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Abstract: Privacy attacks on machine learning models

aim to identify the data that is used to train such mod-

els. Such attacks, traditionally, are studied on static

models that are trained once and are accessible by the

adversary. Motivated to meet new legal requirements,

many machine learning methods are recently extended

to support machine unlearning, i.e., updating models as

if certain examples are removed from their training sets,

and meet new legal requirements. However, privacy at-

tacks could potentially become more devastating in this

new setting, since an attacker could now access both the

original model before deletion and the new model after

the deletion. In fact, the very act of deletion might make

the deleted record more vulnerable to privacy attacks.

Inspired by cryptographic definitions and the differen-

tial privacy framework, we formally study privacy im-

plications of machine unlearning. We formalize (various

forms of) deletion inference and deletion reconstruction

attacks, in which the adversary aims to either identify

which record is deleted or to reconstruct (perhaps part

of) the deleted records. We then present successful dele-

tion inference and reconstruction attacks for a variety

of machine learning models and tasks such as classifica-

tion, regression, and language models. Finally, we show

that our attacks would provably be precluded if the

schemes satisfy (variants of) deletion compliance (Garg,

Goldwasser, and Vasudevan, Eurocrypt’20).
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1 Introduction

Machine learning algorithms, in their most basic set-

tings, focus on deriving predictive models with low er-

ror by using a collection of training examples S =

{e1, . . . , en}. However, a model hS trained on set S

might reveal (sensitive information about) the exam-

ples in S, potentially violating the privacy of the in-

dividuals whose contributed those examples. Such ex-

posure, particularly in certain (e.g., medical/political)

contexts could be a major concern. In fact, the ever-

increasing use of machine learning (ML) as a ser-

vice [RGC15] for decision making further heightens

such privacy concerns. Recent legal requirements (e.g.,

the European Union’s GDPR [HvdSB19] or California’s

CCPA [dlT18]) aim to make such privacy considera-

tions mandatory. At the same time, a recent line of

work [VBE18, CN20, NBW+17, GGV20] aims at (math-

ematically) formalizing such privacy considerations and

their enforcement.

The work of Shokri et al. [SSSS17] demonstrated

that natural and even commercialized ML models do,

in fact, leak a lot about their training sets. In par-

ticular, their work initiated the membership inference

framework for studying privacy attacks on ML mod-

els. In such attacks, an adversary with input exam-

ple e and access to an ML model hS aims to de-

duce if e ∈ S or not. In a bigger picture, mem-

bership inference of [SSSS17] and many follow-up at-

tacks [LBG17, SZH+19, LBW+18, YZCL19, CTCP20,

LZ20, ZBWT+20, SBB+20, JWEG20] as well as model

inversion attacks [FLJ+14, FJR15, WFJN16, VBE18]

can all be seen as demonstrating ways to infer or recon-

struct information about the data sets used in the ML

pipeline based on publicly available auxiliary informa-

tion about them [DN03, DSSU17, BBHM16, DSS+15,

SOJH09, HSR+08]. A more recent line of work stud-

ies the related question of “memorization” in machine

learning models set [SRS17, VBE18, CLE+19, Fel20].

On the defense side, differential privacy [DN03,

DMNS06, Dwo08] provides a framework to provably

limit the information that would leak about the used

training examples. This is done by guaranteeing that

including or not including any individual example will
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have little statistical impact on the distribution of the

produced ML model. Consequently, any form of in-

teraction with the trained model h (e.g., even a full

disclosure of it) will not reveal too much information

about whether a particular example e was a member

of the data set or not. Despite being a very powerful

privacy guarantee, differential privacy imposes a chal-

lenge on the learning process [SCS13, DTTZ14, BST14,

DBB18, She19, TTZ15] that usually leads to major util-

ity loss when one uses the same amount of training data

compared with non-private training [BST14, BBKN14].

Hence, it is important to understand the level of privacy

that can be achieved by more efficient methods as well.

Privacy in the presence of data deletion. The

above mentioned attacks are executed in a static set-

ting, in which the model is trained once and then the

adversary tries to extract information about the train-

ing set by interacting with the trained model afterwards.

However, this setting is not realistic when models are

dynamic and get updated. In particular, in light of the

recent attention to the “right to erasure” or the “right to

be forgotten,” also stressed by legal requirements such

as GDPR and CCPA, a new line of work has emerged

with the goal of unlearning or simply deleting examples

from machine learning models [CY15, GGVZ19, GAS19,

GGV20, BCCC+20, ISCZ20, GGHvdM19, NRSM20]. In

this setting, upon a deletion request for an example

e ∈ S, the trainer needs to update the model hS to

h−e such that h−e (ideally) has the same distribution as

training a model from scratch using S \ {e}. Clearly, if

an ML model gets updated due to a deletion request,

we are no longer dealing with a static ML model.

It might initially seem like a perfect deletion of a

example e from a model hS and releasing h−e instead

should help with preventing leakage about the particu-

lar deleted example e. After all, we are removing e from

the learning process of the model accessible to the ad-

versary. However, the adversary now could potentially

access both models hS and h−e, and so it might be able

to extract even more information about the deleted ex-

ample e compared to the setting in which the adversary

could only access hS or h−e alone. As a simplified con-

trived example, suppose the examples S = {e1, . . . , en}

are real-valued vectors, and suppose the ML model hS

(perhaps upon many queries) somehow reveals the sum-

mation
∑

i∈[n] ei. In this case, if the set S is sampled from

a distribution with sufficient entropy, the trained model

hS might potentially provide a certain degree of privacy

for examples in S. However, if one of the examples ei is

deleted from hS , then because the updated model h−ei

also returns the updated summation
∑

j,i ej , then an

adversary who extracts both of these summations can

reconstruct the deleted record ei completely. In other

words, the very task of deletion might in fact harm the

privacy of the very deleted example ei. Hence, in this

work we ask: How vulnerable are ML algorithms to leak

information about the deleted examples, if an adversary

gets to interact with the models both before and after

the deletion updates?

1.1 Our contribution

In this work, we formally study the privacy implica-

tions of machine unlearning. Our approach is inspired by

cryptographic definitions, differential privacy, and dele-

tion compliance framework of [GGV20]. More specifi-

cally, our contribution is two-fold. First, we initiate a

formal study of various attack models in the two cate-

gories of reconstruction and inference attacks. Second,

we present practical, simple, yet effective attacks on a

broad class of machine learning algorithms for classifi-

cation, regression, and text generation that extract in-

formation about the deleted example.

Below, we briefly go over new definitions, the rela-

tion between them, and the ideas behind our attacks. In

what follows, hS is the model trained on the set S, and

h−e is the model after deletion of the example e ∈ S.

When the context is clear, we might simply use h to de-

note hS and hdel to denote the model after deletion1. We

assume that the deletion is ideal, in the sense that h−e

is obtained by a fresh retrain on S \ {e}.2 The adversary

will have access to hS followed by access to h−e.

Deletion inference. Perhaps the most natural ques-

tion about data leakage in the context of machine un-

learning is whether deletion can be inferred. In mem-

bership inference attack, the job of the adversary is to

infer whether an example e is a member of the used

training set S or not by interacting with the produced

model hS . In this work, we introduce deletion inference

attacks which are, roughly speaking, analogous to mem-

bership inference but in the context where some deletion

is happening. More specifically, our definition does not

1 Using hdel is particularly useful when we want to refer to the

model after deletion, without explicitly revealing the deleted ex-

ample e.

2 We suspect our attacks should have a good success rate on

“approximate” deletion procedures (in which h−e is just close to

the ideal version) as well. We leave such studies for future work.
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capture whether the deletion is happening or not, and

our goal (in the main default definition) is only to hide

which examples are being deleted. In particular, we for-

malize the goal of a deletion inference adversary to dis-

tinguish between a data example e ∈ S that was deleted

from an ML model hS and another example e′ ∈ S (or

e′ < S) that is not deleted from S. We follow the cryp-

tographic game-based style of security definitions. (See

Definition 3.1 for the formal definition.)

Given examples e0, e1, with the promise that one of

them is deleted and the other is not, one can always re-

duce the goal of a deletion inference adversary to mem-

bership inference by first inferring membership of e0, e1

in the two models h, hdel. However, given that the adver-

sary has access to both of h, hdel, it is reasonable to sus-

pect that much more can be done by a deletion inference

adversary than what can be done through a reduction

to membership inference. In fact, this is exactly what we

show in Section 3.3. We show that when both models

h, hdel can be accessed, relatively simple attacks can be

designed to distinguish the deleted examples from the

other examples by relying on the intuition that a use-

ful model is usually more fit to the training data than

to other data. In Section 3, we show the power of such

attacks on a variety of models and real world data sets

for both regression and classification. In each case, we

both study deletion inference adversaries who know the

full labeled examples e0, e1 (and infer which one of them

are deleted) as well as stronger attackers who only know

the (unlabeled) instances x0, x1.

Deletion reconstruction. The second category of our

attacks focus on reconstructing part or all of the deleted

example e. As anticipated, reconstruction attacks are

stronger (and hence harder to achieve) attacks that can

be used for obtaining deletion inference attacks as well

(see Theorem 4.2). In all of our reconstruction attacks,

the adversary is not given any explicit examples, and its

goal is to extract information about the features of the

deleted instance. We now describe some special cases of

reconstruction attacks that we particularly study.

