PoPETs

Proceedings on Privacy Enhancing Technologies ; 2022 (3):415-436

Ji Gao, Sanjam Garg, Mohammad Mahmoody, and Prashant Nalini Vasudevan

Deletion inference, reconstruction, and
compliance in machine (un)learning

Abstract: Privacy attacks on machine learning models
aim to identify the data that is used to train such mod-
els. Such attacks, traditionally, are studied on static
models that are trained once and are accessible by the
adversary. Motivated to meet new legal requirements,
many machine learning methods are recently extended
to support machine unlearning, i.e., updating models as
if certain examples are removed from their training sets,
and meet new legal requirements. However, privacy at-
tacks could potentially become more devastating in this
new setting, since an attacker could now access both the
original model before deletion and the new model after
the deletion. In fact, the very act of deletion might make
the deleted record more vulnerable to privacy attacks.
Inspired by cryptographic definitions and the differen-
tial privacy framework, we formally study privacy im-
plications of machine unlearning. We formalize (various
forms of) deletion inference and deletion reconstruction
attacks, in which the adversary aims to either identify
which record is deleted or to reconstruct (perhaps part
of) the deleted records. We then present successful dele-
tion inference and reconstruction attacks for a variety
of machine learning models and tasks such as classifica-
tion, regression, and language models. Finally, we show
that our attacks would provably be precluded if the
schemes satisfy (variants of) deletion compliance (Garg,
Goldwasser, and Vasudevan, Eurocrypt’20).

Keywords: data leakage, privacy, machine learning, ma-
chine unlearning

DOI 10.56553/popets-2022-0079
Received 2021-11-30; revised 2022-03-15; accepted 2022-03-16.

Ji Gao: University of Virginia, E-mail: jg6ydQvirginia.edu.
Sanjam Garg: University of California, Berkeley and NTT
Research, E-mail: sanjamg@berkeley.edu. .

Mohammad Mahmoody: University of Virginia, E-mail:
mohammad@virginia.edu.

Prashant Nalini Vasudevan: National University of Singa-
pore, E-mail: prashant@comp.nus.edu.sg.

1 Introduction

Machine learning algorithms, in their most basic set-
tings, focus on deriving predictive models with low er-
ror by using a collection of training examples S =
{61, ..
might reveal (sensitive information about) the exam-

.,en}. However, a model hg trained on set S

ples in S, potentially violating the privacy of the in-
dividuals whose contributed those examples. Such ex-
posure, particularly in certain (e.g., medical/political)
contexts could be a major concern. In fact, the ever-
increasing use of machine learning (ML) as a ser-
vice [RGC15] for decision making further heightens
such privacy concerns. Recent legal requirements (e.g.,
the European Union’s GDPR [HvdSB19] or California’s
CCPA [dIT18]) aim to make such privacy considera-
tions mandatory. At the same time, a recent line of
work [VBE18, CN20, NBW*17, GGV20] aims at (math-
ematically) formalizing such privacy considerations and
their enforcement.

The work of Shokri et al. [SSSS17] demonstrated
that natural and even commercialized ML models do,
in fact, leak a lot about their training sets. In par-
ticular, their work initiated the membership inference
framework for studying privacy attacks on ML mod-
els. In such attacks, an adversary with input exam-
ple e and access to an ML model hgs aims to de-
duce if e € S or not. In a bigger picture, mem-
bership inference of [SSSS17] and many follow-up at-
tacks [LBG17, SZH*19, LBW*18, YZCL19, CTCP20,
LZ20, ZBWT*20, SBB*20, JWEG20] as well as model
inversion attacks [FLJ*14, FJR15, WFJIN16, VBE18§]
can all be seen as demonstrating ways to infer or recon-
struct information about the data sets used in the ML
pipeline based on publicly available auxiliary informa-
tion about them [DN03, DSSU17, BBHM16, DSS*15,
SOJH09, HSR*08]. A more recent line of work stud-
ies the related question of “memorization” in machine
learning models set [SRS17, VBE18, CLE*19, Fel20].

On the defense side, differential privacy [DNO3,
DMNS06, Dwo08] provides a framework to provably
limit the information that would leak about the used
training examples. This is done by guaranteeing that
including or not including any individual example will

[®) ev-ne-no |

Deletion inference, reconstruction, and compliance in machine (un)learning = 416

have little statistical impact on the distribution of the
produced ML model. Consequently, any form of in-
teraction with the trained model h (e.g., even a full
disclosure of it) will not reveal too much information
about whether a particular example e was a member
of the data set or not. Despite being a very powerful
privacy guarantee, differential privacy imposes a chal-
lenge on the learning process [SCS13, DTTZ14, BST14,
DBBI18, Shel9, TTZ15] that usually leads to major util-
ity loss when one uses the same amount of training data
compared with non-private training [BST14, BBKIN14].
Hence, it is important to understand the level of privacy
that can be achieved by more efficient methods as well.

Privacy in the presence of data deletion. The
above mentioned attacks are executed in a static set-
ting, in which the model is trained once and then the
adversary tries to extract information about the train-
ing set by interacting with the trained model afterwards.
However, this setting is not realistic when models are
dynamic and get updated. In particular, in light of the
recent attention to the “right to erasure” or the “right to
be forgotten,” also stressed by legal requirements such
as GDPR and CCPA, a new line of work has emerged
with the goal of unlearning or simply deleting examples
from machine learning models [CY15, GGVZ19, GAS19,
GGV20, BCCC*20, ISCZ20, GGHvdM19, NRSM20]. In
this setting, upon a deletion request for an example
e € 8, the trainer needs to update the model hg to
h_e such that h_, (ideally) has the same distribution as
training a model from scratch using S\ {e}. Clearly, if
an ML model gets updated due to a deletion request,
we are no longer dealing with a static ML model.

It might initially seem like a perfect deletion of a
example e from a model hs and releasing h_, instead
should help with preventing leakage about the particu-
lar deleted example e. After all, we are removing e from
the learning process of the model accessible to the ad-
versary. However, the adversary now could potentially
access both models hs and h_., and so it might be able
to extract even more information about the deleted ex-
ample e compared to the setting in which the adversary
could only access hg or h_, alone. As a simplified con-
en)
are real-valued vectors, and suppose the ML model hg

trived example, suppose the examples S = {eq,..

(perhaps upon many queries) somehow reveals the sum-
mation };ep, €;- In this case, if the set S is sampled from
a distribution with sufficient entropy, the trained model
hs might potentially provide a certain degree of privacy
for examples in S. However, if one of the examples e; is
deleted from hg, then because the updated model h_,,

also returns the updated summation 3};.; e¢;, then an
adversary who extracts both of these summations can
reconstruct the deleted record e; completely. In other
words, the very task of deletion might in fact harm the
privacy of the very deleted example ¢;. Hence, in this
work we ask: How vulnerable are ML algorithms to leak
information about the deleted examples, if an adversary
gets to interact with the models both before and after
the deletion updates?

1.1 Our contribution

In this work, we formally study the privacy implica-
tions of machine unlearning. Our approach is inspired by
cryptographic definitions, differential privacy, and dele-
tion compliance framework of [GGV20]. More specifi-
cally, our contribution is two-fold. First, we initiate a
formal study of various attack models in the two cate-
gories of reconstruction and inference attacks. Second,
we present practical, simple, yet effective attacks on a
broad class of machine learning algorithms for classifi-
cation, regression, and text generation that extract in-
formation about the deleted example.

Below, we briefly go over new definitions, the rela-
tion between them, and the ideas behind our attacks. In
what follows, hg is the model trained on the set S, and
h_. is the model after deletion of the example e € S.
When the context is clear, we might simply use & to de-
note hg and hge to denote the model after deletion!. We
assume that the deletion is ideal, in the sense that h_,
is obtained by a fresh retrain on S\ {e}.? The adversary
will have access to hg followed by access to h_,.

Deletion inference. Perhaps the most natural ques-
tion about data leakage in the context of machine un-
learning is whether deletion can be inferred. In mem-
bership inference attack, the job of the adversary is to
infer whether an example e is a member of the used
training set S or not by interacting with the produced
model hg. In this work, we introduce deletion inference
attacks which are, roughly speaking, analogous to mem-
bership inference but in the context where some deletion
is happening. More specifically, our definition does not

1 Using hqe is particularly useful when we want to refer to the
model after deletion, without explicitly revealing the deleted ex-
ample e.

2 We suspect our attacks should have a good success rate on
“approximate” deletion procedures (in which h_. is just close to
the ideal version) as well. We leave such studies for future work.

Deletion inference, reconstruction, and compliance in machine (un)learning = 417

capture whether the deletion is happening or not, and
our goal (in the main default definition) is only to hide
which examples are being deleted. In particular, we for-
malize the goal of a deletion inference adversary to dis-
tinguish between a data example e € S that was deleted
from an ML model hgs and another example ¢’ € S (or
e’ ¢ S) that is not deleted from S. We follow the cryp-
tographic game-based style of security definitions. (See
Definition 3.1 for the formal definition.)

Given examples eq, e1, with the promise that one of
them is deleted and the other is not, one can always re-
duce the goal of a deletion inference adversary to mem-
bership inference by first inferring membership of eg, e;
in the two models h, hge|. However, given that the adver-
sary has access to both of &, hqe, it is reasonable to sus-
pect that much more can be done by a deletion inference
adversary than what can be done through a reduction
to membership inference. In fact, this is exactly what we
show in Section 3.3. We show that when both models
h, hgel can be accessed, relatively simple attacks can be
designed to distinguish the deleted examples from the
other examples by relying on the intuition that a use-
ful model is usually more fit to the training data than
to other data. In Section 3, we show the power of such
attacks on a variety of models and real world data sets
for both regression and classification. In each case, we
both study deletion inference adversaries who know the
full labeled examples eg, 1 (and infer which one of them
are deleted) as well as stronger attackers who only know
the (unlabeled) instances xg, x1.

Deletion reconstruction. The second category of our
attacks focus on reconstructing part or all of the deleted
example e. As anticipated, reconstruction attacks are
stronger (and hence harder to achieve) attacks that can
be used for obtaining deletion inference attacks as well
(see Theorem 4.2). In all of our reconstruction attacks,
the adversary is not given any explicit examples, and its
goal is to extract information about the features of the
deleted instance. We now describe some special cases of
reconstruction attacks that we particularly study.

— Deleted instance reconstruction. Can an ad-
versary fully or approximate find the features of a
deleted instance x (where e = (x,y) is the deleted
example)? We show that for natural data distribu-
tions (both theoretical and real data) the 1-nearest
neighbor classifier can completely reveal the deleted
instance, even if the adversary has only black-box
access to the models before and after deletion. In
particular, we show that when the instances are uni-
formly distributed over {0,1}¢, and the model is the

1-nearest neighbor model, an adversary can extract
virtually all of the features of the deleted instance
(see Section 4.1). We also present attacks on real
data for two major application settings: image clas-
sification and text generation.

— Deleted image reconstruction. We show
similar attacks on l-nearest neighbor over the
Omniglot dataset, where the job of the adver-
sary is to extract visually similar pictures to the
deleted ones (see Section 4.1.2).

— Deleted sentence reconstruction. We then
study deletion reconstruction attacks on lan-
guage models. Here, a language model gets up-
dated to remove an input (e.g., a sentence) e,
and the job of the adversary is to find useful in-
formation about e. We show that for simple lan-
guage models such as bigram or trigram models,
the adversary can extract e completely.

— Deleted label reconstruction. Suppose we deal
with a classification problem. For a deleted exam-
ple (x,y) = e, can an adversary who does not know
the instance x infer any information about the label
of the deleted point? We show that this is indeed
possible with a simple idea when the data set is
not too large. In particular, the deletion of a point
with label ¢ reduces the probability that the new
model outputs label ¢ in general, and using this idea
we give simple yet successful attacks. Now, suppose
the adversary is somehow aware of the instance x
of a deleted example (x,y) = e. Can the adversary
leverage knowing the instance x to learn more infor-
mation about the label y, than each of the models
h, hqel alone provide? We show that doing so is pos-
sible for linear regression. In particular, we show an
attack using which one can extrapolate a deleted
point’s label to a higher precision than what is pro-
vided through the original model & or the model af-
ter deletion hge. (See Section C.1 for more details.)

