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Abstract

Side-stepping the protection provided by cryptography, exfiltration attacks are becoming a
considerable real-world threat. With the goal of mitigating the exfiltration of cryptographic
keys, big-key cryptosystems have been developed over the past few years. These systems come
with very large secret keys which are thus hard to exfiltrate. Typically, in such systems, the setup
time must be large as it generates the large secret key. However, subsequently, the encryption
and decryption operations, that must be performed repeatedly, are required to be efficient.
Specifically, the encryption uses only a small public key and the decryption only accesses small
ciphertext-dependent parts of the full secret key. Nonetheless, these schemes require decryption
to have access to the entire secret key. Thus, using such big-key cryptosystems necessitate that
users carry around large secret-keys on their devices, which can be a hassle and in some cases
might also render exfiltration easy.

With the goal of removing this problem, in this work, we initiate the study of big-key
identity-based encryption (bk-IBE). In such a system, the master secret-key is allowed to be
large but we require that the identity-based secret keys are short. This allows users to use the
identity-based short keys as the ephemeral secret keys that can be more easily carried around
and allow for decrypting ciphertexts matching a particular identity, e.g. messages that were
encrypted on a particular date. In particular:

e We build a new definitional framework for bk-IBE capturing a range of applications. In
the case when the exfiltration is small our definition promises stronger security — namely,
an adversary can break semantic security for only a few identities, proportional to the
amount of leakage it gets. In contrast, in the catastrophic case where a large fraction
of the master secret key has been ex-filtrated, we can still resort to a guarantee that the
ciphertexts generated for a randomly chosen identity (or, an identity with enough entropy)
remain protected. We demonstrate how this framework captures the best possible security
guarantees.

e We show the first construction of such a bk-IBE offering strong security properties. Our
construction is based on standard assumptions on groups with bilinear pairings and brings
together techniques from seemingly different contexts such as leakage resilient cryptogra-
phy, reusable two-round MPC, and laconic oblivious transfer. We expect our techniques
to be of independent interest.
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1 Introduction

Compromises of deployed cryptographic schemes by means of cryptanalysis are becoming increas-
ingly rare. Instead, real-world adversaries try to circumvent the protection offered by cryptography
via side-channel attacks. The most high-value targets for such side-channel attacks are cryptographic
secret keys, which, if somehow exfiltrated, give the adversary unrestrained access to its victim’s
confidential communication. For advanced notions of public-key encryption such as identity-based
encryption (IBE), exfiltration of the long-term master secret key is the single biggest risk coming
with the adoption of such a system. This risk can be somewhat mitigated by distributing the mas-
ter secret across several servers [BF01, Goy07, KG10, Chal2|, but this comes with an additional
overhead of maintaining multiple servers with shares of the master key.

Big-Key Cryptography in Bounded-Retrieval Model. The pervasiveness of side-channel at-
tacks has motivated the development of cryptosystems that remain secure even when the adversary
may have the ability to leak secrets of honest parties. One line of defense against such attacks, is
to develop cryptosystems that have very large secret keys, or what is called big-key cryptography
(see e.g., [Dzi06a, DLW06, CDD*T07, ADW09, ADNT10, BKR16, MW20]). Big-key cryptosystems
are developed with huge secret keys with the intent of making it hard to exfiltrate or leak on such
keys. Furthermore, leakage of large amounts of data from a device can often be easier to detect and
mitigate, or the bandwidth of any residual side-channels of such a device can be bounded conserva-
tively!. Such cryptosystems aim to provide appropriate security even when a large amount of arbi-
trary leakage occurs on the big secret key. Prior works have focused on constructing various big-key
primitives in the bounded-retrieval model, including symmetric-key encryption [BKR16], public-key
encryption [ADN'10, MW20] and authenticated key agreement [Dzi06b, CDD*07, ADWO09].

In the symmetric key setting [BKR16], the big-key setup involves a procedure to bound the
adversary’s probability of predicting an optimal length sub-key of the original exfiltrated big key,
and using this to design an encapsulation mechanism that can extract a random key (such a key
encapsulation mechanism directly gives an encryption scheme). Here, the encapsulation and de-
capsulation procedures only make local access to the big-key, thus ensuring efficiency. The key
technique leveraged here is a primitive called “reusable locally-computable computational extrac-
tors" [Dzi06b, CDD*07, BKR16].

On the other hand, in the public-key setting, only the secret key is big and prone to exfiltration,
while the public key is still short. The efficiency goals are that the encryption and decryption
running times do not grow with the size of the big secret key. This naturally leads to the decryption
procedure only making a few local ciphertext-dependent access to the big secret key. The security
goal in this setting is typically to achieve semantic security, even when the adversary can obtain
arbitrary leakage on the big secret key. The security is only required for fresh ciphertexts that are
generated after the leakage by the adversary. In contrast, no meaningful security can be offered for
the old ciphertexts based on which the leakage can be performed, e.g., the adversary might obtain
leakage corresponding to a few bits of the plaintext for a given ciphertext.

The use of big-keys in a big-key public-key encryption scheme limits their usability and principal
practicality. In particular, a user does not a priori know what parts of a secret key it will need to
decrypt a ciphertext on a particular device. Thus, the user must carry around the entire large secret
keys on all her devices. This poses two challenges: (1) including large secret keys on a number of

L Screaming Channels [CPM ™ 18] are one such example, which optimistically transfers at most 1 bit per second.



devices can be a significant burden, e.g., wastage of limited storage space on a mobile device; and
(2) the replication of a large secret key across multiple devices makes the user once again more
susceptible to leakage based attacks, e.g., the loss of a mobile device could leak the entire big key.

1.1 Leakage-Resilient Identity-Based Encryption: Our Approach and Chal-
lenges

Motivated by these concerns, in this work, we will focus on the notion of identity-based encryption
(IBE) as a natural proxy for encryption schemes that allow the delegation of decryption tokens.
Recall that in an IBE scheme [BF01]| a setup algorithm generates a pair (mpk, msk) of master public
and master secret keys. The identity key generation algorithm takes the master secret key msk and
an identity string id and outputs an identity secret key sk;y. To encrypt a message m, the encryption
algorithm takes a master public key mpk and an identity string id and produces a ciphertext c.
Finally, the decryption algorithm takes an identity secret key sk;y and a ciphertext ¢ and returns
a message m. In terms of correctness, we require that if skiy is a user secret key corresponding to
an identity id and a ciphertext ¢ was encrypted to this same identity, then decrypting ¢ with sky
returns the message that was encrypted.

Mapping our goal of designing a system with large long-term secrets but succinct public keys,
ephemeral keys, and ciphertexts to the notion of IBE, we obtain the requirement that all system
parameters except the master secret key should be succinct. We refer to this notion as big-key
identity-based encryption (or bk-IBE for short).

Defining Security. In terms of security, the standard security notion for IBE requires that a
ciphertext ¢* encrypted to an identity id* should remain secure, even if that adversary has access to
any (polynomial number of) other secret keys sk;y for id # id*. Depending on whether the adversary
has to specify the challenge identity id* at the start of the experiment or is allowed to choose it
adaptively depending on the master public key and some identity secret keys, we refer to selective
or full security, respectively.

Now, when we consider (selective or full) security under leakage, the adversary additionally gets
a leakage, L(msk), on the master secret key. In the bounded retrieval model [Dzi06a, DLWO06|, we
only limit the number of bits that the function L outputs, but otherwise allow L to perform any
(efficient) computation on msk, i.e., L may try to somehow compress L first before producing its
output. However, how does this notion of leakage resilience go along with our goal of making all
system parameters small except the master secret key?

A moment of reflection points to the following dilemma, even in the setting of selective security:
if the bit-length of the leakage function’s output is allowed to be larger than the bit-length of an
identity secret key, then the leakage function may just compute the key generation algorithm for
the challenge identity id* on msk and output the identity secret key skiy« thus obtained. This makes
the adversary’s task of breaking the security of the challenge ciphertext ¢* essentially trivial: The
leakage sk;y+ allows to recover the challenge message via the legitimate decryption algorithm!

For this reason, all prior works which studied the notion of leakage resilient IBE thus restricted
themselves to a setting where the identity secret keys are large, and the master secret key is either
large or permits no leakage [ADNT10, CDRW10, LRW11, HLWW13, CZLC16, NY19|. This brings
us to the following question:

How can we meaningfully reconcile our design goal of short public parameters, identity



secret keys, and ciphertexts with security against large amounts of master secret key
leakage?

1.2 A New Security Notion and Construction for bk-IBE

From the above discussion, it is clear that we have to depart from the standard security notion of
IBE. One way of relaxing the IBE security to circumvent the problem of exfiltration of the challenge
identity key, described above, could consist of choosing the challenge identity at random or from a
distribution of sufficiently high entropy, after the adversary has obtained his leakage.

While this indeed leads to a meaningful notion sufficient for certain use cases, the requirement
of the challenge identity to be entropic puts restrictions on most of the use cases we envision. As an
example, if the identities correspond to calendar dates, then choosing the challenge identity from a
high entropy distribution would imply that the point in time corresponding to the challenge message
necessarily needs to be highly uncertain — something that may not always be true.

However, we do expect exfiltration of a large portion of the already pretty big master secret
key to be hard, particularly while also avoiding detection. Note that detection of leakage allows for
alternative remedies such as revoking old keys and replacing them with new ones. Thus, a natural
way to think of the leakage obtained by the adversary is as a budget of information about the master
secret key, which we expect to be relatively smaller than the size of the master secret key. Of course,
in a catastrophic event, a large fraction of the master secret key may be leaked, in which case, we
would like to revert to the weaker entropic security guarantees.

The main intuition behind our new definition is as follows: the adversary may spend his exfil-
tration budget arbitrarily, and yet, he should not obtain more information than what he could get
via a trivial ezfiltration attack— leaking the identity secret keys of a number of challenge identities.
Further, as mentioned above, catastrophic leakage of a large fraction of the master secret key still
preserves entropic security.

In light of this, our security definition aims to capture how many identities the adversary could
break. In particular, suppose the adversary obtains an ¢-bit leakage from the master secret key. We
define our big-key IBE to be secure if the adversary cannot break the security of > ¢ 4+ 1 number
of identities. This is essentially the optimal security one could hope for as the adversary could
potentially break ©(¢) identities by leaking a few bits for each identity.