– Deleted instance reconstruction. Can an ad-

versary fully or approximate find the features of a

deleted instance x (where e = (x, y) is the deleted

example)? We show that for natural data distribu-

tions (both theoretical and real data) the 1-nearest

neighbor classifier can completely reveal the deleted

instance, even if the adversary has only black-box

access to the models before and after deletion. In

particular, we show that when the instances are uni-

formly distributed over {0,1}d, and the model is the

1-nearest neighbor model, an adversary can extract

virtually all of the features of the deleted instance

(see Section 4.1). We also present attacks on real

data for two major application settings: image clas-

sification and text generation.

– Deleted image reconstruction. We show

similar attacks on 1-nearest neighbor over the

Omniglot dataset, where the job of the adver-

sary is to extract visually similar pictures to the

deleted ones (see Section 4.1.2).

– Deleted sentence reconstruction. We then

study deletion reconstruction attacks on lan-

guage models. Here, a language model gets up-

dated to remove an input (e.g., a sentence) e,

and the job of the adversary is to find useful in-

formation about e. We show that for simple lan-

guage models such as bigram or trigram models,

the adversary can extract e completely.

– Deleted label reconstruction. Suppose we deal

with a classification problem. For a deleted exam-

ple (x, y) = e, can an adversary who does not know

the instance x infer any information about the label

of the deleted point? We show that this is indeed

possible with a simple idea when the data set is

not too large. In particular, the deletion of a point

with label c reduces the probability that the new

model outputs label c in general, and using this idea

we give simple yet successful attacks. Now, suppose

the adversary is somehow aware of the instance x

of a deleted example (x, y) = e. Can the adversary

leverage knowing the instance x to learn more infor-

mation about the label y, than each of the models

h, hdel alone provide? We show that doing so is pos-

sible for linear regression. In particular, we show an

attack using which one can extrapolate a deleted

point’s label to a higher precision than what is pro-

vided through the original model h or the model af-

ter deletion hdel. (See Section C.1 for more details.)

Weak deletion compliance. The above results all

deal with first defining attack models and then present-

ing attacks within those frameworks. Next, we ask if it

is possible to realize machine learning algorithms with

deletion mechanisms that offer meaningful notions of

privacy for the deleted points. We approach this ques-

tion through the lens of the recent work of Garg et

al. [GGV20] in which they provide a general “deletion

complience” framework that provides strong definitions

of private data deletion. We first give a formal com-

parison between the framework of [GGV20] with our

attack models and show that the deletion compliance
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framework of [GGV20] indeed captures all of the above-

mentioned attack models. Furthermore, we also present

a weakened variant of the definition of [GGV20] that

is adapted to a setting where the fact that deletion

happened itself is allowed to leak. We believe this is

a natural setting that needs special attention. For ex-

ample, consider a text with redacted parts; this reveals

the fact that deletion has happened, but not necessar-

ily the redacted text. We further weaken the framework

of [GGV20] by only revealing to the adversary what can

be accessed through black-box access to the model and

not the full state of the model. We show that even such

weaker variants of deletion compliance still capture all

of our attacks, and hence is sufficient for positive results.

This means that, as shown by [GGV20], differential pri-

vacy (with strong parameters) can be used to prevent

all attacks of our paper. However, note that enforcing

differential privacy comes with costs in efficiency and

sample complexity. Hence, it remains an interesting di-

rection to find more efficient schemes (both in terms of

running time and sample complexity) that satisfy our

weaker notions of deletion compliance introduced in this

work. See Section 5 for more discussions.

Motivation behind the attacks. At a high level, our

work is relevant in any context in which (1) the users

who provide the data examples care about their privacy

and prefer not to reveal their participation in the data

set S (2) the system aims to provide the deletion oper-

ation, perhaps due to legal requirements. Condition (1)

essentially holds in any scenario in which membership

inference constitutes a legitimate threat. In scenarios

where conditions (1) and (2) hold, if the adversary main-

tains continuous access to the machine learning model

(e.g., when the model is provided as public service) then

all the attacks studied in this paper are relevant to prac-

tice and would model different adversarial power.

Our security games model attacks in which the ad-

versary aims to infer (or reconstruct) deletion of a ran-

dom example from a dataset. Real world adversaries

are stronger in the sense that they could have a specific

target in mind before making their queries to the online

model. Moreover, real world adversaries usually have a

lot of auxiliary information (e.g., as those exploited in

the attacks on privacy on users in the Netflix challenge

[NS06]) while our attackers have a minimal knowledge

about the distribution from which the data is sampled.

Having a diverse set of security games and attacks is

analogous to having many different security games and

notions in cryptography (such as CPA and CCA secu-

rity for encryption) to model different attack scenar-

ios. Informally speaking, and at a very high level, one

can also think of the very strong deletion compliance

of [GGV20] as “UC security” [Can01], while our other

security games/notions model weaker security criteria.

1.2 Related work

Chen et al [CZW+21] study a setting similar to ours.

They show attacks that, given access to two models –

one trained on a dataset S and another on S \ {e} – de-

termine whether a given input e′ is equal to the deleted

item e. This is close to our notion of deletion inference,

though not quite the same. They show that their at-

tacks perform much better than plain membership in-

ference on the first model. Our work differs from that

of [CZW+21] in the following respects:

1. In addition to deletion inference, we also show var-

ious kinds of reconstruction attacks in a variety of

models with different reconstruction goals.

2. Their attacks are constructed by running sophisti-

cated learning algorithms on the posteriors corre-

sponding to deleted and not deleted samples. While

this results in attacks that work quite well, these at-

tacks have little explanatory power – it is not clear

what enables them, and it is hard to tell what the

best way to prevent them is. Our attacks, on the

other hand, make use of simple statistics of the out-

puts of the models.

3. They show that certain measures like publishing

only the predicted label or using differential privacy

can stop their attacks from working, but this is far

from showing that such measures prevent all pos-

sible attacks. In order to prove security against all

attacks, a formalization of what entails such secu-

rity is necessary. We provide formal definitions of

privacy and formally build a connection to the dele-

tion compliance framework of [GGV20], which, as

corollary, implies that differential privacy can prov-

ably prevent any possible deletion inference attack.

The work of Salem et al [SBB+20] also studies a

related setting. In their case, a model is updated by

the addition of new samples, rather than by deletion,

and they show attacks that partially reconstruct ei-

ther the new sample itself or its label. These attacks

are constructed by training generative models on pos-

teriors of various samples from a shadow model. It is

possible that their attacks can be used when data is

deleted as well. In fact, our attacks can also potentially

be adapted to be applied when the data is added rather

than deleted (but the security game needs to change to
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formally allow this). They also present a cursory discus-

sion of possible defences against their attacks, suggest-

ing that adding noise to the posteriors or differential

privacy might work. The distinction of our work from

theirs is along the same lines as above – our attacks

are simpler and more transparent, and our formaliza-

tion allows us to identify strategies for provable security

against arbitrary attacks by proving the relation of our

attacks and the deletion compliance of [GGV20]. On the

attack side, our work studies the attack landscape with

much more granularity by studying very specific attacks

that aim to only reconstruct (or infer) the instances, or

their labels, or leverage the knowledge of the instance

to better approximate the labels.

2 Preliminaries

Basic notation. [n] denotes {1, . . . ,n}. X denotes the

instance space, and Y denotes the label space. For re-

gression tasks, Y = R is the set of real numbers, and

for classification tasks Y is a finite set where by default

Y = {0,1}. D denotes a distribution over X ×Y, and Dn

denotes the n-fold product of D. A sample e = (x, y) ← D

is called a (labeled) example. By D ≡ D′ we denote that

D,D′ are identically distributed. When the data exam-

ples are not necessarily iid sampled, we use Sn to denote

a distribution over data sets of size n (one special case

is Sn ≡ Dn) and we use S ← Sn to denote sampling S

from Sn. H ⊆ YX denotes a set of models (aka hypothe-

sis class) mapping X to Y. For example, H could be the

set of all neural nets with a specific architecture and size

or the set of half spaces in dimension d when X = Rd.

Loss, risk, and learning. A loss function ℓ : H ×

X × Y → R maps an input (h, (x, y)) to R and mea-

sures how bad the prediction of h on x is compared

to the true label y. For classification, we use the 0-1

loss ℓ(h, e) = 1[h(x) , y], where 1 is the Boolean indi-

cator random variable. Learn denotes a (perhaps ran-

domized) learner that maps any (unordered) set of ex-

amples S = {e1, . . . , en} to a model h ∈ H . RiskD(h) =

Ee←D ℓ(h, e) denotes the population risk of h over a dis-

tribution D. RiskS(h) = Ee←S ℓ(h, e) denotes the empiri-

cal risk of h over a training set S ⊂ (X × Y)∗. The Em-

pirical Risk Minimization rule ERM is the learner that

simply outputs a model that minimizes the empirical

loss ERM(S) = argminh∈H RiskS(h).

Deletion. Fix a learner Learn, training set S, and model

h ← Learn(S). We use h−e ← DelS(h, e) to denote the

“ideal” data deletion procedure [GGVZ19] that outputs

h−e ← Learn(S \ {e}) using fresh randomness for Learn if

needed. (Hence, if e < S, then DelS(h, e) simply returns

a fresh retraining on S.) In general, Del needs to know

the training set on which h is trained, or it needs a

data structure that keeps some information about S in

addition to h. Whenever S is clear from the context, we

might simply write h−e ← Del(h, e).

