
AdaTest: Reinforcement Learning and Adaptive Sampling for On-chip Hardware
Trojan Detection

HUILI CHEN, University of California, San Diego, USA

XINQIAO ZHANG, San Diego State University & University of California, San Diego, USA

KE HUANG, San Diego State University, USA

FARINAZ KOUSHANFAR, University of California, San Diego, USA

This paper proposes AdaTest, a novel adaptive test pattern generation framework for efficient and reliable Hardware Trojan (HT)
detection. HT is a backdoor attack that tampers with the design of victim integrated circuits (ICs). AdaTest improves the existing
HT detection techniques in terms of scalability and accuracy of detecting smaller Trojans in the presence of noise and variations. To
achieve high trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of test inputs. Particularly,
we progressively generate test vectors with high ‘reward’ values in an iterative manner. In each iteration, the test set is evaluated
and adaptively expanded as needed. Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more
information for HT detection, thus reducing the number of samples while improving the samples’ quality for faster exploration.

We develop AdaTest with a Software/Hardware co-design principle and provide an optimized on-chip architecture solution. AdaTest’s
architecture minimizes the hardware overhead in two ways: (i) Deploying circuit emulation on programmable hardware to accelerate
reward evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically constructing auxiliary circuit
for test input generation, reward evaluation, and adaptive sampling. We evaluate AdaTest’s performance on various HT benchmarks
and compare it with two prior works that use logic testing for HT detection. Experimental results show that AdaTest engenders up to
two orders of test generation speedup and two orders of test set size reduction compared to the prior works while achieving the same
level or higher Trojan detection rate.
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1 INTRODUCTION

Integrated circuits (ICs) are indispensable components for a diverse set of real-world applications including healthcare
systems, smart home devices, industrial equipment, and machine learning accelerators [5, 7]. The vulnerability of digital
circuits may result in severe outcomes due to their deployment in security-critical tasks. The design and manufacturing
process of contemporary ICs are typically outsourced to (untrusted) third parties. Such a supply chain structure
results in hardware security concerns, such as sensitive information leakage, performance degradation, and copyright
infringement [8, 39]. Malicious hardware modifications, a.k.a., Hardware Trojan (HT) attack [2, 38] may occur at each
stage of the IC supply chain.

There are two main components in a HT attack: Trojan trigger and payload. The HT trigger is a control signal that
determines when the malicious activity of the HT shall be activated. The Trojan payload is the actual effect of circuit
malfunctioning which depends on the purpose of the adversary, e.g., stealing private information or producing incorrect
outputs [38]. The attacker intends to design a stealthy HT that remains dormant during functional testing and evades
possible detection techniques. As such, the HT trigger is typically derived from the rather rare activation conditions
that are easier to hide for the intruder.

To alleviate the concerns about malicious hardware modifications, a line of research has focused on developing
effective HT detection methods. Existing HT detection techniques can be categorized into two classes based on the
underlying mechanisms: (i) Side-Channel Analysis (SCA), and, (ii) Logic Testing. SCA-based HT detection explores
the fact that the presence of the HT on the victim circuit will change its physical parameters (e.g., time, power, and
electromagnetic radiation), thus can be revealed by side-channel information [18, 19]. Such a mechanism determines
that SCA-based approaches can detect non-functional HTs, while they may have high false alarm rates when detecting
small HTs due to the operational and physical silicon variation, as well as measurement noise. Logic testing-based
techniques intend to activate the stealthy Trojan trigger by generating diverse test patterns [4, 25, 29]. The main
challenge of logic testing-based HT detection is to increase the trigger coverage with a small number of test patterns.

In this paper, we aim to simultaneously address three challenges of logic testing-based HT detection: effectiveness, ef-
ficiency, and scalability. To this end, we propose AdaTest, the first automated adaptive, reinforcement learning-based
test pattern generation (TPG) framework for HT detection with hardware accelerator design. Figure 1 demonstrates
the high-level usage of AdaTest to inspect if any hardware Trojans are inserted in the CUT. AdaTest takes the netlist of
the circuit under test (CUT) and user-defined parameters as its inputs. A set of test vectors with high reward values are
returned as the output of AdaTest.

AdaTest framework consists of two main phases: (i) Circuit profiling. Given the circuit netlist, we first characterize
each node in the CUT from two perspectives: the transition probability, and the SCOAP testability measures. These two
properties are used to identify rare nodes and quantify the fitness of each node, respectively. (ii) Adaptive test pattern
generation. AdaTest proposes an innovative reward function for test vectors using the following information: the
number of times that each rare node is triggered, the SCOAP testability measure of the rare nodes, and the graph-level
distance of the circuit (represented as directed acyclic graph) when applying this test input and the historical ones. In
each iteration, AdaTest gradually expands the test set by generating candidate test inputs and selecting the ones that
have high reward values. AdaTest provisions a flexible trade-off between trigger coverage and test generation time.
To enable a hardware-assisted solution, we further design an optimized architecture for AdaTest’s implementation to
reduce the hardware overhead. More specifically, AdaTest architecture pipelines the computation in online TPG and
deploys circuit emulation to accelerate reward evaluation.
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Fig. 1. High-level usage of AdaTest for hardware-assisted security assurance against Trojan attacks.

AdaTest opens a new axis for the growing research in hardware security by exploring the idea of reinforcement
learning (RL) and adaptive test pattern generation. The adaptive nature of AdaTest ensures that the quality (measured
by our reward function) of our dynamic test set always improves over iterations as new test inputs are added to the test
set. Furthermore, AdaTest is generic and can be easily extended for other hardware security problems, such as logic
verification, efficient ATPG, functional testing, and built-in self-test. For example, the concept of RL and adaptive test
pattern generation presented in AdaTest can be used in an efficient ATPG application where the RL reward function is
designed to reflect the goal of the ATPG (such as fault coverage of considered fault models).
Organization. Section 2 introduces preliminary knowledge and related works on Hardware Trojan and its detection,
as well as reinforcement learning. Section 3 discusses the challenges of HT detection and the overall workflow of
AdaTest framework. Section 4 presents our test pattern generation algorithm that combines RL and adaptive sampling
for fast exploitation. Section 5 demonstrates our domain-specific architecture design of AdaTest. Section 6 provides a
comprehensive performance evaluation of AdaTest on various circuit benchmarks and comparison with prior works on
logic testing-based HT detection. Section 7 concludes the paper.

