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Abstract. We construct indistinguishability obfuscation (iO) solely under circular-security properties
of encryption schemes based on the Learning with Errors (LWE) problem. Circular-security assumptions
were used before to construct (non-leveled) fully-homomorphic encryption (FHE), but our assumption is
stronger and requires circular randomness-leakage-resilience. In contrast with prior works, this assump-
tion can be conjectured to be post-quantum secure; yielding the first provably secure iO construction
that is (plausibly) post-quantum secure.

Our work follows the high-level outline of the recent work of Gay and Pass [STOC 2021], who showed
a way to remove the heuristic step from the homomorphic-encryption based iO approach of Brakerski,
Döttling, Garg, and Malavolta [EUROCRYPT 2020]. They thus obtain a construction proved secure
under circular security assumption of natural homomorphic encryption schemes — specifically, they use
homomorphic encryption schemes based on LWE and DCR, respectively. In this work we show how to
remove the DCR assumption and remain with a scheme based on the circular security of LWE alone.
Along the way we relax some of the requirements in the Gay-Pass blueprint and thus obtain a scheme
that is secure under a relaxed assumption. Specifically, we do not require security in the presence of a
key-cycle, but rather only in the presence of a key-randomness cycle.

An additional contribution of our work is to point out a problem in one of the building blocks used by
many iO candidates, including all existing provable post-quantum candidates. Namely, in the transfor-
mation from exponentially-efficient iO (XiO) from Lin, Pass, Seth and Telang [PKC 2016]. We show
why their transformation inherently falls short of achieving the desired goal, and then rectify this situ-
ation by showing that shallow XiO (i.e. one where the obfuscator is depth-bounded) does translate to
iO using LWE.

1 Introduction

The goal of program obfuscation [Had00,BGI+01] is to transform an arbitrary circuit Π into an unintelli-
gible but functionally equivalent circuit Π̃. The aforementioned works showed that strong simulation-based
notions of obfuscation were impossible for general purpose functionalities. However, the seemingly weaker
indistinguishability obfuscation (iO) was not ruled out by prior work (and has in fact been shown to be
the same as the best possible notion of obfuscation [GR07]). In broad terms, iO requires that if two cir-
cuits Π0 and Π1 are two implementations of the same function, then their obfuscations are computationally
indistinguishable.
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Garg et al. [GGH13a,GGH+13b] presented the first candidate for general purpose iO, paving the way
for numerous other candidates based on a variety of mathematical structures. Although iO appears to
be a weak notion of security, it has been shown to be sufficient for numerous cryptographic applications,
including ones that were previously not known to exist under other assumptions (see [SW14, GGHR14,
BZ14] for examples). The first realizations of obfuscation relied an a new algebraic object called multilinear
maps [GGH13a, CLT13, GGH15], which had only recently been constructed. Furthermore, the security of
these objects relied on new (and poorly understood) computational intractability assumptions, or more
commonly on plain heuristics. In fact, several attacks on multilinear map candidates [CHL+15,HJ16] and on
obfuscation constructions based on multilinear maps [MSZ16,CGH17] were demonstrated. To defend against
these attacks, several safeguards have been (e.g., [GMM+16,CVW18,MZ18,BGMZ18,DGG+18]) proposed.
Even with these heuristic safeguards, all but the schemes based on the Gentry et al. [GGH15] multilinear
maps are known to broken against quantum adversaries.

Towards the goal of avoiding heuristics and obtaining provably secure constructions, substantial effort
was made towards obtaining iO while minimizing (with the ultimate goal of removing) the use of multilinear
maps [Lin16, LV16, AS17, Lin17, LT17]. These efforts culminated in replacing the use of multilinear maps
with just bilinear maps [Agr19,JLMS19,AJL+19], together with an additional pseudorandom generators of
constant locality over the integers with polynomial stretch. Very recently this last limitation was removed
by Jain, Lin and Sahai [JLS20]. Specifically, they obtained iO based on the combined (sub-exponential)
hardness of the Learning with Errors problem (LWE), a large-modulus variant of the Learning Parity with
Noise problem (LPN), the existence of a pseudorandom generator in NC0, and in addition the hardness of
the external Diffie-Hellman problem in bilinear groups (SXDH). We note that the use of the pairings makes
these construction insecure against quantum adversaries.

A different approach towards provably secure iO, which is more relevant to this work, was presented
by Brakerski et al. [BDGM20]. They showed an iO candidate that is based on combining certain natural
homomorphic encryption schemes. However, their construction was heuristic in the sense that the security
argument could only be presented in the random oracle model. In a recent work, Gay and Pass [GP20]
showed a way to remove the heuristic step and instead rely on a concrete assumption. Their construction is
proved secure under the circular security of natural homomorphic encryption schemes — specifically, they use
homomorphic encryption schemes based on LWE and Decisional Composite Residuosity (DCR, also known
as Paillier’s assumption). In terms of assumptions, their construction assumes sub-exponential security of (i)
the Learning with Error (LWE) assumption, (ii) the Decisional Composite Residuosity (DCR) assumption,
and (iii) a new notion of security that they call “shielded randomness leakage” (SRL). The latter essentially
requires that a fully homomorphic encryption scheme (specifically the GSW encryption scheme [GSW13])
remains secure even in the presence of a key-cycle with the Damg̊ard-Jurik encryption scheme [DJ01].
Moreover, the notion of security is not the standard semantic security, but rather a new notion of security
with respect to leakage of ciphertext randomness. We note that this construction is insecure against quantum
attackers because of the use of the Damg̊ard-Jurik encryption scheme [DJ01].1 In this work, we ask:

Can we realize provably secure constructions of iO with (plausible) post-quantum security?

1.1 Our results

We obtain a general purpose iO construction based solely on the circular security of LWE-based encryption
schemes. On a technical level, we achieve this by introducing a “packed” variant of the dual-Regev LWE-
based encryption scheme, and showing novel ways of manipulating ciphertexts of this variant in conjunction
with ciphertexts of an FHE scheme. This allows us to remove the need for DCR-based encryption from the
construction of [BDGM20,GP20]. Furthermore, our technique allows us to relax the SRL security property
that is required, so that we no longer need to require SRL security with respect to a key-cycle, but rather
only with respect to a key-randomness cycle. We put forth this potentially weaker assumption as an object
for further study.

1 Later, [GP20] updated their manuscript to also include a solution based on LWE. See Section 1.3 for additional
discussion.
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More concretely, the circular security assumption made in [GP20], and thus also in this work, is that a
scheme (in particular a leveled FHE scheme) maintains this property even in the presence of some leakage
on the randomness of the ciphertext. In [GP20] it is shown that standard GSW encryption [GSW13] satisfies
SRL security (under the LWE assumption), and the additional assumption is therefore that SRL security
is maintained in the presence of a key-randomness cycle, connecting GSW to another encryption scheme.
While this assumption falls into the category of “circular security assumptions”, similarly to the ones that
underlie bootstrapping in FHE, the concrete assumption is quite different. While in the FHE setting it was
only assumed that (standard) CPA security is preserved given a key cycle, here we assume that the stronger
SRL property remains intact.

Let us now state our results somewhat more precisely.

Theorem 1 (Informal). Assume the (sub-exponential) hardness of the LWE problem, and the SRL security
of GSW in the presence of a randomness-key cycle with a packed variant of dual-Regev, then there exists
indistinguishability obfuscation for all circuits.

We note that if we further assume that circular security also maintains post-quantum security, then our
assumption becomes post-quantum secure; yielding the first provably secure iO construction that is post-
quantum secure.

Shallow XiO. As an additional contribution, we identify a gap in the transformation of “exponentially
efficient iO” (XiO), a notion introduced by Lin, Pass, Seth and Telang [LPST16a] that was used almost
universally in prior work. We show that this transformation has an inherent problem that does not allow to
recover the result as stated. This gap affects most known iO constructions and, in particular, all post-quantum
provably secure candidates. We rectify this situation by showing that a fairly simple technical modification
(i.e. constraining the compiler to be shallow) allows us to recover the prior results. Along the way, we develop
a framework for analyzing composition of compressing encodings, which can be a useful perspective for future
research in this area.

1.2 Technical Overview

We now provide a technical outline of our construction and its properties.

Obfuscation via Homomorphic Encryption. The connection between (fully) homomorphic encryption
and obfuscation is fairly straightforward. Given a program Π to be obfuscated, we can provide a ciphertext
cΠ which encrypts Π under an FHE scheme. This will allow to use homomorphism to derive cx = Enc(Π(x))
for all x. Now all that is needed is a way to decrypt cx in a way that does not reveal any information on
Π. Early works (e.g. [GGH+13b] and followups) attempted to use this approach and provide a “defective”
version of the secret key of the FHE scheme, but a different approach was suggested in [BDGM20].

Specifically, [BDGM20] considered a homomorphic evaluation that takes cΠ to cTT, an encryption of the
entire truth table of Π, i.e. to an encryption of a multi-bit value. By relying on prior generic transforma-
tions [LPST16a], they showed that one can reduce the task of constructing general-purpose obfuscation to
the task of computing a “decryption” hint for cTT with the following properties:

– Succinctness: The size of the decryption hint must be sublinear in the size of the truth table |TT|.
– Simulatability: The decryption hint should not reveal any additional information besides the truth table

TT.

The reason why this is helpful is that some so-called “packed-encryption” schemes have the property that
a short ciphertext-dependent decryption hint suffices in order to decrypt the ciphertext, in a way that does
not seem to leak the secret key of the scheme itself. While standard FHE schemes do not natively support
packed encryption, it was shown in [BDGM19] that it is possible to use the so-called key-switching technique
to switch from an FHE scheme into a packed-encryption scheme.

Alas, when instantiating the components of the [BDGM20] approach in its simplistic form described
above, the decryption hint leaks information that renders the scheme insecure. To counter this issue,

3



[BDGM20] proposed to inject another source of randomness: By adding freshly sampled ciphertexts of the
packed-encryption scheme (which in their case was instantiated with the Damg̊ard-Jurik scheme [DJ01])
one can smudge the leakage of the decryption hint. However the size of these fresh ciphertext would largely
exceed the size of the truth table TT. Therefore, [BDGM20] proposed to heuristically sample them from a
random oracle, leveraging the fact that the ciphertexts of [DJ01] are dense, i.e. a uniformly sampled string
lies in the support of the encryption algorithm with all but negligible probability. This led to a candidate,
but without a proof of security.