3 Deletion inference attacks

In this section, we describe a framework of attacks on

machine unlearning (i.e., machine learning with dele-

tion option) schemes that can infer the deleted exam-

ples. Such attacks are executed by adversaries who first

access the model before deletion followed by having ac-

cess to the model after deletion. In each case, we will

first formally explain our threat model. We also pro-

vide theoretical intuition behind our attacks and report

experimental findings by implementing those attacks.

Threat model. We define a security game that cap-

tures how well an adversary can tell which element is be-

ing deleted from the training set. Note that our (default)

definition is not aiming to hide the fact that something

is being deleted, and the only thing we try to hide is

which element is being deleted. We use a definition that

is inspired by how (CPA or CCA) security of encryption

schemes are defined through indistinguishability-based

security games [GM84, NY90].

Definition 3.1 (Deletion inference). Let Learn be a

learner, Del be a deletion mechanism for Learn, and Sn

be a distribution on datasets of size n. The adversary

Adv and the challenger Chal interact as follows.

1. Sampling the data and revealing the chal-

lenges. Chal picks a dataset {z1, . . . , zn} = S ← Sn

of size n. Chal picks two indices i , j ∈ [n] at random

and sends e0 = zi, e1 = zj to Adv.

2. Oracle access before deletion. Chal trains h ←

Learn(S). Adv is then given oracle access to h, and

finally instructs moving to the next step.

3. Random selection and deletion. Chal picks b←

{0,1} at random and lets hdel ← Del(h, eb).

4. Oracle access after deletion. The adversary Adv

is now given oracle access (only) to hdel.

5. Adversary’s guess. The adversary sends out a bit

b′ to Chal and wins if b′ = b.

The scheme (Learn,Del) is called ρ insecure against

deletion inference for data distribution Sn, if there is
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a PPT adversary Adv whose success probability in the

game above is at least ρ. (Note that achieving ρ = 1/2

is trivial.) Now, consider a modified game in which

the adversary is given only the instances (x0, x1) where

e0 = (x0, y0), e1 = (x1, y1). We call this game the in-

stance deletion inference. If an adversary has success

probability at least ρ in the instance deletion inference

game, then the scheme (Learn,Del) is called ρ insecure

against instance deletion inference for distribution Sn.

Similarly, we define label deletion inference, in which

only the labels (y0, y1) are revealed to the adversary,

and ρ-insecurity against such attacks accordingly. To

contrast with instance and label deletion inference, we

might use example deletion inference attack to refer to

our default deletion inference attacks. ^

Note that winning in an instance or label deletion

inference game is potentially harder than winning the

normal variant (with full examples revealed to the ad-

versary) as the adversary can always ignore the full in-

formation given to it. Hence, showing successful instance

deletion inference attacks is a stronger (negative) result.

We empirically study the power of attacks in all these

attack models.

Other variants of Definition 3.1. Definition 3.1 can

be seen as a weak definition of privacy for deletion infer-

ence. The following list describe variants of Definition

3.1 that are either directly weaker, or our attacks can

be adapted to in a rather straightforward way.

– Two-challenges vs. one challenge. Definition 3.1

includes two challenge examples and asks an adver-

sary to find out which one is the actual deleted one.

An alternative definition would only reveal one ex-

ample to the adversary and asks it to tell if the

example is deleted or not.3

– Deletion-revealing vs. deletion-hiding. Defini-

tion 3.1 does not aim to hide the fact that a deletion

has happened. An alternative definition could even

aim to capture hiding the deletion itself by sampling

the non-deleted example outside the dataset.

– Random vs. chosen challenges. Definition 3.1

asks the adversary to distinguish between a random

pair of challenge examples, one of which is deleted.

3 If one can sample from the set S the two attack models can be

shown to be equivalent using standard hybrid arguments when

the adversary’s success probability is negligible in security pa-

rameter. This is similar to how it is done for CPA/CCA security

games in cryptography.

In a stronger attack model, the adversary is allowed

to choose the challenge examples.

– Auxiliary information. Definition 3.1 does not

explicitly give any extra information about other

examples ek, k < {i, j} to the adversary, while a real-

word adversary might have such knowledge.

– Multiple deletions vs. one deletion. Defini-

tion 3.1 does not allow more than one deletion to

happen, while in general users might request mul-

tiple deletions to happen over time. In fact, in Sec-

tion 3.3, we use this variant of the attacks to test our

attacks on large data sets and compare the result

with deletion inference attacks that are obtained by

reduction to membership inference.

In Section 5, we discuss stronger security definitions

that once satisfied would prevent the attack of Defini-

tion 3.1 and all the variants above as special cases of the

Deletion Compliance framework of Gar et al. [GGV20].

In particular, the definitions of this section (including

Definition 3.1) model weaker security guarantees than

that of Deletion Compliance framework of [GGV20],

which makes our attack results of this section stronger.

Learner’s randomness. The random seeds of the

learners manifest themselves in two ways:

1. Random initialization: Some parameters are gener-

ated from a random distribution.

2. Stochastic optimization: We train deep learning

models using stochastic gradient descent, which

runs with a randomly permutation of the training

dataset in each epoch.

Following the definition of perfect deletion, as desired

in Definitions 3.1 and 4.1, in our experiments we re-

train the models from scratch without fixing the random

seeds. However, We fix all the deterministic and algo-

rithmic aspects, which include model architecture, the

hyperparameters, and the initialization distribution.

Our deletion inference attacks. We propose two

variants of attacks: (1) (example) deletion inference

attack of Del-Inf-Exm which uses both instances and

their true labels, and (2) instance inference attack of

Del-Inf-Ins which only uses the instances, without know-

ing the true labels. (In the next subsection, we also show

how to find the deleted label, which can be seen as a

form of “label reconstruction”and is stronger than label

inference attacks.)

Attack Del-Inf-Exm using labeled examples. Our

example inference attack Del-Inf-Exm is parameterized

by a loss function ℓ and proceeds by first computing

the loss for both examples e0, e1 on both models h, hdel.
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Then, this attack identifies the deleted example by pick-

ing the example that leads to a larger increase in its loss

when we go from h to hdel. The intuition behind our at-

tack is that the examples in the dataset are optimized

(to a degree depending on the learning algorithm) to

have small loss, while examples outside the dataset are

not so. Therefore, once an example goes from inside the

dataset to outside, it incurs a larger increase in loss. We

now define the attack formally.

Algorithm 3.2 (Attack Del-Inf-Exm). The attack is

defined with respect to a loss function ℓ. For any ex-

ample e, we define the loss increase of e as: δ(e, h, hdel) =

ℓ(hdel, e) − ℓ(h, e). The adversary is given two labeled ex-

amples e0 = (x0, y0) and e1 = (x1, y1) and also has oracle

access to h followed by access to hdel. The attack pro-

ceeds as follows.

1. Query h on both x0, x1.

2. After getting access to hdel, query hdel on both x0, x1.

3. Compute loss increases δ(e0, h, hdel) and δ(e1, h, hdel),

and let α = δ(e0, h, hdel) − δ(e1, h, hdel).

4. Output 0 if α > 0, output 1 if α < 0, and output a

uniformly random bit b′ ∈ {0,1} if α = 0. ^

Connection to label memorization [Fel20] . At

a high level, Del-Inf-Exm can be seen as generaliz-

ing the notion of memorization by Feldman [Fel20]

from the 0-1 loss to general loss functions. More for-

mally, if we use the 0-1 loss, then for e ∈ S, the ex-

pected value Ehdel←Del(h,e) δ(e, h, hdel) would become equal

to mem(Learn,S, e) defined in [Fel20] to measure how

much the learner Learn is memorizing the labels of its

training set. , and Using this intuition, our adversary

picks the example that is most memorized by the model.

The following lemma further formalizes the intu-

ition behind our attack Del-Inf-Exm, so long as the the

learning algorithm is the ERM rule.

Lemma 3.3. Let ERM be the empirical risk minimiza-

tion learning rule using a loss function ℓ. Let h =

ERM(S), h−e ← Del(h, e) for e ∈ S, and S−e = S\{e}. Let

δe = δ(e, h, h−e), and let δ−e = Ee′←S−e [δ(e
′, h, h−e)] be the

expected value of loss increase for examples that remain

in the dataset. Then the following two hold.

1. δ−e ≤ 0.

2. δe ≥ −(n − 1) · δ−e where n = |S|. (In particular, by

Part 1, it also holds that δe ≥ 0.)

Proof. The first item of the lemma holds simply because

we are using the ERM rule. Namely, h−e minimizes the

empirical loss over S−e = S \ {e}. Therefore:

δ−e = RiskS−e (h−e) − RiskS−e (h) ≤ 0.

Having proved the first part, the second part also

follows due to using the ERM rule. In particular, sup-

pose for sake of contradiction that δe < −(n − 1) · δ−e,

where n = |S|. Then,

ℓ(h, e)+ (n−1) ·RiskS−e (h) > ℓ(h−e, e)+ (n−1) ·RiskS−e (h−e).