2 PRELIMINARIES AND BACKGROUNDS

2.1 Hardware Trojan Attacks

The security of third-party SoCs has raised an increasing amount of concerns due to the contemporary outsourcing-based
supply chain. Hardware Trojans are malicious circuit modifications inserted in the circuit to perform the pre-defined
adversarial task (‘payload’) e.g., circuit malfunction or private information leakage when its control signal (‘trigger’) is
activated. Figure 2 shows an example HT design where a logic-AND gate and an XOR-gate are used as the trigger and
payload, respectively. The payload flips the output signal when the trigger is activated, thus disturbing the desired
behavior of the original circuit.

Fig. 2. Demonstration of the Hardware Trojan attack.
Manuscript submitted to ACM
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The collaborative nature of the supply chain also determines that HTs may be inserted by different parties at different
stages of the IC lifecycle. For instance, the untrusted IP provider, the circuit designer, or the manufacturing party might
insert HTs in the circuit. Hardware Trojans shall remain dormant in most cases to evade functional testing and HT
detection, while it should be successfully activated by the trigger to execute the attack. For this purpose, stealthy HTs
are designed with two main considerations: (i) Rare conditions are used to construct the trigger signal; (ii) The HT is
placed in a non-critical path to minimize its impact on side channels (delay, power, electromagnetic emission, etc.)

2.2 Hardware Trojan Detection
Previous HT detection techniques can be categorized into two broad types: destructive and non-destructive methods.
Destructive detection schemes perform de-packaging and de-layering on the manufactured IC to reverse engineer its
design layout, thus is prohibitively expensive [9]. Non-destructive HT detection includes two types: run-time monitoring
and test-time detection. Run-time approaches monitor the IC throughout its entire operational lifecycle with the goal
of detecting Trojans that pass other detection methods, providing the ’last-line of defense’. There are two classes of
test-time HT detection techniques. We detail each type as follows:

(i) Side-channel Analysis. SCA-based Trojan detection methods explore the influence of the inserted HT on a
particular measurable physical property, such as the supply current, power consumption, or path delay. These physical
traces can be considered as the ‘fingerprint’ of the circuit and allow the defender to detect both parametric and functional
Trojans [19, 20]. Parametric Trojans modify the wires and/or logic in the original circuit while functional Trojans
add/delete transistors or gates in the original chip [14, 24, 42]. However, SCA-based HT detection has two limitations:
(i) It cannot detect a small HT that causes a negligible impact on the physical side-channel; (ii) The extracted circuit
fingerprint is susceptible to manufacturing variation and measurement noise, thus it might incur high false alarm rates.

(ii) Logic Testing. Compared to the side-channel-based approaches, logic testing methods can only detect functional
Trojans. However, they yield reliable results under process variation and measurement noise. The main challenge of
developing a practical and effective logic testing technique for HT detection is the inordinately large space of possible
Trojan designs that the adversary can explore. Since the HT trigger is derived from a very rare condition that is unknown
to the defender, attempting to stimulate the stealthy Trojan with a limited number of test inputs is difficult. Existing
logic testing methods generate test patterns using simple heuristics, and thus cannot ensure high trigger coverage on
complex circuits. Also, such heuristic-driven test generation approaches are inefficient (long test generation time) and
unscalable to large benchmarks [2, 4, 38].

Besides SCA and logic testing, other HT detection techniques have also been explored. For instance, FANCI [41]
presents a Boolean functional analysis method to identify suspicious wires that are nearly unused in the circuit. For
this purpose, FANCI introduces a concept called ‘control value’ to characterize the influence of a specific wire on other
wires. The wires with small control values are flagged as suspicious. However, the wire-wise control value computation
in FANCI is unscalable on large circuits. VeriTrust [51] suggests a verification method to detect HT trigger inputs by
examining the verification corners. Therefore, VeriTrust is agnostic to the HT implementation styles.

Prior works on logic testing have explored various heuristics to improve trigger coverage while reducing the test
generation time. Conceptually similar to the ‘N-detection test’ in stuck-at automatic test pattern generation (ATPG),
MERO [4] leverages random test vectors and mutates them until each rare node in the circuit is individually triggered
at least 𝑁 times. Such a simple detection heuristic results in an unsatisfying trigger coverage, particularly Trojans that
are hard-to-activate. To overcome the limitation of MERO, [29] proposes to use genetic algorithms (GA) and Boolean
Satisfiability (SAT) to produce test inputs that excite regular rare nodes and internal hard-to-trigger nodes, respectively.
Manuscript submitted to ACM
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As the end result, [29] achieves a higher trigger coverage compared to MERO, while it is inefficient due to the long
test generation time. TRIAGE [25] further improves GA-based test generation by devising a more appropriate ‘fitness’
function that incorporates the controllability and observability factors of rare nodes. However, the GA nature of TRIAGE
limits its efficiency for test input space exploration and the resulting test set might be unnecessarily large. TGRL [26]
suggests training a machine learning model for test patterns generation that combines rare signal stimulation as well
as controllability/observability analysis. Although TGRL claims to explore reinforcement learning, its test pattern
generation pipeline (Alg.3 in [26]) does not involve sequential decision-making in standard RL techniques. Instead,
TGRL learns an ML model via stochastic gradient descent for TPG.

2.3 Reinforcement Learning
Reinforcement learning [13, 36, 43] is a machine learning technique that is capable of solving complex problems in
various domains. RL works sequentially in an environment by taking an action, evaluating its reward, and adjusting the
following actions accordingly. In particular, an RL paradigm involves an agent that observes the environment and takes
actions to maximize the reward determined by the problem of concern [23, 36]. Figure 3 shows the interaction between
the agent and the environment in the RL paradigm.

Fig. 3. Illustration of the agent-environment interaction in reinforcement learning.

We introduce the key concepts in an RL system below:

Action Space. The action space is a set of possible moves that the agent can take to change to a new state. For
example, in a video game, an action can be running left/right, or jumping high/low.

Environment. The environment takes the agent’s current state and action as input, and returns the reward and
the next state as the output. Depending on the problem domain, the environment might be a set of physical laws or
chemical reaction rules that processes the actions and establish the corresponding outcomes.

State. A state is a concrete and instantaneous situation in which the agent finds itself. This can be an instant
configuration, a particular place and a moment that puts the agent in connection with other influential objects in the
environment, such as opponents or awards. It is noteworthy that a state needs to contain all information to ensure the
system satisfies the Markov property [28].

Observations. The agent can obtain observations (emission of states) from the environment. In particular, the
observation is a (stochastic) function of the state.