Observe that this security notion is sufficiently strong for our applications. For instance, if the
identities are the calendar dates, our security guarantees that an adversary leaking ¢ bits cannot
break the security for more than ¢ days. Moreover, a random identity with sufficiently high entropy
will also be secure since an adversary can break at most polynomially many identities.

Our Construction. Given this new security definition, we construct the first bk-IBE that achieves
selective security based on the hardness of standard assumptions on groups with bilinear pair-
ing. Our construction builds on seemingly very different tools such as leakage-resilient encryption
scheme [HLWW13], reusable two-round MPC |BL20], and laconic OT [CDG™17].

Potential Extensions to ABE/HIBE. In the context of IBE, it is usual to also consider stronger
encryption systems such as attribute-based encryption and hierarchical identity-based encryption,
which typically offer a single small secret key that can be used to decrypt large families of ciphertexts.
This is at odds with the goals of this paper, where we aim to not have a single short key that can
decrypt large families of circuits, as such a key could end up getting leaked.



1.3 Technical Outline

bk-PKE via random selection. We will start by discussing the existing paradigms to construct
bk-PKE and the challenges that arise when trying to adapt these techniques to the bk-IBE setting.
One of the core ideas in the construction of bk-PKE [ADN*10, MW20] is random selection. For
the sake of simplicity, let us drop the requirement of a short public key for a moment. Then there
is a natural idea to construct bk-PKE via the following approach, as detailed in [ADNT10]. Let
(KeyGen, Enc, Dec) be any public key encryption scheme, and consider the following transformed
scheme (KEYGEN,ENC,DEC). The KEYGEN algorithm produces a pair of public key PK =
(pky, ..., pk,) and a secret key SK = (sky,...,sk,) for a largeness parameter ¢, where each key-pair
(pk;, sk;) has been independently generated. The encryption algorithm ENC' takes the public key
PK and a message m and selects a random subset I = {iy,...,ix} C [¢] of size (say) . Next, it
computes a A-out-of-A secret sharing of sq,..., sy of m (e.g. via additive secret sharing), computes
ciphertexts c; = Enc(pk;,,s1),...,cx = Enc(pk;, , sx) and outputs the ciphertext C' = (I, c1,...,cy).
To decrypt such a ciphertext C, the decryption algorithm DEC retrieves the secret keys sk; (for
i € I) from SK, decrypts the ¢; and reconstructs the message m.

Note first, that the ciphertext C'is small (i.e., of size poly(A, log(¢))) and that both the encryption
algorithm ENC' and the decryption algorithm DEC' are local, in the sense that EFNC' only accesses
PK in A location and DEC accesses SK in A locations respectively.

Somewhat oversimplified, security is argued as follows, making critical use of the random se-
lection of the set I: Given any leakage L(SK) of size sufficiently smaller than ¢ bits, many of the
individual secret keys sky, ..., sk, will be information-theoretically hidden from the adversary. As
the set I is chosen randomly after the leak L(SK) has been computed, with very high probability
over the choice of I, there is an index ¢ € I for which L(SK') contains essentially no information
about sk;. Thus, one can argue that the ciphertext component ¢; hides the share s;, and therefore
the message m is hidden.

Returning to the issue of large public keys, compressing the public key PK while keeping the
secret key S K incompressible was, in fact, the main technical challenge in the original construction
of [ADN'10]. This was achieved via the notion of identity-based hash-proof-systems.

With more recently developed tools, namely laconic oblivious transfer, hash functions with
encryption or registration-based encryption [CDG17, DG17b, DGHM18, DGGM19, GHMRIS,
GHM™19, MW20|, there is a significant shortcut to compress the public key PK. Instead of
providing the public key PK in its entirety, only a short hash H(PK) of PK is provided. This
hash H(PK) then allows the encrypter to delegate the computation of the ciphertexts ci,...,cy to
the decrypter in a secure way. As a matter of fact, looking ahead, our construction will rely on the
same tools to compress the master public keys.

Challenges for extending to bk-IBE. To adapt this high level idea to the IBE setting, one
encounters several bottlenecks, which we highlight below.

Firstly, recall that in the case of bk-PKE, the random selection of the set I, containing the
indices of secret keys that will be accessed by the decryption, needs to be crucially made at the
encryption time. This leads to a critical problem in the bk-IBE setting: since our target is to
keep the identity secret keys (decryption keys) short, this information pertaining to selection of the
identity keys must be fixed independent of the random coins of the encryption.

Secondly, one might think the above issue is no longer relevant if the challenge identity is picked
randomly. For example, suppose every identity id implicitly defines some subset Siy, and its identity



secret-key corresponds to {sk; : i € Sig}. Then, one might hope a similar argument will prove the
security of a randomly-selected identity. However, recall that the adversary is given unbounded
access to KEYGEN in IBE schemes, through which he could potentially learn all the sk;’s, thus
breaking the security. This challenge posed by an unbounded access to K EY GEN queries does not
exist in the bk-PKE schemes.

Thus, one might wonder if we could handle the KEY GEN queries by starting with a leakage-
resilient IBE scheme and amplifying the leakage tolerance on the master secret key through the above
parallel repetition idea. For such an amplification, we must start with an IBE scheme that tolerates
some bounded leakage, say m-bits, on the master secret key, and the only known prior scheme
allowing that is [LRW11] (other schemes only tolerate bounded leakage on large identity secret
keys, and not on the master key itself). The new scheme is obtained by generating ¢ independent
instances of this underlying IBE scheme. Now, every identity id is associated with a subset Siq C [/]
and its identity secret key is the identity secret keys for all the instances i € Siy. It is plausible to
conjecture that a random identity is secure in this new scheme tolerating (approximately) m - £-bit
leakage. However, the only known techniques of proving such leakage amplification (using parallel
repetition) are based on information-theoretic arguments [ADW09, ADN*10, BK12, HLWW13|. In
particular, the security proof requires that the ciphertext is indistinguishable from some simulated
ciphertext, which contains information-theoretic entropy in the adversary’s view.? However, no
known leakage-resilience IBE supports such a proof structure (as no entropy is left, given all the
unbounded identity queries), and hence the parallel repetition does not give an amplification. In
fact, there are works (e.g., [LW10, JP11]) which show that in general, parallel repetition of a
leakage-resilient encryption scheme does not amplify the leakage-resilience.

Our work precisely circumvents the problems listed above, and builds a leakage-resilient IBE
scheme from scratch, such that it supports such an information-theoretic argument. In particular,
we show that there is a way to simulate the entire view of the adversary including all the secret key
queries such that (1) the adversary cannot distinguish the simulated view from the real view and
(2) in this simulated view, the challenge ciphertext retains information-theoretic entropy, given the
leakage. The key primitive that helps us achieve this is a big-key pseudo-entropy function.

Our Ideas. We construct our bk-IBE scheme by anchoring the leakage resilience properties from
the corresponding properties of a simpler primitive, namely a big-key pseudo-entropy function. A
pseudo-entropy function (PEF) [BHK11]| has the property that its output at certain inputs are still
unpredictable, even if the distinguisher has obtained leakage about the PEF key (in addition to the
output of the PEF elsewhere). While ideally we would want to rely on pseudo-random functions
(PRFs), they cannot even tolerate a single bit of leakage.

In this work, we will focus on the selective security notion, both for IBE and for PEFs. A
pseudo-entropy function PEF is selectively secure for t inputs against ¢ bits of leakage, if for any
inputs x1,...,x¢ it holds that PEF (K, z1),..., PEF(K,x;) is unpredictable given L(K), where
L(-) is an ¢-bit leakage function. For our construction, we will need a locally computable PEF, i.e.,
PEF (K, ) will access the key K only in a few locations.?

2Given such a proof structure, parallel repetition amplifies the total entropy of the simulated ciphertexts and,
hence, naturally amplifies the leakage-resilience of the system as well.

3For technical reasons, we need that the locations in which K is queried do not depend on K itself. For this
reason, our actual PEF construction relies on an additional common reference string.



Leakage Resilient Public-Key Encryption. Our big-key IBE scheme is conceptually built
on the weak hash proof system framework of Hazay et al. [HLWW13|. This work constructs a
leakage resilient key-encapsulation mechanism from any (non-leakage resilient) public key encryption
scheme. The main ideas of their construction can roughly be summarized as follows. The public
key PK of their scheme consists of 2n pairs (pk; g, pklvl), e (pknvo, pk,, 1) of public keys for an
underlying public key encryption scheme. The secret key SK on the other hand, contains a random
vector b = (b1, ...,b,) and only contains one secret key sk;, for every index i. Key encapsulation
proceeds as follows: To encapsulate a randomly chosen key k = (ki,...,ky) < {0,1}", compute
ciphertexts ¢; o and ¢;1 (for i = 1,...,n), where ¢; ¢ encrypts k; under pk; o and ¢;1 encrypts k;
under pk; ;. To decapsulate such a ciphertext, compute k; = Dec(sk; p,, ¢i ;) for each index i.

Leakage resilience of this encapsulation mechanism is established as follows: Let ¢ = ((¢1,0,¢1,1),
..., (c1n,c1n)) be a challenge ciphertext. In the real CPA experiment, both ¢; o and ¢;; encrypt
the same bit k; for all 4. Since for each ¢ the secret key corresponding to pk;1_p, is not part of the
secret key SK, by relying on the IND-CPA security of the underlying encryption scheme we can
switch each ¢; 1, to encrypt 1 — k; instead of k;. Note that even an adversary in possession of SK
would not notice this switch. Now, since the b; are chosen uniformly at random, the encapsulated
key depends on the entropy of b (which is part of the secret key). Specifically, decapsulating such a
malformed ciphertext produces a key k¥’ = k@®b. But this means that unless the adversary knows the
vector b entirely, k' has entropy from the adversary’s view. In other words, as long as the adversary’s
leakage is sufficiently shorter than n, the key encapsulated in such a malformed ciphertext will be
unpredictable from the adversary’s point of view. Establishing a uniform key follows via standard
randomness extraction techniques in a post-processing step.

