encoding of circuits (Applebaum et al., FOCS
2004) and a variant of the “tree of MPC messages” technique of
Ananth et al. and Bartusek et al. (TCC 2020).

1 Introduction

Consider a scenario where a consortium of oncologists wants to compute several
statistical tests on the confidential genomic data of their patients, while pre-
serving the privacy of their patients. To accomplish this, each oncologist first
publishes an encryption of their private database on their website. Next, given
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a proposed hypothesis F', the oncologists would like to figure out if this hypoth-
esis is consistent with their joint databases. They would like to achieve this by
sending a single message (that could grow with the size of the circuit computing
F') to each other. Can they achieve this? What if they want to continue com-
puting multiple hypotheses on the same data? Can they perform multiple tests
at varying points in time while sending just one additional message for every
new test? In other words, can they reuse the published encryptions of their data
across multiple tests?

This scenario is a special case of the more general problem of constructing
reusable two-round multiparty computation, whose feasibility was established
in the work of Garg et al. [GGHR14] assuming the existence of indistinguisha~
bility obfuscation [BGI4+01, GGH+13]. Starting with this work, an important
line of research has been to weaken the computational assumptions required for
constructing this primitive. The work of Mukherjee and Wichs [MW16] and a
recent work of Ananth et al. [AJJM20] gave a construction from the Learning
with Errors assumption [Reg05]. The work of Benhamouda and Lin [BL20] con-
structed such a protocol from standard assumptions on bilinear maps and the
work of Bartusek et al. [BGMM20] provided a construction based on the DDH
assumption.

Despite significant progress, our understanding of the assumptions neces-
sary to realize two-round MPC protocols with reusability still lags behind the
assumptions known to be sufficient for two-round MPC without reusability. In
particular, while we know two-round MPC from any two-round OT [BL1S,
GS18al], known constructions of two-round MPC with reusability seem to
require assumptions that support homomorphic computation—mnamely, LWE
and DDH (which are known to imply various flavours of homomorphic secret
sharing [BGI16]). In particular, these assumptions are known to imply some
notion of communication-efficient’ secure computation for a rich class of func-
tions [MW16,BGI16, DHRW16]. In this work, we ask:

Can we realize reusable two-round MPC' from assumptions that are not
known to imply communication-efficient secure computation?

1.1 Our Results

We answer the above question in the affirmative by constructing a reusable two-
round MPC protocol from the LPN assumption over binary fields with inverse
polynomial noise rate 1/n'=¢ for small enough constant €, where n is the LPN
dimension.

Our construction proceeds in two steps:

— Multiparty Silent NISC: We first consider the problem of constructing a
two-round MPC protocol where the first round message is succinct (i.e., the

! By communication efficiency, we mean that the communication cost of the protocols
do not grow with the circuit size of the functionality to be computed.
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complexity of computing the first round message does not grow with the cir-
cuit size) in the silent pre-processing model [BCG+19b]. To give more details,
there is a pre-processing phase run by a dealer that generates correlated ran-
dom strings for each party. In the first round, the parties send a commitment
to their inputs using the correlated randomness. In the second round, the
parties send a message that can be later decoded to obtain the output of
the function. For efficiency, we require the complexity of the pre-processing
phase and the input commitment phase to be independent of the circuit size
and only the second round computation can depend on this parameter. We
call this multiparty silent NISC, and this naturally extends a similar notion
defined by Boyle et al. [BCG+19a] for the two-party case. We give a con-
struction of a multiparty silent NISC protocol in the random oracle model
based on the LPN assumption.

— Reusable Two-Round MPC: In the second step, we transform the above
protocol to a protocol in the CRS model that achieves unbounded reusability
without increasing the number of rounds or requiring stronger assumptions.
As a corollary, we obtain the first construction of reusable two-round MPC
in the CRS model from the LPN assumption.

2 Technical Overview

In this section, we first discuss the notion of multiparty silent non-interactive
secure computation (msNISC), which is a natural extension of the silent NISC
primitive of [BCG+19a] to the multiparty setting. We then give an overview
of our construction of msNISC from the LPN assumption in the random oracle
model. This result mostly follows from a combination of ideas from [GIS1S,
BCG+19b], with a few necessary tweaks. Finally, we give an overview of the
transformation from msNISC to reusable two-round MPC. This transformation
forms the heart of our technical contribution.

2.1 Multi-party Silent NISC

In a silent NISC protocol [BCG+19a), two parties begin by interacting in a pre-
processing phase that results in some shared correlated randomness. In addition,
they send to each other encodings of their inputs x and y. So far, all computation
and communication is “small”; i.e. it does not grow with the size of the circuit
C they will eventually want to compute on their inputs. At this point, one party
may publish a single (large) message to the other party, allowing the latter to
learn the value C(x,y). Since all communication before this point was small, the
parties will be required to “silently” expand their correlated randomness into
useful correlations needed for the final non-interactive computation phase.

We naturally extend this interaction pattern to the multi-party setting. We
outline a three-phase approach for computing an m-party functionality.

— Preprocessing phase: A trusted dealer computes correlated secrets {s;} i
and sends s; to party i.

m]



168 J. Bartusek et al.

— Input commitment phase: Party ¢, using secret s;, computes and broadcasts
a commitment ¢; to its input z;.

— Compute phase: Once a circuit C' is known to all parties, they each compute
and broadcast a single message m;.

— Recovery: The protocol is publicly decodable. That is, the messages {m;} iefm]
can be combined by any party (inside or outside the system) to recover the
output Y — C(z1,...,2y,).

Crucially, we require the computation and communication during the pre-
processing and input commitment phases to only grow as a fixed polynomial in
the input size and the security parameter, and not with the size of C' (although
an upper bound on the size of supported circuits may be known during these
phases).

Starting Point: PCG. Based on prior works, we can construct a multi-
party silent NISC protocol using either a multi-key fully-homomorphic encryp-
tion [MW16,DHRW16], or homomorphic secret sharing [BGMM20], or using
a specialized type of witness encryption [BL20,GS17]. However, each of these
approaches make use of assumptions that can support some (limited) form of
homomorphic computation on encrypted data. Further, these protocols have
a fairly inefficient compute phase. For example, the approach of [BGMM20]
requires the parties to compute a PRF homomorphically under a HSS scheme -
this non-black-box use of cryptography will be prohibitively inefficient in
practice.

On the other hand, the works of [BCG+19b,BCG+19a] study methods for
distributing short seeds to two parties which can then be silently and efficiently
expanded into useful two-party correlations under the LPN assumption. For
example, they show how to generate many random oblivious transfer (OT) cor-
relations efficiently via short seeds, and they call the primitive that accomplishes
this a pseudorandom correlation generator (PCG) for OT correlations.

Now, given pairwise random OT correlations between each pair of parties,
[GIS18] shows how to implement the two-round MPC protocol of [GS18a] (which
we refer to as GS18) in a black-box manner. Their approach would fit the tem-
plate of multi-party silent NISC, except that their input commitment phase
would also grow with the size of the circuit, and thus the resulting protocol
would not be “succinct”. In this work, we show how to use the PCG techniques
of [BCG+19b,BCG+19a] in order to generate more sophisticated correlations
that suffice to instantiate GS18 while keeping the input commitment phase inde-
pendent of the circuit to be computed.

A PCG for GS18 Correlations. In [GIS18], the random OT correlations and
first-round messages (which also function as input commitments) are essentially
used to set up certain structured OT correlations that enable the parties to
compute a circuit over their joint inputs with only one additional message. At a
high level, these structured correlations allow parties to each output sequences
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of garbled circuits that communicate with each other in order to implement an
MPC protocol among themselves, though the details of this will not be important
for this discussion. Here, we directly describe the correlation which consists of
pairwise correlations set up between each pair of parties, one acting as a sender
and one as a receiver. The sender gets random OT messages {(m,o, mt’l)}tem
and the receiver gets a random string v along with messages {mq,., };¢[r]. Each
z¢ is not a uniformly random and independent bit, rather, each is computed
as z; = NAND (v[f] ® a, v[g] @ B) @ v[h] for some indices (f,g,h) and constants
(a, B).