Reward. The reward is a numerical value that evaluates the fitness (success or failure) of an agent’s actions in a given
state. From a given state, an agent takes actions in the environment and acquires the new state as well as the reward from
the environment. A cumulative reward is defined as the summation of discounted rewards: 𝐺 (𝑡) = ∑𝑛

𝑘=0
𝛾𝑘𝑅(𝑡 + 𝑘 + 1).

The discount factor 𝛾 (0 ≤ 𝛾 ≤ 1) tunes the importance of future rewards for the current state. The key idea of RL is to
find a series of actions that maximize the expected cumulative reward.
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Policy. The policy of a RL algorithm is typically defined within the context of Markov decision process [36]. Given
the state information, policy is the suggested action that the agent shall take in order to obtain a high reward.

Our objective is to develop an adaptive test pattern generation framework for logic testing with high Trojan coverage
and small test set size. Therefore, AdaTest belongs to the test-time detection category introduced in Section 2.2. We
choose RL over other machine learning techniques (e.g. neural networks) since the reward-oriented and progressive
nature of RL makes it appealing for our goal. Furthermore, to reduce the complexity of RL, AdaTest integrates adaptive
sampling to prioritize test patterns that provide more useful information for HT detection.

3 ADATEST OVERVIEW
In this section, we first discuss the limitations of prior works on Hardware Trojan detection and our motivation
(Section 3.1), then introduce our assumptions and threat model for AdaTest framework (Section 3.2). We demonstrate the
overall workflow of AdaTest test pattern generation technique in Section 3.3. AdaTest is a hardware-friendly framework
and we present our architecture design in Section 5.

3.1 Motivation and Challenges
Prior works have advanced logic testing-based Trojan detection using various techniques [4, 25, 29]. We discuss the
limitations of these detection schemes below.
MERO. Inspired by the traditional ‘N-detect’ test used in stuck-at ATPG, MERO [4] generates random test vectors to
activate each rare node (identified as nodes with transition probability smaller than the threshold 𝜃 ) to the corresponding
rare value at least 𝑁 times. MERO has three main disadvantages: (i) Triggering all rare nodes for 𝑁 times might be very
time-consuming or even impractical; (ii) It yields low trigger coverage for hard-to-trigger Trojans; (iii) It only explores
a small number of test vectors in the entire possible space due to its bit mutation and test vector selection policy.
ATPG based on GA+SAT. The paper [29] combines genetic algorithms and SAT in test pattern generation for HT
detection. While it improves the trigger coverage compared to MERO, [29] has two constraints: slow test set generation
and large memory footprint.
TRIAGE. The paper [25] proposes TRIAGE that integrates the benefits of MERO and [29]. TRIAGE leverages the
SCOAP testability parameters and advises the fitness function of GA for HT detection. However, the evolutionary
nature of GA determines that TRIAGE might be ‘trapped’ in the vicinity of a local optimum, thus exploring only a small
portion of the full test input space.

We present AdaTest as a holistic solution to address the limitations of the previous works. To this end, we identify
three main challenges of developing an efficient and effective logic testing-based HT detection technique as follows:
(C1) High trigger coverage. The test vector set shall yield a high trigger coverage rate to ensure that the probability
of activating the stealthy Trojan is large. This property is critical for the effectiveness criterion of HT detection.
(C2) Efficient test generation. The runtime overhead of test pattern generation shall be reasonable while attaining a
high trigger coverage. For hardware-assisted security, this implies that a test set with a smaller size is preferred. This
requirement assures the efficiency and practicality of the HT detection method, particularly on large circuits.
(C3) Scalable to large benchmarks. The runtime consumed by the test pattern generation technique shall not scale
exponentially with the size of the examined circuit.

AdaTest tackles the above challenges (𝐶1) ∼ (𝐶3) using an adaptive, RL-based input space exploration approach.
Furthermore, we provide architecture design for AdaTest-based TPG in Section 5 to enable hardware-assisted security.
We empirically corroborate the superior performance of AdaTest compared to the above counterparts in Section 6.
Manuscript submitted to ACM
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3.2 Threat Model

As shown in Figure 2, HTs consists of two parts: trigger and payload. Figure 2 shows an example of HT design. AdaTest
is applicable to both combinational and sequential circuits. One can unroll sequential circuits into combinational ones
and apply AdaTest for test pattern generation. Without the loss of generality, we assume that the adversary uses a
logic-AND gate as the Trojan trigger that takes a subset of rare nodes as its inputs. An XOR gate is used to flip the
value of the payload node when the trigger is activated (i.e., each of the trigger nodes has a logical value ‘1’).

We make the following assumptions about AdaTest framework:

(i) The defender knows the netlist of the circuit under test. We assume the party that executes logic testing
has the netlist description of the circuit to be examined. This netlist can be obtained by performing de-packaging,
de-layering, and imaging [10, 17, 22, 40] on the physical circuit. While hardware obfuscation techniques such as
camouflaging [16, 34, 35, 47] and logic encryption [37, 45, 48, 49] could make the trigger design of the Trojan harder to
identify, we consider the scenario where the circuit under test is not encrypted in our threat model since this setting is
also used in previous Trojan detection papers [4, 26, 33, 46].

(ii) The defender can observe the ‘indication signal’ when the Trojan is activated. We assume the defender can
observe certain manifestations of the hidden Trojan when it is activated. In particular, we assume the defender knows
the correct response of the CUT to a given test input and observes the primary outputs of the CUT for comparison.
Note that AdaTest is compatible with techniques that increase manifestation signals (e.g., test point insertion).

3.3 Global Flow
Figure 4 illustrates the global flow of AdaTest. We discuss the threat model in Section 3.2. AdaTest framework consists
of two stages: (i) Circuit profiling phase (offline) that computes the transition probabilities and SCOAP testability
parameters of the netlist; (ii) Adaptive RL-based test set generation phase (online) that progressively identifies test
vectors with high reward values.

Compute Transition 
Probability

Compute SCOAP 
Parameters

Final 
Test Set

SCOAP 
Params

Rare Nodes

Initialize 
Test Set

Generate 
Candidate Inputs

Evaluate 
Reward 

Terminate? Yes

 CUT Netlist

Phase 1: Circuit Profiling

Phase 2: Adaptive Test Set Generation
No

Adaptive Sampling 
to Update Test Set

Fig. 4. Global flow of AdaTest framework for Hardware Trojan detection.