Towards Identity-Based Encryption. Alas, this idea does not translate directly to the setting
of identity-based encryption. For each identity secret key sk;y we would need to argue that some
part of sk, similar to the vector b above, must retain entropy in the adversary’s view, even given
leakage about the master secret key msk. However, since msk is a compact representation of all
identity secret keys, msk will be used to compute both skiy; o and skiy; ; (to stay with the above
notation). In other words, msk cannot just forget half of the secret keys for each identity.

Anchoring Leakage resilience in PEFs. Our approach is to adapt the [HLWW13] technique
so as to push the entire entropy of the master secret key into the key K of a pseudo-entropy
function. Furthermore, we will not rely on pairs of public keys pk; o, pk; ; as the construction of
[HLWW13|, but instead rely on a special type of witness encryption scheme [BL20| which allows us
to use information relating to the PEF key K to decrypt. Looking ahead, for each identity id the
role of the random vector b in the construction of [HLWW13| will be played by a function value
PEF(K,id). We first describe a version of our construction with non-succinct public parameters
and later show how these can be compressed into succinct public parameters via a laconic OT-
based non-interactive secure computation (NISC) [CDG'17, DG17b, DG17a|. The master secret
key msk of our scheme is simply the key K for a leakage resilient local big-key PEF. Assume that
K = (Ki,...,K,), where the K; are “short” blocks of size poly(\) (independent of the leakage
bound /).

The public parameters pp consist of commitments to the blocks K; of K, as well as a common
reference string crs for a special NIZK proof system. Both the commitment scheme and the NIZK
proof system need to be compatible with the special witness encryption scheme of [BL20].



Identity secret keys in our scheme are generated as follows. First, the KeyGen algorithm computes
siq = PEF(K,id). Since PEF is local, this will only access a small number of the blocks Kj;.
Further recall that the indices of these blocks do not depend on K itself. The KeyGen algorithm
now computes NIZK proofs I1;, for each i = 1,--- | A, corresponding to the statements x; =“the i-th
bit of PEF(K,id) is siq;” (where K relates to the commitments in the public parameters pp). We
stress that since PEF(K,id) only accesses a small number of blocks of K, both the statements z;
and the proofs 1I; are succinct, i.e. independent of ¢. The identity secret key sk;y now consists of
Sid, the statements x; and the NIZK proofs II;.

We will now describe the encapsulation and decapsulation algorithms. For an identity id, we
encapsulate a random key u = (ug,...,uy) < {0,1}* as follows: for each index i we compute
two ciphertexts c; o and ¢; 1 using the special witness encryption scheme, both encrypting ;. The
statement under which we encrypt ¢;o is x;0 =“the i-th bit of PEF(K,id) is 07, whereas the
corresponding statement for ¢; 1 is z; 1 =“the i-th bit of PEF (K, id) is 1”. The ciphertext C' consists
of (c1,0,¢1,1),---,(ex0,cx1). To decapsulate such a ciphertext C' using an identity secret key skiq,
for each i € {1,..., A} we decrypt ¢;,, using II; as a witness. Correctness follows routinely from
the correctness of the components.

id,i

Security. We will establish security roughly following the blueprint of [HLWW13|. Specifically,
assume we have challenge identities idy, ..., id; and challenge ciphertexts C1,...,C;. Our first step
of modification relies on the fact that, for each pair of ciphertexts c; ,c; 1, one of the statements
x;0 or x; 1 must be false. Consequently, by the security of the witness encryption scheme we can flip
one of the encrypted bits, effectively pushing entropy from siy = PEF(K,id) into the corresponding
challenge ciphertext.

In the second step, we use the simulation property of the NIZK to remove the dependence
of the proofs II;’s (in the identity secret keys) on the PEF key K. Likewise, we can replace the
commitments in the public parameters with fake commitments, which are generated independently
of the PEF key K.

Now observe that, the only part of the identity secret key that still depends on the key K
is PEF(K,id). To handle this, our PEF comes with a puncture mode, where, given a set of
challenge identities idy,...,id;, the PEF samples a punctured key K©, such that: (A) it satis-
fies correctness for all non-challenge identities, i.e., PEF(K,id) = PEF(K®,id) for all id ¢ {€
id{,...,id;}. This ensures that we can answer all KeyGen queries using K®; (B) the PEF outputs
(PEF(K,idy),...,PEF(K,id;)) contain “high-enough" entropy, given K®. This property ensures
that the challenge ciphertexts are unpredictable, given the adversary’s view (which now does not
depend on K, but only on K©).

Finally, we reduce the selective security to the security of the underlying PEF. The above argu-
ments help us to push all the entropy of the PEF (K, id;) to the corresponding challenge ciphertexts.
Hence, we now invoke the selective leakage resilience of the PEF to information-theoretically show
that for some identity id; the adversary cannot have a non-trivial advantage in distinguishing the
corresponding challenge ciphertext.

1.4 Future Directions

Our work leaves open several exciting problems. We discuss a few of them below.
As in IBE schemes, there are two flavors of security one could imagine, namely, selective and
adaptive/full security. In this work, we achieve selective security, where the adversary must select



the challenge set, J, of £ 4 1 identities before the setup of the system, and succeeds only if she
breaks all the identities in J. In contrast, full security allows the adversary to adaptively pick this
set, i.e., she succeeds as long as she breaks the security of all the identities in any set J of size £+ 1.
We leave the problem of building a fully secure big-key IBE as a fascinating open problem.

Secondly, having initiated the study of big-key IBE, the next natural step towards making it
truly practical would be to build it with only black-box use of the underlying primitives. Another
practically useful feature to add to our big-key IBE would be to incorporate the updatability of the
keys.

The third interesting problem that we leave open stems from the recent technique [MW20] of
making the secret keys “catalytic", i.e., the large secret key is no longer needed to be a completely
random string (which the user doesn’t utilize elsewhere), but is generated as a (randomized) encoding
of some public data (e.g., music library) that cannot be compressed further by the adversary.
Extending the study of such public-key encryption schemes with catalytic keys to our big-key IBE
setup would be another exciting problem to explore.

Finally, we note that typically, in IBE security definitions, the adversary is given access to
a KeyGen oracle, which outputs identity secret keys. The only restriction is that the adversary
cannot query the challenge identity id*. In our security definition, we do not allow the adversary
to query KeyGen on any identity in the set of challenge identities J accordingly. While such a
restriction seems natural, one may wonder whether it is necessary. Consider a relaxation of this
assumption where the adversary is allowed to make KeyGen queries with keys in the set [J of
challenge identities, which are subsequently removed from J. We claim that any scheme with a
deterministic KeyGen algorithm (as is the case for most IBE constructions) would be immediately
insecure. The reason is that the leakage function L may leak a succinct parity information about
the keys of the challenge identities, e.g. leak = EBidEJ skig. Given this leakage leak, the adversary
could query the KeyGen oracle on all but one of the identities in J, say id*, and then reconstruct
skig+ via skiq« = leak @ @idej\{id*} skiq. As the question of achieving such a stronger security notion
by relying on additional randomization of the KeyGen procedure seems quite challenging and is
beyond the scope of this work, we leave it open for future work.

2 Preliminaries

Notations. We use A to denote the security parameter. negl(-) denotes a negligible function. For
n € Z, [n] denotes the set [n] = {1,--- ,n}. For a distribution X, we use z <— X to denote the
process of sampling x from X. For a set X, we use z + X to denote sampling x from X uniformly
at random. We also use Uy for the uniform distribution over X'. We define statistical difference
as A(X;Y) =1/23 |Pr[X = a] — Pr[Y = a]|, and say that X and Y are statistically close if
their statistical difference is bounded by a negligible function of the security parameter. We say
that X and Y are computationally indistinguishable if for any PPT adversary D, |Pr[D(X) =
1] = Pr[D(Y) = 1]] < negl()).

2.1 Min-Entropy

Let X be a random variable supported on a finite set X and let Z € Z be another random variable
(possibly correlated with X'). The min-entropy of X is defined as Hoo (X) = — log(max, Pr[X = z]).
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The average conditional min-entropy [DORS08| of X given Z is defined by
H.(X|Z) = —log (EZNZ [maj}c Pr[X = z|Z = Z]D .
xre

We use the following weak chain rule about average conditional min-entropy.

Lemma 1 (Weak Min-Entropy Chain Rule [DORS08|). Let X € X and Z € Z be random variables.
Then it holds that B
Hoo(X|Z) > Hoo(X) — log(|Z]).

Additionally, for any § > 0, with probability at least 1 — § over z < Z, we have
HoolX|Z = 2) > Hao(X|Z) — log(1/6),

Further, our proof requires the following min-entropy splitting lemma, the proof of which, essentially
follows from recursively invoking [DFR07, Lemma 4.2|.

Lemma 2 (Min-Entropy Splitting Lemma). Let X1,..., X, be a sequence of random variables such
that Hoo(X1, ..., Xk) > a. There exists a random variable C' over [k] s.t.

Hoo(Xc|C) > a/k —log k.

Proof. We use the following min-entropy splitting lemma from [DFR*07|. Lemma 4.2 of [DFR*07]
proves the general statement for e-smooth min-entropy. Below, we use the special case of that
lemma with € = 0, i.e., min-entropy.

Lemma 3. [DFRT07, Lemma 4.2] Lete > 0, and let Xo, X1 be random variables with Hoo (X0, X1) >
a. Then, there exists a binary random variable C over {0,1} such that Hoo(X1-¢,C) > a/2.

To prove our lemma, we recursively invoke Lemma 3 to bi-partition the coordinates for log k
times. This gives us that
HOO(XC7 C) > a//ﬂj,

where C' is some random variable over {1,2,...,k}. Now, by Lemma 1,

Hyo(Xc|C) > a/k — logk.

Our construction also relies on a randomness extractor, which we recall below.

Definition 1 (Randomness Extractor). A function Ext: {0,1}" x {0,1}¢ — {0,1}™ is called a
(k,e)-strong randomness extractor if, for all distributions X over {0,1}" such that Hoo(X) > k, we
have

A (s, Ext(X,9)) 5 (Upyas Ugo ) ) <&,

where the seed s is chosen uniformly at random from {0, 1}.
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3 Puncturable Local Pseudo-Entropy Functions

In this Section we will provide definitions and construction of local pseudo-entropy functions. Our
target security notion is selective security, i.e., before receiving leakage and getting access to the
function, the adversary has to announce his challenge inputs.