Weak deletion compliance. The above results all
deal with first defining attack models and then present-
ing attacks within those frameworks. Next, we ask if it
is possible to realize machine learning algorithms with
deletion mechanisms that offer meaningful notions of
privacy for the deleted points. We approach this ques-
tion through the lens of the recent work of Garg et
al. [GGV20] in which they provide a general “deletion
complience” framework that provides strong definitions
of private data deletion. We first give a formal com-
parison between the framework of [GGV20] with our
attack models and show that the deletion compliance

Deletion inference, reconstruction, and compliance in machine (un)learning = 418

framework of [GGV20] indeed captures all of the above-
mentioned attack models. Furthermore, we also present
a weakened variant of the definition of [GGV20] that
is adapted to a setting where the fact that deletion
happened itself is allowed to leak. We believe this is
a natural setting that needs special attention. For ex-
ample, consider a text with redacted parts; this reveals
the fact that deletion has happened, but not necessar-
ily the redacted text. We further weaken the framework
of [GGV20] by only revealing to the adversary what can
be accessed through black-box access to the model and
not the full state of the model. We show that even such
weaker variants of deletion compliance still capture all
of our attacks, and hence is sufficient for positive results.
This means that, as shown by [GGV20], differential pri-
vacy (with strong parameters) can be used to prevent
all attacks of our paper. However, note that enforcing
differential privacy comes with costs in efficiency and
sample complexity. Hence, it remains an interesting di-
rection to find more efficient schemes (both in terms of
running time and sample complexity) that satisfy our
weaker notions of deletion compliance introduced in this
work. See Section 5 for more discussions.

Motivation behind the attacks. At a high level, our
work is relevant in any context in which (1) the users
who provide the data examples care about their privacy
and prefer not to reveal their participation in the data
set S (2) the system aims to provide the deletion oper-
ation, perhaps due to legal requirements. Condition (1)
essentially holds in any scenario in which membership
inference constitutes a legitimate threat. In scenarios
where conditions (1) and (2) hold, if the adversary main-
tains continuous access to the machine learning model
(e.g., when the model is provided as public service) then
all the attacks studied in this paper are relevant to prac-
tice and would model different adversarial power.

Our security games model attacks in which the ad-
versary aims to infer (or reconstruct) deletion of a ran-
dom example from a dataset. Real world adversaries
are stronger in the sense that they could have a specific
target in mind before making their queries to the online
model. Moreover, real world adversaries usually have a
lot of auxiliary information (e.g., as those exploited in
the attacks on privacy on users in the Netflix challenge
[NS06]) while our attackers have a minimal knowledge
about the distribution from which the data is sampled.

Having a diverse set of security games and attacks is
analogous to having many different security games and
notions in cryptography (such as CPA and CCA secu-
rity for encryption) to model different attack scenar-

ios. Informally speaking, and at a very high level, one
can also think of the very strong deletion compliance
of [GGV20] as “UC security” [Can01], while our other
security games/notions model weaker security criteria.

1.2 Related work

Chen et al [CZW*21] study a setting similar to ours.
They show attacks that, given access to two models —
one trained on a dataset S and another on S\ {e} — de-
termine whether a given input e’ is equal to the deleted
item e. This is close to our notion of deletion inference,
though not quite the same. They show that their at-
tacks perform much better than plain membership in-
ference on the first model. Our work differs from that
of [CZW™*21] in the following respects:

1. In addition to deletion inference, we also show var-
ious kinds of reconstruction attacks in a variety of
models with different reconstruction goals.

2. Their attacks are constructed by running sophisti-
cated learning algorithms on the posteriors corre-
sponding to deleted and not deleted samples. While
this results in attacks that work quite well, these at-
tacks have little explanatory power — it is not clear
what enables them, and it is hard to tell what the
best way to prevent them is. Our attacks, on the
other hand, make use of simple statistics of the out-
puts of the models.

3. They show that certain measures like publishing
only the predicted label or using differential privacy
can stop their attacks from working, but this is far
from showing that such measures prevent all pos-
sible attacks. In order to prove security against all
attacks, a formalization of what entails such secu-
rity is necessary. We provide formal definitions of
privacy and formally build a connection to the dele-
tion compliance framework of [GGV20], which, as
corollary, implies that differential privacy can prov-
ably prevent any possible deletion inference attack.
The work of Salem et al [SBB*20] also studies a

related setting. In their case, a model is updated by
the addition of new samples, rather than by deletion,
and they show attacks that partially reconstruct ei-
ther the new sample itself or its label. These attacks
are constructed by training generative models on pos-
teriors of various samples from a shadow model. It is
possible that their attacks can be used when data is
deleted as well. In fact, our attacks can also potentially
be adapted to be applied when the data is added rather
than deleted (but the security game needs to change to

Deletion inference, reconstruction, and compliance in machine (un)learning = 419

formally allow this). They also present a cursory discus-
sion of possible defences against their attacks, suggest-
ing that adding noise to the posteriors or differential
privacy might work. The distinction of our work from
theirs is along the same lines as above — our attacks
are simpler and more transparent, and our formaliza-
tion allows us to identify strategies for provable security
against arbitrary attacks by proving the relation of our
attacks and the deletion compliance of [GGV20]. On the
attack side, our work studies the attack landscape with
much more granularity by studying very specific attacks
that aim to only reconstruct (or infer) the instances, or
their labels, or leverage the knowledge of the instance
to better approximate the labels.

2 Preliminaries

Basic notation. [n] denotes {1,...,n}. X denotes the
instance space, and Y denotes the label space. For re-
gression tasks, Y/ = R is the set of real numbers, and
for classification tasks Y is a finite set where by default
Y ={0,1}. D denotes a distribution over X x Y, and D"
denotes the n-fold product of D. A sample e = (x,y) < D
is called a (labeled) ezample. By D = D’ we denote that
D, D’ are identically distributed. When the data exam-
ples are not necessarily iid sampled, we use S, to denote
a distribution over data sets of size n (one special case
is S, = D") and we use S « S, to denote sampling S
from S,. H € Y% denotes a set of models (aka hypothe-
sis class) mapping X to Y. For example, H could be the
set of all neural nets with a specific architecture and size
or the set of half spaces in dimension d when X = R¢.

Loss, risk, and learning. A loss function €: H X
X xY — R maps an input (4 (x,y)) to R and mea-
sures how bad the prediction of & on x is compared
to the true label y. For classification, we use the 0-1
loss €(h,e) = 1[h(x) # y], where 1 is the Boolean indi-
cator random variable. Learn denotes a (perhaps ran-
domized) learner that maps any (unordered) set of ex-
.,en} to a model h € H. Riskp(h) =
Eecp £(h,e) denotes the population risk of h over a dis-
tribution D. Riskg(h) = E..s €(h,e) denotes the empiri-
cal risk of h over a training set S c (X x Y)*. The Em-
pirical Risk Minimization rule ERM is the learner that

amples S = {eq,..

simply outputs a model that minimizes the empirical
loss ERM(S) = argminy, ¢4; Risks(h).

Deletion. Fix a learner Learn, training set S, and model
h < Learn(S). We use h_, < Delg(h,e) to denote the

“ideal” data deletion procedure [GGVZ19] that outputs
h_e < Learn(S \ {e}) using fresh randomness for Learn if
needed. (Hence, if e ¢ S, then Delg(h,e) simply returns
a fresh retraining on S.) In general, Del needs to know
the training set on which % is trained, or it needs a
data structure that keeps some information about S in
addition to h. Whenever § is clear from the context, we
might simply write h_, « Del(h, e).

3 Deletion inference attacks

In this section, we describe a framework of attacks on
machine unlearning (i.e., machine learning with dele-
tion option) schemes that can infer the deleted exam-
ples. Such attacks are executed by adversaries who first
access the model before deletion followed by having ac-
cess to the model after deletion. In each case, we will
first formally explain our threat model. We also pro-
vide theoretical intuition behind our attacks and report

experimental findings by implementing those attacks.

Threat model. We define a security game that cap-
tures how well an adversary can tell which element is be-
ing deleted from the training set. Note that our (default)
definition is not aiming to hide the fact that something
is being deleted, and the only thing we try to hide is
which element is being deleted. We use a definition that
is inspired by how (CPA or CCA) security of encryption
schemes are defined through indistinguishability-based
security games [GM84, NY90].

Definition 3.1 (Deletion inference). Let Learn be a
learner, Del be a deletion mechanism for Learn, and S,
be a distribution on datasets of size n. The adversary
Adv and the challenger Chal interact as follows.

1. Sampling the data and revealing the chal-
lenges. Chal picks a dataset {z1,...,2,} =S « S,
of size n. Chal picks two indices i # j € [n] at random
and sends eg = z;,e1 = z; to Adv.

2. Oracle access before deletion. Chal trains i «
Learn(S). Adv is then given oracle access to h, and
finally instructs moving to the next step.

3. Random selection and deletion. Chal picks b «
{0,1} at random and lets hqe < Del(h, ep).

4. Oracle access after deletion. The adversary Adv
is now given oracle access (only) to Age.

5. Adversary’s guess. The adversary sends out a bit
b’ to Chal and wins if »" = b.

The scheme (Learn,Del) is called p insecure against
deletion inference for data distribution §,, if there is

Deletion inference, reconstruction, and compliance in machine (un)learning = 420

a PPT adversary Adv whose success probability in the
game above is at least p. (Note that achieving p = 1/2
is trivial.) Now, consider a modified game in which
the adversary is given only the instances (xg,x1) where
eo = (x0.y0).e1 =
stance deletion inference. If an adversary has success

(x1,y1). We call this game the in-

probability at least p in the instance deletion inference
game, then the scheme (Learn,Del) is called p insecure
against instance deletion inference for distribution S,.
Similarly, we define label deletion inference, in which
only the labels (yg,y1) are revealed to the adversary,
and p-insecurity against such attacks accordingly. To
contrast with instance and label deletion inference, we
might use example deletion inference attack to refer to
our default deletion inference attacks. &

Note that winning in an instance or label deletion
inference game is potentially harder than winning the
normal variant (with full examples revealed to the ad-
versary) as the adversary can always ignore the full in-
formation given to it. Hence, showing successful instance
deletion inference attacks is a stronger (negative) result.
We empirically study the power of attacks in all these
attack models.

Other variants of Definition 3.1. Definition 3.1 can
be seen as a weak definition of privacy for deletion infer-
ence. The following list describe variants of Definition
3.1 that are either directly weaker, or our attacks can
be adapted to in a rather straightforward way.

— Two-challenges vs. one challenge. Definition 3.1
includes two challenge examples and asks an adver-
sary to find out which one is the actual deleted one.
An alternative definition would only reveal one ex-
ample to the adversary and asks it to tell if the
example is deleted or not.?

— Deletion-revealing vs. deletion-hiding. Defini-
tion 3.1 does not aim to hide the fact that a deletion
has happened. An alternative definition could even
aim to capture hiding the deletion itself by sampling
the non-deleted example outside the dataset.

— Random vs. chosen challenges. Definition 3.1
asks the adversary to distinguish between a random
pair of challenge examples, one of which is deleted.

3 If one can sample from the set S the two attack models can be
shown to be equivalent using standard hybrid arguments when
the adversary’s success probability is negligible in security pa-
rameter. This is similar to how it is done for CPA /CCA security
games in cryptography.

In a stronger attack model, the adversary is allowed

to choose the challenge examples.