Phase I: Circuit Profiling. This stage includes the following:
(1) Compute Transition Probabilities. Given the netlist of the circuit under test, AdaTest first computes the

transition probability of each internal node in the netlist. In particular, we use the method in [30] and assume that
each primary input has an equal probability of taking a logical value of 0 and 1. We make this assumption about the
primary input values since previous Trojan detection papers [2, 15, 30, 44] use the same assumption when computing
the transition probability. Mathematically, the transition probability of a node is computed as 𝑃𝑡𝑟𝑎𝑛𝑠 = 𝑝 (1 − 𝑝) where
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𝑝 = 𝑃𝑟𝑜𝑏 (𝑛𝑜𝑑𝑒 = 1). 𝑃𝑡𝑟𝑎𝑛𝑠 of each node is then compared with a pre-defined threshold 𝜃 to identify the rare nodes.
Identifying rare nodes is important for HT detection since the defender does not know the exact set of trigger nodes
used by the attacker. As such, the activation status of rare nodes provides guidance to generate test inputs that are
likely to trigger the stealthy Trojan.

(2) Compute SCOAP Testability Parameters. Controllability and observability are important testability charac-
teristics of a digital circuit. More specifically, ‘controllability’ describes the ability to establish a specific node to 0 or 1
by setting the primary inputs. ‘Observability’ defines the capability of determining the value of a node by controlling
the circuit’s inputs and observing the outputs. The testability parameters are useful for Trojan detection since they
allow AdaTest to distinguish the quality of different rare nodes.

Phase II: Adaptive RL-based test pattern generation. After the CUT is profiled offline in Phase 1, AdaTest performs
adaptive test input generation as shown in the bottom of Figure 4. We outline each step as follows:

(1) Initialize Test Set. AdaTest first generates an initial test vector set that is used in the later steps. A naive way to
do so is random initialization, which may not be optimal for HT detection. To improve the trigger coverage in the later
runs, AdaTest employs SAT to find a number of test inputs that activate a subset of rare nodes. We call this method
‘smart initialization’ and empirically corroborate its effectiveness in Section 6.1.

(2) Generate Candidate Test Inputs. In each iteration of AdaTest’s adaptive test vector generation, we first produce
a sufficient number of candidate test input patterns that might improve the detection performance when added to the
current test set. AdaTest deploys random test generation for this purpose.

(3) Evaluate Reward Function. AdaTest applies the candidate test inputs on the examined circuit and collects
the observations, i.e., the netlist status represented as a directed acyclic graph (DAG). We incorporate the transition
probabilities and the SCOAP testability parameters from Phase 1 as well as a novel DAG-level diversity measure to
define our reward function.

(4) Adaptive Sampling to Update Test Set. Inspired by the selection step in genetic algorithms, we design an
adaptive sampling module that picks ‘high-quality’ test patterns for fast and efficient input space exploration. In
particular, after computing the reward value of each test input in the candidate test vectors, AdaTest selects the ones
with the highest scores and append them to the current test set.

At the end of each iteration, AdaTest checks the termination condition and decides whether or not the progressive
test generation process shall continue.

Performance Metrics.We use effectiveness and efficiency as two main metrics to assess the performance of a Trojan
detection scheme. In particular, we measure the effectiveness from two aspects: trigger coverage and Trojan coverage
(i.e. detection rate). The efficiency property is measured by the test set generation time and test set size. AdaTest, for
the first time, provides the trade-off between effectiveness and efficiency by adaptively generating a set of test patterns
with evolving quality over time. The quantitative analysis of the above metrics is demonstrated in Section 6.

4 ADATEST ALGORITHM DESIGN
The key to ensuring a high probability of Trojan detection using logic testing is to generate a test set that can trigger
the circuit to diverse states, in particular, the rare nodes in the circuit. To this end, AdaTest leverages three important
characteristics of the circuit: the transition probabilities, the SCOAP testability measures, and the DAG-level diversity.
In particular, AdaTest employs an RL-driven test pattern generation approach that uses the above three properties
to progressively generate test inputs. Inspired by the selection stage in genetic algorithms, we integrate an adaptive
Manuscript submitted to ACM
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sampling module that progressively expands the current test set (used as historical information) with high-quality
test patterns. This response-adaptive design is beneficial for statistical search of the HT trigger in the circuit input
space, thus improves the efficiency of AdaTest’s RL-based pipeline. We detail the two main phases of AdaTest shown in
Figure 4 in the following of this section.

4.1 Circuit Profiling
Algorithm 1 outlines the steps of the circuit profiling phase in AdaTest. This stage obtains two informative properties of
the circuit: the transition probabilities and testability measures. In particular, we use random testing and logic simulation

to estimate the transition probability 𝑃𝑡𝑟𝑎𝑛𝑠 of each node in the netlist𝐶𝑛 . To further investigate the rewards of different
rare nodes, AdaTest also computes the SCOAP parameters of the nodes using the technique in [11].

AdaTest’s circuit profiling stage characterizes the static reward properties of the circuit in terms of the transition
probabilities of rare nodes and testability measures. We call these two properties ‘static’ since they are independent
of the circuit input for a given circuit netlist. As such, our profiling phase can be performed offline. The above two
properties are indispensable for the reward computation step in Phase 2 of AdaTest since: (i) Transition probabilities
and rare nodes shed light on the potential trigger nodes exploited by the malicious adversary. The defender knows that
a subset of rare nodes are used to design the stealthy Trojan while he has no knowledge about the exact trigger set. As
such, rewarding the activation of rare nodes encourages the test vectors to stimulate the possible HT. Note that the
Trojan activation condition is equivalent to knowledge of the exact trigger set and both are assumed to be unknown to
the defender. (ii) Testability parameters provide more fine-grained information about the quality of individual rare
nodes in the context of HT detection. One can compare the fitness of two test inputs by counting and comparing
the number of activated rare nodes corresponding to each test vector. However, such a naive counting mechanism
neglects the intrinsic difference between the quality of individual rare nodes. In principle, a rare node with higher
controllability and observability shall be assigned with higher reward values. As such, AdaTest integrates the SCOAP
testability measures to quantify the reward of each activated rare node.

Algorithm 1 Circuit Profiling.
INPUT: Netlist of the circuit under test (𝐶𝑛); Number of random tests (𝐻 ); Threshold on transition probability

(𝜃 ) for rare nodes.