A Provably Secure Scheme. In a recent work, Gay and Pass [GP20] observed that for the purpose of
constructing obfuscation, it suffices to consider schemes in the common random string (CRS) model where,
importantly, the size of the CRS can exceed the size of the truth table. This allowed them to place the
Damg̊ard-Jurik ciphertexts in the CRS and therefore avoid relying on random-oracle-like heuristics.

They propose a new method to prove the security of this approach: Leveraging the structural property of
the GSW scheme [GSW13]. They showed that adding a GSW encryption of 0 to the evaluated FHE ciphertext
(before key-switching to Damg̊ard-Jurik) allows one to program the FHE ciphertext in the security proof.
To sample these GSW encryptions of 0, they propose to draw the random coins r∗ again from the CRS and
let the evaluator recompute the correct ciphertext GSW.Enc(0; r∗).

Taken together, these new ideas allow them to prove their construction secure against the shielded
randomness leakage (SRL) security of the resulting FHE scheme. Loosely speaking, SRL security requires
that semantic security of an encryption scheme is retained in the presence of an oracle that leaks the
randomness rf of the homomorphic evaluation of the function f over the challenge ciphertext. However the
randomness rf is not revealed in plain to the adversary, instead it is “shielded” by the random coins of a
fresh GSW ciphertext c = GSW.Enc(0; r∗). That is, the adversary is given (rf − r∗, c). In fact, the adversary
can obtain polynomially-many samples from this distribution, for any function f , conditioned on the fact
that the adversary knows the output of f(m∗), where m∗ is the hidden message.

To gain confidence in the veracity of the assumption, [GP20] show that the GSW encryption scheme
satisfies SRL security if the (plain) LWE assumption holds. However, their obfuscation scheme requires
one to publish a key cycle of GSW and Damg̊ard-Jurik (i.e. an encryption of the GSW secrey key under
Damg̊ard-Jurik and vice versa). Thus their final assumption is that SRL security is retained in the presence
of such a key cycle.

Obfuscation from Circular-Secure LWE. We wish to remove the need for the Damg̊ard-Jurik encryption
scheme from the above construction paradigm. The major obstacle to overcome consists is designing an LWE-
based encryption scheme that simultaneously satisfies three properties.

– Linear Homomorphism: In order to key switch the GSW ciphertext into this form, the scheme must
satisfy some weak notion of homomorphism. Specifically, it must support the homomorphic evaluation
of linear functions.

– Succinct Randomness: The scheme must allow us to encrypt a long message string with a short random-
ness, that can then function as the decryption hint.

– Dense Ciphertexts: A uniformly sampled string must lie in the support of the encryption algorithm with
all but negligible probability. This will allow us to parse the CRS as a collection of ciphertexts.2

Unfortunately all natural lattice-based candidates seem to fail to satisfy all of these properties. In particular,
for all LWE-based schemes linear homomorphism seems to be at odds with dense ciphertexts: To ensure that
the noise accumulated during the homomorphic evaluation does not impact the decryption correctness, one
needs to ensure a gap between the noise bound and the modulus. More concretely, ciphertext are typically
of the form (a,a · s+ e+ q/2 ·m) ∈ Z

n+1
q where e≪ q, which makes them inherently sparse.

Our Solution: A Packed Variant of Dual-Regev that is also Dense-Friendly. We show that the
above requirements can be relaxed. Our starting point is devising a “packed” version of the dual-Regev

2 Note that for the purpose of constructing the obfuscator, one could make do with a common reference string which
can have an arbitrary distribution. However, the string needs to be parsed as a ciphertext with respect to all

public-keys. Requiring dense ciphertexts is a simple requirement that implies this property.
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encryption scheme [GPV08]. This scheme will not have dense ciphertexts so it does not fit the requirements
from previous works. However, we will show how we can define, for the same scheme, a family of ciphertexts
which are both “almost dense” and can inter-operate with the non-dense scheme, so as to allow to construct
the obfuscator.

Let us start with our packed dual-Regev scheme. To pack a k-bit plaintext m ∈ {0, 1}k in a dual-Regev
ciphertext we construct the public key as a matrix A ∈ Z

m×n
q , which is statistically close to uniform but is

sampled together with a trapdoor τ (whose role will be explained below), and another uniformly sampled
matrix B ∈ Z

k×n
q . The encryption algorithm computes a the ciphertext as

(A · r+ e0,B · r+ q/2 ·m+ e)

where r←$Z
n
q is the encryption randomness and the vectors e0 and e are the encryption noises, where the

norm of both vectors is bounded by some B ≪ q. The property of the trapdoor τ is that it allows to recover
r from A · r+ e0. The (semantic) security of the scheme follows directly by definition of LWE. To decrypt,
therefore, one can first use the trapdoor τ to recover r from the first m elements of the ciphertext, and then
recompute the mask B · r and recover each individual bit by rounding to the closest multiple of q/2. Setting
the parameters appropriately, we can guarantee that the decryption is always successful. One important
property of this scheme is that the random coins r ∈ Z

n
q are sufficient to recover the entire message and

furthermore the size of r is succinct (in particular independent of k).
In terms of homomorphism, the scheme is straightforwardly additively homomorphic. Furthermore, it

supports key switching from any scheme with almost-linear decryption as per [BDGM19].3 In particular it
is possible to take a (long) message encrypted under an FHE scheme such as GSW and convert it to an
encryption of the same message under packed dual-Regev, using precomputed key-switching parameters.4

As explained above, this scheme does not have dense ciphertexts. At this point we make two crucial
observations that will allow us to bypass this hurdle.

(1) In order to construct the obfuscator using the [BDGM20] approach, dense ciphertexts only need to enjoy
a very limited form of homomorphism, they only need to support a single addition with a non-dense
ciphertext.

This is essentially because the obfuscator has the following outline. It starts by considering the dense cipher-
text from the CRS (or oracle in the case of the original [BDGM20]), and homomorphically bootstraps it into
a non-dense FHE ciphertext by evaluating the decryption circuit. Let m be the (random) message that is
induced by the process. Then, the FHE encryption of m is processed in order to create a non-dense packed
encryption of m ⊕ TT, where TT is the truth table of the program to be obfuscated (or, more accurately,
a chunk of this truth table, partitioning into chunks is required in order to allow reusability of the keys).
Then a single homomorphic addition between the dense and non-dense ciphertext would imply a packed
encryption of the truth table. All of this can be performed by the evaluator of the obfuscated program, so
all that is needed is the decryption hint for this final ciphertext, that would allow to recover TT.

We note importantly, that in prior approaches (including the [GP20] blueprint) the aforementioned
bootstrapping creates a key cycle, since a packed ciphertext is bootstrapped into an FHE ciphertext, which is
afterwards key-switched into a packed ciphertext. However, we notice that it suffices to provide an encryption
of the (succinct) randomness of the dense ciphertext in order to apply bootstrapping, thus leading to a
relaxed key-randomness circular assumption. Interestingly, this observation is not very useful for actual
dense ciphertexts (since finding the randomness would require using the key), however, our relaxed notion
of density described below will allow to apply it and thus relax the circularity notion as well.

(2) A notion of almost-everywhere density suffices. A ciphertext distribution is almost-everywhere dense if
it is dense except for a non-dense part whose length is independent of k (the message length).

3 This is done using the by-now-standard technique of encrypting powers-of-two of the elements of the secret key of
the latter scheme, so that it is possible to evaluate any inner product homomorphically.

4 We note that the key switching parameters are quite long so it is required for our method that they are reusable.
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The reason that this is sufficient is that the non-dense part of the ciphertext, which we refer to as the header,
can be generated by the obfuscator and provided to the evaluator as a part of the obfuscated program. Since
the header is short, and in particular the message length k can be selected to be much longer than the header,
the effect on the length of the obfuscated program will be minimal. As hinted above, since the obfuscator
generates the header, it in particular also samples the randomness for the final almost-everywhere dense
ciphertext. This means that the obfuscator can generate the bootstrapping parameters using this randomness
without requiring a key cycle.

Dense Encryption Mode. With these observations in mind we describe an alternative encryption mode
(DenseEnc) for the packed variant of dual-Regev where the bulk of the ciphertext is dense. On input a
message m ∈ {0, 1}k, the encryption algorithm in dense mode computes the following ciphertext

(A · r+ e0,B · r+ q/2 ·m+ u)

where r and e0 are sampled as before and u←$ [−q/4,+q/4]k. For convenience, we are going to split the
ciphertexts into two blocks: The header h0 ∈ Z

m
q and the message carrier (h1, . . . , hk) ∈ Z

k
q . Foremost, observe

that the decryption algorithm as described before still returns the correct message with probability 1, since
it recovers the same r from h0. Furthermore, note that (for a fixed header) all vectors (h1, . . . , hk) ∈ Z

k
q

are in the support of the encryption algorithm. Since k ≫ m, most of the elements of the ciphertext in the
alternative encryption mode are dense.

One can verify that the aforementioned limited form of homomorphism indeed holds, namely that

dR.Enc(m) + dR.DenseEnc(m′) ∈ dR.DenseEnc(m⊕m′).

This is the case since

(A · r+ e0,B · r+ q/2 ·m+ e) + (A · r′ + e′0,B · r′ + q/2 ·m′ + u)

= (A · (r+ r′) + e0 + e′0,B · (r+ r′) + q/2 · (m⊕m′) + e+ u)

= (A · r̃+ ẽ0,B · r̃+ q/2 · (m⊕m′) + ũ)

where ũ = e + u ∈ [−q/4,+q/4]k with all but negligible probability over the random choice of u, for an
appropriate choice of the parameters.

Doing Away with the Header. We notice that given our two observations above, the goal of the header
in the obfuscation scheme is quite minimal. The header is not needed for homomorphism, and is only needed
for the purpose of extracting the randomness r at decryption time. We then observe that decrypting packed
ciphertext is done in two contexts in the scheme. The first is when we bootstrap the almost-everywhere
dense ciphertext into an FHE ciphertext, and the other is when the evaluator of the obfuscated program
recovers TT from the final ciphertext. For the latter there is no need for a header since the decryption hint,
i.e. the respective r value, is provided within the obfuscated program. For the former we do not need a
header of a specific structure, but rather simply an encryption of r that allows bootstrapping the almost-
dense ciphertext. It therefore suffices to provide GSW.Enc(r) directly, which makes the header completely
redundant.

On the Assumption. Equipped with the newly developed packed version of dual-Regev we can follow
the [BDGM20, GP20] approach, with the aforementioned modifications, to construct the obfuscator. The
resulting construction can be shown secure against the assumption that the SRL security of GSW is retained
in the presence of a key cycle with the packed dual-Regev encryption scheme as presented above.