— Auxiliary information. Definition 3.1 does not
explicitly give any extra information about other
examples e, k ¢ {i,j} to the adversary, while a real-
word adversary might have such knowledge.

— Multiple deletions vs. one deletion. Defini-
tion 3.1 does not allow more than one deletion to
happen, while in general users might request mul-
tiple deletions to happen over time. In fact, in Sec-
tion 3.3, we use this variant of the attacks to test our
attacks on large data sets and compare the result
with deletion inference attacks that are obtained by
reduction to membership inference.

In Section 5, we discuss stronger security definitions
that once satisfied would prevent the attack of Defini-
tion 3.1 and all the variants above as special cases of the
Deletion Compliance framework of Gar et al. [GGV20)].
In particular, the definitions of this section (including
Definition 3.1) model weaker security guarantees than
that of Deletion Compliance framework of [GGV20],
which makes our attack results of this section stronger.

Learner’s randomness. The random seeds of the
learners manifest themselves in two ways:

1. Random initialization: Some parameters are gener-
ated from a random distribution.

2. Stochastic optimization: We train deep learning
models using stochastic gradient descent, which
runs with a randomly permutation of the training
dataset in each epoch.

Following the definition of perfect deletion, as desired
in Definitions 3.1 and 4.1, in our experiments we re-
train the models from scratch without fixing the random
seeds. However, We fix all the deterministic and algo-
rithmic aspects, which include model architecture, the
hyperparameters, and the initialization distribution.

Our deletion inference attacks. We propose two
variants of attacks: (1) (example) deletion inference
attack of Del-Inf-Exm which uses both instances and
their true labels, and (2) instance inference attack of
Del-Inf-Ins which only uses the instances, without know-
ing the true labels. (In the next subsection, we also show
how to find the deleted label, which can be seen as a
form of “label reconstruction”and is stronger than label
inference attacks.)

Attack Del-Inf-Exm using labeled examples. Our
example inference attack Del-Inf-Exm is parameterized
by a loss function ¢ and proceeds by first computing
the loss for both examples eg,e1 on both models A, hge.

Deletion inference, reconstruction, and compliance in machine (un)learning == 421

Then, this attack identifies the deleted example by pick-
ing the example that leads to a larger increase in its loss
when we go from & to hge. The intuition behind our at-
tack is that the examples in the dataset are optimized
(to a degree depending on the learning algorithm) to
have small loss, while examples outside the dataset are
not so. Therefore, once an example goes from inside the
dataset to outside, it incurs a larger increase in loss. We
now define the attack formally.

Algorithm 3.2 (Attack Del-Inf-Exm). The attack is
defined with respect to a loss function ¢. For any ex-
ample e, we define the loss increase of e as: 6(e, h, hgel) =
C(hgel, €) — €(h,e). The adversary is given two labeled ex-
amples e¢g = (xg,y0) and e1 = (x1,y1) and also has oracle
access to h followed by access to hge;. The attack pro-
ceeds as follows.
1. Query h on both xg,x7.
2. After getting access to hgel, query hgel on both xg, x1.
3. Compute loss increases 6(eg, h, hge)) and 6(eq, h, hgel),
and let a = 6(eq, h, hge) — 6(e1, h, hge).
4. Output 0 if @ > 0, output 1 if @ < 0, and output a
uniformly random bit »” € {0,1} if @ = 0. o

Connection to label memorization [Fel20] . At
a high level, Del-Inf-Exm can be seen as generaliz-
ing the notion of memorization by Feldman [Fel20]
from the 0-1 loss to general loss functions. More for-
mally, if we use the 0-1 loss, then for e € S, the ex-
pected value Ep,, —Del(h,e) 9(€, h, hgel) would become equal
to mem(Learn,S,e) defined in [Fel20] to measure how
much the learner Learn is memorizing the labels of its
training set. , and Using this intuition, our adversary
picks the example that is most memorized by the model.

The following lemma further formalizes the intu-
ition behind our attack Del-Inf-Exm, so long as the the
learning algorithm is the ERM rule.

Lemma 3.3. Let ERM be the empirical risk minimiza-
tion learning rule using a loss function €. Let h =
ERM(S), h_, < Del(h,e) fore € S, and S_, = S\{e}. Let
0 =0(e,h,h_), and let 6_, = EBp s [6(e’,h,h_c)] be the
expected value of loss increase for examples that remain
in the dataset. Then the following two hold.

1. 6_. <0.

2. 6, 2 —(n-1)-6_, where n = |S|. (In particular, by

Part 1, it also holds that 6, > 0.)

Proof. The first item of the lemma holds simply because
we are using the ERM rule. Namely, h_, minimizes the

empirical loss over S_, = S\ {e}. Therefore:
6-¢ = Risks_, (h-¢) — Risks_, (h) < 0.

Having proved the first part, the second part also
follows due to using the ERM rule. In particular, sup-
pose for sake of contradiction that 6, < —(n — 1) - 6_,,
where n = |S|. Then,

€(h,e)+(n—1)-Risks_ (h) > €(h_¢.e)+(n—1)-Risks_ (h_e).

Then, this implies

Risks(/) = t(h,e) + (n —i) - Risks_,(h)

o t(h_¢,e) + (n—1)-Riskg ,(h_.)
n

= Risks(h_¢).

However, the this contradicts that the ERM rule outputs
h on training set S. O

Proposition 3.3 shows that whenever (1) 6_, =
Eees 0] < 0 and (2) 6(e’,h h_.) for ¢’ € S_. is
concentrated around its mean 6_., then for a ran-
dom e’ € S_., the attack Del-Inf-Exm of Algorithm 3.2
would likely identify the deleted example correctly. Even
though, in general we are not able to prove when these
two conditions hold, our experiments confirm that these
conditions indeed hold in many natural scenarios, lead-
ing to the success of Del-Inf-Exm of Algorithm 3.2.

Attack Del-Inf-Ins using instances only. We now dis-
cuss our attack that does not rely on knowing the true
labels yg,y1. The intuition is that, even if we do not
know the true labels, when an example e is deleted from
the dataset, the change in the predicted label for e is
likely to be more than that of other examples that stay
in the dataset. The reason is that for the remaining ex-
amples, the model is still trying to keep their prediction
close to their correct value, but this optimization is not
done for the deleted example e. Hence, our adversary
would pick the candidate example that leads to larger
change in the output label (not necessarily the loss).
Hence, the attack is more natural to be used for regres-
sion tasks, even though it can also be used for classifi-
cation if one uses the confidence parameters instead of
the final labels.

Algorithm 3.4 (Attack Del-Inf-Ins). The attack is pa-
rameterized by a distance metric dis over Y (e.g., ¥ =R
and dis(yo,y1) = |yo — y1|). The adversary is given two
instances xg,x1, and it has oracle access to h followed
by hgel- The attack then proceeds as follows.
1. Query the models (in the order of accessing them) to
get h(xo), h(x1), hdel(x0), hgel(x1), and let B = |h(xp)—
hgel(x0)| = [h(x1) = hdei(x1)]-

Deletion inference, reconstruction, and compliance in machine (un)learning == 422

2. Return 0 if 8 > 0, return 1 if 8 < 0, and return a
random answer in {0,1} if 8 = 0. o

3.1 Experiments: Deletion inference
attack on regression

Now we apply our attack Del-Inf-Exm (Algorithm 3.2)
and attack Del-Inf-Ins (Algorithm 3.4) on multiple re-
gression models including Linear Regression, Lasso re-
gression, SVM Regressor, Decision Tree Regressor, and
Neural Network Regressor?. D Appendix A includes the
details of the attacked models.

Experiment details. Table 1 includes the details of
all the datasets we used in the deletion inference exper-
iments and also in other experiments later. We use two
regression datasets Boston and Diabetes. For training
the original model i, we use a random subset with 90%
of the dataset. The experiment follows the security game
of Definition 3.1. To ensure the perfect deletion, hge is
obtained by a full re-training with the dataset without
the deleted example. For the attack Del-Inf-Exm, we use
squared loss, which is defined as €(h, (x,y)) = (h(x) — y)?.
Finally, we repeat the security game of Definition 3.1
1000 times and take the average success probability of
the adversaries.

Results. The result is shown in Table 2. In most cases,
our adversary gets more than 90% success probability
in the deletion inference.

3.2 Experiments: Deletion inference
attacks on classification

In this experiment, we apply Del-Inf-Exm and Del-Inf-Ins
on classification tasks. In our experiments, we use dif-
ferent models, including logistic regression, support vec-
tor machine (SVM), Decision tree, random forest, and
multi-layer perceptron (MLP). Due to page limit, de-
tails of the models are included in Appendix A.

Experiment details. We use datasets Iris, Wine,
Breast Cancer, and 1/12MNIST. (The details of the
datasets are shown in Table 1.) Similarly to attacks
on regression, We pick a random 90% fraction of the
dataset to train the model, and we do a full retrain to

4 Implementation of the methods are from the python library
Scikit-learn.

obtain hge|. The difference compared to the case of re-
gression is that the label space YV is now a finite set.
In this experiment, we assume the output of any hy-
pothesis function & € H is a multinomial (confidence)
distribution over Y, and this probability is available
to the adversary. This assumption is realistic as many
machine learning applications have the confidence as
part of the output [RGC15], and this is also the de-
fault setting of many adversarial machine learning re-
searches [SSSS17, LBW*18]5. To formally fit the attack
into the framework of Definition 3.1, we can extend the
set Y to directly include any such multinomial distribu-
tion as the actual output “label”.

For Del-Inf-Exm, we use the negative log likelihood
loss function €(h,(x,y)) = —log(Pr[h(x) = y]). We then
repeat the security game of Definition 3.1 1000 times to
approximate the winning probability.

Results. We present the result of attacks Del-Inf-Exm
and Del-Inf-Ins on three classification datasets in Ta-
ble 3. As anticipated, the success rates Del-Inf-Exm are
noticeably larger than those of Del-Inf-Ins.

3.3 Attacking large models and datasets

In this section, we aim to show that our deletion infer-
ence attacks can be scaled to work with large datasets
and models. We first formally describe how deletion
inference attacks can be obtained through black-box
reductions to membership inference attacks. We then
demonstrate the power of our attacks on datasets of the
same size as those of [SSSS17] and compare the power
of our direct deletion inference to doing reduction to
the membership inference attack of [SSSS17]. We show
that using our method can lead to significantly stronger
results than making a black-box use of membership in-
ference attacks.

3.3.1 How to reduce deletion inference to
membership inference

One can always reduce the task of deletion inference
to the task of membership inference. In particular, if
we had a perfect membership inference oracle, we could
use it to infer whether a given example is deleted or not

5 The model in this scenario is still considered as black-box in
most machine learning adversarial literature, but someone may
argue it is not fully black-box.

Deletion inference, reconstruction, and compliance in machine (un)learning = 423

No. Samples No. Features Label Predict
. Boston [HAR78] 506 14 Real The median house price
Regression - . -
Diabetes [EHJ"04] 442 10 Real Disease progression
Iris [Fis36] 150 4 3 types The type of iris plants
Classification ~ Wine [ACD94] 178 13 3 types Wine cultivator
Breast Cancer [SWM93] 569 30 Binary Benign/malignant tumors
1/12MNIST[LBBH98] 5000 784 10 types Digit between 0 to 9
CIFAR-10 [KH*09] 60000 3072 10 classes Image classification
CIFAR-100 [KH*09] 60000 3072 100 classes Image classification

Table 1. Descriptions of the datasets used in deletion inference.

Boston Diabetes
Learning Method | Del-Inf-Exm Del-Inf-Ins | Del-Inf-Exm Del-Inf-Ins
Linear regression | 99.8% 99.1% 99.8% 99.3%
SVM 93.9% 89.1% 99.2% 100.0%
Lasso regression 98.8% 97.1% 99.3% 98.3%
Decision tree 100.0% 100.0% 100.0% 100.0%
MLP 80.4% 78.3% 72.2% 72.3%

Table 2. Success probabilities of various attacks on regressors for
different datasets.

by calling the membership inference oracle on the two
models h, hye.