As we will see below, one can write what is described so far as a two-party
bilinear correlation. This is good news, since the work of [BCG+19b] constructed
a PCG for two-party bilinear correlations. However, we do not generically make
use of their PCG, for two reasons. First, we will actually require a multi-party
correlation, since each party’s random string v must be shared among all of the
two-party correlations it sets up with each other party. Next, we have a more
stringent requirement on the complexity of expansion. In particular, parties must
use some of their expanded randomness in the input commitment phase, which
must be efficient. We set up the PCG so that parties can obtain some part of the
expanded randomness without expanding the entire set of correlations, which is
computation that would grow with the size of the circuit. Thus, we describe how
to set up the multi-party correlations necessary for GS18 from basic building
blocks. Although our construction and proof follow those of [BCG+19b] very
closely, we give a full description of the scheme in the body for the sake of
completeness.

Now we briefly review the PCG of [BCG+19b,BCG+19a] that produces a
large number of (unstructured) random OT correlations. Fix parameters n’ > n.
The dealer first samples a sparse binary error vector y € ]FQL/ (with a compact
description denoted by 7) and a random offset (shift) 6 € Fox. Then, y - § is
secret shared into shares kg, k1, which are vectors in IF;; and also have com-
pact descriptions 7@"0,751 (this step requires the use of Distributed Point Func-
tions [GI14]). Finally, (ko,7) is given to the receiver, (ki,8) is given to the sender,
and a n/-by-n random binary matrix H is made public. In order to expand
these short seeds into n random OT correlations, the receiver first expands its
compact descriptions into (ko,y) and then computes to := ko - H € FJ, and
z =y - H € Fy, and the sender expands its compact description into k; and
computes t; := ky - H € FJ,. It is easy to check that tg =t; + 2z - ¢ and thus for
each i € [n], (2[i],to[7]), (t1[é],t1[¢]+0) is a correlated random OT instance. The
choice bits z are random due to the LPN assumption. In order to remove the cor-
related offset d, the parties can use a correlation robust hash function [TKNP03]
or a random oracle, to hash each OT string.

Recall that in our setting, we actually require some structure on the string
z of choice bits. To implement this, we first write each expression z; =
NAND(v[f] @ a,v]g] & B) @ v][h] as a degree-two equation over Fo whose vari-
ables are entries of v. That is, z, = v[f]v]g] + av[g] + Bv[f] + v[h] + a8 + 1. In
order to obtain these degree-two correlated OT, we follow the construction of
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PCGs for constant-degree relations from [BCG+19b]. In particular, we define
the error vector to be 3 := (1,y) ® (1,y) € F' ™. Same as before, 3’ is secret
shared into kg, ki € IE‘;L;”' Now, the receiver can compute v := y - H and set
z = (L,v) ® (1,v) € F5™, and likewise the receiver and sender can compute
vectors tg := ko - (H' ® H') and t; := k1 - (H' ® H') respectively, where H' is

<1 H) . Both are vectors in F7;", such that for any f,g € [n] and any degree-one

or degree-two monomial v[f]v[g] over the entries of v, there exists an index ¢ such
that (z[i] := v[f]vg], tolé]) , (t1[é], t1[é] + 9) is a valid correlated OT. One can then
obtain any degree-two correlated OT by taking appropriate linear combinations.
Correctness of this step crucially relies on the fact that all the “base” correlated
OTs have the same shift §. After taking the linear combinations, the parties can
still apply a correlation robust hash function to get structured OT correlations
with random sender strings.

In the body, we show that even in the setting where there is one receiver
with a fixed error vector y, but multiple senders with different random offsets 9;,
one can still show security via reverse sampleability. In particular, for any one
of n parties, their output correlation can be reverse sampled, given the output
correlations of all other parties.

The Final Protocol. Given ideas from the previous section, we can complete
our description of multiparty silent NISC from LPN in the random oracle model.

In the preprocessing phase, a trusted dealer sets up pairwise structured OT
correlations between each pair of parties as described above. We include a ran-
dom oracle in the CRS, which is used to generate the (large) matrix H and also
used as a correlation robust hash function. In the input commitment phase, we
have parties partially expand their correlated seeds into randomness that may
be used to mask their inputs. Crucially, this step does not require fully expand-
ing their seeds into the entire set of structured correlations that will be used
in the compute phase, so we maintain the “silent” notion. To implement this,
we actually sample two different Hy, Ho matrices and two different error vectors

y1,y2 of different sizes, and set v = (y1,y2) > As long as each y;, has

1
H,
sufficient error positions, we can still rely on LPN with inverse polynomial error
rate. Finally, in the compute phase, the parties publish GS18 second round mes-
sages computed with respect to their expanded correlations, thus completing the
protocol. Since the GS18 protocol is publicly decodable, so is our protocol.

As a final note, we can remove the random oracle at the cost of having a large
CRS. In particular, given a bound on the size of the circuit to be computed, we
can instantiate the protocol with a CRS that contains the H matrix (note that
the size of this matrix must grow with the number of OT correlations generated
and thus, the size of the circuit to be computed). Although this CRS is large,
it can be reused across any number of input commitment and compute phases
- a property that we take advantage of in the next section, which focuses on a
construction of reusable two-round MPC from LPN. We will also have to replace
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the use of the random oracle as a correlation-robust hash function. As already
observed in [BCG+19b], the role of correlation robust hash function can be
replaced by an encryption scheme which is semantically secure against related-
key attack for the class of linear functions. It is known that such an encryption
scheme can be based on the LPN assumption [AHI11].

2.2 Reusable Two-Round MPC from LPN

We now turn to our main result - a reusable two-round MPC protocol from the
LPN assumption. Our approach takes the multiparty silent NISC protocol from
last section as a starting point and constructs from it a first message succinct
two-round MPC (FMS-MPC). An FMS-MPC protocol satisfies the property
that the size of computation and communication necessary in the first round
only grows with the input size and security parameter, and not with the size of
the circuit to be computed in the second round. The work of [BGMM20] shows
that FMS-MPC implies reusable two-round MPC, so we appeal to their theorem
to finish our construction. Our construction of FMS-MPC proceeds in two steps.

Step 1: Bounded FMS-MPC. In order to convert a multiparty silent NISC
protocol into a two-round MPC, we need to remove the preprocessing phase,
instantiating the dealer’s computation in a distributed manner. A natural app-
roach is to use a two-round MPC (e.g. GS18) to compute the preprocessing and
input commitment phases, and after this is completed, have the parties compute
and send their compute phases messages. However, this results in a three-round
MPC protocol.

To collapse this protocol into two rounds, we use an idea from [BGMM20]
- the two-round MPC which implements the dealer will compute garbled labels
corresponding to the outputs of the preprocessing and input commitment phases,
and in the second round, parties will also release garbled circuits that output
their compute phase messages. Anyone can then combine the garbled inputs and
garbled circuits to learn the entire set of compute phase messages, which will then
allow one to recover the output of the circuit. Since the computation necessary
for computing the preprocessing and input commitment phases is small, the first
round of the resulting protocol is succinct.

However, recall that the multiparty silent NISC constructed in last section
requires a large CRS if instantiated without the use of a random oracle. In an
FMS-MPC, the size of CRS should only depend on the security parameter, not
the circuit size. Thus, we do not quite obtain an FMS-MPC following the above
approach. Rather, we obtain what we call a bounded FMS-MPC, which has a
large (but reusable) CRS whose size grows with the size of the circuit to be
computed. Meanwhile, this MPC protocol is bounded since the size of the CRS
determines the bound on the circuit size that can be supported.

Step 2: From Bounded FMS-MPC to FMS-MPC. Thus, our task is to
reduce the size of the CRS as well as to enable computation of unbounded
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polynomial-size circuits in the second round. This forms the main technical con-
tribution of the second step.

To support unbounded circuit size, our idea is to use a randomized encoding
in order to break down the computation of one large circuit into the computation
of many small circuits. In particular, using results from [ATK05] for example, one
can compute any a priori unbounded polynomial-size circuit with a number of
“small” circuits, where this number depends on the original circuit size. Here
“small” means that the size of each individual circuit is some fixed polynomial
in the security parameter. Thus, the size of the CRS required to compute each of
these small circuits only grows with the security parameter. Moreover, the CRS
in our bounded FMS-MPC protocol is reusable, so the same small CRS can be
used to compute each small circuit of randomized encodings.