We then observe that it suffices to assume SRL security with respect to key-randomness cycles, rather
than key cycles. We note that this assumption is no-stronger than key-cycle SRL since given a key-cycle it
is possible to homomorphically generate a key-randomness cycle, but the converse is not known to be true.

Adding this to our observation about the redundancy of the header, the assumption we require is that
SRL security is retained in the presence of a key-randomness cycle between GSW and packed dual-Regev,
i.e.

(GSW.Enc(r), dR.Enc(skGSW; r)) .
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Since dual-Regev is randomness recoverable, this assumption is syntactically weaker than SRL security in
the presence of a key-cycle: Given a GSW encryption of the dual-Regev secret key, one can homomorphically
compute the randomness recovery circuit to obtain a GSW encryption of the randomness r.

1.3 Related and Follow-up Work

Subsequently to the posting of this manuscript online (but concurrently and independently) [GP20] updated
their manuscript to include a solution based on LWE in the place of DCR. They do not make the observations
that a relaxed notion of density suffices (and is preferable) and thus they explicitly construct an encryption
scheme with dense ciphertexts based on the (primal) Regev encryption scheme. The resulting scheme is more
involved and in particular requires the two-key circular SRL security of GSW and (primal) Regev rather
than the relaxed key-randomness circularity notion.

Wee and Wichs [WW20], again concurrently, presented another instantiation of the [BDGM20] approach
which is arguably post-quantum secure. They rely on an indistinguishability assumption between two dis-
tributions and not directly on circular security. However, the underlying machinery developed shares many
similarities with our approach. Specifically, while we essentially rely on randomness that is embedded in
the CRS by interpreting it as an obliviously sampled ciphertext (which thus corresponds to one encrypted
with fresh randomness), their approach is to use a pseudorandom function to transform the CRS into a
randomizer for the output hint.

A follow-up work by Hopkins, Jain, and Lin [HJL21] shows counterexamples to SRL security for general
functions in the presence of a 2-key cycle, as stated in [GP20], and the conjecture from [WW20]. We stress that
their findings do not imply an attack against the corresponding obfuscation scheme of [WW20] and [GP20]
(as also pointed out by the authors in [HJL21]). Rather, their results show that the veracity of SRL security
depends on the concrete circuit representation of the functions under consideration. As a consequence of
their findings, we updated the statement of our assumption (and adapted the analysis of our scheme) with a
refined version, that further restricts the power of the adversary and more tightly characterize the security
of our construction. However, the iO construction is unchanged from previous versions of this work.

A few remarks about the susceptibility of our scheme to the [HJL21] attack are in order. In short, the
attack exploits the randomness homomorphism of GSW to compute a biased leakage. The SRL function
consists of a bootstrapping followed by a modular reduction (modulo 2). On the other hand, our admissible
class of leakage functions consists of linear functions (modulo q) followed by a rounding (i.e. outputting the
most significant bit). We are not aware of a method to establish the same correlations exploited by [HJL21]
without violating the admissibility criteria for the leakage functions. Thus, we conjecture that SRL security
with respect to such leakage function holds for all natural FHE candidates (see Section 3.1 for further details).

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl is negligible if it vanishes faster
than any inverse polynomial. Given a set S, we denote by s←$S the uniform sampling from S. We say that
an algorithm is PPT if it can be implemented by a probabilistic Turing machine M running in time poly(λ).
The execution of a Turing machine M on input x and with random coins fixed to r is denoted by M(x; r).
We say that two distributions (D0, D1) are computationally (statistically, resp.) indistinguishable if for all
PPT (unbounded, resp.) distinguishers, the probability to tell D0 an D1 apart is negligible. Matrices are
denoted by M and vectors are denoted by v. For convenience, we define Bit(·) as the bit decomposition
operation. We denote the infinity norm of a vector v by ‖v‖∞. We recall the smudging lemma.

Lemma 1 (Smudging). Let B1 = B1(λ) and B2 = B2(λ) be positive integers and let e1 ∈ [−B1, B1] be
a fixed integer. Let e2←$ [−B2, B2] chosen uniformly at random. Then the distribution of e2 is statistically
indistinguishable to that of e2 + e1 as long as B1/B2 = negl(λ).

7



2.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [BGI+01].

Definition 1 (Indistinguishability Obfuscation). A PPT machine iO is an indistinguishability obfus-
cator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

(Functionality) For all λ ∈ N, all circuit Π ∈ Cλ, all inputs x it holds that: Π̃(x) = Π(x), where Π̃ ←$ iO(Π).

(Indistinguishability) For all λ ∈ N, all pairs of circuit (Π0, Π1) ∈ Cλ such that |Π0| = |Π1| and Π0(x) =
Π1(x) on all inputs x, it holds that the following distributions are computationally indistinguishable: iO(Π0) ≈
iO(Π1).

Shallow XiO. In this work we construct a weaker version of iO called (shallow) XiO, which however is
sufficient (along with the LWE assumption) to construct fully-fledged iO. Loosely speaking, a shallow XiO is
a indistinguishability obfuscator (with pre-processing) for Plog/poly with non-trivial efficiency. Here Plog/poly
denotes the class of polynomial-size circuits with inputs of length η = O(log(λ)) and by non-trivial efficiency
we mean that the size of the obfuscated circuit is bounded by poly (λ, |Π|) · 2η·(1−ε), for some constant
ε > 0. The runtime of the obfuscator can be any polynomial in λ, |Π|, and 2η, except that its depth should
not depend on 2η. Furthermore, we allow the obfuscator to access a large uniform random string (the pre-
processing) of size even larger than the truth table of the circuit. For a formal statement, we refer the reader
to Appendix C.

2.2 The GSW Fully-Homomorphic Encryption

In the following we briefly recall the encryption scheme by Gentry, Sahai, and Waters [GSW13] (henceforth,
GSW). We denote by n = n(λ) the lattice dimension and by q = q(λ) the modulus (which we assume for
simplicity to be even). Throughout the rest of this paper, we set m = (n+ 1)(log(q) + 1) and d = d(λ) as a
bound on the depth of the arithmetic circuit to be evaluated.

KeyGen(1λ): Sample a uniform matrix A←$Z
n×m
q and a vector s←$χn. Set the public key to (A,b =

sTA+ eT ), where e←$χm. The secret key is set to (−s, 1).
Enc(pk,m): On input a message m ∈ {0, 1}, sample a uniform R←$ {0, 1}m×m and compute

C = (A,b) ·R+m ·G

where G = (1, 2, . . . , 2log(q)−1)T ⊗ I(n+1) and I(n+1) ∈ {0, 1}(n+1)×(n+1) denotes the identity matrix.
Eval(pk, Π, (c1, . . . , cµ)): There exists a (deterministic) polynomial-time algorithm that allows one to com-

pute any d-bounded depth arithmetic circuit Π : {0, 1}n → {0, 1} homomorphically over a vector of
ciphertexts (c1, . . . , cµ). For details about this algorithm, we refer the reader to [GSW13]. For the pur-

pose of this work, the only relevant information is that the evaluated ciphertext cΠ ∈ Z
(n+1)
q is an

(n + 1)-dimensional vector. For multiple bits of output, the resulting ciphertext is defined to be the
concatenation of the single-bit ciphertexts.

Dec(sk, c): We assume without loss of generality that the input ciphertext c ∈ Z
(n+1)
q is the output of the

evaluation algorithm. Such a ciphertext defines a linear function ℓc such that

ℓc(sk) = q/2 ·m+ e

where |e| ≤ B̂ = (m + 1)dmB. The message m is recovered by returning the most significant bit of the
output.

Note that the decryption routine of GSW consists of the application of a linear function, followed by a
rounding and we refer to this property as to almost-linear decryption. In a slight abuse of notation, we
sometimes write KeyGen(1λ; q) to denote the above key generation algorithm with a fixed modulus q.

Alternate Encryption. For convenience we also define a modified encryption algorithm, where the output
ciphertexts consists of a single column vector. An additional difference is that we sample the randomness
with norm B̃ = 2λ · B̂.
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ColEnc(pk,m): On input a message m, sample a uniform r←$ [−B̃,+B̃]m and compute

c = (A,b) · r+ (0n, q/2) ·m.

This algorithm is going instrumental for our scheme, although ciphertexts in this form no longer support
the homomorphic evaluation of arbitrary circuits. The multi-bit version of such an algorithm is defined
accordingly to output the concatenation of independently sampled ciphertexts. We now recall a useful Lemma
from [GP20].

Lemma 2 (GSW Smudging). Let B̃ = 2λ · B̂. For all λ ∈ N, for all (sk, pk) in the support of KeyGen(1λ),
for all messages m = (m1, . . . ,mµ), for all depth-d circuit (Π1, . . . , Πτ ), the following distributions are
statistically indistinguishable



c1, . . . , cµ, r

∗
1, . . . , r

∗
τ ,

Eval(pk, Π1, (c1, . . . , cµ)) + ColEnc(pk, 0; r∗1), . . . ,
Eval(pk, Πτ , (c1, . . . , cµ)) + ColEnc(pk, 0; r∗τ )




≈



c1, . . . , cµ, r

∗
1 − RandEval(pk, Π1,m, (R1, . . . ,Rµ)), . . . ,

r∗τ − RandEval(pk, Πτ ,m, (R1, . . . ,Rµ)),
ColEnc(pk, Π1(m1, . . . ,mµ); r

∗
1), . . . ,ColEnc(pk, Πτ (m1, . . . ,mµ); r

∗
τ )




where ci←$Enc(pk,mi;Ri), r
∗
i ←$ [−B̃,+B̃]m, and Ri←$ {0, 1}m×m.

Randomness Homomorphism. We recall a useful property of the GSW scheme, namely that one can
alternatively evaluate functions directly over the randomness of a ciphertext to obtain the same result. More
formally, we say that a homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) has randomness homomor-
phism for the circuit class {Cλ}λ∈N if there exists an efficient algorithm RandEval such that for all Π ∈ Cλ,
all (sk, pk) in the support of KeyGen, all vectors of messages m = (m1, . . . ,mµ) and R = (R1, . . . ,Rµ), all
ciphertexts (c1, . . . , cµ) in the support of (Enc(pk,m1;R1), . . . ,Enc(pk,mµ;Rµ)) it holds that

Eval(pk, Π, (c1, . . . , cµ)) = ColEnc(pk, Π(m);RandEval(pk, Π,m,R)).

Circuit Privacy. It is well known that the GSW encryption scheme satisfies the following notion of circuit
privacy [BdMW16,DS16,OPP14] (with a randomized evaluation algorithm).