Algorithm 3.5 below shows an intuitive way to re-
duce deletion inference (DI) to imperfect membership
inference (MI) in a black-box way. Specifically, suppose
the membership inference adversary M(e,h) — {0,1} re-
turns 1 if (it thinks) e is a member of the dataset that is
used to obtain the model A. Then, if a deletion inference
adversary wants to find out whether e is deleted from
the model & to reach the model hye, it can simply run
M (e, hqe) and output what it outputs. Note that there is
no need to run M(e, h), as the adversary of Definition 3.1
is given the promise that both eg, e; are members of the
initial dataset S. Then the only question is how to com-
bine the answers M(eq, hdel), M (€1, hdel), which Algorithm
3.5 decides in a natural way.

Algorithm 3.5 (From membership to deletion inference)

Given examples eg = (x0,¥0), €1 = (x1,y1) and models

hdel, the reduction from deletion inference to member-
ship inference proceeds as follows:

1. Perform two membership inferences to obtain by =
M(eq, hdel) and by = M(e1, hel)-

2. Return 0 if bg = 0,b1 = 1, return 1 if by = 1,bg = 0,

and return a random bit if by = by. <&

Using confidence probabilities. An alternative re-
duction to Algorithm 3.5 can use the confidence proba-
bilities of M(eq, hgel) and M(e1, hqel) instead of their final

(rounded) values. In this variant, the reduction returns
0 if the confidence difference of M(eq, hgel) — M(eg, h) to
output zero is more than the confidence difference of
M(e1, hgel) — M(e1, h) to output zero.

3.3.2 Experiments with large data, and comparison
with reduction to membership inference
We now evaluate our deletion inference attacks
Del-Inf-Exm and Del-Inf-Ins on large dataset and large
neural networks. In our experiment, we use CIFAR-
10 and CIFAR-100 datasets [KH*09] as the training
dataset, which are standard datasets for the evaluation
of image classifiers, especially for deep learning models.
To better compare the success of our attacks with
[SSSS17] we use a variant attack of Definition 3.1 in
which multiple deletions happen (as explained in one
of the variants following Definition 3.1). One advan-
tage of this experiment setting is that the attack of
[SSSS17] needs to train “attack models” for each vic-
tim model, and hence having multiple different dele-
tions lead to multiple full training of attack models for
[SSSS17] which is very expensive to run. However, in the
multiple-deletion attack setting, one needs to only train
the attack models of [SSSS17] twice to compare each
execution of our attack with a reduction to [SSSS17].

Setting of our attack. The success probability is then
calculated by taking the average over 20 rounds of full
experiment. In each round of experiment, we first train
a deep model with n examples, where n varies from
15,000, 20,000,25,000, and 29,540 (29,540 is picked to
match the scenario of [SSSS17]). We then randomly re-
move a batch of 100 examples in the training dataset,
and train a new model without those 100 examples. As
a reference, we pick another 100 random examples that
remains in the dataset. The success probability is cal-
culated over every pairs (in total, 10,000 pairs) of the

Deletion inference, reconstruction, and compliance in machine (un)learning = 424

Datasets — Iris Wine Breast Cancer 1/12 MNIST
Learning Method | | Del-Inf-Exm Del-Inf-Ins | Del-Inf-Exm Del-Inf-Ins | Del-Inf-Exm Del-Inf-Ins | Del-Inf-Exm Del-Inf-Ins
Logistic Regression | 88.3% 86.8% 80.8% 76.1% 69.1% 60.6% 72.9% 56.6%
Decision Tree 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
SVM 70.5% 60.3% 76.9% 66.7% 73.8% 57.3% 72.3% 62.0%
Random Forest 89.2% 89.1% 83.3% 78.1% 89.2% 85.7% 89.9% 84.5%
MLP 92.9% 55.5% 54.2% 51.1% 83.5% 67.7% 62.5% 59.0%

Table 3. Success probabilities of the attacks

deleted and reference examples, i.e., one deleted exam-
ples and one remaining example is given to the dele-
tion inference adversaries Del-Inf-Exm and Del-Inf-Ins.
We then measure the fraction of all pairs in which our
adversary correctly predicts the deleted example. We
evaluate our results on two deep neural network mod-
els: 1. A convolutional neural network that includes two
convolutional layers (called smallCNN below), similar
to the network used in [SSSS17]. 2. VGG-19 network
(called VGG below) that has 19 layers in total, which is
well-known for its power for image classification tasks.

Baseline settings for comparison. We compare our
attacks with reductions to the membership inference at-
tack in [SSSS17]%, i.e., reduction with label only and
reduction with confidence probabilities.

Results. In Figure 1 and 2, we analyze the success prob-
abilities of our deletion inference adversaries Del-Inf-Exm
and Del-Inf-Ins on smallCNN model and VGG model.
Our attack is able to correctly predict most of the dele-
tions in the deep learning models, even when a batch of
examples is deleted at the same time. Furthermore, note
that for the membership inference attack of [SSSS17] to
work, the adversary needs to have the label of the target
instance and also make many queries to the target model
for training an attack model (or many auxiliary data ex-
amples to train a similar model). On the other hand, our
attack is extremely simple, and Del-Inf-Ins even does not
require the label of the example.

Remark 3.6 (About using reduction to MI as baseline).
Here we comment on the limitations of membership in-

6 We implemented [SSSS17] attack. [SSSS17] reports their
membership inference attack achieves 71% success rate on a
CNN model with two convolutional layers that is trained with
CIFAR-10 dataset with 15,000 random examples. Our imple-
mentation of membership inference attack achieves 74% success
rate on smallCNN model (which also has two convolutional lay-
ers) and 88% success rate on VGG model, which are trained on
a subset of CIFAR-10 dataset with 15,000 random examples.
The success rate matches the number reported in their work.

Del-Inf-Exm and Del-Inf-Ins on classifiers.

ference as a baseline attack, as membership inference
is not tuned to distinguishing between two points (one
of which is guaranteed to be in the training set). In-
deed, membership inference attackers only get only one
instance as input, while our formalization of deletion
inference gets two inputs. However, please note that we
compare our deletion inference attackers to reductions
to membership inference adversaries. The reduction is
allowed to call the MI adversary multiple times. Indeed
our reduction of the previous subsection calls the MI
adversary twice, and this change makes the reduction to
MI (which is a DI adversary itself) powerful enough to
be able to win the DI inference game with probability
close to 1, so long as its (regular) MI oracle wins its
own game with probability close to 1.

4 Deletion reconstruction

Section 3 focused on attacks that infer which of the two
given examples is the deleted one. A more devastating
form of attack aims to reconstruct the deleted example
by querying the two models (before and after deletion).
In this section, we show how to design such stronger at-
tacks. We propose two types of reconstruction attacks
on the deleted example. The first one focuses on re-
constructing the deleted instance, while the second one
focuses on reconstructing the deleted label. Both types
of attacks follow the same security game which is ex-
plained in the definition below.

Definition 4.1 (Deletion reconstruction attacks). Let
Learn be a learning algorithm, Del be a deletion mecha-
nism for Learn, and S,, be a distribution over (X x Y)".
Consider the following game played between the adver-
sary Adv and challenger Chal.

1. Sampling the data and random selection. Chal
picks a dataset {e1...e,} =S « S, of size n. It also
chooses i « [n] at random.

2. Oracle access before deletion. The challenger
Chal trains i « Learn(S). The adversary Adv is then

Deletion inference, reconstruction, and compliance in machine (un)learning = 425

85%
81.13%
> 809 370 78.96%
& 80% |7942% 7637 76.96%
) : 0 75.52%
S 75% 73.84% 73.57%
g 71.44% 71.47%
0
5 70% 72.58% 71.10% 69:53% 68.71%
51 68.97%
= -*DelnfLbl 67.65%
@ 65% }Dill:f‘rlns ?
Reduction label only
60% Reduction with probability
15000 20000 25000 29540
Number of training examples
(a)

100% 94.46Y
. 0,
_95% h 9%02% 9347% 93009
= 90% 88.13%
Z ool 9026
3 85% 83.14% 81.800% 89.12%
o 0 0 78.92%
= 80% 83.08% 81.00% X
g 75% 78.31% 70.67%
U% 70% | -eDelinfLbl 6193
-=Dellnflns .
65% degjctri];nlabel only ?
60% Reduction with probability
15000 20000 25000 29540
Number of training examples
(b)

Fig. 1. Trend of success probabilities of attacks Del-Inf-Exm and Del-Inf-Ins on smallCNN models trained with different number of
examples are shown; (a) uses dataset CIFAR-10 and (b) uses dataset CIFAR-100 dataset. The success probabilities are also compared
with two baseline attacks that are obtained by reductions to the membership inference attack of [SSSS17].

100%
. 95%
= 90.33% 88.500
2 90% .50%
© 87.06%
2 : 86.06% 6391 ? 85.76%
5 85% :
8. E070 83,469 ——— ’ 81.22% .
2 82.24% g gy, 80.38%
g 80% | 81.92% : 60 /7'370/
=1 --DelinfLbl 0 : 0
B 750 | = belinfins 7871% 77.33%
Reduction label only 74.30%
70% Reduction with probability
15000 20000 25000 29540
Number of training examples
(a)

100%

Y
BICD 97250 97.23%
_ '\.—.\95_24%
Z 95% | 96.75% 9 93.66%
-_g 95.76% 94.80% (d
=)
2 90% 90.25% 89.53%
=9
w 85.999 85 800 87.27% 87.10%
8 s S 85.00%
5 85% --DellnfLbl
b -Dellnflns
Reduction label only 83.65%
80% Reduction with probability
15000 20000 25000 29540
Number of training examples
(b)

Fig. 2. Trend of success probabilities of attacks Del-Inf-Exm and Del-Inf-Ins on VGG models trained with different number of examples
are shown; (a) uses dataset CIFAR-10 and (b) uses dataset CIFAR-100 dataset. The success probabilities are also compared with two
baseline attacks that are obtained by reductions to the membership inference attack of [SSSS17].

given oracle access to h. At the end of this step, the
adversary instructs moving to the next step.

3. Deletion. The challenger obtains h_., « Del(%,e;).

4. Oracle access after deletion. The adversary Adv

is now given (only) oracle access to h—,,.

5. Adversary’s guess. Adversary outputs a guess e.
For a similarity metric dis defined on (X xY), the adver-
sary Adv is called a (p, &)-successful deletion reconstruc-
tion attack if it holds that Pr[dis(e,e;) < €] = p. For
bounded dis(-,-) € [0,1] and an adversary Adv, we define
the expected accuracy of Adv as 1 — E[dis(e, e;)]. O

Deleted instance/label reconstruction attacks.
One can use Definition 4.1 to capture attacks in which
the goal of the adversary is to only (perhaps partially)
reconstruct the instance x or the label y. In case of ap-
proximating x, we can use a metric distance dis that

is only defined over X and ignores the labels of ¢ and
e;. We refer to such attacks as deleted instance recon-
struction attacks. Similarly, by using a proper metric
distance defined only over Y, we can use Definition 4.1
to obtain deleted label reconstruction attacks. Finally,
to completely find e (resp. x or y) we use the 0-1 metric
dis(e,e’) = 1[e # €’] (resp. 1[x # x'] or 1[y # y']).

Theorem 4.2 (From reconstruction to inference). Let
Learn be a learning algorithm, Del be a deletion mecha-
nism for Learn, dis be a distance metric over (X X Y),
and S, be a distribution over (X x Y)". Suppose there is
a (p, &)-successful PPT reconstruction adversary against
the scheme (Learn,Del), and Pr[dis(eg,e1) > 2e] > 1 -6
where the probability is over sampling eg,e1 from the

Deletion inference, reconstruction, and compliance in machine (un)learning == 426

sampled dataset S «— S,.7 Then, (Learn,Del) is (p — 6)-
insecure against deletion inference over distribution S,.