Then, this implies

RiskS(h) =
ℓ(h, e) + (n − 1) · RiskS−e (h)

n

>
ℓ(h−e, e) + (n − 1) · RiskS−e (h−e)

n
= RiskS(h−e).

However, the this contradicts that the ERM rule outputs

h on training set S. �

Proposition 3.3 shows that whenever (1) δ−e =

Ee′←S−e [δe′] < 0 and (2) δ(e′, h, h−e) for e′ ∈ S−e is

concentrated around its mean δ−e, then for a ran-

dom e′ ∈ S−e, the attack Del-Inf-Exm of Algorithm 3.2

would likely identify the deleted example correctly. Even

though, in general we are not able to prove when these

two conditions hold, our experiments confirm that these

conditions indeed hold in many natural scenarios, lead-

ing to the success of Del-Inf-Exm of Algorithm 3.2.

Attack Del-Inf-Ins using instances only. We now dis-

cuss our attack that does not rely on knowing the true

labels y0, y1. The intuition is that, even if we do not

know the true labels, when an example e is deleted from

the dataset, the change in the predicted label for e is

likely to be more than that of other examples that stay

in the dataset. The reason is that for the remaining ex-

amples, the model is still trying to keep their prediction

close to their correct value, but this optimization is not

done for the deleted example e. Hence, our adversary

would pick the candidate example that leads to larger

change in the output label (not necessarily the loss).

Hence, the attack is more natural to be used for regres-

sion tasks, even though it can also be used for classifi-

cation if one uses the confidence parameters instead of

the final labels.

Algorithm 3.4 (Attack Del-Inf-Ins). The attack is pa-

rameterized by a distance metric dis over Y (e.g., Y = R

and dis(y0, y1) = |y0 − y1 |). The adversary is given two

instances x0, x1, and it has oracle access to h followed

by hdel. The attack then proceeds as follows.

1. Query the models (in the order of accessing them) to

get h(x0), h(x1), hdel(x0), hdel(x1), and let β = |h(x0)−

hdel(x0)| − |h(x1) − hdel(x1)|.
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2. Return 0 if β > 0, return 1 if β < 0, and return a

random answer in {0,1} if β = 0. ^

3.1 Experiments: Deletion inference
attack on regression

Now we apply our attack Del-Inf-Exm (Algorithm 3.2)

and attack Del-Inf-Ins (Algorithm 3.4) on multiple re-

gression models including Linear Regression, Lasso re-

gression, SVM Regressor, Decision Tree Regressor, and

Neural Network Regressor4. D Appendix A includes the

details of the attacked models.

Experiment details. Table 1 includes the details of

all the datasets we used in the deletion inference exper-

iments and also in other experiments later. We use two

regression datasets Boston and Diabetes. For training

the original model h, we use a random subset with 90%

of the dataset. The experiment follows the security game

of Definition 3.1. To ensure the perfect deletion, hdel is

obtained by a full re-training with the dataset without

the deleted example. For the attack Del-Inf-Exm, we use

squared loss, which is defined as ℓ(h, (x, y)) = (h(x) − y)2.

Finally, we repeat the security game of Definition 3.1

1000 times and take the average success probability of

the adversaries.

Results. The result is shown in Table 2. In most cases,

our adversary gets more than 90% success probability

in the deletion inference.

3.2 Experiments: Deletion inference
attacks on classification

In this experiment, we apply Del-Inf-Exm and Del-Inf-Ins

on classification tasks. In our experiments, we use dif-

ferent models, including logistic regression, support vec-

tor machine (SVM), Decision tree, random forest, and

multi-layer perceptron (MLP). Due to page limit, de-

tails of the models are included in Appendix A.

Experiment details. We use datasets Iris, Wine,

Breast Cancer, and 1/12MNIST. (The details of the

datasets are shown in Table 1.) Similarly to attacks

on regression, We pick a random 90% fraction of the

dataset to train the model, and we do a full retrain to

4 Implementation of the methods are from the python library

Scikit-learn.

obtain hdel. The difference compared to the case of re-

gression is that the label space Y is now a finite set.

In this experiment, we assume the output of any hy-

pothesis function h ∈ H is a multinomial (confidence)

distribution over Y, and this probability is available

to the adversary. This assumption is realistic as many

machine learning applications have the confidence as

part of the output [RGC15], and this is also the de-

fault setting of many adversarial machine learning re-

searches [SSSS17, LBW+18]5. To formally fit the attack

into the framework of Definition 3.1, we can extend the

set Y to directly include any such multinomial distribu-

tion as the actual output “label”.

For Del-Inf-Exm, we use the negative log likelihood

loss function ℓ(h, (x, y)) = − log (Pr[h(x) = y]). We then

repeat the security game of Definition 3.1 1000 times to

approximate the winning probability.

Results. We present the result of attacks Del-Inf-Exm

and Del-Inf-Ins on three classification datasets in Ta-

ble 3. As anticipated, the success rates Del-Inf-Exm are

noticeably larger than those of Del-Inf-Ins.

3.3 Attacking large models and datasets

In this section, we aim to show that our deletion infer-

ence attacks can be scaled to work with large datasets

and models. We first formally describe how deletion

inference attacks can be obtained through black-box

reductions to membership inference attacks. We then

demonstrate the power of our attacks on datasets of the

same size as those of [SSSS17] and compare the power

of our direct deletion inference to doing reduction to

the membership inference attack of [SSSS17]. We show

that using our method can lead to significantly stronger

results than making a black-box use of membership in-

ference attacks.

3.3.1 How to reduce deletion inference to

membership inference

One can always reduce the task of deletion inference

to the task of membership inference. In particular, if

we had a perfect membership inference oracle, we could

use it to infer whether a given example is deleted or not

5 The model in this scenario is still considered as black-box in

most machine learning adversarial literature, but someone may

argue it is not fully black-box.
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No. Samples No. Features Label Predict

Regression
Boston [HAR78] 506 14 Real The median house price

Diabetes [EHJ+04] 442 10 Real Disease progression

Classification

Iris [Fis36] 150 4 3 types The type of iris plants

Wine [ACD94] 178 13 3 types Wine cultivator

Breast Cancer [SWM93] 569 30 Binary Benign/malignant tumors

1/12MNIST[LBBH98] 5000 784 10 types Digit between 0 to 9

CIFAR-10 [KH+09] 60000 3072 10 classes Image classification

CIFAR-100 [KH+09] 60000 3072 100 classes Image classification

Table 1. Descriptions of the datasets used in deletion inference.

Boston Diabetes

Learning Method Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins

Linear regression 99.8% 99.1% 99.8% 99.3%

SVM 93.9% 89.1% 99.2% 100.0%

Lasso regression 98.8% 97.1% 99.3% 98.3%

Decision tree 100.0% 100.0% 100.0% 100.0%

MLP 80.4% 78.3% 72.2% 72.3%

Table 2. Success probabilities of various attacks on regressors for
different datasets.

by calling the membership inference oracle on the two

models h, hdel.

Algorithm 3.5 below shows an intuitive way to re-

duce deletion inference (DI) to imperfect membership

inference (MI) in a black-box way. Specifically, suppose

the membership inference adversary M(e, h) → {0,1} re-

turns 1 if (it thinks) e is a member of the dataset that is

used to obtain the model h. Then, if a deletion inference

adversary wants to find out whether e is deleted from

the model h to reach the model hdel, it can simply run

M(e, hdel) and output what it outputs. Note that there is

no need to run M(e, h), as the adversary of Definition 3.1

is given the promise that both e0, e1 are members of the

initial dataset S. Then the only question is how to com-

bine the answers M(e0, hdel),M(e1, hdel), which Algorithm

3.5 decides in a natural way.

Algorithm 3.5 (From membership to deletion inference).

Given examples e0 = (x0, y0), e1 = (x1, y1) and models

hdel, the reduction from deletion inference to member-

ship inference proceeds as follows:

1. Perform two membership inferences to obtain b0 =

M(e0, hdel) and b1 = M(e1, hdel).

2. Return 0 if b0 = 0, b1 = 1, return 1 if b1 = 1, b0 = 0,

and return a random bit if b0 = b1. ^

Using confidence probabilities. An alternative re-

duction to Algorithm 3.5 can use the confidence proba-

bilities of M(e0, hdel) and M(e1, hdel) instead of their final

(rounded) values. In this variant, the reduction returns

0 if the confidence difference of M(e0, hdel) − M(e0, h) to

output zero is more than the confidence difference of

M(e1, hdel) − M(e1, h) to output zero.

3.3.2 Experiments with large data, and comparison

with reduction to membership inference

We now evaluate our deletion inference attacks

Del-Inf-Exm and Del-Inf-Ins on large dataset and large

neural networks. In our experiment, we use CIFAR-

10 and CIFAR-100 datasets [KH+09] as the training

dataset, which are standard datasets for the evaluation

of image classifiers, especially for deep learning models.

To better compare the success of our attacks with

[SSSS17] we use a variant attack of Definition 3.1 in

which multiple deletions happen (as explained in one

of the variants following Definition 3.1). One advan-

tage of this experiment setting is that the attack of

[SSSS17] needs to train “attack models” for each vic-

tim model, and hence having multiple different dele-

tions lead to multiple full training of attack models for

[SSSS17] which is very expensive to run. However, in the

multiple-deletion attack setting, one needs to only train

the attack models of [SSSS17] twice to compare each

execution of our attack with a reduction to [SSSS17].