Definition 2 (Circuit Privacy). For all λ ∈ N, all all Π ∈ Cλ, all (sk, pk) in the support of KeyGen, and
all messages m, it holds that the following distributions are statistically indistinguishable

(pk,Enc(pk, Π(m))) ≈ (pk,Eval(pk, Π,Enc(pk,m); r)).

where r←$ {0, 1}λ.

3 Packed Encryption from LWE

In the following we describe a packed version of the dual-Regev encryption scheme [GPV08]. We denote by
n = n(λ) the lattice dimension, by q = q(λ) the modulus (which we assume for simplicity to be a power
of 2), and by k = k(λ) the expansion factor. We require the existence of a public-key encryption scheme
(PKE.KeyGen,PKE.Enc,PKE.Dec).

KeyGen(1λ, 1k): Sample a uniform k×n matrix B←$Z
k×n
q and a key pair of a public-key encryption scheme

(skPKE, pkPKE)←$PKE.KeyGen(1λ). The public key consists of (B, pkPKE) and the secret key is set to
skPKE.

Enc(pk,m): To encrypt a k-bit message m ∈ {0, 1}k, sample a uniform randomness vector r←$Z
n
q a noise

vector e←$χk and return the ciphertext

c = (PKE.Enc(pkPKE, r),B · r+ q/2 ·m+ e) .

9



Dec(sk, c): Parse c as (cPKE, c1, . . . , ck) and recover the random coins by decrypting r = PKE.Dec(skPKE, cPKE).
Let bi be the i-th row of B. For i = 1 . . . k, compute mi = Round(ci − bi · r), where Round rounds
to the nearest multiple of q/2, i.e. it returns 1 if the input is closer to q/2 and 0 otherwise. Output
m = (m1, . . . ,mk).

Clearly, the scheme is perfectly correct since

(Round(c1 − b1 · r), . . . ,Round(ck − bk · r))
= (Round(q/2 ·m1 + e1), . . . ,Round(q/2 ·mk + ek))

= (Round(q/2 ·m1), . . . ,Round(q/2 ·mk))

= (m1, . . . ,mk)

= m.

Extended Encryption. It is not hard to see that the scheme presented above is (bounded) additively
homomorphic over Zk2 . To lift the class of computable functions to all linear functions over Zkq , we adopt the

standard trick of encrypting the message multiplied by all powers of two (1, 2, . . . , 2log(q)). For convenience,
we define the following augmented encryption algorithm.

ExtEnc(pk,m): On input an ℓ-dimensional message m ∈ Z
ℓ
q, let g = (1, 2, . . . , 2log(q)−1)T and define

M =




m1 · g m2 · g . . . 0log(q)
0log(q) 0log(q) . . . 0log(q)

...
...

. . .
...

0log(q) 0log(q) . . . mℓ · g


 ∈ Z

k×ℓ·k·log(q)
q .

Sample a uniform randomness matrix R←$Z
n×ℓ·k·log(q)
q and a uniform noise matrix E←$χk×ℓ·k·log(q).

Compute
C = B ·R+M+E

and return the ciphertext (PKE.Enc(pkPKE,R),C).

Decryption works, as before, by recovering R from the public-key encryption scheme and then decrypting
m component-wise.

Almost-Everywhere Dense Encryption. For convenience, we also define an alternative encryption al-
gorithm in the following. Note that the encryption algorithm does not take as input any message, instead it
encrypts a uniform k-bit binary vector. Syntactically, this is the equivalent of a key-encapsulation mechanism.

DenseEnc(pk): Sample a uniform randomness vector r←$Z
n
q and return the ciphertext

c = (cPKE, c1, . . . , ck) = (PKE.Enc(pkPKE, r),B · r+ u) .

where u←$Z
k
q .

We highlight two facts about this algorithm that are going to be important for our later construction: (i)
The decryption algorithm works for both Enc and DenseEnc algorithms, where the plaintext of DenseEnc
corresponds to (Round(u1), . . . ,Round(uk)). In fact, the scheme satisfies perfect correctness in both cases.
(ii) The domain of the elements (c1, . . . , ck) is dense, i.e. the support of the scheme spans the entire vector
space Z

k
q . Since the element cPKE is small (i.e. independent of k) for an appropriate choice of the public-key

encryption scheme, we refer to such a property as almost-everywhere density.

Semantic Security. We argue that the scheme satisfies a strong form of semantic security, i.e. the honestly
computed ciphertexts are computationally indistinguishable from uniform vectors in Z

k
q . Semantic security

for the extended encryption ExtEnc and the dense encryption DenseEnc follows along the same lines.
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Theorem 2 (Semantic Security). If (PKE.KeyGen,PKE.Enc,PKE.Dec) is semantically secure and the
LWE assumption holds, then for all λ ∈ N and all messages m it holds that the following distributions are
computationally indistinguishable

(pk,Enc(pk,m)) ≈ (pk,PKE.Enc(pkPKE, z),u).

where (sk, pk)←$KeyGen(1λ, 1k), z←$Z
n
q , and u←$Z

k
q .

Proof. The security of the scheme follows routinely by an invocation of semantic security of the public-key
encryption scheme and an invocation of the LWE assumption.

3.1 Key-Randomness SRL Security

We state a version of SRL security [GP20] tailored for our specific instance and adapted to the randomness-
key circularity assumption (rather than the 2-key circularity, as stated in [GP20]).

Definition 3 (Key-Randomness SRL Security). Let (GSW.KeyGen,GSW.Enc,GSW.Eval,GSW.Dec) be
the GSW encryption scheme and (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec) be the packed dual-Regev encryption
scheme. Fix messages (m0,m1), polynomials τ = τ(λ) and k = k(λ) and an adversary A = (A1,A2).
Consider the following experiment.

Exp
(b)
SRL(A) :
– Sample (s̄k, (p̄k,B))←$ dR.KeyGen(1λ, 1k) and (sk, pk)←$GSW.KeyGen(1λ)
– Compute c←$GSW.Enc(pk,mb)
– {Pi,pi}i=1...τ = A1(pk,B, c)
– Compute a key-randomness cycle

(
c̄sk, C̄sk

)
= dR.ExtEnc(p̄k, sk;S) and cS←$GSW.Enc(pk,S;RS)

– For all i = 1 . . . τ :
• Sample C∗

i = ColEnc(0; r∗i ) where r∗i ←$ [−B̃,+B̃]m·k

• Sample ti←$Z
n
q

• Sample ci,r = GSW.Enc(pk,S · Bit(ℓi) + ti;Ri)←$GSW.Eval(pk, ·Bit(ℓi) + ti, cS)
– Output A2(C̄sk, {ci,r,C∗

i ,ui, ti, rψ,i − r∗i }i=1...τ )

Here, letting ℓi be the linear function associated with C∗
i +Pi + q/2 · vi, we set

rψ,i = RandEval(pk, ψi,S · Bit(ℓi) + ti,Ri) and

ψi(Z) = Round
(
B · ti + q/2 · pi +wi − C̄sk · Bit(ℓi)−B · Z

)

where wi←$ [−q/4, q/4]k, vi←$ {0, 1}k, and ui = wi+ q/2 ·vi, for all i = 1 . . . τ . We say that an adversary
A is admissible if for all i = 1 . . . τ it holds that Pi ∈ GSW.Enc(pk,pi). The KR-SRL assumption conjectures
that it holds for all admissible PPT adversaries A, all messages (m0,m1) and all polynomials τ = τ(λ) and
k = k(λ) that

|Pr[Exp(1)SRL(A) = 1]− Pr[Exp
(0)
SRL(A) = 1]| ≤ negl(λ) .

Since the SRL leakage depends on the specific circuit representation of the functions (ψ1 . . . ψτ ), we
propose a natural implementation for a class of functions that suffices to capture all possible leakage functions.
Specifically, observe that ψi consist of a linear function (computed over Zq) followed by a rounding to the
nearest multiple of q/2. Since all inputs are bit-wise encrypted the computation of modular additions (and
multiplication by constants) is done via a canonical boolean circuit (see [BV11] for a concrete example) and
the rounding is obtained by simply returning the ciphertext containing the most significant bit of the output.

4 Constructing (Shallow) XiO

In the following we present the construction of shallow XiO from the GSW scheme (GSW.KeyGen,GSW.Enc,
GSW.Eval,GSW.Dec) and the packed version of the dual-Regev encryption (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec)
as described in Section 3.
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4.1 Construction

The scheme assumes a long uniform string that is, for convenience, split in two chunks:

– A sequence of randomization vectors (r∗1, . . . , r
∗
2η−log(k)) for the GSW scheme GSW.PubCoin, where each

r∗i = (r∗i,1, . . . , r
∗
i,k) ∈ [−B̃,+B̃]m·k.

– A sequence of dense ciphertexts (h1, . . . , h2η−log(k)) for packed dual-Regev scheme dR.PubCoin, where
each hi = (hi,1, . . . , hi,k) ∈ Z

k
q .

On input the security parameter 1λ and the circuit Π : {0, 1}η → {0, 1}, the obfuscator proceeds as follows.

Setting the Public Keys: Sample a dual-Regev key pair (s̄k, p̄k)←$ dR.KeyGen(1λ, 1k) and GSW key pair

(sk, pk)←$GSW.KeyGen(1λ; q), where q is the modulus defined by the dual-Regev scheme. Compute a
bit-by-bit GSW encryption cΠ ←$GSWEnc(pk, Π) of the binary representation of the circuit Π.

Compute a Key Encryption: Compute a dual-Regev extended encryption of the GSW secret key

(
c̄sk, C̄sk

)
= dR.ExtEnc(p̄k, sk;S).

where sk ∈ Z
n+1
q and S←$Z

n×log(q)·k·(n+1)
q .

Decryption Hints: For all indices i ∈ {0, 1}η−log(k), do the following.

Evaluate the Circuit: Let Φi,j : {0, 1}|Π| → {0, 1} be the universal circuit that, on input a circuit
description Π, returns the j-th bit of the i-th block (where each block consists of k bits) of the
corresponding truth table. Compute

Ci =



GSW.Eval(pk, Φi,1, cΠ)

. . .
GSW.Eval(pk, Φi,k, cΠ)


 ∈ Z

k×(n+1)
q .

Compute the Low-Order Bits: Sample a uniform ri←$Z
n
q and compute ci,r←$GSW.Enc(pk, ri).