Proof of Theorem 4.2. We give a polynomial time re-
duction. In particular, suppose B is a (black-box) ad-
versary that shows the (p,&) insecurity of the scheme
(Learn, Del) against deletion reconstruction attacks. We
design an adversary Adv against deletion inference (as
in Definition 3.1) as follows. Given (eg, e1) as challenges,
first ignore (eg,e1) and using oracle access to models
h, hgel, rTun B to obtain e as approximation of the deleted
example. Output 0 if dis(ep,e) < ¢, else output 1 if
dis(e1,e) < &, otherwise output uniformly in {0,1}.

We now analyze the reduction above. With proba-
bility at least p over the execution of the attack B, it
holds that dis(e, ep) < &, where ¢, is the deleted example.
Also, with probability 1 -4 it holds that dis(eg,e1) > 2¢.
By a union bound, we have that with probability at
least p — § both of the conditions above happen at the
same time, in which case the adversary Adv outputs the
correct answer b. O

Due to the theorem above, all the reconstruction attacks
below can be seen as strengthening of deletion inference
attacks.

4.1 Experiments: Deletion reconstruction
of instances for nearest neighbor

In this experiment, we consider a classification cluster-
ing task in high dimension. The previous work [Fel20,
BBF*21] studied the same setting and showed that ma-
chine learning models sometimes need to memorize their
training set in order to learn with high accuracy. In
this setting, we extend the attacks of [Fel20, BBF*21]
into two directions to obtain deletion reconstruction at-
tacks: (1) we obtain polynomial time attacks that ex-
tract instances rather than proving mutual information
between the model and the examples, (2) we show a set-
ting where the extraction is enabled after the deletion.

Roadmap and the leakage of the deletion. We de-
velop polynomial-time reconstruction attacks that cru-
cially leverage the deletion operation. However, in order
to analyze our attacks, we first limit ourselves to the so-
called singleton setting in which each label appears at
most once for an example in the dataset (Section 4.1.1).

7 For example, when S,, consists of n i.i.d. samples from D,
eo, e1 are simply two independent samples from D.

Focusing on this case allows us to provide theoretical
ideas that support our attacks. However, our attacks in
the singleton case are also able to extract instances even
without deletion. Hence, in the singleton case, our at-
tacks can be seen as leakage of the model # itself, even
without deletion. Note that such attacks can still be used
for deletion reconstruction, they do not reflect the ez-
tra leakage of the deletion operation. Nevertheless, we
next experimentally show (Section 4.1.2) that virtually
the same polynomial-time attacks succeed even when
the labels are not unique on the real world dataset Om-
niglot. In particular, when we have many repeated labels
(perhaps even as neighbor cells), then our simpole at-
tacks do not extract the instances from access to either
of h, hgel, and it is needed to have access to both models
to find the “vanished” Voronoi cell before extracting the
center of the cell.

We now our polynomial-time deletion reconstruc-
tion attack for the case of 1-nearest neighbor models. We
work with instance space X = {0,1}%.8 We also assume
the learner Learn runs a l-nearest neighbor algorithm.
Namely for h = Learn(S) where S = {(x1,¥1) ... (xn, ¥n)},
we have h(x) = y; where j = argmin, dis(x, x;).

We propose the following attack Del-Ins-Rec that
aims to reconstruct the deleted instance x;.

Algorithm 4.3 (Attack Del-Ins-Rec). Suppose the ad-
versary is given oracle access to h followed by oracle
access to hgel, along with an auxiliary set of instances
T, |T| = m. (For example, 7~ could simply be m inde-
pendent samples different from the original training set
8S.) The attack then proceeds as follows:

— For all x € 7 query the model h.

Then for all x € 7, query the model hge.

Create the set of points in the “deleted region”: 7/ =
{x | h(x) # hgei(x),x € T }.

Return the majority for each coordinate; namely,
,b)), where Vi € [d],

return x = (b,. ..

b} = argmax 1[b; = b]. ©

b0} by, ba)eT

Intuition behind the attack. The intuition behind
the attack of Algorithm 4.3 is that instances like x
whose prediction label changes during the deletion pro-
cess should belong to the Voronoi cell centered at x;,
where (x;,y;) is the deleted example. Then the algorithm

8 We use binary features because it is more general and that
other features can also be represented in the form of binary
strings.

Deletion inference, reconstruction, and compliance in machine (un)learning = 427

heuristically assumes that when we pick x at random
conditioned on changed labels, then they give a pseudo-
random distribution inside the Voronoi cell of x;. In the
next section we show that for a natural case called sin-
gletons, in which the labels are unique, this intuition
carries over formally. We then experimentally verify our
attack for the general case (when labels can repeat) on
a real data set.

4.1.1 Theoretical analysis for uniform singletons

In this section, we focus on a theoretically natural case
to analyze the attack of Algorithm 4.3. We refer to
this case as the uniform singletons which is also stud-
ied in [Fel20, BBF*21] and is as follows. First, we as-
sume that instances are uniformly distributed in {0,1}¢,
and secondly, we assume that the labels are unique (i.e.,
without loss of generality, the labels yq,...,y, are just
1,...,n). The following lemma shows that in this case,
the attack of Algorithm 4.3 never converges to wrong

answers for any coordinate of the instances.

Let S
. Xn} where Vi,x; € {0,1}¢, and suppose h(x)

Lemma 4.4 (Non-negative correlations).

{)Cl, .
argmin; dis(x, x;), and we break ties by outputting the

smallest indezx i, if multiple nearest neighbors exist. Sup-
pose C; = {x | h(x) =i} be the Voronoi cell centered at
x;. Let x[j] be the j’th bit of x. Then, for every i € [n]
and every j € [d], we have

N | —

Pr L] =]l =
Proof of Lemma 4.4. Let Cl.j’b ={x € C; | x[j] = b} be
the subset of C; that has b in its j'th coordinate.

We claim that by flipping the j’th bit of every x €
CJ-1=xilil we obtain a vector x’ € C/+*ill. The reason is
as follows. (1) By definition, the j’th bit of x’ is indeed
xi[j]. (2) Tt holds that h(x’) = i, which means x’ € C;.
The reason for (2) is that, by flipping the j’th bit of x,
x’ gets one step closer to x; compared to how far x was
from x;. Therefore, if x; was the nearest neighbor of x,
it would also be the nearest neighbor of x’ as well. A
boundary case occurs if multiple points are the nearest
points of x, but the same tie breaking rule still assigns x;
as the nearest neighbor of x’. Since the mapping from x
to x’ is injective, it also gives an injective mapping from
’Cij’l_x’m) to ‘Cij‘x"m|. This proves that

J>xi[j] J>1-xi[j]
g -1,

which is equivalent to Pryc,[x[j] = x;[j]] = 1/2. |

4.1.2 Deleted image reconstruction for 1-NN

We now show that the simple attack of Algorithm 4.3
can be used to reconstruct visually recognizable im-
ages even when the distribution is not normal and la-
bels are not unique. Hence, we conclude that the ac-
tual power of this attack goes beyond the theoreti-
cal analysis of the previous section. We use the Om-
niglot [LST15] dataset, a symbol classification dataset
specialized for few-shot learning. The dataset includes
handwritten symbols from multiple languages.

Experiment details. We binarize each pixel of the
dataset to remove the noise in gray-scale. The input
space is X = {0,1}¢, where d = 11025 is the number of
pixels. We assume the Omniglot dataset is divided into
two parts: (1) a training subset which contains 140 sym-
bols from 30 different languages. The languages serve
as the class label in the dataset in our experiments,®
and (2) a fixed test set with another 140 examples from
each language which is provided to the adversary as
auxiliary information. The learning algorithm Learn is
the 1-nearest neighbor predictor, which for a dataset S
always returns the label (i.e., the language) of the near-
est example in the dataset h(x’) = argminy{dis(x,x’) |
(x,y) € S}. We use Algorithm 4.3 as the attack, which
simply takes majority on each pixel over the instances
that fall into the disagreement region of the two models
(before and after deletion). We run the security game of
Definition 4.1 with 100 random images from the dataset
as the deleted image.

Comparison with reconstruction attacks without
deletion. As a comparison to further highlight the leak-
age that happens due to the deletion, we also run a sim-
ilar reconstruction attack without deletion. Suppose for
a moment that labels were unique. Then, to reconstruct
instance x, the attacker aims to extract the image x from
the data set with label y, where y is the label of x. To
do that, the reconstruction attacker can run the same
exact attack as our deletion reconstruction, as follows:
it tests all the images in the test dataset on the model
and records every image with label y. The attacker then
generate a reconstruction image by taking the majority
of the images with label y on every pixel.

9 Note that in the original dataset, the labels reflect the charac-
ter, but to demonstrate the leakage of deletion rather than the
mere leakage of datasets alone, we use the labels that represent
the languages to increase the frequency of the labels.

Deletion inference, reconstruction, and compliance in machine (un)learning = 428

-
D
r
-

W
Ny
et
&
O D
+
0
W

1 '

22T X @507 70N |4«
30413 IX|0 3N VITIO[NH
1 |

2(A o | =LA |23
3A o | M I>~|LI|Z |k |u|v |3

Fig. 3. 33 reconstruction examples on Omniglot dataset. In the
figure, Row 1 is the result from the attack without deletion, Row
2 is the result from the deletion reconstruction attack, and Row 3
is the deleted example, which is the target of the attack.

When the labels are unique, this reconstruction at-
tack can reconstruct the instances used by a 1-NN just
like how our deletion reconstruction attack does and
succeeds. However, in our case labels are not unique.
Hence, we use this attack as the baseline to show how
much our deletion inference attack is in fact extracting
information that is the result of the deletion operation.

The result of our deletion reconstruction and
the baseline (non-deletion) reconstruction attacks are
shown in Figure 3. Our deletion reconstruction algo-
rithm reconstructs 40 out of 100 images, due to page
limit, 33 of them is shown in Figure 3. As is clear
from the pictures, the non-deletion reconstruction at-
tack gives no meaningful result in our setting. More
concretely, for 35 of the 40 images the label of the dele-
tion reconstruction attack obtains the the correct label
when fed back into the nearest neighbor classifier, while
only 1 of the images generated by the attack without
deletion obtains the correct label.

5 Weak deletion compliance

In Sections 3 and 4, we studied attacks on data pri-
vacy under data deletion. The definitions of those sec-
tions provide weak guarantees on what adversary cannot
do, hence they are suitable for stronger negative results.
In this section, we investigate the other side; namely,
positive results that can prevent attacks of Sections 3
and 4 and provide strong guarantees about what ad-
versary can(not) learn about the data that is being up-

dated through deletion requests. In particular, we ob-
serve that the deletion compliance definition of Garg,
Goldwasser and Vasudevan [GGV20] would prevent at-
tacks of Sections 3 and 4. More precisely, we show that
even a weaker variant of the [GGV20] definition would
prevent the attacks of Sections 3 and 4.

Components of deletion compliance definition.
The “deletion compliance” framework of Garg, Gold-
wasser and Vasudevan [GGV20] provides an intuitive
way of capturing data deletion guarantees in general
systems that collect and process data. This framework
models the world by three interacting parties — the data
collector DatCol, the deletion-requester DelReq, and the
environment, Env. All components are the same as those
of [GGV20], however, we will work with a modified
DelReq and a different indistinguishability guarantee.

— Data collector (learner) DatCol represents the algo-
rithm that collects the records (training examples)
and processes data according to a (learning) mecha-
nism. For example DelReq might accept up to n data
storage requests and up to k data deletion requests.