Definition 2. Given a parameter £, a puncturable local pseudo-entropy function is specified by a
pair of PPT algorithms (Gen, PEF) with the following syntaz.

e Gen(1*,4): Outputs a pair (CRS, K), where CRS is a common reference string of size poly(\),
and K = (K1,...,K,) is a key consisting of K; € {0,1}PoY(N) 4

e PEF(CRS, K, z): Takes as input CRS and x and gets RAM access to K, and outputs a Y €
{0, 1}Poly(N)

We also require the existence of (Geng, PEF2) with the following syntax.
o Geny(1M 4, x1,...,2,): Outputs a tuple (CRS, K, K©).

e PEF5(CRS, K® z): Takes as input CRS, K®, z, and outputs a Y.
We require the following properties to hold.

e Locality: PEF(CRS, K,-) makes at most poly()\) (independent of £) RAM access to K =
(K1,...,Ky).

e Mode-Indistinguishability: Fizx,...,r, € {0,1}* and let (CRS', K', K®) + Gena (1}, £, 21, ..., 24).
Then (CRS', K') is computationally indistinguishable from (CRS, K) < Gen(1*, /).

e Punctured correctness: Fizxy, ...z, € {0,1}* and let (CRS, K, K©) + Geny(1*, £, 21, ..., 2,).
Then it holds for all x & {x1,...,xx} that PEF(CRS, K, x) = PEF3(CRS, K®, z), except with
negligible probability over the coins of Gens.

e k-Selective 3-Pseudo-Entropy Security: Fix x1,...,z, € {0,1}* and let (CRS, K, K®)
Gena (1,0, 21, ..., 2,). Then it holds that

Ha (PEF(CRS,K,:L'I), ..., PEF(CRS, K, z,.) ’ CRS,KQ) > 8.

Observe that, by the punctured correctness, one could use K© to correctly evaluate PEF at all
inputs x ¢ {x1,...,z}. Therefore, this property implicitly states that, even if the adversary
obtains PEF(x) at all inputs x ¢ {x1,...,x4}, PEF(CRS,K,x1),...,PEF(CRS, K, x,) is still
(information -theoretically) unpredictable.

The notion of pseudo-entropy functions is first proposed by Braverman, Hassidim, and Kalai [BHK11].
Their definition supports puncturing at one input and does not require locality. Let us recall their
result.®

“The length of CRS and every K; do not depend on ¢, but n shall depend on ¢.
®Their work predates the first mention of punctured PRFs [BGI14]. While they do not use puncturing formalism,
they implicitly define a punctured generation and evaluation algorithm in their proof.
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Theorem 1 ([BHK11] Thm. 4.1). Let § > 0 be an arbitrary constant. Under the decisional Diffie
Hellman assumption, there exists a family of 1-selective v = (1 — §)a-pseudo-entropy functions,
where « is the length of the secret key.

In other words, [BHK11] constructed a PEF such that, after puncturing at one input =, PEF(CRS, K, x)
preserves almost the entire entropy of the key K.

Remark 1. We make a few remarks about our definition.

o Leakage-resilience. The leakage-resilience of the PEF simply follows from the min-entropy
chain rule (Lemma 1). That is, given an m-bit leakage L(K) of the key K, the entropy
guarantee in the definition

Ay (PEF(CRS,K,xl),...,PEF(CRS,K, ) ’ CRS,K@) >
implies

e (PEF(CRS, K,a1),...,PEF(CRS, K, z,)

CRS, K©, L(K)) >y —m.

Braverman et. al. [BHK11] choose to incorporate the leakage resilience in their definition.
Here, our definition simply states the min-entropy guarantee, and we shall handle the leakage
within corresponding proofs directly.

e Parameters Setting. Looking ahead, we shall use our PEF to construct our big-key IBE
scheme. The big-key scheme first specifies a leakage parameter £ that it aims to achieve,
which, in turn, determines the number k of inputs our PEF needs to puncture in order to
obtain sufficiently high (e.g., > £) min-entropy guarantee. Finally, the number of inputs to be
punctured determines the number n of blocks we need to have in the key K = (K1,...,K,).

e CRS. We note that our definition includes a CRS. Intuitively, the locations in K that one
needs to access in order to evaluate PEF(CRS, K, z) must be fized and public, given the CRS
and x. As it will become clear in our big-key IBE construction, this ensures that the encryption
algorithm is also local (i.e., independent of £). We shall elaborate more on this later.

Finally, we note that the construction of [BHK11] does not have a CRS. Hence, we omit the
CRS when we use their PEF as an underlying building block.

Finally, the following simple Lemma about random bipartite graphs shall be useful to us, whose
proof follows by a simple probabilistic argument.

Lemma 4. Let N, M > 0 be integers with N < (1 —e)M for a constant ¢ > 0 and d > 0 be an
integer. Let L = [N] and R = [M]. Let ' C L x R be a random graph which is chosen as follows:
For every vertex v € L the neighborhood I'(v) is sampled by choosing w1, ..., wq < R uniformly at
random and setting I'(v) = {w1,...,wq}. Let MATCH be the event that every vertex v € L can be
matched with a unique vertext w € R, i.e. for each v € L there exists a W (v) € I'(v) such that for
v £ v it holds that W(v) # W (v"). Then it holds that

Pr[MATCH| >1-N-(1-¢g)?>1-N.e =%

Furthermore, such matching can be found efficiently, except with probability N - (1 — )¢

13



Proof. Consider the following process. Initialize a set Rgooq0 = R. For i« = 1,...,N do the
following: Choose a w; € I'(1) N Rgood,i—1 and set Rgood.i < Rgood,i—1\{wi}. If T'() N Rgood,i—1 =0
abort and output L.

We will now show that the probability of failure of this procedure is at most N - (1 — &),
establishing the statement of the lemma. For each i € L, let BAD; be the event that I'(i) N Rgood,i—1 =
(). Let BAD be the event that any of the BAD; occurs. At step 4, if no abort occurred the size of
Rgood,i—1 is M — i+ 1. Thus, BAD; occurs if and only if all d neighbors of i end up in R\ Rgood,i—1,

the probability of which is
i—1\°
Pr[BAD;] = .
ead] = (*57)

By a union-bound, it holds that
Pr[BAD] = Pr[BAD; V---VBADyN]| < N - (1 —&)M/M)? = N - (1 — &)™
O

Note that the failure probability in Lemma 4 is negligible for N = poly(A) and € - d > w(log(A)).

3.1 Our Construction

We will now provide our construction of a local pseudo-entropy function. Our construction will
start from the PEF construction of [BHK11] which is not local, and amplify this to a PEF which
can be evaluated by a local algorithm.

Let (Gen’, PEF') be the family of pseudo-entropy functions (without local evaluation) from The-

orem 1, and let PRF be a pseudorandom function which takes as input an x € {0,1}* and outputs

a sequence of elements (i1, ...,iq) € [(]%.

Gen(1*,¢) : Fori=1,...,n, compute K; < Gen’(1?) and choose K* < {0,1}*. Output CRS = K*
and K = (Kq,...,K,).

PEF(CRS, K, z) :
e Parse CRS = K*
e Compute (i1, ...,1q) < PRF(K*, x)

e Retrieve K; , ..., K;, via oracle access to K
e Compute and output Y + (PEF'(K;,,z),...,PEF(K;,, z))

First note that PEF is local, as it only accesses K at d = poly(\) locations i1, ...,i5. Moreover,
the location it accesses is fixed by CRS and .

Selective Security. We will first provide the punctured key generation and evaluation algorithms.
Let Genh(1%,:) and PEF,(1*,-) be the punctured key generation and evaluation algorithms for
(Gen’, PEF').
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o Geny(1*,4,21,...,2,): Generate the key PRF key K* < {0,1}* and set CRS = K*. Let
MATCH be the event that for every index i € [k] that there is an index j; such that j;
appears in the list generated by PRF(K™,z;), but j; appears in no other list generated by
PRF(K*,xy) for i’ # i. If the event holds, compute such a matching. For each i = 1,...,k,
compute (Kji,K](-?) < Gen)(1*, x;). For all remaining indices i € [n] \ {j1,...,jx}, compute
K; via K; + Gen’(1*) and set K° = K;. Set K = (K1,...,K,), K® = (K{,...,K?) and
output (CRS, K, K®).

e PEFy(CRS, K®, x):

— Parse CRS = K*
— Compute (i1, ...,1q) < PRF(K*, x)
— Compute and output Y « (PEF'(K,z),...,PEF/ (K}, )).

Theorem 2. Let 6 > 0 be a constant, let k = (1—3)n and let y = poly()). Assume that (Gen', PEF")
is a family of 1-selective y-pseudo-entropy functions and PRF is a pseudo-random function. Then
(Gen, PEF) has punctured correctness, and satisfies the mode-indistinguishability and k-selective (k
v)-pseudo-entropy properties.

Remark 2. Before we prove this theorem, we stress that k -~ can get arbitrary close to the
entropy of the PEF key K. Observe that the key K = (Ki,...,K,) supports puncturing k in-
puts, which is nearly n since k = (1 — d)n. Additionally, for every input x;, the v entropy of
PEF(crs, K, x;) is nearly the entire entropy of some block Kj, (by Theorem 1). Ouverall, the entropy
of (PEF(crs, K, x1),...,PEF(crs, K, x,)) is nearly the entire entropy of the key K. In other words,
for an adversary who may leak almost the entire key K, (PEF(crs, K, x1),...,PEF(crs, K, xy)) still
contains unpredictability.