Setting of our attack. The success probability is then

calculated by taking the average over 20 rounds of full

experiment. In each round of experiment, we first train

a deep model with n examples, where n varies from

15,000,20,000,25,000, and 29,540 (29,540 is picked to

match the scenario of [SSSS17]). We then randomly re-

move a batch of 100 examples in the training dataset,

and train a new model without those 100 examples. As

a reference, we pick another 100 random examples that

remains in the dataset. The success probability is cal-

culated over every pairs (in total, 10,000 pairs) of the
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Datasets → Iris Wine Breast Cancer 1/12 MNIST

Learning Method ↓ Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins

Logistic Regression 88.3% 86.8% 80.8% 76.1% 69.1% 60.6% 72.9% 56.6%

Decision Tree 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

SVM 70.5% 60.3% 76.9% 66.7% 73.8% 57.3% 72.3% 62.0%

Random Forest 89.2% 89.1% 83.3% 78.1% 89.2% 85.7% 89.9% 84.5%

MLP 92.9% 55.5% 54.2% 51.1% 83.5% 67.7% 62.5% 59.0%

Table 3. Success probabilities of the attacks Del-Inf-Exm and Del-Inf-Ins on classifiers.

deleted and reference examples, i.e., one deleted exam-

ples and one remaining example is given to the dele-

tion inference adversaries Del-Inf-Exm and Del-Inf-Ins.

We then measure the fraction of all pairs in which our

adversary correctly predicts the deleted example. We

evaluate our results on two deep neural network mod-

els: 1. A convolutional neural network that includes two

convolutional layers (called smallCNN below), similar

to the network used in [SSSS17]. 2. VGG-19 network

(called VGG below) that has 19 layers in total, which is

well-known for its power for image classification tasks.

Baseline settings for comparison. We compare our

attacks with reductions to the membership inference at-

tack in [SSSS17]6, i.e., reduction with label only and

reduction with confidence probabilities.

Results. In Figure 1 and 2, we analyze the success prob-

abilities of our deletion inference adversaries Del-Inf-Exm

and Del-Inf-Ins on smallCNN model and VGG model.

Our attack is able to correctly predict most of the dele-

tions in the deep learning models, even when a batch of

examples is deleted at the same time. Furthermore, note

that for the membership inference attack of [SSSS17] to

work, the adversary needs to have the label of the target

instance and also make many queries to the target model

for training an attack model (or many auxiliary data ex-

amples to train a similar model). On the other hand, our

attack is extremely simple, and Del-Inf-Ins even does not

require the label of the example.

Remark 3.6 (About using reduction to MI as baseline).

Here we comment on the limitations of membership in-

6 We implemented [SSSS17] attack. [SSSS17] reports their

membership inference attack achieves 71% success rate on a

CNN model with two convolutional layers that is trained with

CIFAR-10 dataset with 15, 000 random examples. Our imple-

mentation of membership inference attack achieves 74% success

rate on smallCNN model (which also has two convolutional lay-

ers) and 88% success rate on VGG model, which are trained on

a subset of CIFAR-10 dataset with 15, 000 random examples.

The success rate matches the number reported in their work.

ference as a baseline attack, as membership inference

is not tuned to distinguishing between two points (one

of which is guaranteed to be in the training set). In-

deed, membership inference attackers only get only one

instance as input, while our formalization of deletion

inference gets two inputs. However, please note that we

compare our deletion inference attackers to reductions

to membership inference adversaries. The reduction is

allowed to call the MI adversary multiple times. Indeed

our reduction of the previous subsection calls the MI

adversary twice, and this change makes the reduction to

MI (which is a DI adversary itself) powerful enough to

be able to win the DI inference game with probability

close to 1, so long as its (regular) MI oracle wins its

own game with probability close to 1.

4 Deletion reconstruction

Section 3 focused on attacks that infer which of the two

given examples is the deleted one. A more devastating

form of attack aims to reconstruct the deleted example

by querying the two models (before and after deletion).

In this section, we show how to design such stronger at-

tacks. We propose two types of reconstruction attacks

on the deleted example. The first one focuses on re-

constructing the deleted instance, while the second one

focuses on reconstructing the deleted label. Both types

of attacks follow the same security game which is ex-

plained in the definition below.

Definition 4.1 (Deletion reconstruction attacks). Let

Learn be a learning algorithm, Del be a deletion mecha-

nism for Learn, and Sn be a distribution over (X × Y)n.

Consider the following game played between the adver-

sary Adv and challenger Chal.

1. Sampling the data and random selection. Chal

picks a dataset {e1 . . . en} = S ← Sn of size n. It also

chooses i ← [n] at random.

2. Oracle access before deletion. The challenger

Chal trains h← Learn(S). The adversary Adv is then
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Fig. 1. Trend of success probabilities of attacks Del-Inf-Exm and Del-Inf-Ins on smallCNN models trained with different number of
examples are shown; (a) uses dataset CIFAR-10 and (b) uses dataset CIFAR-100 dataset. The success probabilities are also compared
with two baseline attacks that are obtained by reductions to the membership inference attack of [SSSS17].
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Fig. 2. Trend of success probabilities of attacks Del-Inf-Exm and Del-Inf-Ins on VGG models trained with different number of examples
are shown; (a) uses dataset CIFAR-10 and (b) uses dataset CIFAR-100 dataset. The success probabilities are also compared with two
baseline attacks that are obtained by reductions to the membership inference attack of [SSSS17].

given oracle access to h. At the end of this step, the

adversary instructs moving to the next step.

3. Deletion. The challenger obtains h−ei ← Del(h, ei).

4. Oracle access after deletion. The adversary Adv

is now given (only) oracle access to h−ei .

5. Adversary’s guess. Adversary outputs a guess e.

For a similarity metric dis defined on (X×Y), the adver-

sary Adv is called a (ρ, ε)-successful deletion reconstruc-

tion attack if it holds that Pr[dis(e, ei) ≤ ε] ≥ ρ. For

bounded dis(·, ·) ∈ [0,1] and an adversary Adv, we define

the expected accuracy of Adv as 1 − E[dis(e, ei)]. ^

Deleted instance/label reconstruction attacks.

One can use Definition 4.1 to capture attacks in which

the goal of the adversary is to only (perhaps partially)

reconstruct the instance x or the label y. In case of ap-

proximating x, we can use a metric distance dis that

is only defined over X and ignores the labels of e and

ei. We refer to such attacks as deleted instance recon-

struction attacks. Similarly, by using a proper metric

distance defined only over Y, we can use Definition 4.1

to obtain deleted label reconstruction attacks. Finally,

to completely find e (resp. x or y) we use the 0-1 metric

dis(e, e′) = 1[e , e′] (resp. 1[x , x ′] or 1[y , y
′]).

Theorem 4.2 (From reconstruction to inference). Let

Learn be a learning algorithm, Del be a deletion mecha-

nism for Learn, dis be a distance metric over (X × Y),

and Sn be a distribution over (X ×Y)n. Suppose there is

a (ρ, ε)-successful PPT reconstruction adversary against

the scheme (Learn,Del), and Pr[dis(e0, e1) > 2ε] ≥ 1 − δ

where the probability is over sampling e0, e1 from the
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sampled dataset S ← Sn.7 Then, (Learn,Del) is (ρ − δ)-

insecure against deletion inference over distribution Sn.

Proof of Theorem 4.2. We give a polynomial time re-

duction. In particular, suppose B is a (black-box) ad-

versary that shows the (ρ, ε) insecurity of the scheme

(Learn,Del) against deletion reconstruction attacks. We

design an adversary Adv against deletion inference (as

in Definition 3.1) as follows. Given (e0, e1) as challenges,

first ignore (e0, e1) and using oracle access to models

h, hdel, run B to obtain e as approximation of the deleted

example. Output 0 if dis(e0, e) ≤ ε, else output 1 if

dis(e1, e) ≤ ε, otherwise output uniformly in {0,1}.

We now analyze the reduction above. With proba-

bility at least ρ over the execution of the attack B, it

holds that dis(e, eb) ≤ ε, where eb is the deleted example.

Also, with probability 1− δ it holds that dis(e0, e1) > 2ε.

By a union bound, we have that with probability at

least ρ − δ both of the conditions above happen at the

same time, in which case the adversary Adv outputs the

correct answer b. �

Due to the theorem above, all the reconstruction attacks

below can be seen as strengthening of deletion inference

attacks.

4.1 Experiments: Deletion reconstruction
of instances for nearest neighbor

In this experiment, we consider a classification cluster-

ing task in high dimension. The previous work [Fel20,

BBF+21] studied the same setting and showed that ma-

chine learning models sometimes need to memorize their

training set in order to learn with high accuracy. In

this setting, we extend the attacks of [Fel20, BBF+21]

into two directions to obtain deletion reconstruction at-

tacks: (1) we obtain polynomial time attacks that ex-

tract instances rather than proving mutual information

between the model and the examples, (2) we show a set-

ting where the extraction is enabled after the deletion.

Roadmap and the leakage of the deletion. We de-

velop polynomial-time reconstruction attacks that cru-

cially leverage the deletion operation. However, in order

to analyze our attacks, we first limit ourselves to the so-

called singleton setting in which each label appears at

most once for an example in the dataset (Section 4.1.1).