However, computing each of the small circuits in parallel does not result in an
FMS-MPC. Indeed, to maintain security this would require a different first round
message for computing each randomized encoding circuit, and thus the total size
of first round messages will still grow with the original circuit size. To remedy
this, we use a variant of the tree-based approach from [AJIM20,BGMM20].
We construct a polynomial-size tree of bounded FMS-MPC instances, where
each internal node computes two sets of fresh first round messages which are
to be used to compute its two child nodes. Each leaf node corresponds to one
of the small randomized encoding circuits. The first round message in our final
FMS-MPC protocol will only consist of the first round messages for computing
the root of this tree. In the second round, parties release garbled circuits that
compute the second round message for each node in this tree. As before, to assist
evaluation of these garbled circuits, each node will instead output garbled labels
corresponding to the second round messages. This allows anyone to evaluate the
entire tree, eventually learning the outputs of each leaf MPC, thus learning the
randomized encoding of the original circuit that was computed.

Crucially, the small CRS can be reused to compute each node of this tree, so
that each internal node does not need to generate a fresh CRS for its children.
This allows the tree to grow to some unbounded polynomial size without each
node computation becoming prohibitively large - each node just computes two
sets of first round messages of the bounded FMS-MPC, which in total has some
fixed polynomial size. Additional details of this construction can be found in
Sect. 5.2.

On the LPN Assumption. In both the multiparty NISC and the reusable
MPC results, we rely on LPN with inverse polynomial error rate 1/n'=¢. In
both cases, the reason is that we require the computation in the first phase to be
polynomially smaller than the size of the circuits supported in the second phase.
Indeed, as discussed above, in the reusable MPC case we only need to support
circuits of some fized polynomial size \° in order to allow parties to compute
circuits of unbounded polynomial size. However, we require the size of the first-
round message to be some fixed polynomial size in the security parameter A, say
A2, independent of the circuit size A°. That is, the size of the first round message
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should not depend on the constant ¢ determining the fixed polynomial size of
the circuits supported in the second round.?

We accomplish this as follows. In the first phase, parties perform computation
that sets up the LPN error vector. We fix the number of error positions in this
vector to be A, so that the size of this computation does not grow with the size A¢
of circuits supported. Now, the number of LPN samples required in the second
round must grow with A°. Thus, while the number of error positions is fixed to
A, we set the LPN dimension n to be roughly A°, and the number of samples
to be, say, 2n. In the two-round MPC setting without a random oracle, this
corresponds to a CRS (consisting of the LPN matrix) that grows with the size
of circuits supported. However, as discussed above, we can handle a large CRS
on the way to our eventual reusable two-round MPC result, as long as the first
round message satisfies our succinctness property. Finally, note that the error
rate of the LPN samples is \/2n, which is roughly 1/A°~! = 1/n'~1/¢, Thus,
setting € ~ 1/c¢, we see that our final results follows from LPN with inverse
polynomial noise rate. We stress that while the constant e that appears in the
LPN noise rate does depend on the constant ¢ that determines the size of circuits
supported, this constant ¢ can be some fized constant in our final protocol, which
nevertheless allows for computation of unbounded polynomial-size circuits.

3 Preliminaries

3.1 Learning Parity with Noise

We recall the decisional exact Learning Parity with Noise (LPN) assumption
over binary fields. The word “exact” modifies the standard decisional Learning
Parity with Noise problem by changing the sampling procedure for the error
vector. Instead of setting each component of e € F§ to be 1 with independent
probability, we sample e uniformly from the set of error vectors with exactly ¢
entries set to 1. We let H)WV,, ; denote the uniform distribution over binary strings
of length n with Hamming weight ¢. The exact LPN problem is polynomially
equivalent to the standard version following the search to decision reduction
given in [AIK09], as noted in [JKPT12]. We give the precise definition in its
dual formulation.

Definition 1 (Exact Learning Parity with Noise). Let \ be the security
parameter and let n(-),n'(-),t(-) be some polynomials. The (dual) Decisional
Ezact Learning Parity with Noise problem with parameters (n(-),n'(:),t(-)) is
hard if, for every probabilistic polynomial-time algorithm A, there exists a neg-
ligible function p such that

};’;[A(B,e -B) =1] — Pr[A(B,u) = 1]| < p(n)

U

2 Tt should also suffice to require only that the first-round message is sufficiently sub-
linear in the size of circuits supported, though we achieve the stronger succinctness
property described here.
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"(A)xn(A (N

where B «+ Fy ) e — HWor (2,600 and u — F32.

Throughout this work, we will use the following flavor of LPN assumption.
For a given security parameter A and polynomial p(\), we will need to assume
that LPN is hard when e has Hamming weight A and e - B is a vector of length
p(A). Thus, we can set n = p(\) and n’ = 2n, which corresponds to a (primal)
LPN assumption of dimension n and error rate \/2n = 1/n'~¢ for some constant
€. This is referred to as “LPN with inverse polynomial error rate”.

3.2 PCG
We recall the following definition of PCG from [BCG+19b]:

Definition 2 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator, that is, C(1*) outputs two random strings (Ro, Ry1) accord-
ing to some joint distribution. We say C' is reverse sampleable if there exists a
PPT algorithm Rsample such that for b € {0,1} the correlation obtained via:

{(R), R}) | (Ro, Ry) — C (1*) , R, := Ry, R}_, «— Rsample (b, R;)}
is indistinguishable from {(Ro, R1) < C (1*)}.

In this work, we primarily consider the following correlation generators:

— Correlated  OT:  {(Ro := (0,m,), Ry := (mg,m1 :=mg +6)) — C(1*)}.
Where 0 is a random element in some field, each o € {0,1} and each mg are
uniformly sampled. This correlation generator is clearly reverse-sampleable.
In this work we sometimes refer to Ry as the receiver strings and R; as the
sender strings.

— Subfield-VOLE: {(Ry := (@,7) , Ry := (§,@)) « C(1*)}. Where (@, 7) € F x
Foy, (0,W) € Fax x F7,, and where @, 7, and § are uniformly random, and
¥ = 10 + . This correlation generator is also reverse-sampleable.

Definition 3 (Pseudorandom Correlation Generator (PCG)). Let C be
a reverse-sampleable correlation generator. A pseudorandom correlation gener-
ator (PCG) for C is a pair of algorithms (PCG.Gen, PCG.Expand) with the fol-
lowing syntax:

- (80, 81) «— PCG.Gen (1A): On input the security parameter \, it outputs a pair
of seeds (g, 81).

— Ry «— PCG.Expand (b, sp): On input an index b € {0,1}, the seed s, it outputs
a string Ry.

Correctness: We require that the correlation obtained via:
{(Ro, R1)| (80, 81) < PCG.Gen (1*) , R, « PCG.Expand (b, s5)}

is indistinguishable from {(Ro, Ry) < C (1*)}.
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Security: For any b € {0,1}, the following two distributions are computationally
indistinguishable:
{(s1-5, Ry) | (80, 81) «+ PCG.Gen(1%), Ry < PCG.Expand (b, s3)}, and

(14, Ry) (s0,81) « PCG.Gen(1*), Ry}, « PCG.Expand (1 — b, 81_),
1=b> 7% Ry < Rsample (1 — b, R1_p)

where Rsample is the reverse sampling algorithm for correlation C.

We will also consider m-party PCGs, where PCG.Gen(1*) outputs an m-tuple
of seeds (s1,...,Sm). Here, security is defined against any subset of colluding
parties. In particular, for any 7' C [m], the following two distributions should be
computationally indistinguishable:

{({s;}jer, {Ri}tigr)|(s1,...,8m) — PCG.Gen(1*), Vi ¢ T, R; — PCG.Expand(i,s;)}, and

N N (51,---,8m) « PCG.Gen(1*),Vj € T, R; «— PCG.Expand(j,s;),
{({S]}Je% {Ribigr) {Ri}igr < Rsample(T, {R;}jer) |~

PCG for Subfield-VOLE. One of the building blocks used in this work is a
PCG protocol for subfield-VOLE correlation. It has been studied by the works
of [BCG+19b,BCG+19a] and is known to be implied by a suitable choice of the
LPN assumption. Our main construction is crucially inspired by such PCG so
we give a brief overview of the protocol.

We denote this protocol specifically by (PCG.GengvoLg, PCG.Expandgyoig)-
Due to the compressing nature of PCG, we also explicitly associate an algorithm
sEval with this protocol. It takes as input any compressed vector y € F) and
an evaluation domain of size k < n, and reconstructs the vector y restricted to
IF’; := I3 [: k]. We denote the compressed form of any vector y by y. Therefore
for correctness we always have y = sEval (g, n).