Proof. The mode-indistinguishability property of (Gen, PEF) follows routinely from the mode indis-
tingiushability property of (Gen’, PEF’).
To see the pseudo-entropy security, observe that

H..(PEF(CRS, K, z),...,PEF(CRS, K,z) | CRS, K)

> NOO( EF'(K;,,z1), PEF/( Kj ,x.) ‘ CRS, K®) (where j; is the perfect match for 7)
K

= Z (PEF'(Kj,, ) ’ Kf) (Since every (K]Z,K ) is independent)

> K. (by the pseudo-entropy property of PEF’)

To show that (Gen, PEF) has punctured correctness, it suffices to show that the event -MATCH
happens at most with negligible probability. Observe that we can efficiently determine whether
MATCH happens. Assume towards contradiction to “MATCH happens with non-negligible proba-
bility . We will construct a PPT distinguisher D which distinguishes PRF(K™, -) from a uniformly
random function with advantage € — negl. Given x1,...,x, and oracle access to a function O(-),
the distinguisher checks whether the event =MATCH happens for O, i.e. if for every index i € [k]
that there is an index j; such that j; appears in the list generated by O(z;), but j; appears in no
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other list generated by O(z;/) for ¢/ # i. If “\MATCH happens D outputs 1, otherwise a uniformly
random bit b < {0,1}. Observe that

Pr[D® = 1] = Pr[D®) = 1|MATCH] - Pr[MATCH] + Pr[D°") = 1|-MATCH] - Pr[-MATCH]

=1

[N

= %(1 — Pr[~MATCH]) + 1 - Pr|[-MATCH]
1 Pr[-MATCH]

2 2

Now, if O implements a PRF(K™,-), then it holds that Pr[-MATCH] > . On the other hand, if
O implements a uniformly random function H, by Lemma 4, it holds that Pr[-MATCH] < negl. It
follows that the distinguishing advantage of D is at least /2 — negl, which is non-negligible. This
contradicts the pseudorandomness of PRF. O

4 Big-Key Identity-Based Key Encapsulation Mechanism

In this section, we define and build a big-key identity-based key encapsulation mechanism (IB-
KEM). This construction of IB-KEM will have a large public parameter. In supporting material
Section 5, we will show how to generically transform it into an IBE scheme with a short public
parameter.

4.1 Definition

Syntactically, a big-key identity-based key encapsulation mechanism consists of the following efficient
algorithms. All algorithms (except for Setup) implicitly take the public parameter pp as input. We
omit it to avoid cluttering.

(pp, msk) < Setup(1*) : This algorithm takes the security parameter as input, and samples
the public parameter pp and a master secret-key msk.

o sk,y «+ KeyGen(msk,id) : This algorithm takes the master secret-key msk and the identity id
as inputs, and samples an identity secret-key sk;y. In particular, KeyGen has RAM access to
msk.6

e (ct,u) < Encap(id) : This algorithm takes the identity id as input, and samples a ciphertext
ct and its associated encapsulated key w.

e u = Dec(id, ct, skiq) : This algorithm takes the identity id, the ciphertext ct, and the identity
secret-key skiq as inputs, and output a decapsulated key wu.

Definition 3 (Selective Secure IB-KEM). We say that an IB-KEM (Setup, KeyGen, Encap, Dec)
1s selectively secure under bounded leakage if it satisfies the following correctness, efficiency and
security properties.

5The length of the master secret-key msk depends on the leakage parameter, ¢, and hence is long. However, the
running time of KeyGen will be independent of £. That is, it will only read a few bits of msk to create the short
identity secret-key.
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e Correctness. For any identity id, it holds that

(pp, msk) < Setup(1%), (ct,u) < Encap(id) .
skiy « KeyGen(msk,id), u’' = Dec(id, ct, skiy) -

!/
Uu=u| =

Pr

o Efficiency. The running time of KeyGen, Encap, and Dec are independent of the leakage
parameter €. This implicitly mandates that the identity secret-key skiy is succinct (i.e., its
length is independent of £). Additionally, the length of the public parameter pp is also required
to be succinct.”

e Selective Security under Bounded Leakage. Fix an £ > 0. We say that an IB-KEM
(Setup, KeyGen, Encap, Dec) is selectively secure, if for all PPT adversaries A = (A1, Az, As),
for all non-negligible €, it holds that

P id Advi®(msk, pp, state, leak) > ] = negl(\
(msk7PP,J,£tate,leak) [V id € J, Adv'®(msk, pp, state, leak) > 6} negl(\),

DblsKEM (1)\)

where (msk, pp, J, state, leak) are sampled from the Phase I of IN (refer to Figure

1) and the random variable Adv'®(msk, pp, state, leak) is defined as follows.

. : 1
Advi(msk, pp, state, leak) = |Pr[Exp®(msk, pp, state, leak) = 1] — 3

Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II, and As is not
allowed to query the KeyGen on J.

INDbISKEM (1)\) .

e Phase 1. The system is set up as follows.

1. Let (J,state) < A; (1), where J is a set of identities of size £+ 1.
2. (msk, pp) < Setup(1*).
3. f + Ay(state, pp), where the output length of f is (at most) £. Let leak := f(msk).

e Phase II. For any id € J, we define a security game Expid(msk, pp, state, leak) as follows

(ct,u) < Encap(id).

Let v’ be an independent random string.

Sample b < {0, 1}.

Ifb=0, let b = AgeyGen(mSk")(state, leak, pp, id, ct, u);
Ifbo=1, let b = ./4l;feycen(mSk")(state7 leak, pp, id, ct, u’);
Output 1 if b =V'; otherwise, output 0.

S S o =

Figure 1: Selective security experiment for IB-KEMs

"The running time of Setup and the length of the master secret-key msk, however, will inevitably depend on the
leakage parameter /.
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Remark 3. Note that, in the above definition, the adversary As does not get access to the KeyGen
oracle. This is not restrictive since the leakage function f gets access to the entire secret key msk.
Hence, any leakage function f with access to KeyGen oracle can be transformed into a leakage
function f' that does not have access to KeyGen oracle.

4.2 Witness Encryption for NIZK of Commitment Scheme

As a crucial building block for our IBE scheme, we shall use a witness encryption scheme for
NIZK of commitment scheme. This was recently introduced and constructed by Benhamouda and
Lin [BL20]. Let us start with the definition.

Definition 4 ([BL20]). A witness encryption for NIZK of commitment scheme that supports a
circuit class G consists of the following efficient algorithms.

e CRS Setup: crs < Setup(1*) on input the security parameter A, generates a CRS crs.

e Commitment: c < Com(crs,x;r) on input the CRS crs and a message x, generates a com-
mitment c. The decommitment is the message x and the private randomness r.

e Language L: A language L is defined by the CRS crs as follows. A statement st = (¢, G, y),
where ¢ is a commitment and G € G is a circuit, is in the language L with witness (z,r) if it
holds that (1) ¢ = Com(crs, x;7); (2) G(z) = y.

e NIZK Proof: m < Prove(crs,c,G, (x,r)) on input the CRS crs, a commitment ¢, a circuit
G € G, and a decommitment (x,r), generates a proof ™ proving the statement (¢, G,G(x)) € L
with witness (z,71).

e Witness Encryption: ct < WEnc(crs, msg, (¢, G,y)) on input the CRS crs, a message msg,
and a statement (¢, G,y), generates a ciphertext ct.

o Witness Decryption: msg = WDec(crs, ct, (¢, G,y),m) on input the CRS crs, a ciphertext
ct, a statement (¢, G,y), and a NIZK proof w, computes a message msg.

o Simulated CRS: (crs,7) < SimSetup(1*) on input the security parameter X\, generates a
simulation CRS crs and its associated trapdoor T.

o Simulated Commitment: (c,aux) <— SimCom(crs), on input the CRS crs, generates a sim-
ulated commitment ¢ with its auxiliary information aux.

e Simulated Decommit: r = SimDecom(crs, 7, ¢, aux, z), on input the simulated CRS crs and
its associated trapdoor T, the simulated commitment ¢ and its associated auzilliary information
aux, and any message x, generates a decommitment r such that (z,r) is a valid decommitment
of ¢ with crs.

o Simulated Proof: m < SimProve((crs, 7,aux), (¢, G,G(x))) on input the simulated CRS crs,
its associated trapdoor T, the auxiliary information aux for the commitment ¢, and finally a
statement (¢, G, G(x)), generates a simulated proof m proving the statement (¢, G, G(x)).

This set of algorithms satisfy the following guarantees.
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Perfect Correctness. For all input z, circuit G € G, and message msg, it holds that

crs + Setup(1*), ¢ = Com(crs, z;7°)
ct +— WEnc(crs, msg, (¢, G, G(x))) ,
Pr : msg=msg | =1.
7 < Prove(crs, ¢, G, (z,7))

msg’ = WDec(crs, ct, (¢, G, G(z)), )

Perfect binding using honest CRS. For an honest CRS, the commitment is perfectly
binding. That is, there do not exist (x,r) and (z',r") such that

Com(crs, x;7) = Com(crs, z’;7'),
where crs + Setup(1*).

(Perfect) Semantic Security. Let msg and msg’' be any two messages. For all circuit G,
input x, and y # G(x), it holds that

WEnc(crs, msg, (¢, G,y)) = WEnc(crs, msg’, (¢, G, y)),

where crs + Setup(1}) and ¢ + Com(crs,x). That is, when the CRS crs and commitment c
are sampled honestly, then the witness encryption satisfies perfect semantic security.

Zero-knowledge.® For any PPT adversary (A1, Az), it holds that

crs < Setup(17)
Pr | (state, z) + Aj(crs) : Agl(')(state, ¢, (z,r))=1|—
¢ = Com(crs, z; 1)
(crs, 7) + SimSetup(1*)
(state, ) < Aj(crs)

:A02(~)tt,, ) =1|= 1),
(¢,aux) = SimCom(crs) 5/ (state,c, (z,r)) negl(\)

Pr
r = SimDecom(crs, T, ¢, aux, x)

where O1(G) = Prove(crs, ¢, G, (z,r)) and O2(G) := SimProve((crs, 7,aux), (¢, G, G(z))). That
18, the adversary could choose the message x, and is given its commitment c with the decommit-
ment (z,r). Still, given oracle access to the proof of (¢, G,G(x)), where the adversary chooses
the circuit G arbitrarily, it cannot distinguish the simulated proof from the honest proof.