7 For example, when Sn consists of n i.i.d. samples from D,

e0, e1 are simply two independent samples from D.

Focusing on this case allows us to provide theoretical

ideas that support our attacks. However, our attacks in

the singleton case are also able to extract instances even

without deletion. Hence, in the singleton case, our at-

tacks can be seen as leakage of the model h itself, even

without deletion. Note that such attacks can still be used

for deletion reconstruction, they do not reflect the ex-

tra leakage of the deletion operation. Nevertheless, we

next experimentally show (Section 4.1.2) that virtually

the same polynomial-time attacks succeed even when

the labels are not unique on the real world dataset Om-

niglot. In particular, when we have many repeated labels

(perhaps even as neighbor cells), then our simpole at-

tacks do not extract the instances from access to either

of h, hdel, and it is needed to have access to both models

to find the “vanished” Voronoi cell before extracting the

center of the cell.

We now our polynomial-time deletion reconstruc-

tion attack for the case of 1-nearest neighbor models. We

work with instance space X = {0,1}d.8 We also assume

the learner Learn runs a 1-nearest neighbor algorithm.

Namely for h = Learn(S) where S = {(x1, y1) . . . (xn, yn)},

we have h(x) = yj where j = argmini dis(x, xi).

We propose the following attack Del-Ins-Rec that

aims to reconstruct the deleted instance xi.

Algorithm 4.3 (Attack Del-Ins-Rec). Suppose the ad-

versary is given oracle access to h followed by oracle

access to hdel, along with an auxiliary set of instances

T , |T | = m. (For example, T could simply be m inde-

pendent samples different from the original training set

S.) The attack then proceeds as follows:

– For all x ∈ T query the model h.

– Then for all x ∈ T , query the model hdel.

– Create the set of points in the “deleted region”: T ′ =

{x | h(x) , hdel(x), x ∈ T }.

– Return the majority for each coordinate; namely,

return x = (b′
1
, . . . , b′

d
), where ∀i ∈ [d],

b′i = argmax
b∈{0,1}

∑

(b1 ,...,bd )∈T′

1[bi = b]. ^

Intuition behind the attack. The intuition behind

the attack of Algorithm 4.3 is that instances like x

whose prediction label changes during the deletion pro-

cess should belong to the Voronoi cell centered at xi,

where (xi, yi) is the deleted example. Then the algorithm

8 We use binary features because it is more general and that

other features can also be represented in the form of binary

strings.
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heuristically assumes that when we pick x at random

conditioned on changed labels, then they give a pseudo-

random distribution inside the Voronoi cell of xi. In the

next section we show that for a natural case called sin-

gletons, in which the labels are unique, this intuition

carries over formally. We then experimentally verify our

attack for the general case (when labels can repeat) on

a real data set.

4.1.1 Theoretical analysis for uniform singletons

In this section, we focus on a theoretically natural case

to analyze the attack of Algorithm 4.3. We refer to

this case as the uniform singletons which is also stud-

ied in [Fel20, BBF+21] and is as follows. First, we as-

sume that instances are uniformly distributed in {0,1}d,

and secondly, we assume that the labels are unique (i.e.,

without loss of generality, the labels y1, . . . , yn are just

1, . . . ,n). The following lemma shows that in this case,

the attack of Algorithm 4.3 never converges to wrong

answers for any coordinate of the instances.

Lemma 4.4 (Non-negative correlations). Let S =

{x1, . . . , xn} where ∀i, xi ∈ {0,1}
d, and suppose h(x) =

argmini dis(x, xi), and we break ties by outputting the

smallest index i, if multiple nearest neighbors exist. Sup-

pose Ci = {x | h(x) = i} be the Voronoi cell centered at

xi. Let x[ j] be the j’th bit of x. Then, for every i ∈ [n]

and every j ∈ [d], we have

Pr
x←Ci
[x[ j] = xi[ j]] ≥

1

2
.

Proof of Lemma 4.4. Let C
j ,b

i
= {x ∈ Ci | x[ j] = b} be

the subset of Ci that has b in its j’th coordinate.

We claim that by flipping the j’th bit of every x ∈

C j ,1−xi [j], we obtain a vector x ′ ∈ C j ,xi [j]. The reason is

as follows. (1) By definition, the j’th bit of x ′ is indeed

xi[ j]. (2) It holds that h(x ′) = i, which means x ′ ∈ Ci.

The reason for (2) is that, by flipping the j’th bit of x,

x ′ gets one step closer to xi compared to how far x was

from xi. Therefore, if xi was the nearest neighbor of x,

it would also be the nearest neighbor of x ′ as well. A

boundary case occurs if multiple points are the nearest

points of x, but the same tie breaking rule still assigns xi

as the nearest neighbor of x ′. Since the mapping from x

to x ′ is injective, it also gives an injective mapping from
�

�

�
C

j ,1−xi [j]

i

�

�

�
to

�

�

�
C

j ,xi [j]

i

�

�

�
. This proves that

�

�

�
C

j ,xi [j]

i

�

�

�
≥

�

�

�
C

j ,1−xi [j]

i

�

�

�
,

which is equivalent to Prx←Ci [x[ j] = xi[ j]] ≥ 1/2. �

4.1.2 Deleted image reconstruction for 1-NN

We now show that the simple attack of Algorithm 4.3

can be used to reconstruct visually recognizable im-

ages even when the distribution is not normal and la-

bels are not unique. Hence, we conclude that the ac-

tual power of this attack goes beyond the theoreti-

cal analysis of the previous section. We use the Om-

niglot [LST15] dataset, a symbol classification dataset

specialized for few-shot learning. The dataset includes

handwritten symbols from multiple languages.

Experiment details. We binarize each pixel of the

dataset to remove the noise in gray-scale. The input

space is X = {0,1}d, where d = 11025 is the number of

pixels. We assume the Omniglot dataset is divided into

two parts: (1) a training subset which contains 140 sym-

bols from 30 different languages. The languages serve

as the class label in the dataset in our experiments,9

and (2) a fixed test set with another 140 examples from

each language which is provided to the adversary as

auxiliary information. The learning algorithm Learn is

the 1-nearest neighbor predictor, which for a dataset S

always returns the label (i.e., the language) of the near-

est example in the dataset h(x ′) = argminy{dis(x, x ′) |

(x, y) ∈ S}. We use Algorithm 4.3 as the attack, which

simply takes majority on each pixel over the instances

that fall into the disagreement region of the two models

(before and after deletion). We run the security game of

Definition 4.1 with 100 random images from the dataset

as the deleted image.

Comparison with reconstruction attacks without

deletion. As a comparison to further highlight the leak-

age that happens due to the deletion, we also run a sim-

ilar reconstruction attack without deletion. Suppose for

a moment that labels were unique. Then, to reconstruct

instance x, the attacker aims to extract the image x from

the data set with label y, where y is the label of x. To

do that, the reconstruction attacker can run the same

exact attack as our deletion reconstruction, as follows:

it tests all the images in the test dataset on the model

and records every image with label y. The attacker then

generate a reconstruction image by taking the majority

of the images with label y on every pixel.

9 Note that in the original dataset, the labels reflect the charac-

ter, but to demonstrate the leakage of deletion rather than the

mere leakage of datasets alone, we use the labels that represent

the languages to increase the frequency of the labels.
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the evaluation of the “current model” stored by

DatCol (which is the result of learning over the set

stored at DatCol) on x and returns the answer.

– As in [GGV20], we also require that only Env can

send messages to DelReq. At some point in the ex-

ecution of the system Env sends DelReq the follow-

ing messages, which is followed by messages from

DelReq to DatCol as described below.

1. (Add, e0, e1): DelReq sends Add(e0),Add(e1) to

DatCol.

2. Del: DelReq will send Del(e) to DatCol where e ∈

{e0, e1}. By DelReqb we refer to the instantiation

of DelReq that sends Del(eb) to DatCol.

Weak deletion compliance. For our purposes, we

consider a different weaker definition (compared to that

of [GGV20]) that still captures all attacks of Section 3

and 4. To start, we define two worlds, World 0 and

World 1, corresponding to the instantiation of DelReq

by DelReq0 and DelReq1.

Definition 5.1 (Weak deletion compliance). Let the

interactive algorithms DatCol,Env,DelReq be, in order,

the data collector, the environment, and the deletion

requester (interactive) algorithms limited to interact as

described above. We call DatCol ε deletion compliant,

if no PPT Env can detect whether it is in World 0

(with DelReq0) or World 1 (with DelReq1) with advan-

tage more than ε. If this holds under the restriction that

Env makes at most (k − 1) deletion requests during the

execution, then DatCol is said to be ε-weak deletion-

compliant for up to k deletions ^

Comparison with [GGV20]. The key differences be-

tween our Definition 5.1 and that of [GGV20] are as

follows. In each case, we state the property of our defi-

nition in contrast to that of [GGV20].

– Hiding the state of DatCol from adversary. The

definition of [GGV20] focuses on scenarios where

the data collector’s state might be revealed at some

point in the future (e.g., due to a subpoena). How-

ever, in this work we focus on hiding the information

that is leaked from the data collector (about deleted

record) through interaction with the adversary.

– Not aiming to hide the deletion itself. Whereas

plain deletion-compliance asks that deletion make

the world look as though the deleted data were

never present in the first place, here we only ask

that it not be revealed which record was deleted.