— Deletion requester (user) DelReq is a special honest
user who only stores two particular examples eq, 1
and will delete one of them later. The timing of such
requests are stated below. In the original [GGV20],
the deletion requester just stores one record e and
delete it, or that it might never store e in the first
place. At a high level, their DelReq is designed so
that one can define privacy that even hides the dele-
tion itself, while our variant is designed for a weaker
definition that does not hide the deletion itself.

— Environment (adversary) Env models the “rest of
users” who might not be honest and who are inter-
ested in finding out what DelReq is deleting. The in-
teraction between Env and DatCol, DelReq is defined
by the interfaces of DatCol, DelReq.

Interaction of the components. We let U model a
universe of records. For example, U = Supp(D) for a
distribution over labeled examples X X Y. We now de-
scribe the restrictions on how the components interact
with each other. Other than the below-mentioned re-
strictions, the parties run in PPT.

— DatCol accepts instructions Add(e), Del(e), Eval(x).
The interpretation of these instructions are as fol-
lows. Add(e) adds the record e € U to the set of
records stored at DatCol. Del(e) removes e from the
set stored by the data collector, and Eval(x) returns

Deletion inference, reconstruction, and compliance in machine (un)learning == 429

the evaluation of the “current model” stored by
DatCol (which is the result of learning over the set
stored at DatCol) on x and returns the answer.

— As in [GGV20], we also require that only Env can
send messages to DelReq. At some point in the ex-
ecution of the system Env sends DelReq the follow-
ing messages, which is followed by messages from
DelReq to DatCol as described below.

1. (Add,ep,e1): DelReq sends Add(ep),Add(e;) to
DatCol.

2. Del: DelReq will send Del(e) to DatCol where e €
{eo, e1}. By DelReq;, we refer to the instantiation
of DelReq that sends Del(ep) to DatCol.

Weak deletion compliance. For our purposes, we
consider a different weaker definition (compared to that
of [GGV20]) that still captures all attacks of Section 3
and 4. To start, we define two worlds, World 0 and
World 1, corresponding to the instantiation of DelReq
by DelReqq and DelReq;.

Definition 5.1 (Weak deletion compliance). Let the
interactive algorithms DatCol, Env, DelReq be, in order,
the data collector, the environment, and the deletion
requester (interactive) algorithms limited to interact as
described above. We call DatCol & deletion compliant,
if no PPT Env can detect whether it is in World 0
(with DelReqq) or World 1 (with DelReq;) with advan-
tage more than ¢. If this holds under the restriction that
Env makes at most (k — 1) deletion requests during the
execution, then DatCol is said to be e-weak deletion-
compliant for up to k deletions <&

Comparison with [GGV20]. The key differences be-
tween our Definition 5.1 and that of [GGV20] are as
follows. In each case, we state the property of our defi-
nition in contrast to that of [GGV20].

— Hiding the state of DatCol from adversary. The
definition of [GGV20] focuses on scenarios where
the data collector’s state might be revealed at some
point in the future (e.g., due to a subpoena). How-
ever, in this work we focus on hiding the information
that is leaked from the data collector (about deleted
record) through interaction with the adversary.

— Not aiming to hide the deletion itself. Whereas
plain deletion-compliance asks that deletion make
the world look as though the deleted data were
never present in the first place, here we only ask
that it not be revealed which record was deleted.

For instance, a data collector that is weak deletion-
compliant might still reveal the number of dele-
tions it has processed, as long as the data that is
deleted is not revealed. While weaker than deletion-
compliance definition of [GGV20], our notion is fit
for hiding the deleted record among the records in
the training set, and still giving a more general and
stronger definition than Definition 3.1.

We now formally discuss why Definition 5.1 cap-
tures the attacks of Section 3 and 4. Recall that Def-
inition 3.1 was already shown in Theorem 4.2 to be a
stronger notion than instance and label reconstruction
attacks (Definition 4.1). Hence, we just need to show
that Definition 5.1 is stronger than Definition 3.1.

Theorem 5.2 (Deletion inference from compliance).
Let Learn be a learner, Del be a deletion mechanism
for Learn, D be a distribution over labeled examples,
and U = Supp(D) be the universe of records. The data
collector DatCol answers queries as follows.

1. DatCol does not respond any Del or Eval queries till
recetving n Add(-) queries, which we refer to as S.
DatCol permutes S and gets h « Learn(S).

Then it answers Eval(e) = h(e) queries arbitrarily.

Then it accepts one Del(e), and lets h_, = Del(h,e).
Then it continues answering Eval(e) = h(e) queries.
If DatCol s (2e — 1)-deletion compliant (as in Defini-
tion 5.1) against PPT adversaries with oracle access to

Guds o e

D, then the scheme (Learn,Del) is e-secure against dele-
tion inference (as in Definition 3.1).

Proof of Theorem 5.2. We give a proof by reduction.
Suppose Adv breaks the membership inference security
game of Definition 3.1 with probability (1+¢)/2. We con-
struct an environment Env that e-distinguishes DelReq
from DelReq, with advantage & that proceeds as follows:

1. Env plays the role of the challenger from Defini-
Lent =8« S,
of size n. Env passes this to the DatCol and picks

tion 3.1 and picks a data set {e,..

i # j € [n] at random as the challenge records.

2. Next, Env instantiates Adv and provides it with
the records e;,e; and oracle access to h (through
DatCol). At the end of this step, the adversary in-
structs moving to the next step.

3. Env passes (e;,¢j) to DelReq (which will then request
the deletion of one of the two records).

4. Env actives the Adv again and it is again provided
oracle access to h (through DatCol). At the end of
this step, the adversary’s output is included in the
output of the environment.

Deletion inference, reconstruction, and compliance in machine (un)learning = 430

Real World: Ideal World:
———- ———
Environment Environment
——- ——-
Data l Data l
Collector Collector
e
- Deletion o Deletion
delete e Requester (no communication) Requester
Fig. 4. The real and ideal worlds for (strong) deletion compliance
World 0: World 1:
———- ——-
Environment Environment
A—- A———-
Data l Data l
Collector Collector
€0, €1 €0,€1
Deletion Deletion
delete ¢, Requester delete e, Requester

Fig. 5. The worlds for weak deletion-compliance

The view of the adversary Adv in the above experiment
is identical to its view as part of Definition 3.1. Thus,
the output of Adv will correctly (with probability greater
than €) identify whether DelReq requests the deletion of
record e; or record e;. This allows us to conclude that the
view of the Env changes depending of whether DelReq
requests deletion of ¢; or e;. o

Using the same three components described in Section 5
(with a different DelReq), [GGV20] defines the notion of
deletion-compliance. Here the ideal world is the same
as the real world in all respects except that DelReq
is not allowed to communicate with DatCol as repre-
sented in Fig. 4. (The restriction of DelReq not being
able to send messages to Env was imposed in order for
this ideal world to be well-defined, by excluding cases
where Env sends to DatCol messages that depend non-
trivially on DelReq’s records.) [GGV20] calls DatCol to
be e-deletion-compliant if, for any Env and DelReq, the
joint distributions of the state of DatCol and view of Env
in the real and ideal world are e-close in the statistical
distance, denoted by notation =~.. That is,

ideal

real real) ~g (stateD , Viewigeal)'

(state)™,view

The above (strong) definition from [GGV20] captures
the intuition that a system is deletion-compliant if the

state of the world after its deleting a record is similar
to what it would have been if the record had never been
part of the system in the first place. Note that this re-
quirement of e-closeness in statistical distance is more
relaxed than the kind of closeness of distributions re-
quired by differential privacy, and so DP can be used
to satisfy these requirements. [GGV20] showed how to
obtain their strong deletion compliance based on differ-
entially private mechanisms.

To contrast with Figure 4, in Figure 5 we have de-
picted the more symmetric worlds that are behind our
Definition 5.1. In particular, Definition 5.1 requires that
no PPT Env can distinguish between World 0 and World
1 of Figure 5 by more than advantage .

Acknowledgements

Ji Gao and Mohammad Mahmoody were supported
by NSF grants CCF-1910681and CNS-1936799. Sanjam
Garg was supported in part by DARPA under Agree-
ment No. HR00112020026, AFOSR Award FA9550-19-
1-0200, NSF CNS Award 1936826, and research grants
by the Sloan Foundation, and Visa Inc. Any opinions,
findings and conclusions or recommendations expressed

Deletion inference, reconstruction, and compliance in machine (un)learning === 431

in this material are those of the author(s) and do not

necessarily reflect the views of the United States Gov-

ernment or DARPA. Prashant Nalini Vasudevan was

supported by funds from an NUS Presidential Young

Professorship. Part of this work was done while he was

a postdoctoral researcher at UC Berkeley supported by

Sanjam Garg’s mentioned funds and the UC Berkeley

Center for Long-Term Cybersecurity.

References

[ACD94]

[BBF*21]

[BBHM16]

[BBKN14]

[BCCC*20]

[BST14]

[Can01]

[CLE*19]

[CN20]

Stefan Aeberhard, Danny Coomans, and Olivier

De Vel. Comparative analysis of statistical pattern
recognition methods in high dimensional settings.
Pattern Recognition, 27(8):1065-1077, 1994.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam
Smith, and Kunal Talwar. When is memorization of
irrelevant training data necessary for high-accuracy
learning? In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing,
pages 123-132, 2021.

Michael Backes, Pascal Berrang, Mathias Humbert,
and Praveen Manoharan. Membership privacy

in microrna-based studies. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 319-330, Vienna,
2016. ACM.

Amos Beimel, Hai Brenner, Shiva Prasad Ka-
siviswanathan, and Kobbi Nissim. Bounds on the
sample complexity for private learning and private
data release. Machine learning, 94(3):401-437,
2014.

Lucas Bourtoule, Varun Chandrasekaran, Christo-
pher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Pa-
pernot. Machine unlearning, 2020.

Raef Bassily, Adam Smith, and Abhradeep
Thakurta. Private empirical risk minimization: Ef-
ficient algorithms and tight error bounds. In 2014
IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 464—473, Philadelphia,
2014. IEEE, IEEE.

Ran Canetti. Universally composable security: A
new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer
Science, pages 136—145, Las Vegas, NV, USA,
October 14-17, 2001. IEEE Computer Society
Press.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson,
Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in
neural networks. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 267—284, Santa
Clara, 2019. USENIX Symposium.

Aloni Cohen and Kobbi Nissim. Towards for-
malizing the gdpr’s notion of singling out. Pro-

[Con09]

[CTCP20]

[CY15]

[CZW*21]

[DBB18]

[dIT18]

[DMNS06]

[DNO3]

[DSS*15]

[DSSU17]

[DTTZ14]

[Dwo08]

ceedings of the National Academy of Sciences,
117(15):8344-8352, 2020.

International Warfarin Pharmacogenetics Consor-
tium. Estimation of the warfarin dose with clinical
and pharmacogenetic data. New England Journal
of Medicine, 360(8):753-764, 2009.

Christopher A Choquette Choo, Florian Tramer,
Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks, 2020.

Yinzhi Cao and Junfeng Yang. Towards making
systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, pages
463—-480, San Jose, 2015. IEEE, IEEE.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael
Backes, Mathias Humbert, and Yang Zhang. When
machine unlearning jeopardizes privacy. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages
896-911, 2021.

Ashish Dandekar, Debabrota Basu, and Stéphane
Bressan. Differential privacy for regularised lin-
ear regression. In International Conference on
Database and Expert Systems Applications, pages
483-491, Regensburg, 2018. Springer, Springer.
Lydia de la Torre. A guide to the California con-
sumer privacy act of 2018. Available at SSRN
3275571, 2018.

Cynthia Dwork, Frank McSherry, Kobbi Nissim,
and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Shai Halevi and Tal
Rabin, editors, TCC 2006: 3rd Theory of Cryptog-
raphy Conference, volume 3876 of Lecture Notes
in Computer Science, pages 265—-284, New York,
NY, USA, March 4-7, 2006. Springer, Heidelberg,
Germany.