In [BCG+19a], the algorithm PCG.GengyoLe begins by sampling a random
sparse vector y € IFSI of Hamming weight w and a random offset & € Fyx,
but here we alter the syntax so that PCG.GengyoLg takes these values as input.
Since y is a sparse vector, it can be naturally represented in a compressed form
using O(w - log(n’)) bits, which we denote by y. In this way, PCG.GengvoLe
takes as input (1>‘, Yy, 5) and outputs a pair of compressed random seeds (l%7 Igl)
where (k:NO,le) can later be expanded using sEval into kg, k1 € Fg; such that

ko = k1 +y - 9. In fact, (l%,k?l) are the outputs of a Function Secret Shar-
ing (FSS) scheme for the multi-point function induced by the sparse vector
y - 6. Their sizes only depend on (A, t,log(n’)). Furthermore, due to the secu-
rity of FSS, there exists a simulator Sim so that for any PPT adversary who
is given the description of y - §, and for each b € {0, 1}, the two distributions

{(k?b, ) PCG.GenSVOLE(l)‘,i,é)} , {]g{) — Sim(lA,Fz,\,n')} are indistinguish-
able.
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To expand these seeds into subfield-VOLE correlation, PCG.Expandyyq, g

takes as input (kNO, k:~1) and a random n’'-by-n binary code matrix H,, , € FSIX"

(where n < n’), and computes ko = sEval (lgo,n’), k1 = sEval (k:~1,n’>,
to := ko Hp, t1 := k1 - Hy ,, and sets v := y - Hy,s ,. This immediately
gives the desired subfield-VOLE correlation where tg = t; 4+ v - . The vector v
is random due to the LPN assumption.

4 Multiparty NISC with Silent Preprocessing

In this section we describe our first result: a multiparty silent NISC protocol from
the LPN assumption in the random oracle model. We organize this section as
follows. In Sect. 4.1, we give a definition of multiparty silent NISC. In Sect. 4.2, we
revisit the GS18 compiler in the context of multiparty silent NISC and identify
a specific type of correlation that we need for implementing this compiler. In
Sect. 4.3 we give a PCG protocol for this correlation. The final construction is
given in Sect.4.4. Finally, in Sect. 4.5, we discuss some extensions to our basic
protocol. The security proof of our protocol is given in the full version [BGSZ21].
The main result of this section is the following:

Assuming LPN with inverse polynomial error rate, there exists a multiparty
silent NISC' protocol in the random oracle model.

4.1 Multiparty Silent NISC: Definition

We introduce the notion of multiparty non-interactive secure computation with
silent preprocessing, or Multiparty Silent NISC, which extends the two-party
silent NISC primitive of [BCG+19a] to the multi-party setting.

An m-party silent NISC protocol begins with a preprocessing phase, where
a CRS is sampled and a trusted dealer sets up m secret parameters and dis-
tributes them to each party. The computation performed by the dealer should
be efficient, in the sense that it only grows with the security parameter, and not
with the size of the circuit that the parties will eventually compute. After the
preprocessing phase, each party broadcasts a commitment to its input. Finally,
the parties compute a circuit C' over their joint inputs by broadcasting one
additional message. Anyone can recover the output of the computation based on
these messages.

Definition 4 (Multiparty Silent NISC). An m-party non-interactive secure
computation with silent preprocessing (m-party silent NISC) is a protocol
described by algorithms (Gen, Setup, Commit, Compute, Recover) with the follow-
g syntax and properties:

~ CRS « Gen(1*): On input a security parameter \, the Gen algorithm outputs
a CRS.
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- {Si}ie[m} « Setup (1A,L, CRS): On input the security parameter X\, a bound
L on the size of supported circuits, and CRS, the Setup algorithm outputs a
set of secret parameters {si}ie[m}' Secret s; is given to party i.

~ ¢; « Commit (i, 2;,s;, CRS): On input an index i, i*" party’s input x;, its
secret parameter s; and CRS, the Commit algorithm outputs party i’s com-
mitment c; to its input ;.

— m,; «— Compute (i,xi, s;, CRS, {cj}je[m] ,C) 2 On input an index i, i party’s
input x;, its secret parameter s;, the CRS, all the commitments {c; }je[m] and
description of a circuit C, the Compute algorithm outputs party i’s message
my; for computing circuit C.

- Y < Recover ({mj}je[m]>.' On input all messages {mj}je[m], the Recover

algorithm outputs Y «— C (x1,...,Zm).

Correctness. For any (deterministic) circuit C' whose size is bounded by L,
and any set of inputs (wl, e ,J:m), correctness requires that:

CRS « Gen(1%),
{Si}z’e[m] «— Setup (1)‘,L, CRS)
Pr|Y =C(z1,...,am) ¢; «— Commit (4, z;, s;, CRS) 1
m; +— Compute (z’,xi, si, CRS, {¢;} C

J€[m]>

Y < Recover ({mg }je[m]

Silent Preprocessing. A multi-party silent NISC satisfies the following prop-
erties.

— Succinct setup: The running time of the Setup algorithm is independent of
the circuit size L. That is, we require that the setup algorithm runs in some
fixed polynomial time poly (A).

— Circuit-independent commitment: The running time of the Commit algorithm
is independent of the circuit size, and only depends on the security parameter
and input size.

Security. For defining security, we follow the standard real/ideal world
paradigm. A formal definition may be found in the full version [BGSZ21].

4.2 A Strawman from GS18 Compiler

Recall that the GS18 compiler (see the full version [BGSZ21] for a description
of the compiler and of the conforming protocol to which the compiler is applied)
yields a two round MPC protocol (MPCy, MPCy, MPC3), which can be presented
in the syntax of multiparty NISC as follows:
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— The Gen algorithm samples the CRS for GS18 compiler.

— In the setup phase, the setup algorithm samples a set of secret randomness
{ri}icm)- Then it sets s; := r; for each i € [m].

— In the commit phase, given the description of circuit C, party ¢ commits to
its input z; by running (stgl), msggl)) — MPC, (1>‘, CRS, C, i, x, sl) Then it

sets ¢; 1= msggl).

— In the compute phase, given all the previous commitments, i* party computes
msgl@) — MPC, (C, stgl), {Cj}je[m])' It then sets m; := msg(2)

i

— In the recover phase, given all messages, anyone can simply compute Y «

However, this naive construction does not achieve silent preprocessing
(Sect. 4.1), due to the fact that MPC; takes as input a description of the circuit
and that its running time is dependent on the size of this circuit. Thus, this
construction does not achieve circuit-independent commitment.

To address this issue, we begin by taking a closer look to the MPC; algorithm.
It outputs two things: an encoding of party ’s input, which only depends on the
input size, and a number of OT; messages that is comparable to the size of
circuit C. Merely computing these messages already takes time O (|C|) so we
cannot hope to include them as part of the commitment.

The reason these OT; messages are required is that, combining with the
subsequent OT, messages sent by each party’s garbled circuits, they allow to set
up OT correlations between any two parties (4,7) in the following way. For any
round ¢ where party 4 is the speaking party and party j is one of the listening
parties,

— Party i has the receiver strings Rg := (¢, m, ). The choice bit 7; is computed
according to the description of action ¢; of the conforming protocol® &: v, =
NAND (vf @ a, vy & §)®vy, where o and (3 are recorded in each party’s public
state, ¢; := (i, f,g,h) and v := v; are i*" party masking bits (secret state).

— Party j has the sender strings Ry := (mo = labil”tg'l, my = lab%?l), where

(labﬁifgr 1,lab2f;“ 1) are input labels for input value 7; of its next garbled

circuit.