Parse the i-th block of dR.PubCoin as

(hi,1, . . . , hi,k) = B · ri + (ui,1, . . . , ui,k) ∈ Z
k
q

for some (ui,1, . . . , ui,k) ∈ Z
k
q . Let Ψi,j : {0, 1}λ → {0, 1} be the circuit that, on input ri, computes the

decryption of the j-th bit encrypted in (hi,1, . . . , hi,k). I.e. it computes Round((hi,1, . . . , hi,k)−B ·ri).
Compute homomorphically the matrix of ciphertexts

Ci,Round =



GSW.Eval(pk, Ψi,1, ci,r)

. . .
GSW.Eval(pk, Ψi,k, ci,r)


 ∈ Z

k×(n+1)
q .

Rerandomize the Ciphertext: Parse the i-th block of GSW.PubCoin as (r∗i,1, . . . , r
∗
i,k) ∈ [−B̃,+B̃]m·k

and compute

C′
i,Round = Ci,Round +



GSW.ColEnc(pk, 0; r∗i,1)

. . .
GSW.ColEnc(pk, 0; r∗i,k)


 ∈ Z

k×(n+1)
q .

Proxy Re-Encrypt: Define Di as the vector of GSW ciphertexts resulting from the homomorphic sum
of C′

i,Round and Ci, i.e. Di = C′
i,Round + Ci. Observe that Di consists of k GSW ciphertexts and

let ℓi,j ∈ Z
(n+1)
q be the linear function associated with the decryption of the j-th ciphertext. Define

ℓi = (ℓi,1, . . . , ℓi,k) and compute

c̄i = C̄sk · Bit(ℓi) + (hi,1, . . . , hi,k) ∈ Z
k
q

where the function Bit : Z
k·(n+1)
q → {0, 1}log(q)·k·(n+1) is the bit decomposition operator.
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Release Hint: Compute the i-th decryption hint as

ρi = S · Bit(ℓi) + ri ∈ Z
n
q .

Output: The obfuscated circuit consists of the public keys (pk, p̄k), the matrix C̄sk, the GSW encryption of
the circuit cΠ , the encryption headers (c1,r, . . . , c2η−log(k),r), and the decryption hints (ρ1, . . . ,ρ2η−log(k)).

To evaluate the obfuscated circuit on input x, let i be the index of the block of the truth table of Π that
contains Π(x). The evaluator computes c̄i as specified above (note that all the operations are public, given
the information included in the obfuscated circuit) and recovers Π(i) (the i-th block of the truth table of Π)
by computing

Π(i) = Round(c̄i −B · ρi)
where Round : Zkq → {0, 1}k rounds the input to the nearest multiple of q/2.

Correctness. To see why the evaluation algorithm is correct, recall that

c̄i = C̄sk · Bit(ℓi) + (hi,1, . . . , hi,k).

First observe that (ri, hi,1, . . . , hi,k) define a ciphertext in the support of the algorithm dR.DenseEnc(p̄k),
which we rewrite as

dR.DenseEnc(p̄k) = (PKE.Enc(pkPKE, ri),B · ri + (ui,1, . . . , ui,k))

= (PKE.Enc(pkPKE, ri),B · ri + ui) .

Thus C′
i,Round and Ci are in the support of



GSW.ColEnc(pk,Round(u1))

. . .
GSW.ColEnc(pk,Round(uk))


 and



GSW.ColEnc(pk, Π

(i)
1 )

. . .

GSW.ColEnc(pk, Π
(i)
k )




respectively, by the evaluation correctness of the GSW scheme and by Lemma 1. Furthermore, recall that
Di = C′

i,Round +Ci. By an invocation of Lemma 1, we have that Di is in the support of



GSW.ColEnc(pk,Round(u1))

. . .
GSW.ColEnc(pk,Round(uk))


+



GSW.ColEnc(pk, Π

(i)
1 )

. . .

GSW.ColEnc(pk, Π
(i)
k )




≈



GSW.ColEnc(pk,Round(u1)⊕Π(i)

1 )
. . .

GSW.ColEnc(pk,Round(uk)⊕Π(i)
k )




with all but negligible probability. By the almost-linear decryption of GSW, it follows that

C̄sk · Bit(ℓi) = B · s̃i + ξi + ζi + q/2 ·
(
Round(u1)⊕Π(i)

1 , . . . ,Round(uk)⊕Π(i)
k

)

where ξi is the decryption noise of the packed dual-Regev scheme (i.e. the subset sum of the noise terms of
C̄sk) and ζi is the decryption noise of the GSW ciphertext. It follows that ‖ξi‖∞ ≤ B ·log(q)·k ·(n+1) and, by

Lemma 1, ‖ζi‖∞ ≤ B̃ with all but negligible probability. Note that, by linearity we have that s̃i = S ·Bit(ℓi).
Consequently, it holds that

c̄i = B · s̃i + ξi + ζi + q/2 ·
(
Round(u1)⊕Π(i)

1 , . . . ,Round(uk)⊕Π(i)
k

)
+B · ri + ui

= B · (s̃i + ri) + ξi + ζi + q/2 ·
(
Round(u1)⊕Π(i)

1 , . . . ,Round(uk)⊕Π(i)
k

)
+ ui

= B · (s̃i + ri) + q/2 ·Π(i) + vi

= B · ρi + q/2 ·Π(i) + vi
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where vi = ui+q/2 ·Round(ui)+ξi+ζi and ‖vi‖∞ < q/4 with all but negligible probability, over the random
choice of ui. This is becauseDi is statistically close to a fresh GSW encryption of (Round(u1), . . . ,Round(uk))⊕
Π(i), by Lemma 2. Therefore we have that

Round (ci −B · ρi) = Round
(
B · ρi + q/2 ·Π(i) + vi −B · ρi

)

= Round
(
q/2 ·Π(i) + vi

)

= Round
(
q/2 ·Π(i)

)

= Π(i)

with the same probability. Due to space constraints, we defer the analysis of our scheme to Appendix B.
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A More Preliminaries

A.1 Learning with Errors

We recall the definition of the learning with errors (LWE) problem [Reg05].

Definition 4 (Learning with Errors). The LWE problem is parametrized by a modulus q, positive integers
(n,m) and an error distribution χ. The LWE problem is hard if the following distributions are computationally
indistinguishable:

(A,A · s+ e) ≈ (A,u)

where A←$Z
m×n
q , s←$Z

n
q , u←$Z

m
q , and e←$χm.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ is a discrete
Gaussian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z where the probability

of x is proportional to e−π(|x|/σ)
2

), is at least as hard as approximating the shortest independent vector
problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. We refer to α = σ/q as
the modulus-to-noise ratio, and by the above this quantity controls the hardness of the LWE instantiation.
Hereby, LWE with polynomial α is (presumably) harder than LWE with super-polynomial or sub-exponential
α. We can truncate the discrete Gaussian distribution χ to σ ·ω(

√
log(λ)) while only introducing a negligible

error. Consequently, we typically omit the actual distribution χ but only use the fact that it can be bounded
by a (small) value B.
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A.2 Public-Key Encryption

We recall the definition of public key encryption in the following.

Definition 5 (Public-Key Encryption). A public-key encryption scheme consists of the following effi-
cient algorithms.

KeyGen(1λ): On input the security parameter 1λ, the key generation algorithm returns a key pair (sk, pk).
Enc(pk,m): On input a public key pk and a message m, the encryption algorithm returns a ciphertext c.
Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm returns a message m.

Correctness and Semantic Security. We recall the standard notions of correctness and semantic secu-
rity [GM82] for public-key encryption.

Definition 6 (Correctness). A public-key encryption scheme (KeyGen,Enc,Dec) is correct if for all λ ∈ N,
all messages m, all (sk, pk) in the support of KeyGen(1λ), and all c in the support of Enc(pk,m) it holds that
Dec(sk, c) = m.

Definition 7 (Semantic Security). A public-key encryption scheme (KeyGen,Enc,Dec) is semantically
secure if for all λ ∈ N, all pairs of message (m0,m1), it holds that the following distributions are computa-
tionally indistinguishable

(pk,Enc(pk,m0)) ≈ (pk,Enc(pk,m1))

where (sk, pk)←$KeyGen(1λ).

Homomorphic Encryption. We say that a public-key encryption scheme (KeyGen,Enc,Dec) is homomor-
phic for the circuit class {Cλ}λ∈N if there exists an efficient deterministic algorithm Eval such that for all
Π ∈ Cλ, all (sk, pk) in the support of KeyGen, all vectors of messages (m1, . . . ,mµ), all ciphertexts (c1, . . . , cµ)
in the support of (Enc(pk,m1), . . . ,Enc(pk,mµ)) it holds that

Dec(sk,Eval(pk, Π, (c1, . . . , cµ))) = Π(m1, . . . ,mµ).

Furthermore, we say that a scheme is fully-homomorphic if it is homomorphic for all polynomial-size circuits.

Randomness-Key Circularity. We say that two encryption schemes (KeyGen0,Enc0,Dec0) and (KeyGen1,
Enc1,Dec1) form a key cycle if the distinguisher is given a cross-encryption of the secret keys and the
randomness used for the latter, i.e. Enc(pk1, sk0; s1) and Enc(pk0, s1). We say that the scheme is randomness-
key circular secure if semantic security is retained in the presence of such a cycle.

Definition 8 (Randomness-Key Circular Security). A pair of public-key encryption schemes (KeyGen0,
Enc0,Dec0) and (KeyGen1,Enc1,Dec1) is randomness-key circular secure if for all λ ∈ N, all pairs of message
(m0,m1), it holds that the following distributions are computationally indistinguishable

(pk0, pk1,Enc0(pk0, sk1; r),Enc1(pk1, r),Enc0(pk0,m0))
≈ (pk0, pk1,Enc0(pk0, sk1; r),Enc1(pk1, r),Enc0(pk0,m1))

where (sk0, pk0)←$KeyGen0(1
λ), (sk1, pk1)←$KeyGen1(1

λ), and r←$ {0, 1}λ.

B Analysis

In the following we show that our shallow XiO scheme satisfies the notion of security for indistinguishability
obfuscation.

Theorem 3 (Shallow XiO Security). If the GSW scheme (GSW.KeyGen,GSW.Enc,GSW.Eval,GSW.Dec)
and the packed dual-Regev scheme (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec) are key-randomness SRL secure,
then the XiO scheme as described above is secure.
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Proof. We prove the scheme via a series of hybrid experiments.