Observe that these properties implicitly guarantee additional properties. For example, the zero-

knowledge property implies that the honest CRS and the simulated CRS are computationally indis-
tinguishable. Since our construction does not explicitly use those properties, we do not state them
explicitly here. We will refer the readers to [BL20] for details.

8Qur definition is slightly different from the zero-knowledge definition in [BL20]. In particular, in our definition, the
adversary is additionally given the decommitment r. Nonetheless, the construction of [BL20| satisfies our definition
since the zero-knowledge property holds for any circuit that the adversary queries. For example, the adversary may
query a circuit G defined to be G(z) = z1, where © = (z1,...,zn). In this case, the construction of [BL20] simply
sends the decommitment of z1 as the proof. Therefore, without loss of generality, we may assume that the adversary
also has the decommitment information.
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Instantiation. We will use a witness encryption for NIZK of commitment scheme that supports
all polynomial-size circuits, recently constructed by [BL20] under pairing assumptions.

Locality. The construction of Benhamouda and Lin [BL20] satisfies the following local property.
To commit to a message = (x1,...,zxN), Com actually commits to every x; independently. That is,
Com(CRS, z;7) = (Com’(CRS, x1;71), . .., Com’(CRS, zx;7N)), where Com’ is some subroutine that
commits a single group element. Moreover, suppose G is a circuit that only depends on m coordi-
nates from x. Given RAM access to the commitment ¢ = (cy, ..., cy), where ¢; = Com’(CRS, x;;7;),
the running times of both generating the NIZK proof 7 of the statement (¢, G, G(x)) and the witness

encryption/decryption with ((c, G, G(:L’)) , 7r) depend only on the locality m. In particular, if G
depends only on x;,,...,;,, then the statement st = (¢, G, G(x)) can be expressed succinctly as
st' = ((Cm e Cin), GGy, ,a:im)> and the witness (x;,, iy, ..., %i,,, Ti,,) 1S succinct as well.

In summary, if the circuit G only depends on m coordinates of its input z, then the encryp-
tion/decryption and NIZK proof process all enjoy locality m.

4.3 Construction of Big-key IB-KEM

Our construction of the big-key identity-based key encapsulation mechanism is described in Figure
2. Note that, while the scheme below has a large public parameter pp, we will show how to transform
the scheme to one with a short pp in Supporting material Section 5.1.

Construction Overview. Our construction employs witness encryption for NIZK of commitment
scheme and a puncturable local pseudo-entropy function.

e Setup. Let £ > 0 be a fixed parameter (which we will use for the leakage bound later). To
set up a public parameter and a master public-key, we shall first sample a CRS crspef, a key £
for the PEF, and also a CRS crs for the witness encryption for NIZK of commitment scheme.
The (crspef, crs) and the commitment ¢ of the secret-key & shall be the public parameter.
The master secret-key shall be the secret-key k and the necessary decommitment information

(ri,...,"N).

e Identity Secret-key. The identity secret-key skiy consists of two parts. The first part is the
evaluation of the PEF, i.e., PEF(crsper, k,id) = (y1,...,yx). Second, for every index i € [)],
we generate a proof m; proving the statement that ¢ is a commitment of the key k£ such that
PEF (crspef, k, id); = y;. Therefore, the identity secret-key skiq is {y;, ﬂi}g\zl.

e Encapsulation. To sample a ciphertext encapsulating a key, we shall use the witness en-
cryption. In particular, we sample a random string v = (vy,...,vy). For every index i € [A],
we encrypt v; twice as’

ct) := WEnc <crs, Vg, (c, (id, 7), 0)) and ct} := WEnc <crs, v;, (c, (id,4), 1)) .

That is, we encrypt v; using two different statements. The 0O-statement is that ¢ is a commit-
ment of k such that PEF(crspef, k,id); = 0 and the 1-statement is that c is a commitment of &
such that PEF(crsyef, &, id); = 1.1 Finally, we ask the encryptor to sample an additional seed

9We abuse notation and write (id,4) for a circuit. Refer to the figure for the definition of the circuit (id, ).
100bserve that only one of the statements will be in the language £ due to the perfect binding property.
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s, and we shall apply the seeded extractor Ext(-, s) on the string v. That is, the ciphertext is
({cté, ctil};‘:1 , s) and the encapsulated key is u = Ext(v, s).

Building Blocks:

1. (Setup’, Com, Prove, WEnc, WDec, SimSetup’, SimCom, SimDecom, SimProve) be a witness en-
cryption for NIZK of commitments (Definition 4).

2. (Gen, PEF) be a puncturable local pseudo-entropy function (Definition 2), where given a crspef
and key k generated by Gen, PEF(crspef, k,-): {0, 1} — {0,1}* accesses at most m(\) loca-
tions of the key k (locality). Fix the parameter ¢ > 0, taken as input by Gen.

3. Let Ext: {0,1}* x {0,1}* — {0,1}" be a seeded randomness extractor.
Notation for circuits:

e For a fixed crspef, for brevity, we abuse notation and write (id,) for a circuit G: {0,1}" —
{0,1} defined as
G(x) := PEF(crspef, z,id);.

That is, given the input x, G(x) outputs the i*? bit of the output PEF with key 2 and input
id.

The Construction:

e Setup(1?) : Let (crspef, k) < Gen(1*,£). crs < Setup’(1*). Let k := (ky, ..., ky). For i € [N],
sample r; at random. For all i € [\, let ¢; = Com(crs, kj;7;). Return msk := {ki,ri}i]\il and
PP := (CrSpef, €IS, C1, ..., CN)

e KeyGen(msk,id) : Given the input id, let t1,ts,...,t, be the indices of the key k that
PEF(crsper, -, id) depends on. Let y; = PEF(crsper, k,id);. Let statement st; := ((ctl, o),

(id, z),yl) € L. Define and return

A

skig == {yi7 Prove(crs,sti, {ktw”i};‘n—l ) } 1
=1)f,;_

e Encap(id) : For all i € [\], sample v; + {0,1}. Let v := (v1,v2,...,v)). Let s < {0,1}*. For
all 7 € [A], define

ct} := WEnc <crs, Vg, ((ctl, e, (id, ), 0)) ;

ct! := WEnc <crs, Vi, <(Ct1, e, (id, ), 1)) .

Let ct := ({ct%,ctil}j:l, s) and u := Ext(v, s). Return (ct, u).

21



e Dec (id, ct = ({ctg,ctﬁ}?zl, s) , skig = {yz’,m};\:1> : For all i € [)\], define

v; := WDec (crs, ctl, , st;, ;) .
Let v := (v1,...,v,) and u := Ext(v, s). Return w.
Auxiliary Algorithms for the Security Proof:

e SimSetup(1%) : (crspef, k) < Gen(1*,¢), (crs, 7) < SimSetup’(1*). Let (c;, aux;) = SimCom(crs),
k:= (ki,..., kn) and r; = SimDecom(crs, T,¢;, aux;, k;). Return msk := {k;,r;}}¥, and
PP 1= (CrSpef, CIS, C1, - . -, Cp).

o SimKeyGen(msk,id) : Let (t1,...,tm), (y1,...,¥yx), and (sty,...,sty) be as defined in KeyGen.
Define and return

skig 1= {yi,SimProve((crs,T, {auxtj}gnzl),sto };1
e Encap®(id) : For all i € [A], sample v; < {0,1}. Sample s < {0, 1}*. Define
ct) := WEnc <crs, Vg, ((ctl, s, (id,7), O))
ct! := WEnc <crs, v + 1, <(Ct17 e, (id, i), 1>>
Let ct := ({cté,ctil}?:l, 5). Return ct.

Observe that Encap® does not output an associated key w. In particular, the decryption of
ct < Encap® will be Ext((v1 + y1,...,0x + yr), S).

Figure 2: Our Big-key IB-KEM

Remark 4 (Need for a crsyef). Note that the Encap algorithm above requires the knowledge of the
exact m locations of k that were accessed by the PEF. This information is fized and public, given the
crsper and the input id. Thus having a crspyes 1s essential to ensure that the Encap algorithm remains
efficient and local (i.e., independent of ). This explains why our PEF construction has a CRS.

We will prove the selective security of the above construction, assuming the selective security of the
underlying PEF, along with the security guarantees of the witness encryption scheme. We formally
state the theorem below.

Theorem 3. Assuming that the pseudo-entropy function PEF satisfies the selective security (Defi-
nition 2) and assuming the security of the witness encryption for NIZK of the commitment scheme
(Definition 4), the IB-KEM construction from Figure 2 is a big-key identity-based key encapsulation
mechanism that satisfies the selective security under bounded leakage (Definition 3). In particular,
we can instantiate the underlying schemes to get a leakage rate (i.e. where £ is the size of the
leakage allowed on msk) of 1/3.

_£
7 |msk|’

The correctness of our construction follows from the correctness of the witness encryption scheme.
The efficiency property follows from the locality of both the PEF, and the witness encryption for
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the NIZK of commitment scheme. We now give a full proof of the selective security under bounded
leakage.

4.4 Proof of Selective Security Under Bounded Leakage

Proof Overview. Our selective security proof mainly consists of the following steps.

e Switch to invalid ciphertext. We first define another encapsulation algorithm Encap® that
generates an invalid ciphertext ct. ct is invalid in that the two ciphertexts ct) and ct} encrypt
two different messages. Our first step is to switch from a valid ciphertext using Encap to an
invalid ciphertext using Encap®. Since only one of the two statements (i.e., (¢, (id,7),0) and
(c,(id,4),1)) is in the language, by the semantic security of the witness encryption scheme,
the two hybrids are indistinguishable.

e Switch to the simulation mode. Next, we define two auxiliary algorithms SimSetup and
SimKeyGen. In these two algorithms, instead of generates the CRS and proof honestly, we
switch to the simulation mode. That is, the CRS and commitments are generated with
trapdoors such that they are equivocal. Then, all the proofs in the identity secret-key are
given by the simulated proof. By the zero-knowledge property of the witness encryption for
NIZK of commitment scheme, these two hybrids are indistinguishable.

e Switch to the punctured mode. In this step, we shall sample the key of the PEF using
the punctured mode. By invoking the mode-indistinguishability of the PEF, the two hybrids
are indistinguishable. Note that the key k sampled in the punctured mode comes with a
punctured key k®, where the identities {id € J} are the punctured places. This allows us to
sample identity secret-keys for all identities but those from the challenge set 7. Crucially,
this implies that the entire view of the adversary can be simulated using only k®, without k.

e Invoke the security of PEF and the randomness extractor Ext. Finally, we argue that
the adversary cannot distinguish the key encapsulated inside the (invalid) ciphertext from a
random string. We reduce this to the security of the PEF. Intuitively, the output of the PEF
at J, i.e., {PEF(crs, k,id) : id € J}, guarantees sufficiently high entropy even conditioned on
the adversary’s view (which only depends on £©), and hence we can use the extractor security.