Irit Dinur and Kobbi Nissim. Revealing informa-
tion while preserving privacy. In Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems,
pages 202-210, 2003.

Cynthia Dwork, Adam Smith, Thomas Steinke,
Jonathan Ullman, and Salil Vadhan. Robust trace-
ability from trace amounts. In 2015 IEEE 56th
Annual Symposium on Foundations of Computer
Science, pages 650-669. |IEEE, IEEE, 2015.
Cynthia Dwork, Adam Smith, Thomas Steinke, and
Jonathan Ullman. Exposed! a survey of attacks on
private data. Annual Review of Statistics and Its
Application, 4:61-84, 2017.

Cynthia Dwork, Kunal Talwar, Abhradeep
Thakurta, and Li Zhang. Analyze gauss: optimal
bounds for privacy-preserving principal component
analysis. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages
11-20, 2014.

Cynthia Dwork. Differential privacy: A survey of
results. In International conference on theory and
applications of models of computation, pages 1-19.
Springer, 2008.

[EHJ*04]

[Fel20]

[Fis36]

[FJR15]

[FLI*14]

[GAS19]

[GGHvdM19]

[GGV20]

[GGVZ19]

[GM84]

[HAR78]

[HSR*08]

Deletion inference, reconstruction, and compliance in machine (un)learning = 432

Bradley Efron, Trevor Hastie, lain Johnstone,
Robert Tibshirani, et al. Least angle regression.
The Annals of statistics, 32(2):407-499, 2004.
Vitaly Feldman. Does learning require memoriza-
tion? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 954—959, 2020.
Ronald A Fisher. The use of multiple measure-
ments in taxonomic problems. Annals of eugenics,
7(2):179-188, 1936.

Matt Fredrikson, Somesh Jha, and Thomas Risten-
part. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages
1322-1333, 2015.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Si-
mon Lin, David Page, and Thomas Ristenpart.
Privacy in pharmacogenetics: An end-to-end case
study of personalized warfarin dosing. In 23rd
USENIX Security Symposium (USENIX Security
14), pages 17-32, 2014.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. Eternal sunshine of the spotless net: Se-
lective forgetting in deep neural networks. arXiv
preprint arXiv:1911.04933, 2019.

Chuan Guo, Tom Goldstein, Awni Hannun, and
Laurens van der Maaten. Certified data removal
from machine learning models.
arXiv:1911.03030, 2019.
Sanjam Garg, Shafi Goldwasser, and

Prashant Nalini Vasudevan. Formalizing data dele-

arXiv preprint

tion in the context of the right to be forgotten. In
Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12106 of Lecture Notes in Computer Sci-
ence, pages 373—-402. Springer, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant,
and James Y Zou. Making ai forget you: Data
deletion in machine learning. In Advances in Neural
Information Processing Systems, pages 3513-3526,
2019.

Shafi Goldwasser and Silvio Micali. Probabilis-
tic encryption. Journal of computer and system
sciences, 28(2):270-299, 1984.

DAVID HARRISON. Hedonic housing prices and
the demand for clean air. JOURNAL OF ENVI-
RONMENTAL ECONOMICS AND MANAGE-
MENT, 5:81-102, 1978.

Nils Homer, Szabolcs Szelinger, Margot Redman,
David Duggan, Waibhav Tembe, Jill Muehling,
John V Pearson, Dietrich A Stephan, Stanley F
Nelson, and David W Craig. Resolving individuals
contributing trace amounts of dna to highly com-
plex mixtures using high-density snp genotyping
microarrays. PLoS Genet, 4(8):e1000167, 2008.

[HvdSB19]

[1ISCZ20]

[JWEG20]

[KH*09]

[LBBHOS]

[LBG17]

[LBW*18]

[LST15]

[LZ20]

[MSMO3]

[NBW*17]

[NRSM20]

[NS06]

[NY90]

[RGC15]

Chris Jay Hoofnagle, Bart van der Sloot, and Fred-
erik Zuiderveen Borgesius. The european union
general data protection regulation: what it is and
what it means. Information & Communications
Technology Law, 28(1):65-98, 2019.

Zachary lzzo, Mary Anne Smart, Kamalika Chaud-
huri, and James Zou. Approximate data deletion
from machine learning models: Algorithms and
evaluations. arXiv preprint arXiv:2002.10077, 2020.
Bargav Jayaraman, Lingxiao Wang, David Evans,
and Quanquan Gu. Revisiting membership infer-
ence under realistic assumptions. arXiv preprint
arXiv:2005.10881, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.
Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

Yunhui Long, Vincent Bindschaedler, and Carl A
Gunter. Towards measuring membership privacy.
arXiv preprint arXiv:1712.09136, 2017.

Yunhui Long, Vincent Bindschaedler, Lei Wang,
Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl A
Gunter, and Kai Chen. Understanding membership
inferences on well-generalized learning models.
arXiv preprint arXiv:1802.04889, 2018.

Brenden M Lake, Ruslan Salakhutdinov, and
Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction.
Science, 350(6266):1332-1338, 2015.

Zheng Li and Yang Zhang. Label-leaks: Member-
ship inference attack with label, 2020.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. 1993.

Kobbi Nissim, Aaron Bembenek, Alexandra Wood,
Mark Bun, Marco Gaboardi, Urs Gasser, David R
O’Brien, Thomas Steinke, and Salil Vadhan. Bridg-
ing the gap between computer science and legal
approaches to privacy. Harv. JL & Tech., 31:687,
2017.

Seth Neel, Aaron Roth, and Saeed Sharifi-
Malvajerdi. Descent-to-delete: Gradient-based
methods for machine unlearning. arXiv preprint
arXiv:2007.02923, 2020.

Arvind Narayanan and Vitaly Shmatikov. How to
break anonymity of the netflix prize dataset. arXiv
preprint ¢s/0610105, 2006.

Moni Naor and Moti Yung. Public-key cryptosys-
tems provably secure against chosen ciphertext
attacks. In Proceedings of the twenty-second an-
nual ACM symposium on Theory of computing,
pages 427-437, 1990.

Mauro Ribeiro, Katarina Grolinger, and Miriam

A M Capretz. Mlaas Machine learning as a ser-
vice. In 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA),
pages 896-902. IEEE, 2015.

[SBB*20]

[SCS13]

[Shel9]

[SKS*06]

[SOJHO9]

[SRS17]

[SSSS17]

[SWMO3]

[SZH*19]

[TTZ15]

[VBE18]

[WFJN16]

Deletion inference, reconstruction, and compliance in machine (un)learning == 433

Ahmed Salem, Apratim Bhattacharya, Michael
Backes, Mario Fritz, and Yang Zhang. Updates-
leak: Data set inference and reconstruction attacks
in online learning. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 1291-1308,
2020.

Shuang Song, Kamalika Chaudhuri, and Anand D
Sarwate. Stochastic gradient descent with dif-
ferentially private updates. In 2013 IEEE Global
Conference on Signal and Information Processing,
pages 245-248. IEEE, 2013.

Or Sheffet. Old techniques in differentially private
linear regression. In Algorithmic Learning Theory,
pages 789-827, 2019.

Todd E Scheetz, Kwang-Youn A Kim, Ruth E
Swiderski, Alisdair R Philp, Terry A Braun, Kevin L
Knudtson, Anne M Dorrance, Gerald F DiBona,
Jian Huang, Thomas L Casavant, et al. Regulation
of gene expression in the mammalian eye and its
relevance to eye disease. Proceedings of the Na-
tional Academy of Sciences, 103(39):14429-14434,
2006.

Sriram Sankararaman, Guillaume Obozinski,
Michael | Jordan, and Eran Halperin. Genomic
privacy and limits of individual detection in a pool.
Nature genetics, 41(9):965-967, 2009.

Congzheng Song, Thomas Ristenpart, and Vitaly
Shmatikov. Machine learning models that remem-
ber too much. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Commu-
nications Security, pages 587—601, Dallas, 2017.
ACM.

Reza Shokri, Marco Stronati, Congzheng Song, and
Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), pages
3-18, San Jose, 2017. IEEE, IEEE.

W Nick Street, William H Wolberg, and Olvi L
Mangasarian. Nuclear feature extraction for breast
tumor diagnosis. In Biomedical image processing
and biomedical visualization, volume 1905, pages
861-870. International Society for Optics and Pho-
tonics, 1993.

Ahmed Salem, Yang Zhang, Mathias Humbert,
Mario Fritz, and Michael Backes. Ml-leaks: Model
and data independent membership inference at-
tacks and defenses on machine learning models. In
Network and Distributed Systems Security Sympo-
sium 2019. Internet Society, 2019.

Kunal Talwar, Abhradeep Guha Thakurta, and

In Ad-
vances in Neural Information Processing Systems,
pages 3025-3033, 2015.

Michael Veale, Reuben Binns, and Lilian Edwards.
Algorithms that remember: Model inversion attacks
and data protection law. CoRR, abs/1807.04644,
2018.

Xi Wu, Matthew Fredrikson, Somesh Jha, and Jef-
frey F Naughton. A methodology for formalizing
In 2016 IEEE 29th Com-

Li Zhang. Nearly optimal private lasso.

model-inversion attacks.

[YGFJ18]

[YZCL19]

[ZBWT*20]

A

puter Security Foundations Symposium (CSF),
pages 355-370, Lisbon, 2016. IEEE, IEEE.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson,
and Somesh Jha. Privacy risk in machine learning
Analyzing the connection to overfitting. In 2018
IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pages 268-282, Oxford, 2018. IEEE,
IEEE.

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and
Zhenkai Liang. Neural network inversion in adver-
sarial setting via background knowledge alignment.
In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security,
pages 225-240, London, 2019. ACM.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti
Tople, Victor Riihle, Andrew Paverd, Olge Ohri-
menko, Boris Képf, and Marc Brockschmidt. An-
alyzing information leakage of updates to natural
language models. In ACM Conference on Computer
and Communication Security (CCS). ACM, ACM,
November 2020.

Hyperparameters of models

Here we describe the hyperparameters of the models

used in the experiments of our paper.

MLP: We use multiple layer perceptron with two
hidden layers. For regression, we set the size of hid-
den layers as (20,2), and for classification, we set
the size of hidden layers as (20,10). The reason be-
hind is that the output layer of classification tasks
have more neurons. We use LBFGS as the optimiza-
tion algorithm to train the model, and we train 200
epochs on each model.

SVM: We use the default SVMClassifier and SVM-
Regressor in Scikit-learn. Specifically, we use the
RBF kernel with C = 1.0.

Decision tree: For the decision tree model, we
use the default DecisionTreeClassifier and Decision-
TreeRegressor in Scikit-learn. Specifically, we use
Gini impurity to split the leafs and do not set a
limit on the tree size.

Random forest: We use the default Random-
ForestClassifier in Scikit-learn, which generates 10
trees in the forest. For each tree, its hyperparameter
is the same with the decision tree classifier above.
Logistic regression and Linear regression: We
use the default LinearRegression and LogsticRegres-
sion from Scikit-learn.

Lasso regression: We set @ = 0.1 in lasso regressor.

Deletion inference, reconstruction, and compliance in machine (un)learning = 434

B Comparison with reduction to
the MI attack of [YGFJ18]

Additionally, here we compare our direct deletion in-
ference attack Del-Inf-Exm with a reduction (as stated
in Algorithm 3.5) to membership inference attacks of
Yeom et al. [YGFJ18]. The membership inference ad-
versary of Yeom et al. [YGFJ18] works with a threshold
value that is chosen to be the average of losses over all
the training examples as an auxiliary information. This
threshold can be estimated by the adversary from extra
examples sampled from the distribution. The adversary
predicts an example to be a member of the model if the
loss of that example is smaller than the average train-
ing loss. We use the original code, models, and data
released by [YGFJ18]. Specifically, we use two datasets
IWPC (International Warfarin Pharmacogenetics Con-
sortium) [Con09] and Eyedata [SKS*06] from [YGFJ18].
The statistics of the datasets are summarized in Table 1.
Regarding the hyperparameters, we report the success
probability of both attacks on the model with best per-
formance without attack, which is selected via cross val-
idation. The experiment’s results are shown in Table 4.