– Hybrid H0: This is the original obfuscation of the circuit Π0.
– Hybrid H1: This hybrid is identical to the previous one, except that for all i ∈ {0, 1}η−log(k) we sample

C′
i,Round as

C′
i,Round =



GSW.ColEnc(pk,Round(ui,1); r

∗
i,1)

. . .
GSW.ColEnc(pk,Round(ui,k); r

∗
i,k)




where r∗i,j ←$ [−B̃,+B̃]m. Let (rΨ,i,1, . . . , rΨ,i,k) be the random coins of Ci,Round (as computed in the
original protocol). We additionally set the i-the block of the GSW.PubCoin to (r∗i,1−rΨ,i,1, . . . , r∗i,k−rΨ,i,k).
Statistical indistinguishability with respect to the previous hybrid follows from an invocation of Lemma 2.

– Hybrid H2: This hybrid is identical to the previous one, except that for all i ∈ {0, 1}η−log(k) we set

(hi,1, . . . , hi,k) = B · ri + (ui,1, . . . , ui,k)

where (ui,1, . . . , ui,k)←$Z
k
q . The only difference with respect to the previous hybrid is that the obfuscator

knows the values (ui,1, . . . , ui,k) ahead of time. However, the two distributions are identical to the eyes
of the distinguisher and therefore the change here is only syntactical.

– Hybrid H3: In this hybrid we generate, for all i ∈ {0, 1}η−log(k), c̄i as follows

c̄i = B · ti + ξi + ζi + q/2 ·
(
Round(u1)⊕Π(i)

1 , . . . ,Round(uk)⊕Π(i)
k

)
+ ui

where ti←$Z
n
q . Here ξi and ζi denote the decryption noises of C̄sk and Di, respectively. Furthermore,

we set (hi,1, . . . , hi,k) = c̄i − C̄sk · Bit(ℓi) and ci,r = GSW.Enc(pk, ti − S · Bit(ℓi)). Note that C′
i,Round is

fixed (and in particular is independent of ci,r) and thus the above variables are always well defined. In
fact, observe that

(hi,1, . . . , hi,k)

= c̄i − C̄sk · Bit(ℓi)

= c̄i −B · (S · Bit(ℓi))− ξi − ζi − q/2 ·
(
Round(u1)⊕Π(i)

1 , . . . ,Round(uk)⊕Π(i)
k

)

= B · (ti − S · Bit(ℓi)) + ui

which is exactly the same distribution as in the previous hybrid. Furthermore, note that we now have
ρi = ti. Thus the change introduced here is only syntactical.

– Hybrid H4: In this hybrid we generate, for all i ∈ {0, 1}η−log(k), c̄i as a fresh encryption of Π(i), i.e.

c̄i = B · ti + q/2 ·Π(i) +wi

where ti←$Z
n
q and wi←$ [−q/4,+q/4]k. Note that we can bound ‖ξi‖∞ ≤ B · log(q) · k · (n + 1).

Furthermore, we have that ‖ζi‖∞ ≤ B̃ with all but negligible probability over the random choice of r∗i ,
by Lemma 1. Statistical indistinguishability follows from another application of Lemma 1.

– Hybrid H5: Here we define, for all i ∈ {0, 1}η−log(k), the following circuit Γi : Z
n×(n+1)·k·log(q)
q → Z

n
q to

return
Γi(X) = ti −X · Bit(ℓi).

Then we set ci,r = GSW.Eval(pk, Γi,GSW.Enc(pk,S)). Recall that S are the random coins used in the
encryption of sk. To see why the hybrids are statistically close, note that

GSW.Eval(pk, Γi,GSW.Enc(pk,S)) ≈ GSW.Enc(pk, ti − S · Bit(ℓi))

by the statistical circuit privacy of GSW.
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– Hybrid H6: In this hybrid we compute cΠ as an encryption of Π1 instead of Π0. Note that we no longer
use the secret key of either of the encryption schemes to obfuscate the circuit, besides the encrypted
key-randomness cycle. The random coins GSW.PubCoin can be modelled as an SRL leakage. More in
details, we are going to reduce the security of the XiO scheme to the key-randomness SRL security of
GSW and packed dual-Regev. Since the distinguisher is expecting an obfuscation of either Π0 or Π1,
it suffices to describe how to construct the corresponding XiO given the information provided by the
challenger.
The reduction receives from the challenger the public keys (pk,B) and the GSW encryption cΠ (of
either Π0 or Π1). The reduction sets (pk,B) to be the public keys of the XiO and cΠ to be the
encryption of the obfuscated circuit. Then it homomorphically computes (P1, . . . ,P2η−log(k)) as the

encryptions of the blocks of the truth table (Π(1), . . . , Π(2η−log(k))), by evaluating the universal cir-
cuit on cΠ , and it returns them along with their plaintexts to the challenger. In response, the reduc-
tion receives (c1,r, . . . , c2η−log(k),r), (C

∗
1, . . . ,C

∗
2η−log(k)), C̄sk, (u1, . . . ,u2η−log(k)), (t1, . . . , t2η−log(k)), and

(r̂1, . . . , r̂2η−log(k)). For all i = 1 . . . 2η−log(k), the reduction proceeds as follows:
• Parse ui = wi + q/2 · vi.
• Compute Di = Pi +C∗

i + q/2 · vi and let ℓi be the corresponding linear function.
• Compute hi = B · ti + q/2 ·Π(i) +wi − C̄sk · Bit(ℓi).

The rest of the obfuscated circuit is computed by simply copying the appropriate variable provided by the
challenger. A routine calculation shows that the view produced by the reduction is identical to H5 if cΠ
encrypts Π0 and identical to H6 if cΠ encrypts Π1. Furthermore, note that the reduction is admissible
by the evaluation correctness of GSW. Thus a distinguisher between the two hybrids contradicts the
key-randomness SRL security.

– Hybrids H7 . . .H11: In this series of hybrids we undo all changes that we did in H5 . . .H1. The statistical
indistinguishability follows by the same arguments as before.

Note that H11 is the original obfuscation of Π1. This concludes our proof.

B.1 Parameters

The analysis of our scheme sets two constraints on the noise growth of the encryption schemes. The first
application of the smudging Lemma requires that the noise bound B̃ is exponentially larger than the noise
bound on evaluated GSW ciphertexts B̂, i.e. (1) B̃ ≥ 2λ · B̂. The second application requires that (2)
q/4 ≥ 2λ · B̃ and (3) q/4 ≥ 2λ ·B · log(q) · k · (n+ 1), to ensure that the term ui (minus its most significant
bit) properly floods the noise terms of the GSW and dual-Regev ciphertexts. Note that, for an appropriate
choice of parameters of the GSW scheme, condition (3) is already implied by conditions (1) and (2) and
therefore all we need to ensure is that these two conditions are satisfiable. It is not hard to see that the
above pair of constraints can be satisfied by setting the modulo-to-noise ratio of the LWE assumption to be
super-polynomial.

To make the scheme compressing, we set k = 2η/4. We analyze the size of each component of the
obfuscated circuit in the following:

– The size of the public keys (pk, p̄k) is linear in k and thus can be bounded by 2η/4 · poly(λ).
– The size of the encrypted key C̄sk can be bounded by k2 · poly(λ) = 2η/2 · poly(λ).
– The GSW encryption of the circuit cΠ is of size |Π| · poly(λ).
– The size of an encrypted header ci,r is poly(λ) (and in particular independent of k) and the size of each

decryption hint ρi is also poly(λ) (by the randomness succinctness of dual-Regev). It follows that the
total size of the encryption headers and the decryption hints can be bounded by 2η−log(k) · poly(λ) =
23η/4 · poly(λ).

The summation of the above terms is sublinear in poly (|Π|, λ) · 2η(1−ε) (for ε > 0) and therefore the
XiO scheme satisfies non-trivial efficiency. Note that we omitted the public parameters GSW.PubCoin and
dR.PubCoin from the analysis since they are uniformly at random and thus can be computed in the pre-
processing stage of the obfuscator.
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Finally, we argue that the scheme is shallow. The size of the ciphertext cΠ depends only on the size
of the circuit |Π| and the security parameter, which is also a trivial depth on the computation needed to
output cΠ . This is also the case for each encryption header ci,r and each decryption hint ρi, which can be
all computed in parallel. Thus, all is left to argue is that the public keys (pk, p̄k) and the encrypted key C̄sk

can be computed in parallel with depth independent of k. This is easily verified by observing that in the
scheme in Section 3 both the key generation and the encryption algorithm can be implemented in depth
independent of k.

C From Shallow XiO to iO

C.1 Background

We give some background on the notion of exponentially efficient iO (XiO), introduced by Lin, Pass, Seth
and Telang [LPST16a]. They showed that this seemingly very weak notion of iO (to be explained below) in
fact suffices to construct fully-fledged iO, relying on a prior work of the same authors [LPST16b]. We refer
to the collection of both works as LPST. The transformation uses a construction of a so-called functional
encryption scheme (FE) by Goldwasser et al. [GKP+13] which is based on the widely studied Learning with
Errors (LWE) assumption [Reg05].

The idea of LPST is quite simple and elegant. Functional encryption is closely related to program ob-
fuscation. Specifically, this is an encryption scheme where it is possible to generate a functional secret key
skf for a function f , so that decrypting a ciphertext Enc(x) using skf will output f(x), and furthermore
the pair skf ,Enc(x) does not reveal any information about x beyond the value f(x). It has been estab-
lished [BV15, AJ15, LPST16b] that if we can construct an FE scheme which supports functions f that
contain the scheme’s own encryption algorithm, executed twice (in parallel), plus some additional calcula-
tions, then a construction of indistinguishability obfuscation follows. The [GKP+13] scheme does not have
this property. Its encryption complexity and output length scales roughly with ℓ · poly(d), where ℓ is the
output length of f and d is the depth of f . Namely, the blowup of 2 · poly(d) in the output length prevents
us from instantiating the obfuscation construction with this scheme.

The idea in [LPST16a] is to modify this scheme as follows. First, instead of issuing a key skf for a
multi output-bit function f , a key skf ′ for a single output-bit f ′ is issued. The function f ′ takes as input
a pair (x, i) and outputs a single bit, such that f ′(x, i) = (f(x))i, i.e. f ′(x, i) is the i-th bit of f(x).
Furthermore, the encryption process is modified such that the encryptor does not compute Enc(x), but
instead it considers the circuit C that takes an index i as input, and outputs a ciphertext Enc(x, i) encrypting
the pair (x, i). The description of this circuit is independent of ℓ, d, and only its input length depends on
them. In terms of functionality, instead of outputting Enc(x, i), the encryption algorithm can produce C
itself, thus deferring the process of generating Enc(x, i) to the time of decryption. Namely, the decryptor
will first compute C(i) for all i in order to obtain Enc(x, i) and then proceed as in the original scheme.
Namely, given the ciphertexts Enc(x, 1), . . . ,Enc(x, ℓ) and the secret key skf ′ , the decryptor can recover f(x)
as f(x) = (f ′(x, 1), . . . , f ′(x, ℓ)). In terms of security, the description of C reveals x and therefore security
is not preserved. LPST thus propose to output Ĉ, an obfuscation C, which on one hand will hide x and on
the other will allow to produce Enc(x, i) by computing all Ĉ(i) just as with the original C.