Proof. Now, we will prove that our scheme from Figure 2 satisfies the selective security under a
bounded leakage from the master secret key, i.e., we show that for any adversary A = (A1, A2, A3),
trying to break the selective security game INDPIKEM (1) (refer to Figure 1) under /-leakage, and
for all non-negligible ¢, it holds that:
Pr [V id e J, Advid(msk, pp, state, leak) > 5] = negl(\),

(msk,pp,J ,state,leak)
where (msk, pp, J, state, leak) are sampled from the Phase I of INDPSKEM(12) and the random vari-
able Adv'd(msk, pp, state, leak) is defined as follows.
. . 1
Adv'd(msk, pp, state, leak) = [Pr[Exp'd(msk, pp, state, leak) = 1] — 5

Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase IT of INDPISKEM (1) "and
As is not allowed to query the KeyGen on 7.
We prove this using a sequence of indistinguishable hybrids described below.
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Hybrid 0: This hybrid is the real distribution INDPSKEM(12) (recall that A3 is not allowed to
query KeyGen on the challenge identities 7), defined as:

e Phase I. The system is set up as follows.
1. Let (J,state) < A;(1%), where J is a set of identities such that | 7| = £ 4 1.

2. (msk, pp) < Setup(1*).
3. f < Ajx(state, pp), where the output length of f is (at most) ¢. Let leak := f(msk).

e Phase II. For any id € J, we define a security game Expid(msk, pp, state, leak) as follows

(ct,u) + Encap(id).

Let «’ be an independent random string.

Sample b « {0, 1}.

If b =0, let b = AX¥C(M) (state leak, pp, id, ct, u);
fo=1lett = AgeyGen(mSk”)(state, leak, pp, id, ct, u');
Output 1 if b = ¥'; otherwise, output 0.

A I

Hybrid 1: This hybrid is identical to Hybrid 0, except that for each id € 7, instead of using Encap
to generate the challenge ciphertext and the key, we use Encap® to sample the invalid ciphertext
and give its decryption to the adversary when the choice bit b is 0.

e Phase I. The system is set up as follows.

1. Let (J,state) « .A1(1>‘), where J is a set of identities such that |J| = ¢+ 1.
2. (msk, pp) < Setup(1?).
3. f < Ajg(state, pp), where the output length of f is (at most) ¢. Let leak := f(msk).

e Phase II. For any id € 7, we define a security game Exp'd(msk, pp, state, leak) as follows

1. ct + Encap®(id).

Let v/ be an independent random string.

Sample b < {0, 1}.

Ifo=0,lett = AgeyGe"(mSk”)(state, leak, pp, id, ct, Dec(id, ct, skiy));
Ifb=1let b = AgKeyGen(mSk")(state, leak, pp, id, ct, u');

Output 1 if b = V'; otherwise, output 0.

A e O

Claim 1. Hybrid 0 and Hybrid 1 are identically distributed.

Proof. For simplicity, let us consider the hybrid where we only switch from Encap to Encap® for a
single id (say, the first one in J). The indistinguishability when we make the switch for each of the
other id € J is entirely analogous.

Let us consider a sequence of hybrid Hgy, Hy,...,Hy, where, in hybrid H;, the ciphertext ct =

SN S
({ctf),ctj1 }j_l, 8> corresponding to id is sampled as follows. For all j > i, ct%,ct{ are sampled
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according to Encap, but for all j <4, cté7 ct{ are sampled according to Encap®. We shall prove that
for all 4, H;_1 and H; are identically distributed. In particular, if H;_; and H; are not identically
distributed, we shall construct an adversary B that breaks the perfect semantic security of the
witness encryption scheme.

B interacts with a challenger C for the witness encryption scheme. B receives from C a CRS
crs. It proceeds to simulate the hybrid as described until it needs to sample cfcg and cti. Let
y; = PEF(crspef, k, id);. It samples the bit v; uniformly at random. It encrypts cty as

WEnc(crs, v;, (¢, (id,7),y;))).

Note that, th;i is an encryption of v; + y; in the subroutine Encap™, but since v; and v; + y; are
identically distributed, cty" is also identically distributed in both hybrids. As for ctifyi, it sends
the statement (c, (id, ), 1 — y;) to the challenger together with two messages 0 and 1.

Observe that this statement is always not in the language £ since the commitment c is perfectly
binding under an honest CRS.

It receives back a ciphertext a encrypting either 0 or 1. It uses a for ct1 .- The rest of the
hybrid is simulated exactly as described. In particular, Dec(id, ct*, skiq) is identical to u. Depending
on whether « is an encryption of v; or not, we simulate either H; 1 or H;.

Now, if H;_1 and H; are not identically distributed, B breaks the perfect semantic security of
the witness encryption scheme. This completes the proof. O

Hybrid 2: This hybrid is identical to Hybrid 1, except that we use the subroutines SimSetup and
SimKeyGen instead of using Setup and KeyGen. This switches the actual NIZK proofs with the
simulated ones.

e Phase I. The system is set up as follows.

1. Let (J,state) < A;(1?), where J is a set of identities such that | 7| = £ 4 1.
2. (msk, pp) < SimSetup(1?).
3. f < Ajx(state, pp), where the output length of f is (at most) ¢. Let leak := f(msk).

e Phase II. For any id € J, we define a security game Expid(msk, pp, state, leak) as follows

ct < Encap*(id).

Let «’ be an independent random string.

Sample b « {0, 1}.

If b =0, let b = A" O™ ) (gtate leak, pp, id, ct, Dec(id, ct, sk ) );
If b =1, let o = A3 ™ O™ (gtate, leak, pp, id, ct, u/);

Output 1 if b = '; otherwise, output 0.

A I .

Claim 2. Hybrid 1 and Hybrid 2 are computationally indistinguishable.

Proof. If Hybrid 1 and Hybrid 2 are computationally distinguishable, we shall construct an adversary
B that breaks the zero-knowledge property of the witness encryption for NIZK of commitment
scheme.
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The reduction is straightforward. B interacts with the challenger C, where the challenger is
either in honest mode or simulation mode (refer to the definition of the zero-knowledge property).

The challenger samples the crs and send it to B. B samples a random key k and send it
to the challenger. The challenger replies back with the commitments ¢ = (¢1,...,cn) and the
decommitments (k1,71),..., (kn,7n). Now, B proceeds to simulate the hybrid as described. During
the simulation, when a query is sent for the identity secret-key skiqy = {v;, wi}f‘zl, B first computes
(y1,-..,yxn) = PEF(crspef, k,id). She can compute this as she knows the key k. Then, she obtains
the proof m; by quering the challenger with the circuit (id, 7).

Depending on whether the challenger is in the honest mode or simulation mode, she simulates
either Hybrid 1 or Hybrid 2. Therefore, if the hybrids are computationally distinguishable, B breaks
the zero-knowledge property of the witness encryption for NIZK of commitment scheme. O

Hybrid 3: This hybrid is identical to Hybrid 2, except that we will switch to using the punctured
key of the PEF (punctured at the points id € J) for answering all the SimKeyGen queries.

e Phase I. The system is set up as follows.

1. Let (J,state) «+ A;(1%), where J is a set of identities such that |J| = £+ 1.

2. (msk, pp) < SimSetup®(1*). Here, SimSetup® first generates (crspef, k, k) — Gena (14, N
J) and uses k in msk and pp, generated as in SimSetup.

3. f « Ajg(state, pp), where the output length of f is (at most) ¢. Let leak := f(msk).

e Phase II. For any id € J, we define a security game Expid(msk, pp, state, leak) as follows

1. ct < Encap*(id).

Let v/ be an independent random string.

Sample b < {0, 1}.

Ifb=0,let v = AgimKeyGen@(mSk")(state, leak, pp, id, ct, Dec(id, ct, skig));
Ifb =1, let b = AS™KYC (M) (grate leak, pp, id, ct, /)

Here, SimKeyGen® works exactly like SimKeyGen, except that it uses PEF(crspef, £, .)
for the PEF evaluations.

6. Output 1 if b = V/; otherwise, output 0.

A

Claim 3. Hybrid 2 and Hybrid 8 are computationally indistinguishable.

Proof. We use the mode indistinguishability of the PEF to prove the claim. Particularly, if Hybrid
2 and Hybrid 3 were computationally distinguishable, we can build an adversary B breaking the
mode indistinguishability of the PEF.

B sends the challenge inputs J and receives the (crspef, k) from the mode indistinguishability
challenger, which either corresponds to the actual key generation or the punctured mode. Having
this, B can simulate the entire hybrids, while using k& to answer the SimKeyGen or SimKeyGen®. Since
the queries do not contain the punctured points 7, by the punctured correctness, the SimKeyGen®
responses will be same as the the PEF evaluations on k. Depending on whether the challenger
returns the actual PEF key or the one in the punctured mode, B simulates Hybrid 2 or Hybrid 3.
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Thus, if the two hybrids are distinguishable, B can break the mode indistinguishability of PEF. This
completes the proof of the claim. O

Observe that, in the case b = 0, in Hybrid 3, Dec(id, ct, skiq) = Ext((v1 +y1,v2+ Y2, ..., Ux+¥Yr),S),
where (y1,---,yx) = PEF(crspef, k,id), the PEF output on the original key k. We will use this in
completing the proof below.

Proving Selective Security: To finish proving the selective security, we need to show that for all
non-negligible ¢, it holds that:

(msk,pp,\?,gtate,leak) [v id € j’ Advid(msk, pp, state, Ieak) > E] = negl()‘>7 (1)

where (msk, pp, J, state, leak) are sampled from the Phase I of Hybrid 3 and the random variable
Advid(msk, pp, state, leak) is defined as follows.