For instance, a data collector that is weak deletion-

compliant might still reveal the number of dele-

tions it has processed, as long as the data that is

deleted is not revealed. While weaker than deletion-

compliance definition of [GGV20], our notion is fit

for hiding the deleted record among the records in

the training set, and still giving a more general and

stronger definition than Definition 3.1.

We now formally discuss why Definition 5.1 cap-

tures the attacks of Section 3 and 4. Recall that Def-

inition 3.1 was already shown in Theorem 4.2 to be a

stronger notion than instance and label reconstruction

attacks (Definition 4.1). Hence, we just need to show

that Definition 5.1 is stronger than Definition 3.1.

Theorem 5.2 (Deletion inference from compliance).

Let Learn be a learner, Del be a deletion mechanism

for Learn, D be a distribution over labeled examples,

and U = Supp(D) be the universe of records. The data

collector DatCol answers queries as follows.

1. DatCol does not respond any Del or Eval queries till

receiving n Add(·) queries, which we refer to as S.

2. DatCol permutes S and gets h← Learn(S).

3. Then it answers Eval(e) = h(e) queries arbitrarily.

4. Then it accepts one Del(e), and lets h−e = Del(h, e).

5. Then it continues answering Eval(e) = h(e) queries.

If DatCol is (2ε − 1)-deletion compliant (as in Defini-

tion 5.1) against PPT adversaries with oracle access to

D, then the scheme (Learn,Del) is ε-secure against dele-

tion inference (as in Definition 3.1).

Proof of Theorem 5.2. We give a proof by reduction.

Suppose Adv breaks the membership inference security

game of Definition 3.1 with probability (1+ε)/2. We con-

struct an environment Env that ε-distinguishes DelReq0

from DelReq0 with advantage ε that proceeds as follows:

1. Env plays the role of the challenger from Defini-

tion 3.1 and picks a data set {e1, . . . , en} = S ← Sn

of size n. Env passes this to the DatCol and picks

i , j ∈ [n] at random as the challenge records.

2. Next, Env instantiates Adv and provides it with

the records ei, ej and oracle access to h (through

DatCol). At the end of this step, the adversary in-

structs moving to the next step.

3. Env passes (ei, ej ) to DelReq (which will then request

the deletion of one of the two records).

4. Env actives the Adv again and it is again provided

oracle access to h (through DatCol). At the end of

this step, the adversary’s output is included in the

output of the environment.
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Fig. 4. The real and ideal worlds for (strong) deletion compliance

Fig. 5. The worlds for weak deletion-compliance

The view of the adversary Adv in the above experiment

is identical to its view as part of Definition 3.1. Thus,

the output of Adv will correctly (with probability greater

than ǫ) identify whether DelReq requests the deletion of

record ei or record ej . This allows us to conclude that the

view of the Env changes depending of whether DelReq

requests deletion of ei or ej . �

Using the same three components described in Section 5

(with a different DelReq), [GGV20] defines the notion of

deletion-compliance. Here the ideal world is the same

as the real world in all respects except that DelReq

is not allowed to communicate with DatCol as repre-

sented in Fig. 4. (The restriction of DelReq not being

able to send messages to Env was imposed in order for

this ideal world to be well-defined, by excluding cases

where Env sends to DatCol messages that depend non-

trivially on DelReq’s records.) [GGV20] calls DatCol to

be ε-deletion-compliant if, for any Env and DelReq, the

joint distributions of the state of DatCol and view of Env

in the real and ideal world are ε-close in the statistical

distance, denoted by notation ≈ε. That is,

(statereal
D , viewreal

E ) ≈ε (stateideal
D , viewideal

E ).

The above (strong) definition from [GGV20] captures

the intuition that a system is deletion-compliant if the

state of the world after its deleting a record is similar

to what it would have been if the record had never been

part of the system in the first place. Note that this re-

quirement of ε-closeness in statistical distance is more

relaxed than the kind of closeness of distributions re-

quired by differential privacy, and so DP can be used

to satisfy these requirements. [GGV20] showed how to

obtain their strong deletion compliance based on differ-

entially private mechanisms.

To contrast with Figure 4, in Figure 5 we have de-

picted the more symmetric worlds that are behind our

Definition 5.1. In particular, Definition 5.1 requires that

no PPT Env can distinguish between World 0 and World

1 of Figure 5 by more than advantage ε.
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A Hyperparameters of models

Here we describe the hyperparameters of the models

used in the experiments of our paper.

– MLP: We use multiple layer perceptron with two

hidden layers. For regression, we set the size of hid-

den layers as (20,2), and for classification, we set

the size of hidden layers as (20,10). The reason be-

hind is that the output layer of classification tasks

have more neurons. We use LBFGS as the optimiza-

tion algorithm to train the model, and we train 200

epochs on each model.

– SVM: We use the default SVMClassifier and SVM-

Regressor in Scikit-learn. Specifically, we use the

RBF kernel with C = 1.0.

– Decision tree: For the decision tree model, we

use the default DecisionTreeClassifier and Decision-

TreeRegressor in Scikit-learn. Specifically, we use

Gini impurity to split the leafs and do not set a

limit on the tree size.

– Random forest: We use the default Random-

ForestClassifier in Scikit-learn, which generates 10

trees in the forest. For each tree, its hyperparameter

is the same with the decision tree classifier above.

– Logistic regression and Linear regression: We

use the default LinearRegression and LogsticRegres-

sion from Scikit-learn.

– Lasso regression: We set α = 0.1 in lasso regressor.
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B Comparison with reduction to

the MI attack of [YGFJ18]

Additionally, here we compare our direct deletion in-

ference attack Del-Inf-Exm with a reduction (as stated

in Algorithm 3.5) to membership inference attacks of

Yeom et al. [YGFJ18]. The membership inference ad-

versary of Yeom et al. [YGFJ18] works with a threshold

value that is chosen to be the average of losses over all

the training examples as an auxiliary information. This

threshold can be estimated by the adversary from extra

examples sampled from the distribution. The adversary

predicts an example to be a member of the model if the

loss of that example is smaller than the average train-

ing loss. We use the original code, models, and data

released by [YGFJ18]. Specifically, we use two datasets

IWPC (International Warfarin Pharmacogenetics Con-

sortium) [Con09] and Eyedata [SKS+06] from [YGFJ18].

The statistics of the datasets are summarized in Table 1.

Regarding the hyperparameters, we report the success

probability of both attacks on the model with best per-

formance without attack, which is selected via cross val-

idation. The experiment’s results are shown in Table 4.

Our simple adversary algorithms achieve around

90% success probability in almost all cases, in both set-

tings of comparing with samples in the training set (in-

side S) or comparing with samples outside the training

dataset (outside S). In most cases, the success in fact

close to 100%. Clearly, with the access of both versions

of models, there exists an obvious privacy leak that can

be easily exploited by naive adversaries.

Reduction to Mem. Inf. Del-Inf-Exm

Eyedata 64.80% 97.54%

IWPC 68.83% 95.98%

Table 4. Comparing the success probabilities of our attack
Del-Inf-Exm and an alternative attack based on reduction to the
membership inference attack of Yeom et al. [YGFJ18].

C Deleted label reconstruction

We now show that when the dataset is small, the label y

for the deleted example e = (x, y) might completely leak

through a black-box access to the models before and

after the deletion. Note that when y is binary, there is

little difference between label inference and reconstruc-

tion, but our attacks work even when the labels are not

binary, hence it is suitable to call them label reconstruc-

tion attacks as defined in Definition 4.1.

We propose the following attack Del-Lbl-Rec to re-

construct the deleted label.

Algorithm C.1 (Attack Del-Lbl-Rec). Given models h

and hdel, a number n ∈ N, the label inference attacker

Del-Lbl-Rec proceeds as follows:

1. Randomly pick m random samples T =

{x1, x2, . . . , xm} in the data range X.

2. For all i ∈ [m], query h to obtain ŷi = h(xi).

3. For all i ∈ [m], query hdel to obtain ŷ
′
i
= hdel(xi).

4. Return argminc∈Y

∑m
i=1
(Pr[ŷ′

i
= c] − Pr[ŷi = c]). ^

The intuition is that for natural models (e.g., ERM

rule), removing one example of a specific class will tend

to move the prediction towards other classes, i.e., the

expectation of predictions to that specific label is likely

to decrease. In other words, if the attack above fails, it

means that adding this deleted sample back to the train-

ing set will let the model tend to predict other classes,

which is an unlikely scenario. Our experiments confirm

that this attack intuition succeeds.

Experiment details. We test the attack on three clas-

sic classification datasets, including the Iris Dataset

[Fis36], the Wine Recognition dataset [ACD94], and the

Breast Cancer Wisconsin Diagnosis dataset [SWM93].

The label is among a discrete set Y. The learning algo-

rithms are the logistic regression model and K-Nearest

Neighbor model. The experiment result is presented in

Table 5. The success probability of the attack is higher

than 90% on the Iris and Wine datasets, and is higher

than 75% on Breast Cancer dataset.