OUTPUT: The set of rare nodes (𝑅); Computed testability parameters 𝑇𝑃 = (𝐶𝐶0,𝐶𝐶1,𝐶𝑂).
1: Initialize rare node set: 𝑅 ← ∅
2: Generate random inputs: 𝐼 ← 𝑅𝑎𝑛𝑑𝐺𝑒𝑛(𝐶𝑛, 𝐻 ).
3: Perform logic simulation: 𝑂 ← 𝐿𝑜𝑔𝑖𝑐𝑆𝑖𝑚(𝐶𝑛, 𝐼 ).
4: for node in 𝐶𝑛 do
5: Compute frequency: 𝑝 = 𝐶𝑜𝑢𝑛𝑡𝑂𝑛𝑒𝑠 (𝑂,𝑛𝑜𝑑𝑒)/𝐻
6: Estimate transition probability: 𝑃𝑡𝑟𝑎𝑛𝑠 = 𝑝 (1 − 𝑝)
7: if 𝑃𝑡𝑟𝑎𝑛𝑠 < 𝜃 then
8: 𝑅 ← 𝑅 ∪ 𝑛𝑜𝑑𝑒
9: Obtain SCOAP parameters:

(𝐶𝐶0, 𝐶𝐶1, 𝐶𝑂) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝐶𝑂𝐴𝑃 (𝐶𝑛)
10: Return: Obtained rare node set 𝑅, SCOAP testability parameters 𝑇𝑃 = (𝐶𝐶0,𝐶𝐶1,𝐶𝑂).
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4.2 Adaptive RL-based Test Pattern Generation
AdaTest deploys a progressive, reinforcement learning-driven algorithm for efficient and effective test input space
exploration with the goal of HT detection. Section 2.3 introduces the basic concepts of RL. We discuss how we map the
Trojan detection problem to the RL paradigm as follows.
AdaTest’s RL Formulation of Trojan Detection:

State. The objective of AdaTest is to adaptively generate test patterns with high effectiveness for Trojan detection
in an iterative manner. As such, AdaTest defines a state as the current test set in the present iteration.

Action Space. Recall that an action transforms the agent into a new state, which is the new test set according to
our definition of the state above. Therefore, a feasible action for AdaTest is to identify a set of new test input vectors in
each iteration that improves the quality of HT detection when added to the current test set.

Environment. For HT detection, the netlist of the circuit (𝐶𝑛) can be considered as the environment that converts
the current state and the action, and returns the reward value.

Observations. The agent makes the observation of the environment before reward computation. For Trojan
detection problems, we model the DAG formed by the values of all nodes in the netlist given a specific input vector as an
observation of the circuit state.

Reward. The definition of the reward function directly reflects the objective of the problem that one aims to solve.
As such, for the task of logic testing-based HT detection, AdaTest designs a composite reward function to encourage the
generation/exploration of test inputs that facilitate the excitation of the potential HT.

The mathematical definition of AdaTest’s dynamic reward function is given in the equation below:

𝑅𝑒𝑤𝑎𝑟𝑑 (𝑇𝑖 | 𝑆𝑖 ) = 𝜆1 ·𝑉𝑟𝑎𝑟𝑒 (𝑇𝑖 , 𝑅) + 𝜆2 ·𝑉𝑠𝑐𝑜𝑎𝑝 (𝑇𝑖 , 𝑅, 𝑇𝑃)

+ 𝜆3 ·𝑉𝐷𝐴𝐺 (𝑇𝑖 | 𝑆𝑖 ) . (1)

Here, 𝑆𝑖 and𝑇𝑖 are the current test set (i.e., the state) and the newly generated test inputs in 𝑖𝑡ℎ iteration, respectively. 𝑅
and𝑇𝑃 are the set of rare nodes and the SCOAP testability parameters identified in Phase 1 (static attributes). The hyper-
parameters 𝜆1, 𝜆2, 𝜆3 determine the relative weighting of the three reward terms. The reward function 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑇𝑖 | 𝑆𝑖 )
characterizes the fitness of the specific test inputs 𝑇𝑖 while considering the current test set 𝑆𝑖 . Evaluating the reward
value of 𝑇𝑖 in the context of the historical test patterns (𝑆𝑖 ) makes AdaTest’s RL framework adaptive and intelligent.

We detail how each term in AdaTest’s reward function is designed below. Inspired by the ‘N-detect’ test, the first
reward term in Equation (1) aims to activate each rare node in the circuit for at least 𝑁 times. To this end, we define the
rare node reward 𝑅𝑟𝑎𝑟𝑒 as follows:

𝑉𝑟𝑎𝑟𝑒 (𝑇𝑖 , 𝑅) = −
∑︁
𝑟 ∈𝑅

𝑎𝑏𝑠 (𝑁 −𝐶𝑡𝑟𝑖 (𝑟 )), (2)

where 𝐶𝑡𝑟𝑖 (𝑟 ) is the number of times that the rare node 𝑟 is activated to its rare value up to the 𝑖𝑡ℎ iteration.
The second reward term in Equation (1) leverages the SCOAP parameter 𝑇𝑃 = (𝐶𝐶0,𝐶𝐶1,𝐶𝑂) computed in Phase 1

to encourage the stimulation of rare nodes with high controllability and observability. Given the current test set 𝑆𝑖 , we
can obtain the set of activated rare nodes 𝑅𝑡𝑟𝑖 (which is a subset of 𝑅). The SCOAP testability reward 𝑉𝑠𝑐𝑜𝑎𝑝 is then
computed as follows:

𝑉𝑠𝑐𝑜𝑎𝑝 (𝑇𝑖 , 𝑅, 𝑇𝑃) =
∑︁

𝑟 ∈𝑅𝑡𝑟𝑖
𝐶𝐶 (𝑟 ) +𝐶𝑂 (𝑟 ) . (3)

Here, 𝐶𝐶 (𝑟 ) and 𝐶𝑂 (𝑟 ) denote the controllability and observability of the rare node 𝑟 when set to its rare value. More
specifically, 𝐶𝐶 (𝑟 ) shall be converted to 𝐶𝐶0(𝑟 ) or 𝐶𝐶1(𝑟 ) depending on the rare value of the node 𝑟 .
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Besides leveraging the static attributes identified in Phase 1 to define the rare node reward 𝑅𝑟𝑎𝑟𝑒 and the SCOAP
testability reward 𝑅𝑠𝑐𝑜𝑎𝑝 , AdaTest further explores the graph-level diversity extracted from the circuit netlist. In
particular, AdaTest identifies the dynamic fitness property, i.e., the DAG-level diversity that is jointly determined by
the circuit netlist and the test vector set. Such a DAG-level distance serves as a dynamic fitness measure since it is
input-aware. Recall that AdaTest leverages an RL paradigm and considers the value assignments of all nodes when
given the netlist𝐶𝑛 and a specific test input as the observation. We use the graph representation of the circuit to abstract
the observed netlist status. To facilitate the computation, AdaTest flattens the DAG to an ordered sequence based on the
circuit level information. The distance between the two transformed DAG sequences is used as the DAG-level diversity
measure. To summarize, we define the DAG diversity reward as follows:

𝑉𝐷𝐴𝐺 (𝑇𝑖 | 𝑆𝑖 ;𝐶𝑛) = 𝐻𝑎𝑚𝑚𝐷𝑖𝑠𝑡 (𝐷𝐴𝐺 (𝑇𝑖 ; 𝐶𝑛), 𝐷𝐴𝐺 (𝑆𝑖 ; 𝐶𝑛)). (4)

Here, 𝐷𝐴𝐺 (𝑇𝑖 ;𝐶𝑛) denotes the flattened ordered sequence of the DAG obtained when applying the test inputs 𝑇𝑖 to the
circuit 𝐶𝑛 . The diversity measurement function 𝐻𝑎𝑚𝑚𝐷𝑖𝑠𝑡 computes the normalized pairwise distance of the flattened
DAGs using the Hamming distance metric. Since the DAG sequence of the circuit is binary-valued (0 or 1), AdaTest
employs 𝑋𝑂𝑅 function as an efficient implementation of the 𝐻𝑎𝑚𝑚𝐷𝑖𝑠𝑡 function. It’s worth noting that this graph
reward𝑉𝐷𝐴𝐺 is aware of historical test inputs (𝑆𝑖 ), thus providing guidance to select new inputs that stimulate different
internal nodes structure in the context of current test inputs 𝑆𝑖 .

Policy. The policy component of a RL algorithm suggests actions to achieve a high reward given the current state.
Recall that AdaTest defines the state and the action space as the current set of test vectors and the expansion with the
new test patterns, respectively. Therefore, the policy module of AdaTest selects the most suitable test pattern candidates
and add them to the result test set (line 5&6 in Alg. 2).

Algorithm 2 outlines the procedure of our adaptive test set generation framework. We emphasize that AdaTest
does not require explicit training on the training set, which is typically required by machine learning models (e.g.,
gradient descent-based training). The RL nature enables AdaTest to search for distinguishing test inputs with the
guidance of the composite reward. This makes our detection method fundamentally different from TGRL [26] that still
trains an ML model for test pattern generation. We discuss how AdaTest leverages the RL paradigm formulated above
to achieve logic testing-based HT detection in the following of this section.
1 Smart Initialization. Recall that the intuition of logic testing-based Trojan detection is to encourage the generation
of test inputs that activate diverse combinations of rare nodes to their corresponding rare values. Random test vectors
might be unlikely to yield a high trigger coverage, especially on large circuits. To explore the above intuition, AdaTest
leverages SAT to generate the initial test set (line 1 in Algorithm 2) such that it is able to activate diverse rare nodes
specified by the defender. We empirically validate the advantage of our smart initialization as opposed to the random
variant in Section 6.1. It is worth noticing that while the defender can identify rare nodes in the circuit by thresholding
the transition probabilities, it might be infeasible to find an input that stimulates all rare nodes to their rare values.
Therefore, AdaTest tries to generate test patterns that stimulate different combinations of rare nodes for Trojan detection.
2 Generate Candidate Test Patterns. AdaTest progressively identifies test inputs that are suitable for HT detection
using an iterative approach. To this end, AdaTest first generates a sufficient number of candidate test vectors at the
beginning of each iteration (line 3 in Alg. 2). These candidates are responsible for exploring the test input space and aim
to find solutions with high rewards. In our experiments, we adopt an adaptive sampling method to generate candidate
test patterns at each iteration. In particular, the sampling weights for the test vectors in the initial set 𝑆0 are uniformly
assigned at iteration 0. In other words, at iteration 0, we perform a uniform sampling to generate candidate test patterns.
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Algorithm 2 Adaptive Reinforcement Learning based Test Input Pattern Generation.
INPUT: Netlist of circuit under test (𝐶𝑛); Rare node set 𝑅; SCOAP testability parameters𝑇𝑃 = (𝐶𝐶0,𝐶𝐶1,𝐶𝑂);

Size of candidate test inputs per iteration (𝑀); Size of selected test inputs per iteration (𝐿); Maximal
number of iterations (𝐼𝑚𝑎𝑥 ); Percentage threshold of rare nodes (𝑝); Target activation times (𝑁 ).

OUTPUT: A set of test patterns 𝑆 for Trojan detection of the target circuit 𝐶𝑛 .
1: Initialization:

𝑆0 =

{
®𝑆10 , ..., ®𝑆

𝐿
0

}
← 𝑆𝑚𝑎𝑟𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝐿).

Iteration counter: 𝑖 ← 0
2: while 𝑖 < 𝐼𝑚𝑎𝑥 and HT is not activated do
3: 𝑇𝑖 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑀; 𝐶𝑛)
4: 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑇𝑖 | 𝑆𝑖 ) ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑅𝑒𝑤𝑎𝑟𝑑 (𝑇𝑖 , 𝑆𝑖 ; 𝐶𝑛)
5: 𝑇

𝑡𝑜𝑝

𝑖
← 𝑆𝑒𝑙𝑒𝑐𝑡𝑇𝑜𝑝𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝑇𝑖 , 𝑅𝑒𝑤𝑎𝑟𝑑, 𝐿)

6: Update test set: 𝑆𝑖+1 ← 𝑆𝑖 ∪𝑇 𝑡𝑜𝑝

𝑖
⊲ Adaptive sampling to expand test set

7: 𝐴𝑖 ← 𝐶𝑜𝑢𝑛𝑡𝑅𝑎𝑟𝑒𝑁𝑜𝑑𝑒𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑆𝑖 ; 𝐶𝑛)
8: if 𝑝% elements in 𝐴𝑖 ≥ 𝑁 & 𝐴𝑖 .𝑚𝑖𝑛() ≥ 1 then ⊲ Check termination condition
9: break
10: 𝑖 ← 𝑖 + 1
11: Return: Obtained a test set (𝑆𝑖 ) for logic testing-based HT detection of the circuit 𝐶𝑛 .