Our simple adversary algorithms achieve around
90% success probability in almost all cases, in both set-
tings of comparing with samples in the training set (in-
side 8) or comparing with samples outside the training
dataset (outside S). In most cases, the success in fact
close to 100%. Clearly, with the access of both versions
of models, there exists an obvious privacy leak that can
be easily exploited by naive adversaries.

Reduction to Mem. Inf. Del-Inf-Exm
Eyedata 64.80% 97.54%
IWPC 68.83% 95.98%

Table 4. Comparing the success probabilities of our attack
Del-Inf-Exm and an alternative attack based on reduction to the
membership inference attack of Yeom et al. [YGFJ18].

C Deleted label reconstruction

We now show that when the dataset is small, the label y
for the deleted example e = (x,y) might completely leak
through a black-box access to the models before and
after the deletion. Note that when y is binary, there is

little difference between label inference and reconstruc-
tion, but our attacks work even when the labels are not
binary, hence it is suitable to call them label reconstruc-
tion attacks as defined in Definition 4.1.

We propose the following attack Del-Lbl-Rec to re-
construct the deleted label.

Algorithm C.1 (Attack Del-Lbl-Rec). Given models &
and hge, @ number n € N, the label inference attacker
Del-Lbl-Rec proceeds as follows:

1. Randomly pick m random samples 7

{xl,x2, ..
2. For all i € [m], query h to obtain y; = h(x;).

.»Xm} in the data range X.

3. For all i € [m], query hgel to obtain y = hgel(x;).
4. Return argmin,.cy X2 (Pr[§] = c] = Pr[y; = c]). ©

The intuition is that for natural models (e.g., ERM

rule), removing one example of a specific class will tend
to move the prediction towards other classes, i.e., the
expectation of predictions to that specific label is likely
to decrease. In other words, if the attack above fails, it
means that adding this deleted sample back to the train-
ing set will let the model tend to predict other classes,
which is an unlikely scenario. Our experiments confirm
that this attack intuition succeeds.
Experiment details. We test the attack on three clas-
sic classification datasets, including the Iris Dataset
[Fis36], the Wine Recognition dataset [ACD94], and the
Breast Cancer Wisconsin Diagnosis dataset [SWM93].
The label is among a discrete set Y. The learning algo-
rithms are the logistic regression model and K-Nearest
Neighbor model. The experiment result is presented in
Table 5. The success probability of the attack is higher
than 90% on the Iris and Wine datasets, and is higher
than 75% on Breast Cancer dataset.

Iris Wine Breast Cancer
Logistic Regression 92.90% 97.30% 86.60%
K Nearest Neighbor 93.70% 90.10% 77.80%

Table 5. Results of our deleted label reconstruction attacks

C.1 Known-instance label reconstruction

In this section, we study attacks in which the adversary
knows the instance x of the deleted record e = (x,y) and
wishes to approximate the true label y by querying the
models i and hgel. The goal is to beat the correctness

Deletion inference, reconstruction, and compliance in machine (un)learning == 435

of both models for true label y. This means that, in
case the two models were supposed to hide the label
(perhaps if it was a sensitive information to know very
precisely) the data removal process, in this case, clearly
goes against the goal of hiding y in its exact form.

Definition C.2 (Known-instance label reconstruction).

This definition is identical to Definition 4.1 with the
only difference that the adversary is now given x; (but
not y;) in Step 2 of the attack. o

Even though one can define the success criteria of the
attackers of Definition C.2 the same way as those of Def-
inition 4.1, such attacks are only interesting if they can
beat the precision of the answers provided by the two
models A, hgel, as anyone (including the adversary) could
query those models on the point x;, once x; is revealed.
Our experiments show that such “accuracy boosting”
attacks are indeed sometimes possible in the presence
of deletion operations.

We propose a simple attack Ins-Rev-Lbl-Rec in Con-
struction C.3 below. Ins-Rev-Lbl-Rec makes an estima-
tion on y based on the output of the two models.

Algorithm C.3 (Attacker Ins-Rev-Lbl-Rec). This at-
tack is parameterized by A > 0. Given sample x, models
h and hge, and a constant A, the label reconstruction
adversary Ins-Rev-Lbl-Rec proceeds as follows:

1. Query to obtain y = h(x) and ¥’ = hge (x).

2. Return y=35+1-(y - 3"). o

Intuition behind the attack. Similar to the attacks
of Section 3 (see Proposition 3.3), the loss of the deleted
sample will increase after the deletion. For simplicity,
suppose the loss is mean squared error. In this case,
when the learner follows the ERM rule, we have |y’ —
yl2 > |§—y|2. Therefore, moving from ’ towards y makes
the prediction closer to the actual label y. Consequently,
using a small positive A could lead to less loss. The best
value of 1 in each different scenario could be empirically
estimated by a similar size dataset that is individually
sampled by the attacker.

Experiment details. We perform the attack on lin-
ear regression models. We test the attack on two classic
regression datasets, the Boston Housing Price Dataset
[HAR78] and the diabetes dataset [EHJ*04]. For each
dataset, we train the model & with the whole dataset.
The adversary returns an approximation y. |y — y|s will
denote the distance of the prediction by the adversary,

and we use min(|A(x) — y|o, |Adel(x) — ¥|2) as the baseline
value to compare the quality of adversary’s prediction.

Results. We calculate the average distance of y; and y;
with different A values. Our results (in Table 6) show
that there exists a A value for each dataset, such that
can reduce the the estimated loss by around 70%.

Best A Models Adversary %
Boston 17.5 21.897 7.149 30%
Diabetes 30 2859.7 829.8 28%

Table 6. Result of the label reconstruction Attack on Logistic Re-
gression. The column Models lists the average of the minimum
distance of the predictions of the two models h, hge. The col-
umn Adversary lists the average distance of the prediction of the
adversary and the real prediction, and the percentage shows the
percentage of the improvement in the prediction compared with
the better of the predictions of the two models k, hyg.

D Deleted sentence
reconstruction

In this experiment we perform reconstruction attacks on
sequential text data. Namely, we show how to extract
the deleted sentence by querying a language model ac-
cording to the security game of Definition 4.1.

We start by giving formal definitions. We define a
text sequence as x = (x1,X2,...,%) € X!, where each
x; € D is aword, D is a set of words that shapes a prede-
fined dictionary. A (next-step) language model is a gen-
erative model which models the probability Pr[x] by ap-
S Xio1]
Specifically, a next-step language model f takes a pre-

plying the chain rule Pr[x] = ITj Prx; | x1,x2,..
fix of the text sequence xi,...,x; as input, and with the
parameter 6 it returns the likelihood fy(x; | x1,...xi-1)
that ideally equals Pr[x; | x1,x2,...,xi-1]. As an exam-
ple, an N-gram language model models the mentioned
probabilities with a Markov chain, and it approximates
Pr[x; | x1,...,x-1] with the estimated probability of
N-1 previous words, i.e., Pr[x; | x;-n+1,...,%-1] (N con-
tiguous words x;_n+1,. - ., %; is called an N-gram). Specif-
ically a bigram language model (N = 2) follows fp;[x; |
X1,...,Xi-1] = Pr[x; | x;—1] and a trigram language model
(N = 3) follows firi[xi | x1,-.

In the training of the language model, a training dataset

Sxic1] = Prlxg | xi-2,xi-1].

S with multiple sequences is given. The language model
parameter 6 is optimized to maximize the overall like-

Deletion inference, reconstruction, and compliance in machine (un)learning = 436

lihood of sequences in the training dataset, that is, the
probability of returning the dataset given such N-gram
probability.

Threat model. In general, we follow the security game
described in Definition 4.1. Namely, we first train the
language model with a dataset S. In the deletion step,
we delete a random sequence x’ = x7,...,x;_; from the
dataset and retrain the model. Finally, the adversary
aims to reconstruct the example x’. Note that black-box
access by the adversary means that it can send an text
sequence Xxi,Xs,...,X; to the language model and gets

the probability of the text sequence fy(x1,x2,...,x¢).

Our deleted sentence reconstruction attack. We
now define a simple adversary that can accurately re-
construct the deleted sentence. It first simply queries
every possible N-grams in the dictionary to the model
h and records their probabilities. Then after deletion, it
again sends every possible N-grams queries to the model
hgel- Now suppose N = 2, i.e. bigram. According to the
definition of language models, for a word pair (x;_;,x]),
if h(x/_1,x]) > hde(x]_q,
rence of the bigram x/_,,
dataset, which further indicates the bigram is included

x/), then the number of occur-
x/ is decreased in the updated

in the deleted example. Therefore, for one particular suf-
fix x/_,, the adversary can guess a word x; which satisfies
that A(x]_y,x]) > hgel(x]_y, x;)-

We then propose a heuristic approach to reconstruct
the deleted text sequence. First, we abstract the prob-
lem into a search problem defined on a graph, where
N1
. .,xi’). We draw a directed edge from an N-

each node is a N-gram that satisfies h(x

’
hdel(xi,z\ul’ .

gram node v; to v; if and only if the last N — 1 words

,x!) >

of v; is the first N — 1 words of v; with the same order.
Then each path in the graph represents a sentence. We
then search to find a Hamiltonian path in the generated
graph. Note that it is possible that the deleted sentence
includes a specific N-gram with multiplicity more than
one. We then allow the “Hamiltonian” path to tolerate
a limited number of repetitive visits to a node. Finally,
we return the shortest traverse path found, i.e., with the
fewest number of repetitions. To implement this attack
we use a recursive algorithm to traverse the nodes of the
graph while we maintain the number of times that the
current path has visited each node.

Experiment details. We perform our attacks on
unigram, bigram, and trigram language models. We
train the language models on the Penn Treebank Cor-
pus [MSM93]. After regular preprocessing, the dataset
includes 42068 text sequences, which includes 971657

words and 10001 unique words. We use two metrics to
evaluate our attacks.

— Success rate: Probability that the adversary recon-
structs a sequence x completely, when x is chosen
at random from 8, it is deleted, and then the ad-
versary is able to extract x by first interacting with
h and then with h_,.

— F1 score of the reconstruction: Let the reconstructed
sequence of the adversary Adv be x” and the deleted
sequence be x. Let’s treat both of them as unordered
multisets. Then the F1 score of the reconstruction
measures the quality of the reconstruction by bal-
ancing the precision and recall of the prediction,
namely,

Fl= 2 2 nx|

1 1 - N
Precision + Recall (|x| + |x |)

which is equal to 1 if and only if x = x’ (as multi-

sets).

We then repeat the security game for 1000 times
(i-e., each time a random sentence is deleted), and mea-
sure the two metrics on three language models.

Results. We present the experimental result on the
three language models in Table 7. Note that the unigram
language model does not store anything on order, so it
is impossible to reconstruct the full sequence in the cor-
rect order. Our defined reconstruction attack gets 99%
on the bigram and trigram models on the F1 score, and
also successfully reconstruct 97% of the sequence with
correct words and correct order on the trigram model.

Success rate | F1 score
unigram | \ 93.76%
bigram 62.00% 99.72%
trigram | 97.30% 99.90%

Table 7. Reconstruction attack on language models.

Leakage of deletion. Note that without deletion,
even if the adversary can fully reconstruct the N-gram
model, the adversary only has the probability of N-
grams, which is an aggregation over all the N-grams
in the dataset. Although the adversary has those N-
grams, it is still hard to get specific private information
when the dataset is large. However, we show that when
deletion happens, by tracing the changes in the proba-
bilities during the deletion, an adversary can extract the
full deleted sequence (of length longer than N) with high
probability, completely revealing the deleted sequence.