Iris Wine Breast Cancer

Logistic Regression 92.90% 97.30% 86.60%

K Nearest Neighbor 93.70% 90.10% 77.80%

Table 5. Results of our deleted label reconstruction attacks

C.1 Known-instance label reconstruction

In this section, we study attacks in which the adversary

knows the instance x of the deleted record e = (x, y) and

wishes to approximate the true label y by querying the

models h and hdel. The goal is to beat the correctness
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of both models for true label y. This means that, in

case the two models were supposed to hide the label

(perhaps if it was a sensitive information to know very

precisely) the data removal process, in this case, clearly

goes against the goal of hiding y in its exact form.

Definition C.2 (Known-instance label reconstruction).

This definition is identical to Definition 4.1 with the

only difference that the adversary is now given xi (but

not yi) in Step 2 of the attack. ^

Even though one can define the success criteria of the

attackers of Definition C.2 the same way as those of Def-

inition 4.1, such attacks are only interesting if they can

beat the precision of the answers provided by the two

models h, hdel, as anyone (including the adversary) could

query those models on the point xi, once xi is revealed.

Our experiments show that such “accuracy boosting”

attacks are indeed sometimes possible in the presence

of deletion operations.

We propose a simple attack Ins-Rev-Lbl-Rec in Con-

struction C.3 below. Ins-Rev-Lbl-Rec makes an estima-

tion on y based on the output of the two models.

Algorithm C.3 (Attacker Ins-Rev-Lbl-Rec). This at-

tack is parameterized by λ > 0. Given sample x, models

h and hdel, and a constant λ, the label reconstruction

adversary Ins-Rev-Lbl-Rec proceeds as follows:

1. Query to obtain ŷ = h(x) and ŷ
′
= hdel(x).

2. Return ỹ = ŷ + λ · (ŷ − ŷ
′). ^

Intuition behind the attack. Similar to the attacks

of Section 3 (see Proposition 3.3), the loss of the deleted

sample will increase after the deletion. For simplicity,

suppose the loss is mean squared error. In this case,

when the learner follows the ERM rule, we have | ŷ′ −

y |2 ≥ | ŷ−y |2. Therefore, moving from ŷ
′ towards ŷ makes

the prediction closer to the actual label y. Consequently,

using a small positive λ could lead to less loss. The best

value of λ in each different scenario could be empirically

estimated by a similar size dataset that is individually

sampled by the attacker.

Experiment details. We perform the attack on lin-

ear regression models. We test the attack on two classic

regression datasets, the Boston Housing Price Dataset

[HAR78] and the diabetes dataset [EHJ+04]. For each

dataset, we train the model h with the whole dataset.

The adversary returns an approximation ỹ. | ỹ − y |2 will

denote the distance of the prediction by the adversary,

and we use min(|h(x) − y |2, |hdel(x) − y |2) as the baseline

value to compare the quality of adversary’s prediction.

Results. We calculate the average distance of ỹi and yi

with different λ values. Our results (in Table 6) show

that there exists a λ value for each dataset, such that

can reduce the the estimated loss by around 70%.

Best λ Models Adversary %

Boston 17.5 21.897 7.149 30%

Diabetes 30 2859.7 829.8 28%

Table 6. Result of the label reconstruction Attack on Logistic Re-
gression. The column Models lists the average of the minimum
distance of the predictions of the two models h, hdel. The col-
umn Adversary lists the average distance of the prediction of the
adversary and the real prediction, and the percentage shows the
percentage of the improvement in the prediction compared with
the better of the predictions of the two models h, hdel.

D Deleted sentence

reconstruction

In this experiment we perform reconstruction attacks on

sequential text data. Namely, we show how to extract

the deleted sentence by querying a language model ac-

cording to the security game of Definition 4.1.

We start by giving formal definitions. We define a

text sequence as x = (x1, x2, . . . , xt ) ∈ X
t , where each

xi ∈ D is a word, D is a set of words that shapes a prede-

fined dictionary. A (next-step) language model is a gen-

erative model which models the probability Pr[x] by ap-

plying the chain rule Pr[x] = Πt
1

Pr[xi | x1, x2, . . . , xi−1].

Specifically, a next-step language model f takes a pre-

fix of the text sequence x1, . . . , xi as input, and with the

parameter θ it returns the likelihood fθ (xi | x1, . . . xi−1)

that ideally equals Pr[xi | x1, x2, . . . , xi−1]. As an exam-

ple, an N-gram language model models the mentioned

probabilities with a Markov chain, and it approximates

Pr[xi | x1, . . . , xi−1] with the estimated probability of

N−1 previous words, i.e., Pr[xi | xi−N+1, . . . , xi−1] (N con-

tiguous words xi−N+1, . . . , xi is called an N-gram). Specif-

ically a bigram language model (N = 2) follows fbi[xi |

x1, . . . , xi−1] ≈ Pr[xi | xi−1] and a trigram language model

(N = 3) follows ftri[xi | x1, . . . , xi−1] ≈ Pr[xi | xi−2, xi−1].

In the training of the language model, a training dataset

S with multiple sequences is given. The language model

parameter θ is optimized to maximize the overall like-
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lihood of sequences in the training dataset, that is, the

probability of returning the dataset given such N-gram

probability.

Threat model. In general, we follow the security game

described in Definition 4.1. Namely, we first train the

language model with a dataset S. In the deletion step,

we delete a random sequence x′ = x ′
1
, . . . , x ′

i−1
from the

dataset and retrain the model. Finally, the adversary

aims to reconstruct the example x′. Note that black-box

access by the adversary means that it can send an text

sequence x1, x2, . . . , xt to the language model and gets

the probability of the text sequence fθ (x1, x2, . . . , xt ).

Our deleted sentence reconstruction attack. We

now define a simple adversary that can accurately re-

construct the deleted sentence. It first simply queries

every possible N-grams in the dictionary to the model

h and records their probabilities. Then after deletion, it

again sends every possible N-grams queries to the model

hdel. Now suppose N = 2, i.e. bigram. According to the

definition of language models, for a word pair (x ′
i−1
, x ′

i
),

if h(x ′
i−1
, x ′

i
) > hdel(x

′
i−1
, x ′

i
), then the number of occur-

rence of the bigram x ′
i−1
, x ′

i
is decreased in the updated

dataset, which further indicates the bigram is included

in the deleted example. Therefore, for one particular suf-

fix x ′
i−1

, the adversary can guess a word x ′
i

which satisfies

that h(x ′
i−1
, x ′

i
) > hdel(x

′
i−1
, x ′

i
).

We then propose a heuristic approach to reconstruct

the deleted text sequence. First, we abstract the prob-

lem into a search problem defined on a graph, where

each node is a N-gram that satisfies h(x ′
i−N+1

, . . . , x ′
i
) >

hdel(x
′
i−N+1

, . . . , x ′
i
). We draw a directed edge from an N-

gram node vi to vj if and only if the last N − 1 words

of vi is the first N − 1 words of vj with the same order.

Then each path in the graph represents a sentence. We

then search to find a Hamiltonian path in the generated

graph. Note that it is possible that the deleted sentence

includes a specific N-gram with multiplicity more than

one. We then allow the “Hamiltonian” path to tolerate

a limited number of repetitive visits to a node. Finally,

we return the shortest traverse path found, i.e., with the

fewest number of repetitions. To implement this attack

we use a recursive algorithm to traverse the nodes of the

graph while we maintain the number of times that the

current path has visited each node.

Experiment details. We perform our attacks on

unigram, bigram, and trigram language models. We

train the language models on the Penn Treebank Cor-

pus [MSM93]. After regular preprocessing, the dataset

includes 42068 text sequences, which includes 971657

words and 10001 unique words. We use two metrics to

evaluate our attacks.

– Success rate: Probability that the adversary recon-

structs a sequence x completely, when x is chosen

at random from S, it is deleted, and then the ad-

versary is able to extract x by first interacting with

h and then with h−x .

– F1 score of the reconstruction: Let the reconstructed

sequence of the adversary Adv be x ′ and the deleted

sequence be x. Let’s treat both of them as unordered

multisets. Then the F1 score of the reconstruction

measures the quality of the reconstruction by bal-

ancing the precision and recall of the prediction,

namely,

F1 =
2

1

Precision
+

1

Recall

=

2|x ∩ x ′ |

(|x | + |x ′ |)
.

which is equal to 1 if and only if x = x ′ (as multi-

sets).

We then repeat the security game for 1000 times

(i.e., each time a random sentence is deleted), and mea-

sure the two metrics on three language models.

Results. We present the experimental result on the

three language models in Table 7. Note that the unigram

language model does not store anything on order, so it

is impossible to reconstruct the full sequence in the cor-

rect order. Our defined reconstruction attack gets 99%

on the bigram and trigram models on the F1 score, and

also successfully reconstruct 97% of the sequence with

correct words and correct order on the trigram model.

Success rate F1 score

unigram \ 93.76%

bigram 62.00% 99.72%

trigram 97.30% 99.90%

Table 7. Reconstruction attack on language models.

Leakage of deletion. Note that without deletion,

even if the adversary can fully reconstruct the N-gram

model, the adversary only has the probability of N-

grams, which is an aggregation over all the N-grams

in the dataset. Although the adversary has those N-

grams, it is still hard to get specific private information

when the dataset is large. However, we show that when

deletion happens, by tracing the changes in the proba-

bilities during the deletion, an adversary can extract the

full deleted sequence (of length longer than N) with high

probability, completely revealing the deleted sequence.