Then party ¢ can simply output its string so that any party can recover the
correct input label (c.f lab;’t,z 1) for party j’s next round garbled circuit.
We formalize those OT correlations by defining the more general GS18 cor-

relations:

3 See the full version [BGSZ21] for a description of the conforming protocol.
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Definition 5 (GS18 correlation generator). A GS18 correlation generator,
denoted as Cgs, is an algorithm which takes as input the security parameter A
and a set {¢¢ := (-, f, g, h)}te[q]47 and outputs:

Ro = ("’ {mt%aﬁ)}a,ae{o,l}yte[qo ’

— Cgs (1)‘7 {¢t}te[q])
Ry = <5’ {mtv(avﬁ)ao}a,ﬁe{o,l},te[q]

Where v «— {0,1}" is a random wvector and 6 <« Fox is a random off-
set. My (a,8),0 {0,1}>‘ 18 a random string. Furthermore, for each t €
lal, ¢+ = (-, f,9,h), and for any choice of o, € {0,1}, let v (ap) =
NAND (Vf b a,vy D ﬁ) @ vy, and My (a,8),1 ‘= Mt (a,8),0 T 6. Then My (a,5) =
Mt (0,8) e (o) - IVOLICE that the GS18 correlation is also reverse-sampleable:

~ Rsample (0, Ry): Sample § «— sz randomly, then for each t € [q] and each
@, 3 € {0, 1}, set My (a,6),0 = Mi(a,0) + Vi,(a,8) 0
— Rsample (1, Ry): Sample v «— {0 1} mndomly, then for each t € [q] and
each a, 8 € {0,1}, compute v, (a,) as before and set my (o,5) = My, (a,8),0 +
’Yta(a:ﬁ) ’ 6

Observe that we define GS18 correlation such that for each action ¢;, we
obtain a set of four correlated OTs, one for each choice of «, 3:

Ro := (t,(,8): Mt (0,8)) s B1 = (M4, (0,8),0 M, (8),1 = Mt (ap)0 +0) (1)

As first observed in [IKNPO3], it suffices to use a correlation robust hash function
to obtain random OTs from correlated OTs. In our construction we deploy a
random oracle function p as correlation robust hash function.

Now suppose that before the compute phase, for each round ¢, party ¢ is
given Ry whereas party j is given R;, and additionally both parties agree on the
choice of (a, 3) in the compute phase. Thereby party i’s garbled circuit can sim-

ply output ('yt = *yti(aﬁ), mg = p (mi:{aﬂ))), whereas party j’s garbled circuit
outputs:

(ao = labi’t+1 @ p ( (a ), 0) = labi’tJrl Dp ( (a 3), 1)) As a result,
any party can recover the label lab® ttl = Uy, © My.

But how can those parties obtain GS18 correlations before the compute
phase? We cannot afford to generate them in the setup phase since its runtime
should be succinct. To solve this problem, we specifically design a pseudoran-
dom correlation generator (PCG) for GS18 correlations. With this tweak, the
setup algorithm will include PCG seeds for each party in its secret parameter, so
that each party can silently expand its seed to obtain desired GS18 correlations
before the compute phase, hence making the preprocessing phase silent.

4 We do not include the first argument to the description of the action ¢; = (4, f, g, h),
since this will be constant (a single party) for each correlation that we generate.
That is, we split the entire set of actions into one set per party, where each party’s
set consists of all actions in which they are the speaker.
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4.3 A PCG Protocol for GS18 Correlation

As suggested in [BCG+19a], any subfield-VOLE correlation gives correlated OTs
where for each i € [n], the receiver string is Ry := (v[i],my(;) := to[i]), and the
sender string is Ry := (mg := t1[i],m1 := t1[i] + §). One can then get random
OTs by applying a correlation-robust hash function on these correlated OTs.

In order to generate desired OT correlations, first note that in the
field Fy, one can rewrite each NAND relation as a degree-two equation:
NAND (vi @ a,vg® 08) @ vip, = 1 4+ (vp+a)(vg+08) + vii = (vpvg) +
(avg + Bvf +vi) + (B +1). As a result of this, given random masking bits
v € {0,1}™, each choice bit v can be viewed as a sum of a degree two relation
over v, a degree one relation over v, and a constant which are parametrized by
the choice of («, 3).

The subfield-VOLE correlation is itself a degree 1 relation. As before we set
v:=y-Hy . In order to distinguish it from a degree 2 relation, we use the

notation ((y,k}), (ki,9)) to denote the degree 1 seeds for receiver (R := 0) and
sender (S := 1) respectively, and propagate this notation to all other symbols
in the natural way. For consistency with previous sections, we slightly abuse the
notation by letting v; := v[é]. Under this notation, the degree-1 correlated OT
can be rewritten as follows: for each i € [n], Ry = (vi, ml =t§[i]), R} :=
(mg == t1[i], mi := t1[i] + 4).

In order to deduce degree 2 relations, we take the tensor product of same error
vector with itself and use it as the new error vector as suggested in [BCG+19a]:

(Zg, 215) «— PCG.GengyoLE (IA,m,é). The expansion algorithm also needs
to be modified as follows: k2 = sEval (;c\g, n’) L2 =k (Hyn @ Hyr ) K2 =
sEval (7@?, n’), t2 == k? - (Hy 0 ® Hy y), where t3,13 € ng Viewing both

t? and t3 as n-by-n matrices over Fox, for any i,j € [n], observe that the
following degree 2 relation holds: ¢3[i,5] = t3[i,j] 4+ viv; - 6. As before, this
immediately gives a correlated OT where R2 := (vivj,m\ivj =13 [i,j]), and
R% = (mf := t3[i, ], m? = t1[i, j] + 0).

Now that we know how to generate degree 1 and degree 2 correlated OTs, we
can easily derive the GS18 correlations by taking linear combinations of (R}, R3)
(resp. (Ri, R?)) over Fy. This gives a PCG protocol for generating GS18 correla-
tions. Now, the protocol we need is actually in the multi-party setting: that is, the
receiver’s choice bits v must be shared between all of their pairwise correlations
with every other sender. This additional requirement can be ensured by reusing
the same error vector y multiple times. Below we give a PCG protocol for GS18
correlations with one receiver and an arbitrary number m of senders. We denote
this specific PCG protocol by (PCG.Gengs, PCG.Expandgg), given in Protocol 1.

We prove the following theorem in the full version [BGSZ21].

Theorem 1. Assuming LPN with noise rate A/n’, (PCG.Gengs, PCG.Expandcg)
in Protocol 1 is a multi-party PCG protocol for GS18 correlations satisfying PCG
security (Definition 3).
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Protocol 1 (Multi-party PCG Protocol For GS18 Correlations)

— Parameters: Let \ be the security parameter, m be the number of senders, q be the
number of actions for the GS18 protocol, and n',n be integers such that n’ > n.
— Output:
o For receiver:
* Masking bits v € {0,1}";
x For each t € [q], o, 3 € {0,1}, i € [m], a receiver string mi’(aﬁ).
e For sender i € [m]:
x A shift §; € Fox;
* For each t € [q], a, 8 € {0,1}, a sender string m{ ., 5 -
— Input:
e A compressed random error vector 'y € {0, 1}"/ with hamming weight X,
denoted by y.
o A random shift 6; € Fyx for each i € [m)].
e An n'-by- n binary code matriz Hy/ ,.
o A sequence of actions {¢¢}ic(q-
- GenGs (1)\, ?, {5i}i€[m]) N
e For each i € [m], compute (kil,o»kil,1) «— PCG.GensvoLE (1*,?,51-) ;

(@;, g?,/l) “— PCG.GenSVOLE (1>\7 }@/y, (51) .
o Set s = (W20 5) ot = (H, 200
— Expandgg (1>\’b7 {sé}ie[m]an',n7 {¢’t}te[q]) :
o Ifb=0, sety =sEval (y,n'), v=y  Hp ,, and for each i € [m]:
x Parse sy = (kio,kio,y), and compute ki, = sEval (kil,o,n'), k7o =
sEval (@;,n’).
x Compute t}ﬁo = k}yo “Hpr o, t?,o = kfyo (Hprn @ Hyr ).
* For each t € [q], parse ¢: := (-, f,g,h), and for each o, 3 € {0,1} set
My (0,0) = trolfs 9] + o tiolg] + B - tio[f] + tio[h].
e Ifb=1, for each i € [m]:
x Parse i = (ki1,ki1,6:), and compute ki, = sEval (k}71,n')7 ki, =
sEval (@:, n').
x Compute tf,l = kil,1 ~Hyr oy, t?,1 = k?@ (Hp'on @ Hyr ).
* For each t € [q], parse ¢¢ := (-, f,g,h), and for each o, B € {0,1}, set
My (0,800 = toalfs 9]+ tialgl + B tia[f] + tia[h] + (B +1) - 6.