. - 1
Adv'd(msk, pp, state, leak) = [Pr[Exp'd(msk, pp, state, leak) = 1] — ‘

2

Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II of Hybrid 3. By the
| T |-selective, v - | J|-pseudo-entropy security of the PEF (Theorem 2), we have that

Haoo ({PEF(crspef,k:, id) :id € 7} ‘ crspef,kG) > 17,

Here, note that the leakage f(msk) in Hybrid 4, takes as input k£ and (r1,--- ,7y), and depends on
pp, which in turn depends on crsper. Hence, we can define the following function g on the PEF key

k, by hardwiring the values (crspef, 7, {¢i, auxi}?zl):

Vi, r; = SimDecom(crs, 7, ¢;, aux;, k;)
g(k?l, ]{52, NN ,ICN) =

Output f((k1,71),...,(kn,7TN))

Thus, f(msk) = g(k), in Hybrid 4. Now, by Lemma 1, in the presence of this ¢-bit leakage on msk
we get that

i <{PEF(crspef, k,id) :id € 7} ‘ CrSpet, K, f(msk)) > || = L.

Now, by Lemma 1, with overwhelming probability over the fixing of crspef, k<, f(msk), we have
Hy ({PEF(crspef, k,id) :id € j}) >0y |T|-0).

Next, by Lemma 2, there exists a distribution I over the identities 7 such that

H oo (PEF (crsper, k, I)|1) > W

In other words, with high probability (in particular, over the observed leakage and I), there exists
an id* € J such that the min-entropy of PEF(crsper, k,id*) is > teqt, where we set tops = ©(7). Now,
by the definition of randomness extractor, we can send A3 a uniform string u’ irrespective of the
choice of b in Hybrid 4, making the output of Exp'd’ uniformly random (as b’ would be uncorrelated
to b).

The extractor security can be applied in Expid*, because:

—log |T| = O(y) (Recall |J|=¢+1.)
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e The source PEF(crspef, k, id*) has high entropy, given crspef, k© and f(msk).

e The view of the adversary in this game is state, leak, pp,id*, ct = ({cté,ctil}?:l, s), where the
seed s is uniformly random and independent from everything else in the hybrid.

o (v1,v2,...,vy) is independent of (crspef, f(msk),id*, k¥), but is correlated with ct and, hence, the
adversary’s view.

Thus, given the adversary’s view in Exp'® | it cannot distinguish

EXt((Ul +y1,---7'U/\ +y)\)73>7

which is what A3 gets in Hybrid 3 when b = 0, from uniform since (yi,...,¥yx) is sampled from a
high min-entropy distribution that is independent of (v1,...,vy).

Hence, in Hybrid 3, with high probability, there exists id* € J such that Exp'(msk, pp, state, leak)
in Phase II, outputs 1 with probability 1/24negl(\) (where negl(\) comes from the extractor security
error), which implies that the security as needed in Equation 1 holds.

The Claims 1, 2 and 3 and the above argument complete the security proof.

Instantiation and Parameters. We can instantiate our construction with the PEF from Theo-
rem 2, the witness encryption for NIZK of commitment scheme from [BL20] (see Section 4.2) and
any randomness extractor (e.g., left-over hash from [HILL99]). We allow a leakage of ¢ bits from
our msk. Now, our msk consists of the PEF key k and additionally the randomness r;’s used in the
commitment scheme. The witness encryption from [BL20| uses 2 random group elements to commit
to a single group element (i.e., the ratio of k; (being committed) to length of randomness r; is 1/2).
Since the PEF gives a leakage rate of 1 (Remark 2), our big-key IB-KEM allows a leakage rate of
1/3. O

5 Big-key IBE scheme

Given a big-key IB-KEM scheme, the construction of the big-key IBE scheme is straightforward.
One simply uses the encapsulated key as a one-time pad to mask the message. Since, the adversary
cannot distinguish the encapsulated key from random string, it cannot learn any information on the
masked message. For completeness, we provide the construction below.

A big-key IBE scheme consists of the following efficient algorithms.

e (pp, msk) « Setup(l)‘) : This algorithm takes the security parameter as input, and samples
the public parameter pp and a master secret-key msk.

e skiy «+ KeyGen(msk,id) : This algorithm takes the master secret-key msk and the identity id
as inputs, and samples an identity secret-key skiy.

e ¢ + Encrypt(id,m) : This algorithm takes the identity id and a message m as inputs, and
samples a ciphertext c.

e m = Decrypt(id, ¢, sk;q) : This algorithm takes the identity id, the ciphertext ¢, and the identity
secret-key skiy as inputs, and output a message m.
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Construction. Given a IB-KEM scheme (Setup, KeyGen, Encap, Dec), one may construct an IBE
scheme as follows.

e The Setup and KeyGen for the IBE scheme are identical to the Setup and KeyGen of the
IB-KEM scheme.

e Encrypt(id, m) is defined to be

{(ct,u) <+ Encap(id), ¢ =u® m}

Output ¢ = (ct, )

e Decrypt(id, ¢ = (ct, /), skiy) is defined to be

u = Dec(id, ct,skiy), m =c Gu
Output m '

Figure 3: Our Big-key IBE scheme

The correctness follows from the correctness of the IB-KEM scheme. The security is also imme-
diate as for all message m, the security of the IB-KEM scheme implies that Encrypt(id, m) = (ct, )
is indistinguishable from (ct,¢”), where ¢’ is an independent uniform string.

5.1 Big-key IBE with Short Public Parameter

In order to transform the IBE scheme (Setup, KeyGen, Encrypt, Decrypt) from Figure 3 into one with
a short public parameter pp, we need the following primitive, known as Non-interactive Secure
Computation (NISC) from [CDGT17].

Model for NISC in RAM setting. [CDG*17| Suppose D € {0,1} is a large database and P
be a program with running time ¢ and a short input . NISC = (nisc.Setup, nisc.EncData, nisc.EncProg, nisc.Dec)
has the following syntax.

e Setup: nisc.crs < nisc.Setup(17).
The setup outputs the common reference string.

e Database compressing: (m;j, D) < nisc.EncData(nisc.crs, D).
On input the common referenqe string and the database D € {0, 1}M , it outputs a short
message mi and a larger state D.

e Program Encryption: my < nisc.EncProg(nisc.crs, m1, (P, z,t)).
It takes as input the nisc.crs, a message mi, a RAM program P with input z and maximum
run-time ¢. It then outputs another message mo.

e Decryption: y « nisc.DecD(nisc.crs,mg).
The decryption is modelled as a RAM program getting read and write access to arbitrary
locations of its database initially containing D. On input nisc.crs and ms, it outputs y.

The following conditions are satisfied by NISC:
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e Correctness: For every database D € {0,1}™, where M = poly(\) for any polynomial
function poly(.), for every RAM program (P, z,t), it holds that Pr[nisc.Dec” (nisc.crs, ms) =
PP(x)] = 1, where nisc.crs < nisc.Setup(1%), (my, D) <« nisc.EncData(nisc.crs, D), my <
nisc.EncProg(nisc.crs, mq, (P, z,t)).

e Privacy: There exists a PPT simulator nisc.Sim such that for every database D € {0,1}M
where M = poly(A) for any polynomial function poly(.), and for every RAM program (P, z,t),
let y = PP(z) be the output of the program, and MemAccess be the memory access pattern,
then it holds that

(nisc.crs, D, (my, D), msa) =, nisc.Sim(1*, D, (y, MemAccess)),

where nisc.crs < nisc.Setup(1*), (mm1, D) < nisc.EncData(nisc.crs, D), mg < nisc.EncProg(nisc.crs, my,
(P, z,t)).

e Efficiency: The length of mq is a fixed polynomial in X, independent of the size of D. The
algorithm nisc.EncData runs in time M - poly(A,log M), nisc.EncProg and nisc.Dec run in time
t - poly(\,log M).

Given a IBE scheme (Setup, KeyGen, Encrypt, Decrypt) with large public parameter pp € {0, 1}N
and with the feature that Encrypt only makes RAM access to only a small part of pp, determined
by the id (as is the case for both our KEM construction and our IBE scheme in Figure 3), we build
the following IBE scheme with a short public parameter using NISC.

Construction. The new scheme (Setup’, KeyGen’, Encrypt’, Decrypt’) is as described below:

e Setup’(1%) : (pp, msk) ¢ Setup(1*). nisc.crs < nisc.Setup(1*). (h, pp) < nisc.EncData(nisc.crs, pp).
Output pp’ = (nisc.crs, h) and msk’ = (msk, pp).

o KeyGen'(msk',id) : skiy + KeyGen(msk,id). Let the part of pp accessed by nisc.Dec, which
depends on id, be denoted by ppiy. Output skiy = (skiy, ppiq). Note that since Encrypt and
Decrypt only access a small part of pp (dependent on id, denoted by ppiq), the corresponding
part of pp (denoted by ppiqy above) accessed by nisc.Dec is also small.

e Encrypt/(id,m) : ¢ < nisc.EncProg(nisc.crs, h, (Encrypt,m,t)), where Encrypt is considered as
the RAM program making access to the large pp. Output c.

e Decrypt/(id, ¢, skiq): Output m <« nisc.Dec(nisc.crs, pp;y,c). Note that the actual nisc.Dec
makes RAM access to pp, but here we give the accessed locations of pp, i.e., pp;y as an input.

The correctness of the above construction follows from the correctness of the the NISC scheme and
the underlying IBE scheme. Further, for all messages m, the privacy of NISC implies that ¢ reveals
nothing more than pp;y and Encrypt(id, m), and hence by the security of the underlying IBE scheme,
the security of (Setup’, KeyGen’, Encrypt’, Decrypt’) follows.

By the efficiency of NISC, the size of the public parameter pp’ = (nisc.crs, h) is short and independent
of the size of pp € {0,1}". Further, Encrypt’ and Decrypt’ are both efficient as nisc.EncProg and
nisc.Dec both run in time ¢ - poly(A,log V), where ¢ is the runtime of Encrypt.
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