Then the sampling weights of test vectors at iteration 𝑖 + 1 will be updated based on the normalized reward values
evaluated at iteration 𝑖 . Test vectors with higher reward values will result in higher sampling weights, which in turn
increases the probability of the test vectors being included in the generated set 𝑆 . The adaptive sampling method allows
us to optimize test pattern generation by favoring test patterns with higher reward values thus enhancing convergence
in our test pattern generation.
3 Evaluate Reward Function. The definition of reward is task-specific. Since our objective is to generate test
patterns that stimulate the circuit (particularly the rare nodes) to different states for Trojan detection, AdaTest designs
an innovative composite reward function as shown in Equation (1). In each iteration, the reward values of the candidate
test inputs are evaluated (line 4 of Alg. 2). Our compound reward function captures informative features that are
beneficial for HT detection from three aspects: the number of times that each rare node is activated (𝑉𝑟𝑎𝑟𝑒 ), the SCOAP
testability measures that quantify the fitness of different rare nodes (𝑉𝑠𝑐𝑜𝑎𝑝 ), and the graph-level diversity between the
current test inputs and historical ones (𝑉𝐷𝐴𝐺 ).
4 Adaptive Sampling to Update Test Set. Recall that in AdaTest’s RL paradigm, the current test set 𝑆𝑖 represents
the ‘state’ variable. After obtaining the reward values of individual candidate test input in 𝑇𝑖 from Step 3, AdaTest
updates the state by selecting a subset of 𝑇𝑖 that has the highest reward values and adding them to the current test set
𝑆𝑖 . This step is conceptually similar to the selection stage in genetic algorithms. With the domain-specific definition
of reward, AdaTest adaptively samples high-quality test patterns from the randomly generated candidate test inputs,
therefore facilitating fast exploration of the circuit input space for HT detection.
5 Check Termination Condition. AdaTest’s adaptive test set generation terminates if any of the following three
conditions is satisfied: (i) 𝑝% of all rare nodes are activated for at least 𝑁 times and all rare nodes are activated at lease
once (line 8 in Alg. 2); (ii) The maximal number of iteration 𝐼𝑚𝑎𝑥 is reached (line 2 in Alg. 2); (iii) The current test set
𝑆𝑖 activates the hidden Trojan, i.e., all involved trigger nodes are activated to their corresponding rare values by 𝑆𝑖
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(line 2 in Alg. 2). Note that we include termination condition (iii) since our threat model assumes that the defender can
observe the manifestation of an activated Trojan.

Discussion. As summarized in Alg. 2, our reinforcement learning approach does not require model training. Instead,
we progressively generate the set of test vectors using adaptive sampling given the particular circuit with the goal of
maximizing the RL rewards for Trojan detection. From this perspective, our RL-based detection tool generates a specific
test set for the circuit under test. However, AdaTest is generic in the sense that it is agnostic to the circuit structure and
can be applied to various types of circuits. In other words, applying AdaTest to a different circuit does not require any
model training since we do not incorporate neural networks in our RL detection pipeline shown in Alg. (2).

5 ADATEST ARCHITECTURE DESIGN
Beyond the novel test generation algorithm discussed in Section 4, we design a Domain-specific systems-on-chip (DSSoC)
architecture of AdaTest for its practical deployment. The bottleneck of AdaTest implementation is the computation
of the test input’s reward 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑇𝑖 |𝑆𝑖 ) according to Equation (1). Given the rare node-set 𝑅 and SCOAP testability
measures of the circuit 𝑇𝑃 from offline circuit profiling (Algorithm 1), the online reward evaluation of a new test input
𝑇𝑖 involves three terms as shown in Equation (1): identifying the rare nodes stimulated by 𝑇𝑖 (for 𝑉𝑟𝑎𝑟𝑒 ), obtaining the
SCOAP values corresponding to each active rare node (for 𝑉𝑠𝑐𝑜𝑎𝑝 ), and computing the DAG-level graph distance (for
𝑉𝐷𝐴𝐺 ). Note that the third component requires us to obtain the DAG with nodes value assignment when applying
the test input on the circuit 𝐷𝐴𝐺 (𝑇𝑖 ; 𝐶𝑛). This information is also sufficient to compute the first two reward terms.
Therefore, the main task for AdaTest’s on-chip implementation is to obtain the value-assigned DAG for a new test input
on the circuit (𝐷𝐴𝐺 (𝑇𝑖 ; 𝐶𝑛)).

To accelerate circuit evaluation, AdaTest deploys circuit emulation on the programmable hardware to obtain the
response 𝐷𝐴𝐺 (𝑇𝑖 ; 𝐶𝑛). Furthermore, AdaTest constructs the customized auxiliary circuitry automatically to pipeline
each computation stage and reduce the runtime overhead. We design an optimized DSSoC architecture of AdaTest for
efficient implementation of our adaptive TPG method outlined in Algorithm 2.

5.1 Architecture Overview
The overall hardware architecture of AdaTest’s online test patterns generation is shown in Figure 5 (a). AdaTest
leverages Algorithm/Software/Hardware co-design approach to accelerate the test inputs searching process shown
in Figure 4 (phase2). More specifically, AdaTest maps the netlist of the circuit under test (𝐶𝑛) with the auxiliary part
to the FPGA and performs circuit evaluation to obtain the circuit’s response (𝐷𝐴𝐺 (𝑇𝑖 ; 𝐶𝑛)) to the test input 𝑇𝑖 . We
make this design decision to develop the hardware accelerator for AdaTest since acquiring the circuit’s response from a
configured FPGA (circuit emulation) is significantly faster than the same process running on a host CPU (software
simulation). In addition, AdaTest parallelizes the computation of circuit emulation and pipelines at each step of the RL
process. AdaTest performs reward computation of the candidate test inputs and adaptive sampling in an online fashion
to minimize data communication between the off-chip memory and the FPGA.

Note that we do not include a random number generator (RNG) in our architecture design. Instead, AdaTest stores a
set of random numbers pre-computed on CPU using the inherent variation of the operating system. This design choice
has two benefits: (i) The hardware overhead of a True RNG is non-trivial and not desired; (ii) Random numbers generated
from the CPU typically feature stronger randomness compared to the one generated on FPGA. The results of circuit
emulation are used for computing the reward values of test inputs using Equation (1) during reward evaluation. The
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Fig. 5. Overview of AdaTest architecture design. The overall layout of the hardware system (a) and the implementation of Reward
Computation Engines (b) are shown.

rare node evaluation and DAG distance computation process in reward evaluation are parallelized by accommodating
multiple Computing Engine (CE) in AdaTest’s design. We also evenly partition the workload of each CE evenly offline.

After accumulating the reward for each candidate test input, our adaptive sampling selects the ones with the highest
rewards. This selection process is equivalent to sorting. Therefore, AdaTest includes a sorting engine that permutes the
key index based on their corresponding rewards. We implement a lightweight sorting engine based on the ‘even-odd
sort’ algorithm [6] for adaptive sampling, incurring a linear runtime overhead with the candidate test set size𝑀 .