LPST thus propose a new notion of obfuscation which is suitable for the above task. Note that we only
need to obfuscate circuits whose entire truth table is of length ℓ · poly(d) which is polynomial. Therefore we
can afford an obfuscator that runs in time polynomial in the truth-table size of the circuit to be obfuscated,
and the resulting obfuscated program needs to be sufficiently short, LPST require that that this scales with
ℓ1−ǫC , where ℓC = ℓ · poly(d) is the truth-table size of C and ǫ > 0 is an arbitrary constant. They defined this

notion as “exponentially-efficient iO” or XiO. Indeed, setting Ĉ to be the XiO of C will allow to compress the
output size to be ℓ1−ǫ ·poly(d, |C|)≪ ℓ (typically ℓ≫ |C| so ℓ1−ǫ ≪ ℓpoly(|C|)). Let us from here on denote

by Ênc(x) the modified encryption procedure, that applies the XiO on C and outputs Ĉ as output. Let us

denote by f̂ the derived function f which is required to execute Ênc twice plus some additional computations.
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Indeed, now f̂ has output length that is smaller than ℓ, so we may hope that it is possible to use our new
scheme in order to derive an iO construction. However, there is still the obstacle of depth since the depth of
f̂ might be larger than the depth d that is supported by the FE scheme. Indeed, importantly for this work,
we consider a case where the XiO obfuscator requires large depth, specifically depth that is also proportional
to poly(ℓ, |C|). Such parameters are allowed by the XiO definition of [LPST16a]. Consequently, in this case,

the encryption Ênc(x) and the function f̂ will also inherit the poly(ℓ, |C|) depth. This value is much larger
than the depth d supported by the FE scheme and consequently this solution is insufficient.

LPST were aware of this difficulty, and they propose a solution. This is described in the paragraph
above [LPST16b, Theorem 5], which is also quoted in [LPST16a, Theorem 5]. LPST argue that prior works
showed that the depth limitation can be avoided by using the notion of garbled circuits (see [LPST16a,
Theorem 4]). To the best of our knowledge, the result in [LPST16a, Theorem 4] is currently not known to
exist and indeed is a very important open problem in the design of functional encryption schemes. While
LPST do not provide a rigorous proof for this claim, we can only assume that their intention was as follows.
Instead of considering the function f̂ , to consider its so-called “garbling”. Without getting into details let us
only mention that the garbling of any circuit is a shallow circuit whose depth is independent of the depth
of the original circuit, and garbling also preserves the privacy properties of the original function. However,
crucially, the output length of the garbling procedure of f̂ is proportional to |f̂ | = poly(ℓ, |C|). Therefore,
while garbling indeed takes care of the depth problem, it re-creates the output length problem. In fact, we
will show next that composing general XiO, FE and garbled circuits (GC) in any order cannot be used to
make both the output length of the new f less than ℓ and the depth be less than d. In fact the sum of these
two values is always greater than ℓ+ d.

C.2 Why Composition of Existing Primitives Cannot Work

We propose a method to analyze LPST-style transformations, where a composition of primitives is used to
achieve succinctness. We will also use this method to analyze our own version of this transformation. We
identify 3 properties of circuits that are of interest in the context of the FE to iO transformation. For a
circuit C and input x, we let ℓ denote the length of C(x), i.e. the output length of C. Now, rather than
considering C as a single circuit, we consider the circuit that computes a single bit out of the output C(x).
Namely, the circuit that takes i ∈ [ℓ] as input, and outputs the ith bit of C(x). Let d and s be the depth
and circuit-size, respectively, of this bit-wise circuit (note that by definition it always holds s ≥ d).

We can now view all primitives of interest, namely functional encryption, XiO and garbled circuits as
methods of encoding a circuit-input pair (C, x) with length, depth and size (ℓ, d, s), via some encoding that
on one hand allows to produce the value C(x) and on the other does not allow to learn any information
about x other than C(x)5. We can thus consider, for each such encoding method, how the (ℓ, d, s) values
of the encoding function relates to the (ℓ, d, s) of the original C, x. We call this the scaling characteristic of
the encoding, and it quantifies the complexity of encoding a pair of circuit C and input x compared to the
complexity of just evaluating C(x). We would like to stress that only the complexity of encoding determines
the scaling characteristic, not the complexity of evaluating such an encoding.

The [GKP+13] FE scheme translates into an encoding with scaling characteristic

SCFE(ℓ, d, s) = (ℓ · poly(d) , polylog(s), polylog(s)).
An XiO scheme is an encoding with scaling characteristic

SCXiO(ℓ, d, s) = (ℓ1−ǫ, poly(ℓ, s) , poly(ℓ, s)).

The aforementioned garbled-circuit (whose exact properties are not important for this discussion) can be
considered as an encoding with scaling characteristic at least 6

SCGC(ℓ, d, s) = (ℓ+ d, 1, 1).

5 In a well-defined sense which we do not elaborate on at this point.
6 All of the expressions for scaling characteristics hide polynomials in the so-called security-parameter. However for
the purpose of the negative result, it only makes the result stronger to omit them.
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The LPST approach is to compose these encodings in some order, where the goal is to arrive at a compressing
encoding, i.e. one where all ℓ, d, s of the encoded function are smaller than the respective parameters of the
original circuit. However, when considering these transformations in terms of their scaling characteristics, it
is straightforward to see that this cannot be the case using the above components, since all of them have
the invariant that the amount ℓ + d only increases after the encoding, and therefore either ℓ or d will be
greater post-encoding than its pre-encoding value. In fact, for the purpose of the LPST transformation, there
is no advantage in using the [GKP+13] FE scheme compared to use of garbled-circuit based FE which can
be constructed under much milder assumption (indeed, looking at the LPST paper, the unique properties
of [GKP+13] are never used).

Note that our analysis holds even in the case where composition preserves security “for free”. In actuality,
there are often additional overhead required in order to perform the composition in a way where security
of the composed primitive is preserved, which could make the parameters of the composed primitive even
worse. This makes our analysis fairly robust to the specific notion of security used, and it still holds even if
all components were to satisfy the strongest possible security notion (such as simulation-based security).

We therefore conclude that beyond citing a result that is currently out of reach in [LPST16a, Theorem 4],
it appears to be inherently impossible to apply the approach via a simple composition of currently existing
primitives in order to obtain a “bootstrappable” FE scheme.

C.3 Bitwise Complexity and Scaling Characteristic

We now describe a useful measure for several cryptographic primitive of interest that characterizes the
amount of compression that they provide. Such compression be expressed via a quantity we call the scaling
characteristic SC, which describes how the output length, computation depth and computational complexity
per output bit of the encoded computation scales with that of the unencoded version. To ease notation, we
often drop the security parameter from the description below. All algorithms referred to below are potentially
randomized, unless explicitly mentioned otherwise.

Bit-Wise Complexity of a Computation. Let C be some boolean circuit. We let ℓ be its output length.
Let x be an input for C. We consider the bit-wise depth and size of the execution of C on x, as the depth
and size of the circuit that takes as input i and outputs the ith output bit of C(x). We let BWComp(C, x)
be a function whose inputs are C, x and its output is the tuple (ℓ, d, s) as described above.

Randomized Encoding. A randomized encoding (RE) scheme for a circuit C in the common reference
string model is a tuple of algorithms RE = (RE.Init,RE.Encode,RE.Eval), such that for every input x of
a suitable length it holds that RE.Eval(z,RE.EncodeC,z(x)) = C(x) where z = RE.InitC(), and such that
for all x0, x1, if C(x0) = C(x1) then (z,RE.EncodeC,z(x0)) and (z,RE.EncodeC,z(x1)) are computationally
indistinguishable7. We often consider a family of RE schemes RE which contains an encoding for every
circuit C in some class of circuits C. The scaling characteristic of a family RE is a function SCRE : N3 → N

3

defined as follows. Let C|(ℓ,d,s) = {C ∈ C : BWComp(C) = (ℓ, d, s)}.

SCRE(ℓ, d, s) = maxC∈C|(ℓ,d,s),z,xBWComp(RE.EncodeC,z, x) ,

where the maximum is computed over each coordinate independently. We note that the scaling characteristic
also implicitly depends on the security parameter.

Indistinguishability Obfuscation, XiO, Shallow XiO. We note that iO for a family C can be viewed
as a RE for the truth-table function (·), which takes as input a circuit C and outputs the entire truth table
of C. Note that in this case ℓ is the size of the domain of C, and d, s are simply the depth and size of
C. Furthermore, there is no common reference string in this case (i.e. the RE.Init algorithm produces an
empty output). We define the scaling characteristic of an iO scheme in light of this perspective. Namely, for
a candidate construction iO, its scaling characteristic is defined as its expansion when viewed as RE for ℓ,d,s,

7 While the standard security notion for garbled circuits is simulation based, it is sufficient for our context to only
consider the weaker indistinguishability notion considered e.g. in [LPST16b].
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which is the function restricted to circuits C of domain size ℓ, depth d and size s. Using this definition, the
standard sought-after notion of iO is one where

SCiO(ℓ, d, s) = (poly(s) , poly(s) , poly(s)).

In the literature this is referred to simply as “iO” but we call this notion “succinct iO” to distinguish from
the next notion we consider. An exponentially efficient iO (XiO) [LPST16a] is an iO scheme for which there
exists ǫ > 0 s.t.

SCXiO(ℓ, d, s) = (ℓ1−ǫ · poly(s) , poly(s, ℓ) , poly(s, ℓ)).

For the purpose of this work, we consider the notion of Shallow XiO (ShXiO), which is an XiO scheme where
the compressed depth does not depend on ℓ, namely

SCShXiO(ℓ, d, s) = (ℓ1−ǫ · poly(s) , poly(s) , poly(s, ℓ)).

Functional Encryption. A functional encryption scheme (FE) for a function class C is a tuple of algo-
rithms FE = (Setup,KeyGen,Enc,Dec) such that: Setup() outputs a public key pk and a master secret key
msk, KeyGen(msk, C) outputs a secret key skC where C is a circuit from some class C, Enc(pk, x) outputs
a ciphertext c and it holds that Dec(KeyGen(msk, C),Enc(pk, x)) = C(x) for all C ∈ C and appropriate
x. We will use a very rudimentary security requirement which nonetheless suffices for our purposes. The
requirement is that for all (C, x0, x1), if C(x0) = C(x1) then for properly generated pk,msk it holds that
(pk,KeyGen(msk, C),Enc(pk, x0)) and (pk,KeyGen(msk, C),Enc(pk, x1)) are computationally indistinguish-
able.