4.4 Multiparty Silent NISC: The Construction

Two-Step Seed Expansion. In our strawman protocol (see Sect.4.2), each
party’s commitment contains an encoding of its input and a large number of
OT; messages. Using PCG for GS18 correlations we are able to remove the
OT; messages in this commitment. Nevertheless, recall that in GS18 compiler,
party ¢’s input encoding is computed as z; := x; @ r;, where r; := v;[: {] (I is
a bound on |z;|). If party ¢ does this naively and computes the whole masking
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bits v; in the commit phase, it would take time |v;| at least, which is dependent
on the circuit size. To circumvent this problem, we slightly modify the receiver
expansion algorithm to allow a two-step seed expansion.

First, instead of generating the code matrix H, ,, uniformly at random, we
let H, ., be a block diagonal matrix that consists of a small matrix H 1,71 and
a big matrix Hﬁ,_l,m_l along its diagonal. The small matrix is only used to
generate input masking bits whereas the big matrix is used to generate all of
the remaining masking bits. Correspondingly, we also need to modify the error
vector y now that H, , is not a uniformly random matrix. The error vector
will be split into two parts: y := y'||ly*, where |y’| =’ and |y*| =n' —". We
sample y' «— HWp » and y* «— HW,, _p » independently. This ensures that
both v/ =y’ Hll,J and v = y* - Hfb,_l,,n_l will both be indistinguishable from
random due to the LPN assumption with inverse polynomial noise rate, showing
that the multi-party PCG from last section remains secure.

Then, in the lnput commitment phase, each party computes y’ = sEvaI( 1)
and then sets v/ =y’ - Hl,’l and ¢; := z; = x; ® Vv'. This can be seen as the ﬁrst—
step seed expansion and it allows to remove dependency on circuit size. Finally,
in the compute phase, each pair of parties silently expand the rest seeds just as
before. This is the second-step seed expansion.

Protocol 2 (Multiparty Silent NISC)

— Parameters: Let m be the number of parties. Let (MPC1, MPCqy, MPC3) be a set of
algorithms in the GS18 compiler, and let (PCG.Gengs, PCG.Expandcs) be a multi-
party PCG protocol for GS18 correlations. Let n’ > n be integers that depend on
the size L of the circuit to be computed, and let I" > | be integers that depends on
the size of inputs to the circuit.

~ Gen(1*): Set CRS := p, where p is a random oracle function.

~ Setup(1*, L):

1. For each i € [m], sample y; — HWy x, yi — HW,_py\ and set y; =
yillyi.

2. For each i,j € [m], sample shifts 6; ; — Fp.

3. For each i € [m], compute {si’,s}?} ;i — PCG.Gengs (1%, ¥, {005 }ji) -

4. Set secret parameter s; := ({séj} /(i) {57 }ge[m]/{ })

— Commit (4, x4, s, CRS):

1. Parse s; := ({sé’g }je[m]/{i} , {Siﬂ}je[m]/{i})’ then parse any sy’ =
(kS k3. 5:) and 5 = yilIy7.

2. Compute y;" = sEval ()7;, l/).

3. Generate an l'-by- | random binary code matric Hll,yl — p(l,') and compute
vi' =yi' - Hji, where | > |xz| and ' > 1.

4. Set commitment c; = x; D v;'.

— Compute: See algorithm 2.
— Recover: See algorithm 3.
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Algorithm 2 (Compute)

— Parameters: Let C be the description of a circuit and @ be a T-round conforming
protocol for computing C'.

— Compute (i, x;, si, CRS, {Cj}je[m] ,C) :

1.
2.

Parse s; := ({sé’j }je[M]/{i} {Sjyi}ae[m]/{ }>.

Generate a (n' —1')-by-(n — 1) random binary code matriz H?, 1P (n', 1),

and set
H}
H’n’ n ‘= vl 2
|: Hn’—l/,n—l

(Vi, {m;:{a,ﬁ) to j) — PCG.ExpandGs (1>‘,O, {S(Z)’J }j?ﬁiv Hn’,nv {d)t}te[q]):

(6jvi7 {mi:za‘6>‘0}t,a,ﬁ,j) - PCG'EXpandGS (1)\7 1, {Si’l}j#iv Hn’,n7 {(z)t}tG[q]) .
For each t € T such that ¢ = (4, f,9,h), and each j € [m]/{i}, compute
~1)J 1
My (a,m}m 3 {p( t (a,m)}t,a,g'
For each t € T such that ¢¢ := (j, f,g,h) for j #1,

o Set {mt (a), l}t,a,,a = {mi:za,,ﬂ),o +6j7i}t,aﬁ'

, 3y . i 3y
¢ {mu,(a,ﬁ),owm(m(aﬂ),n}t,a s {” (m<t (), o>> P (mu,(a,ﬂ),l))}t,aﬁ
Parse v; := v;'||[vi and adjust v} so that pq = |v}|. Initialize a computation tape

st; := c1||0P9]] ... ||cm]||0P9. Let N = [st;].
Set lab"" T (labi’};rl, lab2’§+1>ke[1\l] where for each k € [N] and b € {0,1}
la bl T+1 — 0.

For each t from T to 1, compute:
(5“,%”) «— Garble (1>‘, Pi’t) .

where the circuit Pbt hardcodes party i’s receiver and sender strings, as well as all
input labels of PH**1 (see algorithm 4).
Set lab”" = {1abl, | }kem]

Azl

Set message m; := ({Pi’t} - ,lab’ )
te
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Algorithm 3 (Recover)

— Parameters: Let @ be the conforming protocol that computes circuit C. Let T' be
total number of rounds of P.

- Recover ({mf }jE[m]) ’

~. — 1
1. For each j € [m], parse mj := ({P”} ,lab] )
te[T]
2. For each t from 1 to T, do:
(a) Parse action ¢ := (i*, f,g,h).
(b) Compute ('yt,{fﬁz*’j} - },l/c.t\bl ’H-l) «— GEval (5i*’t,l:17)1 7t).
jemM]/{i*
(c) For each j #i*, do: _
i. Compute (ao, a1) < GEval (Isj’t, h/q\bj’t).
i. Recover lab)'™ = a,, @© ﬁzi”
—~ j,t+1 . .
iii. Reset lab"™" i= {{1abl}! Yrep o, labf '

3. Let Z:= (y1,...,v7r), set Y := post (Z).

Algorithm 4 (Circuit P*?)
Input: st;.
Hardwired inputs: Party i’s masking bits v;, its receiver and sender strings
Wil | A il )} . the
{ BB f o pefony,jetml/ (i (tﬁ‘%’[’)’m!fﬁf*” a,pE{0,1},5€[m]/{i}
input labels of the next garbled circuit P**T1: 1lab”"" ", and the round action ¢:.
1. Parse ¢+ = (i, f,g,h).

2. Seta = stl(i* — 1) (pg+1) + 1, B 1= stal(i" — 1) (pg + 1) + g].
3. Ifi =1", then:

(a) Setv:=v;, and compute ’y;(aﬁ) = NAND (vy @ a,vg @ 3) @ vp.
(b) Set sti[(i — 1) (pg + 1) + h] ==V} (0,5
5 4t+1 ¢+l
Set lab = 4 laby .
(c) Set la { a }ke[ :

ksty g

(&) Outpt (%‘“"’)’ {Miemn } /3y Ebi’m)'
AP jem]/{i
4. If i #1i*, then:

it .

a) Set lab = {lab“”'1 } .

( ) k,stq',,k kE[N]/{h} o

(b) Output (lab;”tg'l & m; (’; 8,07 lab;;fl"'l & m; <’; 5,10 lab ' ), where the label

lab"t" is the input for the bit st;[(i* — 1) (pg +1) + h] of the next garbled
circust.
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Theorem 5. Fiz any constant € > 0 and let n = A€ be a polynomial in the
security parameter. Assuming LPN with inverse polynomial error rate 1/n'=¢
(where n is the LPN dimension), Protocol 2 is a secure multiparty silent NISC
protocol in the random oracle model for computing circuits C of size at most n.’

See Sect. 3.1 for more details about how we set LPN parameters based on the
(polynomial-size) circuit C to be computed. The proof of this theorem is given
in the full version [BGSZ21].

4.5 Extensions

Removing the Random Oracle. Our construction of multiparty silent NISC
relies on a random oracle. Nevertheless, we can remove the use of random oracle,
at the cost of introducing a large (growing with the size of the computation) CRS.
Below we define this notion as multiparty silent NISC with large reusable CRS.

To begin with, one can observe that the previous construction utilizes the
random oracle in two following ways:

— Modeling it as a correlation robust hash function; This is used to obtain
random OTs from correlated OTs.
— Generating random binary code matrices for PCG seed expansion.

As already observed in [BCG+19b], the role of correlation robust hash function
can be replaced by an encryption scheme which is semantically secure against
related-key attack (RKA) for the class of linear functions. It was also shown that
this encryption scheme can be based on standard LPN assumptions (over Fz)
[AHI11]. Therefore we can effectively remove this use of random oracle without
introducing new assumptions. In slightly more detail, rather than using the hash
of each string m;fl g tO mask the corresponding label laby,, we instead encrypt

lab;, with an RKA-secure encryption scheme using key mija .5+ Then, in Hybrid,
in the proof of Theorem 5, we can appeal to the RKA-security of the encryption
scheme rather than the corelation-robustness of the random oracle.

Without using the random oracle, an easy way to solve the second problem
is to let the Gen algorithm sample a random block-diagonal code matrix, and
directly includes it in the CRS. This, however, requires that the Gen algorithm
must take as input the circuit size bound L since the dimension of this code matrix
must exceed the size of circuit to be computed. Furthermore, the CRS is large
since its size now depends on the circuit size. As a result, the commit algorithm
cannot take the whole CRS as input. So instead we split the block-diagonal code
matrix, and only supply the small code matrix as input to the commit algorithm
so as to remove its dependency on the circuit size. To summarize, we set CRS :=
(CRS', CRS*) « Gen(1*, L) where CRS' := Hll,J and CRS* := H? _,;- Notice
that the size of CRS’ only depends on the input size whereas CRS* depends on the
circuit size |C| < L. The commit algorithm now takes as input (z', Zi, Si, CRS')

'—U'n

5 Here, by “size” of C, we mean the number of actions in the conforming protocol
used to compute C'.
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whereas the compute algorithm still takes as input (i, xi, si, CRS, {¢; }je[m] ,C).
We adopt these notations for CRS in all following sections.

Reusable CRS. Although the CRS in the resulting protocol is large, it can be
reused across an arbitrary polynomial number of multiparty silent NISC execu-
tions. This property will be crucial for our construction next section, so we give
more details here. After the CRS is sampled, an adversary may specify any poly-
nomial ¢(\) number of multiparty silent NISC executions in which it would like to
participate using the same fixed CRS (but fresh preprocessing, commitment, and
compute phases). Security for each of these executions will still follow from the
LPN assumption. To see why, recall that the CRS is a dual-LPN matrix H, and is
only used in the security proof when appealing to the dual-LPN assumption. By
a straightforward hybrid argument, dual-LPN will hold with respect to a single
random matrix H for any polynomial g(A) number of samples.

5 Reusable Two-Round MPC from LPN

In this section, we build on top of our previous result and show a compiler that takes
any multiparty silent NISC with large reusable CRS and produces a reusable two-
round MPC protocol. This section is organized as follows: we divide our compiler
into three parts, each part involving one specific transformation. We proceed and
give constructions of these transformations one by one in each subsection:

1. We define the notion of bounded FMS-MPC and show that multiparty silent
NISC with reusable large CRS implies bounded FMS-MPC.

2. We show that bounded FMS-MPC implies standard FMS-MPC

3. Finally, we appeal to [BGMM20], who show that FMS-MPC implies reusable
two-round MPC.

5.1 Multiparty Silent NISC with Reusable Large CRS — Bounded
FMS-MPC

We start by defining a relaxed notion of first message succinct MPC (FMS-
MPC), which was introduced in [BGMM20]. We call this new primitive a
bounded FMS-MPC, which can be naturally thought as a middle ground between
a multiparty silent NISC and a standard FMS-MPC.

Definition 6 (Bounded FMS-MPC). Let Gen be an algorithm that gener-
ates a CRS. We say that the protocol m* = (Gen, BFMS.MPCy, BFMS.MPC,,
BFMS.MPC3) is a bounded FMS-MPC protocol if it is a two-round MPC proto-
col with the following properties:

— Bounded circuit size: The Gen algorithm takes as input the security parameter
A, a circuit size bound L, and outputs a CRS := (CRS’,CRS*), The size of
CRS' only depends on an upper bound on input size, whereas the size of CRS*

can be as large as L. Moreover, the protocol ™" only supports circuits such
that |C| < L.
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— Reusable CRS: The part CRS™ only needs to be set up once, and can be reused
across an unbounded polynomial number of two-round MPC' protocols.

— First message succinctness: The BFMS.MPCy algorithm takes as input
(1>‘, CRS',i,xi). In particular, its runtime should not depend on the circuit
size |C.

As our construction of bounded FMS-MPC from multiparty silent NISC is
very similar to the transformation given in [BGMM20, Section 5], we defer the
construction and security proof to the full version [BGSZ21]. In particular, we
prove the following theorem.

Theorem 6. Assuming a semi-honest multiparty silent NISC with large
reusable CRS and a maliciously-secure vanilla two-round MPC in the CRS
model, there exists a maliciously-secure bounded FMS-MPC protocol.

Due to results from last section and [DGH+20], we have the following corol-
lary.

Corollary 1. Fiz any constant € > 0 and let n = X\'/¢ be a polynomial in the
security parameter. Assuming LPN with inverse polynomial error rate 1/n'~¢,
there exists a maliciously-secure bounded FMS-MPC' protocol supporting circuits

C' of size at most n.

5.2 Bounded FMS-MPC — FMS-MPC

In order to obtain standard FMS-MPC, we must allow for computation of a priori
unbounded polynomial size circuits. That is, we must support the computation
of unbounded polynomial size circuits using only a bounded polynomial size
CRS. A natural idea is then to use randomized encodings to break down the
computation of any unbounded polynomial size circuit into the computation of
a number of bounded polynomial size circuits, and use a bounded size (reusable)
CRS to compute each small circuit.

Indeed, any m-input polynomial-size circuit C' : {0,1}™* — {0,1}* admits
a randomized encoding, which can be written as a sequence of small circuits
{Gy : {0,137 x {0,1}* — {0,1}*} e[, Where n depends on the size of C, but
each G, has size p(\) for some a priori fized polynomial p(-). The correctness

of randomized encoding ensures that for any inputs x1,...,z,, and random
coins v « {0,1}*, one can recover the output Y := C (zy,...,2,,) just given
{Gy(x1,. ., Zm, V) }yeln)- The security of randomized encoding guarantees that

this distribution is simulatable just given the output Y.

Now, one could naively compute n bounded FMS-MPC protocols in paral-
lel to determine the outputs of Gy, ..., G,. However, the total number of first
round messages would now depend on |C|, violating first message succinctness.
To circumvent this issue, we delay the computation of those first round messages
to the second round. Following the GGM approach, we define a complete binary
tree based on the circuit being computed. This tree will have n leaves in total
and will be of depth d = log(n). The y’th leaf is associated with the randomized
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encoding G,. Each internal node is associated with an expansion circuit E. This
circuit takes as input (x1,...,%;,,v) and some additional secret randomness,
and generates two sets of fresh first round messages, one for each child node. By
computing all the expansion circuits using bounded FMS-MPC, we generate a
set of fresh first round messages for each leaf node, enabling computation of all
randomized encoding circuits using n more bounded FMS-MPC instances. Fur-
thermore, since the CRS of the bounded FMS-MPC has unbounded reusability,
it can be used by each node computation in this tree.

To fully compute this tree, each party needs to output its second round
message for each node computation in each level, and read all other parties’
second round messages. This allows it to recover a new set of first round messages
which is required for node computations in the next level. If we implement this
protocol naively, the number of rounds in total would match the depth of the
tree. Nonetheless, one can still compress it to just two rounds by repeatedly
applying the round collapsing transformation: In the first round, each party
7 outputs its first round message of a bounded FMS-MPC for computing the
first expansion circuit (root node). In the second round, party i first outputs its
second round message for this bounded FMS-MPC. Then for each level k € [2,d—
1], party i outputs 2*~! garbled circuits which realizes its MPCy functionality
at this level. That is, for each y € [2¥7!] it computes a garbled circuit of
MPCy (E, (-, CRS*), -, -). This circuit hardwires the description of E and the
part CRS*. It takes as input the part CRS', party 4’s first round state and all
first round messages for computing the 3" expansion circuit in this level, and
outputs its second round message. In the last level, for each y € [n], party i
computes a garbled circuit of MPCy (F,, (-, CRS™), -, - ), where F, computes
the randomized encoding G,. These garbled circuits constitute party i’s second
round message.