We now note that an FE scheme also induces a RE scheme by setting RE.InitC() to be the algorithm
that generates z = (pk,KeyGen(msk, C)) and RE.EncodeC,z(x) = Enc(pk, x). The scaling characteristic of a
family of FE schemes FE is defined as the scaling characteristic of the RE family induced by it as above. To
be more explicit:

SCFE(ℓ, d, s) = minFE∈FEmaxxBWComp(FE.Enc, x) ,

where the minimization is over all FE ∈ FE that support the circuit class C|(ℓ,d,s).
Goldwasser et al. [GKP+13] provided a construction of a functional encryption scheme with the following

properties.

Theorem 4 ( [GKP+13]). Assuming the hardness of the LWE problem [Reg05] with sub-exponential mod-
ulus to noise ratio, there exists a FE family FE, that contains a scheme FEℓ,d,s for any (ℓ, d, s), with scaling
characteristic

SCFE(ℓ, d, s) = (ℓ · poly(d)), polylog(s), polylog(s)) .

Furthermore, if the LWE problem above is sub-exponentially hard to solve, then the security of the FE scheme
holds against sub-exponential adversaries.

The following corollary establishes the required parameters from a FE scheme in order to imply the existence
of a succinct iO scheme. For a definition of one-way functions see, e.g., [Gol01].

Corollary 1 ( [BV15]). Assume the existence of one-way functions secure against sub-exponential adver-
saries. Then there exists a fixed polynomial p such that the following holds. If for every sufficiently large
polynomial ℓ in the security parameter, there exist polynomials d, s such that there exists a subexponentially
secure FE family with scaling characteristic

SCFE(ℓ, d, s) ≤ (ℓ/2, d− p(λ), s/p(λ)) (1)

then there also exists a succinct iO scheme.
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Proof. To show the corollary, we quote the following result that was proven in [BV15]. They showed that iO
follows from the existence of a sub-exponentially secure FE scheme that can evaluate the following function:

fFE(k, x, β, c) =

{
(FE.Enc((k, x‖0);Fk(x‖0)),FE.Enc((k, x‖1);Fk(x‖1))) if β = 0
c if β = 1

(2)

where F is a sub-exponentially secure pseudorandom function family which is implied by the existence of
sub-exponentially secure one-way functions, and can be computed in complexity poly (λ) for some fixed
polynomial. See [Gol01] for definition and the construction from [GGM84].

It therefore follows from the aforementioned [BV15] result that if we have a family FE is as in Eq. (1)
then FE contains a scheme FE that can evaluate its own fFE. This is observed by taking p(·) to be the
circuit size of computing the pseudorandom function, and noticing that if the scaling characteristic of FE is
bounded by (ℓ/2, d− p(λ), s/p(λ)), as guaranteed in Eq. (1), then the bitwise complexity of fFE is at most
(ℓ, d, s) which allows for it to be evaluated by the scheme FE.

C.4 Shallow XiO Implies Bootstrappable FE

We recall the notion of puncturable pseudorandom function [BGI14]. In a nutshell, a puncturable pseudoran-
dom function is an efficiently computable keyed function PRFK(x), with an additional (efficient) puncturing
algorithm which takes as input a key K and an input x∗ and produces a punctured key K−x∗ . The punc-
tured key K−x∗ allows to evaluate PRFK(·) on every input except x∗, i.e. it holds for all x 6= x∗ that
PRFK(x) = PRFK−x∗ (x). In terms of security, we require that PRFK(x∗) is pseudorandom (i.e. computation-
ally indistinguishable from a fresh uniformly random value) even given K−x∗ . We can now state our positive
result, namely that shallow XiO and and FE scheme as provided by Theorem 4 yield iO.

Theorem 5. Assume the sub-exponential hardness of the LWE assumption as per Theorem 4. Then the
existence of ShXiO implies the existence of succinct iO.

Proof. The construction is essentially the same as in [LPST16a], however relying on ShXiO instead of XiO.
That is, we construct a weakly compact FE scheme from the succinct FE scheme given in Theorem 4 and
ShXiO. We can then then apply Corollary 1 to obtain an iO scheme. Let PRF be a puncturable pseudorandom
function and sFE = (sFE.Setup, sFE.KeyGen, sFE.Enc, sFE.Dec) be a succinct functional encryption scheme as
per Theorem 4. Further, let ShXiO be a shallow XiO scheme. Consider the following functional encryption
scheme (Setup,KeyGen,Enc,Dec).

– Setup(1λ): This is identical to sFE.Setup(1λ)
– KeyGen(msk, C): Let C ′ be a circuit which on input (m, i) outputs Ci(m), i.e. the i-th bit of C(m) (Note

that Ci has the same depth as C). Compute and output skC ← sFE.KeyGen(msk, C ′).
– Enc(pk,m):
• Choose a uniformly random PRF key K
• Let G[pk,K,m] be a circuit which on input (i, i′) ∈ [ℓ]× [ℓ′] computes

G[pk,K,m](i) = sFE.Enc(pk, (m, i);PRFK(i))[i′],

i.e. it encrypts (m, i) under public key pk using randomness PRFK(i), and outputs the i′-th bit of
the ciphertext, where we let ℓ′ denote the ciphertext length of the scheme.

• Compute and output Π ← ShXiO(1λ, G[pk,K,m])
– Dec(skC , Π): For all i ∈ [ℓ] output yi ← sFE.Dec(skC , Π(i, 1)‖ . . . ‖Π(i, ℓ′)).

The security proof proceeds analogous to [LPST16a], and we only sketch the idea here. Fix two messages
m0 and m1 for which it holds that C(m0) = C(m1), and consider the hybrid circuits Gj [pk,K−j ,m0,m1, cj ].
Gj has the public key pk, a key K−j punctured at input j, both messages m0 and m1 as well as a ciphertext
cj = sFE.Enc(pk, (m1, j);PRFK(j)) hardwired. On input (i, i′) ∈ [ℓ]× [ℓ′], the circuit Gj [pk,K−j ,m0,m1, cj ]
does the following

25



– If i < j: Compute ci ← sFE.Enc(pk, (m1, i);PRFK−j
(i)) and output ci[i

′]
– If i > j: Compute ci ← sFE.Enc(pk, (m0, i);PRFK−j

(i)) and output ci[i
′]

– If i = j: Output cj [i
′] (hardwired)

First note thatG0[pk,K−0,m0,m1, c0] is functionally equivalent toG[pk,K,m0], whereas the circuitGℓ[pk,K−ℓ,m0,m1, cℓ]
is functionally equivalent to G[pk,K,m1]. We can now define a sequence of hybrid experiments H0, . . . ,Hℓ,
where in hybrid Hj the challenge ciphertext Π is computed by Π ← ShXiO(1λ, Gj [pk,K−j ,m0,m1, cj ]). To
see that for each j ∈ [ℓ] the hybrids Hj−1 and Hj are indistinguishable, note the following:

– Gj−1[pk,K−(j−1),m0,m1, cj−1] andGj [pk,K−j ,m0,m1, c
′
j ], where c

′
j is computed by c′j = sFE.Enc(pk, (m0, j);PRFK(j)),

are functionally equivalent, thus XiO security of ShXiO allows us to argue that Π can be computed as
Π ← ShXiO(1λ, Gj [pk,K−j ,m0,m1, c

′
j ]), while this modification is not detectable by the adversary.

– Next, using puncturing security of PRF, we can compute c′j by c′j ← sFE.Enc(pk, (m, i); r), where r ←$

{0, 1}λ are fresh uniformly random coins.
– Using security of sFE, we can now argue that c′j ← sFE.Enc(pk, (m0, i); r) can be replaced by cj ←

sFE.Enc(pk, (m1, i); r).
– Again using puncturing security, we can argue that the ciphertext cj can be computed via cj ←

sFE.Enc(pk, (m1, i);PRFK−j
(j)). This is hybrid Hj .

Hence, we can argue that H0 and Hℓ are computationally indistinguishable under the said assumptions. This
concludes the sketch of the security proof.

We will now turn to the compactness analysis of FE and determine the relations between the parameters.
We will forgo tightness of parameters in order to reduce the number of different variables in the proof.
Consider a polynomial q(x) = xa with the following properties:

1. Recalling Corollary 1 and in particular the polynomial p defined therein, let q be s.t. q ≥ p for every
input.

2. The scaling characteristic of ShXiO is at most

SCShXiO(ℓ, d, s) = (ℓ1−ǫq(s), q(s), q(ℓ · s)).

3. For the sake of this analysis, it will be convenient to consider the ℓ-wise parallel composition of sFE, call
it sFE′. By Theorem 4 the scaling characteristic of sFE′ is at most

SCsFE′(ℓ, d, s) = (ℓ · q(d), log(q(s)), log(q(s))).

Let ℓ be some polynomial in λ such that ℓǫ/a ≥ p2(λ) and also ℓ0.1 > p2(λ). We instantiate sFE′ with
parameters (ℓ0, d0, s0) = (ℓ, ℓǫ/a, q(ℓ1.1)), and consider its composition with ShXiO as in the scheme FE

above. First let us compute the scaling characteristic of sFE′:

SCsFE′(ℓ0, d0, s0) = (ℓ0q(d0), polylog(s0), polylog(s0)) = (ℓq(ℓǫ/a), polylog(ℓ), polylog(ℓ))

= (ℓ1+ǫ, polylog(ℓ), polylog(ℓ)) .

We then apply SCShXiO to obtain the total scaling characteristic of the FE:

SCFE(ℓ0, d0, s0) = (ℓ(1+ǫ)(1−ǫ), q(polylog(ℓ)), q(ℓpolylog(ℓ))) = (ℓ1−ǫ
2

, polylog(ℓ), q(ℓpolylog(ℓ))) .

Asymptotically, for large enough λ, it holds that ℓǫ
2

(λ) > 2, ℓǫ/a(λ) ≥ p(λ)+polylog(ℓ), ℓ0.1(λ) > p(λ)polylog(ℓ)
(for any polylogarithmic function). We therefore conclude that the overall scaling characteristic is at most
(ℓ0/2, d0− p(λ), s0/p(λ)), and thus indeed for all ℓ we have polynomials d = d0, s = s0 as defined above that
satisfy the requirement to apply Corollary 1.
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