In order to recover the input labels for each garbled circuit, we ask each
expansion circuit E to output the input labels which correspond to the correct
inputs for each party’s next garbled circuit. Each party will actually output
encryptions of all input labels along with each garbled circuit, and each expansion
circuit will output keys that can be used to decrypt only the correct input labels
for each party’s next garbled circuit.

It is worth noting that this use of “tree of MPC messages” differs somewhat
from how it is used in [AJIJM20,BGMM20]. In particular, we build a tree of
polynomial size. In order to compute a single large circuit in the second round,
each party releases a garbled circuit for each node in the tree. During output
reconstruction, the entire tree is evaluated. In [AJIM20,BGMM20], to obtain
reusability, they set up a implicit tree of exponential size. Each time the parties
wish to compute a circuit in the second round, they each release a sequence of
garbled circuits that trace one root to leaf path in this exponentially-sized tree.

As a final point, since the size of the CRS in a FMS-MPC should only depend
on the security parameter A, we must argue that the CRS we are using is small.
Notice that for every node in this tree, either the expansion circuit E or some
randomized encoding G, is computed. The size of either circuit only depends
on A. Therefore it suffices to set L = poly(A) for some fixed polynomial when
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instantiating the bounded FMS-MPC. As a result, the CRS only depends on A,
which is what is required for FMS-MPC.

Applying this transformation, we build a FMS-MPC (described in protocol
3) from bounded FMS-MPC.

Protocol 3 (FMS-MPC)

Let (Gen,MPCy,MPC2, MPC3) be a bounded FMS-MPC protocol, (Garble, GEval)
be a garbling scheme, (LabEnc,LabDec) be a label encryption scheme and
(CRE.Enc, CRE.Dec) be a computational randomized encoding scheme. Let PRG =
(Go, G1,Ho, H1) be a length quadrupling PRG. The expansion circuit E is defined in
algorithm 7 and circuit Fy is defined in algorithm 8. Let L = maxz(|E|,|Fy|) and
CRS := (CRS',CRS*) « Gen(1*, L).

- FMS.MPC; (1*,CRS, i, ;) :
1. Sample (ri,vi) — {0,1}* x {0,1}* and compute
(stgl), msggl)) «— MPC; (1A,CRS',i, (@i, vi), 7).
2. Set FMS.stEl) = (stgl),m,vi) and FMS.msggl) = msgl(.l).
~ FMS.MPC, (C,CRS,FMS.stgl),{FMS.msgi”}v [ ]) :

JjE
1. Compute [Gy], ¢, < CRE.Enc (1*,0).
2. Define a complete binary tree of depth d = log(n) with n leaves. Associate
the Y™ leaf with the randomized encoding G .

3. Let rgk‘w denotes party i’s secret randomness for computing the y'™ node at
level k. Set ril’l) :=ry; compute 1>V = Gy (TEI’D) ) r§2’2) =Gy (r£1’1>>.

4. Compute kg?"l) :=Hop (r§1,1)) 7 kl@l’?) = H, (rgl’l)),

5. Compute msg{* — MPCy (E’CRsvstil)’{msgy)}je[ ]>'

6. For each level k € [2,d — 1] and for each y € [1,271]:
(a) Compute (éi(k’y)’mgkvy)) «— Garble (1*, MPC, (E, (-, CRS®), -, -)).
(b) Compute mﬁ’“’” «— LabEnc (Fﬁ""y),mﬁy’), where

R = PRF (K, (1,0)) :
te(l],be{0,1}

(c) Compute rFTH2=1 .= G, (rgk’w) , A Gy (rﬁk’y));
k§k+1,2y71) .= Ho (Tl{k,y)) 7 k§k+1,2y) = H, (Tgk,y)).
7. In the last level d, for each y € [n]:

(a) Compute (C*}d’y),mﬁd’y)) «— Garble (1’\7 MPC; (Fy, (-, CRS"), -, )),
(b) Compute elabl(-d’w «— LabEnc (Fﬁd’”),mﬁd’”) where

K" = PRF (K™, (t,0)) :
te(l],be{0,1}

8. Set FMS.msg'® := (msg§2), {@(k’y), elabgk’y)} )
k€[2,d],y€[1,2F 1]
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~ FMS.MPCs ({FMS msg<2>} [ ]> :
JjEM

1. Compute {(1?52’1), 21(2»2))} — MPCs ({msgf)} )
i€[m] JE€[m]

2. For each level k € [2,d] and each y € [1,2871]:
(a) For each j € [m]:
i. Compute l:L\b(-k’y) « LabDec ([?(ky) m(’“7y))
it. Compute (msg<2) (k, y>) — GEval (C(k ) la b(kvy))
(b) If k < d, then compute

(e R ()
(c) If k =d, compute

Gy ((z1,...,2m),v) — MPC; ({msg§2)’(d’y)}je[m]>.

3. SetY « CRE.Dec (1*, C{Gy((x1,. .. ,xm),v)}ye[nl).

Algorithm 7 (Circuit E)
Input: {(xj7vj)7rj}je[ ]
Hardwired inputs: Description of a length-quadruple PRG : (Go, G1, Ho, H1).

1. For each i € [m] (Generating the left child):
(a) Compute CRS'® — Gen (1*).
(b) Compute (stgl)’o7 msggl)’()) — MPCy (1*,CRS°, 4, (2, v:), Go(T1))).
2. For each i € [m]:
(a) Set kY :=Ho(r;), 29 := CRS' 0, st{V0 {msg(l) 0} .
’ ! Je[m]
(b) Letl:=|z|. Forte[l], set K, :=PRF (k{, (t,2][t])).
(¢) Set K := {K{:}, -
3. For each i € [m] (Generating the right child):
(a) Compute CRS'' « Gen (1*).
(b) Compute (stl(-w’l, msgl(-w’l) — MPC, (1*,CRS" !4, ((zi,v), Gi(r4))).
4. For each i € [m)]:
(a) Set k} :=Hi(r;), zi := (CRS’ ! stm ! {msg(l) 1} )
7 e
(b) Letl:=|z|. Forte [l], set K}, :== PRF (kj, (t,2}[t])).
(c) Set K} = {Kll’t}tem

5. Output {I??} and {I?il} .
i€[m] i€[m]
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Algorithm 8 (Circuit F,)
Input" {(ZC]‘, Uj)a Ty }je[m] .
Hardwired input: the randomized encoding G .

1. Setv:= V1D - DUm.
2. Output Gy ((z1,...,2Zm),v).

In the full version [BGSZ21|, we prove the following theorem, which, com-
bined with Corollary 1, gives the following corollary.

Theorem 9. There exists a polynomial p(-) such that, assuming a maliciously-
secure bounded FMS-MPC protocol supporting circuits of size at most p(\), there
exists a maliciously-secure FMS-MPC protocol in the CRS model.

Corollary 2. There exists a constant € > 0 such that, assuming LPN with
inverse polynomial error rate 1/n=¢, there exists a maliciously-secure FMS-
MPC protocol in the CRS model.

5.3 FMS-MPC — Reusable Two-Round MPC

It has been shown in previous work [BGMM20] that any maliciously-secure FMS-
MPC protocol in the CRS model implies a maliciously-secure reusable two-round
MPC protocol in the CRS model. Thus, we immediately have the following
theorem.

Theorem 10. There exists a constant € > 0 such that, assuming LPN with
inverse polynomial error rate 1/n'=¢, there exists a maliciously-secure reusable
two-round MPC' protocol in the CRS model.

The Semi-honest Case. We have presented all of our results in this section
in the malicious-security setting, which requires a CRS. However, we remark
here that we can also achieve semi-honest secure reusable MPC in the plain
model from LPN. In fact, we claim that any maliciously-secure reusable MPC
in the CRS model plus semi-honest secure vanilla two-round MPC in the plain
model implies a semi-honest secure reusable MPC in the plain model. As this
transformation is nearly identical to that of [BGMM?20, Section 5], we do not
provide a formal proof, but give the following sketch.

The vanilla two-round MPC can be used to compute a CRS and first round
messages of the reusable MPC, and release garbled labels of the CRS and first
round messages to all parties. In the second round, each party also releases
a garbled circuit that computes their second round message of the reusable
MPC. Anyone can combine the labels for the CRS and labels for the first round
messages with these garbled circuits to compute the second round messages and
thus the output.
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