It is worth noticing that AdaTest does not deploy a central control unit to coordinate the computation flow. Instead,
each design component in Figure 5 (a) follows a trigger-based control mechanism [27]. Particularly, each module is
controlled by the status flag from its previous computation stage. For example, the adaptive sampling module (i.e., the
sorting engine) in AdaTest begins to operate when the accumulation of the reward value is detected as completed.
Our trigger-based control flow simplifies the control logic while satisfying the data dependency between different
components in Figure 4. We detail the design of AdaTest’s circuit emulation and auxiliary circuitry as follows.

5.2 AdaTest Circuit Emulation
We empirically observe from AdaTest’s software implementation that circuit evaluation (i.e., obtaining 𝐷𝐴𝐺 (𝑇𝑖 ;𝐶𝑛))
dominates the execution time. Motivated to address the high latency issue of evaluating a circuit netlist on CPU, we
propose to use circuit emulation to improve AdaTest’s efficiency. The first step of circuit emulation is to rewrite the
netlist of the circuit under test (𝐶𝑛) such that the values of internal nodes can be recorded by registers. The rewritten
circuit is then connected with the auxiliary circuitry and mapped onto FPGA. In this way, we can emulate the response
of the target circuit 𝐶𝑛 for any test input by directly applying it to the circuit and collecting the corresponding values
in the registers. The collected signal values are used to compute the three reward terms in Equation (1).

Furthermore, AdaTest optimizes the latency of hardware evaluation by storing the emulation results in a ping-pong
buffer (consisting of two buffers denoted with 𝐴 and 𝐵) and decoupling it from other hardware components as shown
in Figure 5 (a). More specifically, the reward computing engine (CE) calculates the reward of the candidate test input
using the data from buffer A. In the meantime, the emulator acquires the states of 𝐶𝑛 given the next input 𝑇𝑖 and stores
the results into buffer 𝐵.

5.3 AdaTest Reward Computing Engine

Pipeline with Early Starting. Our architecture design aims to maximize the overlapping time between each execution
stage of AdaTest to increase the throughput of TPG. As shown in Figure 6, the ping-pong buffer enables pipelined
execution of hardware emulation and reward evaluation. Furthermore, reward evaluation and adaptive sampling can be
pipelined across different iterations. We can see from Figure 6 that epoch (𝑖 + 1) can start circuit emulation and reward
evaluation when the previous epoch begins to generate new test inputs for the next epoch. As such, the latency of
candidate test input generation can be hidden by circuit emulation and reward evaluation.
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Fig. 6. AdaTest’s hardware accelerator employs pipelining optimization to generate test patterns online for HT detection.

Scalable Reward Computing Engine. Once circuit emulation finishes for the current input 𝑇𝑖 , AdaTest begins to
calculate the reward of this test input using Equation (1). From the hardware perspective, the reward term 𝑉𝑟𝑎𝑟𝑒 and
𝑉𝑠𝑐𝑜𝑎𝑝 is computed by accumulating the number of activated rare nodes and the corresponding SCOAP values from the
circuit 𝐶𝑛 , and the reward 𝑉𝐷𝐴𝐺 is computed by accumulating the Hamming Distance (i.e., XOR) between the values
in the current DAG (𝐷𝐴𝐺 (𝑇𝑖 ;𝐶𝑛)) and the historical ones (𝐷𝐴𝐺 (𝑆𝑖 ;𝐶𝑛)). Independence between different groups of
wire signals typically exists in circuits. AdaTest leverages this property by distributing the computation involving
independent groups of nodes to different reward computing engines as shown in Figure 5 (b). As such, each CE stores a
subset of DAG nodes’ values in the associated DAG buffer. The accumulation of the ultimate reward score completes
when the last CE finishes reward computing.

6 EVALUATIONS

We investigate AdaTest’s performance for Hardware Trojan detection on various benchmarks, including ISCAS’85 [12],
MCNC [21], and ISCAS’89 [3]. The statistics of the evaluated benchmarks are summarized in Table 1. To apply AdaTest
on sequential circuits in the ISCAS’89 benchmark, we unroll the circuit for two-time frames and convert it to a
combinational one [1, 50]. Note that the unrolling process duplicates the combinational logic blocks, thus increasing the
effective circuit size for Trojan detection. The transition probability (𝑃𝑡𝑟𝑎𝑛𝑠 ) threshold for rare nodes is set to 𝑃𝑇 = 0.1

for ISCAS’85 and MCNC benchmarks. As for two ISCAS’89 circuits, we use 𝑃𝑡𝑟𝑎𝑛𝑠 = 0.0005 so that the number of rare
nodes is at the same level as the previous two benchmarks. The identification results are shown in the last column of
Table 1. To compare AdaTest’s performance with other logic testing-based Trojan detection methods, we use trigger
coverage and Trojan coverage as the metrics to quantify detection effectiveness. To characterize detection efficiency,
we use the number of test vectors and the detection runtime as the metrics. We empirically show that AdaTest achieves
a higher Trojan detection rate with shorter runtime overhead compared to the counterparts in the rest of this section.

Experimental Setup. Adhering to our threat model defined in Section 3.2, we first design the HT and insert it to each
benchmark listed in Table 1. We use a logic-AND gate as the Trojan trigger and select three rare nodes with rare value
1 as the inputs. To fully characterize the performance of AdaTest, we devise various HTs for each circuit (i.e., using
different combinations of rare nodes as the trigger) and repeat the insertion for 50 times. Our Trojaned benchmarks
include ‘hard-to-trigger’ HTs with activation probabilities around 10−7 (e.g., 𝑐3540). To compare the performance of
AdaTest with prior works, we re-implement MERO [4] and TRIAGE [25] based on the methodology described in the
paper using Python. Our experiments are performed on an Intel Xeon E5-2650 v4 processor with 14.5 GiB of RAM.

MERO Configuration.We use the parameter selection strategy suggested in MERO [4] for re-implementation.
Particularly, we set the size of random patterns to 2,500. The hyper-parameter of MERO is 𝑁 (desired number of times
that each rare node shall be activated). A large value of 𝑁 achieves a higher detection rate while resulting in a larger
test set [4]. We use 𝑁 = 1, 000 in our experiments since this value is suggested in MERO [4].
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Table 1. Summary of the evaluated circuit benchmarks.

Circuit dataset #in #out #gate # of rare nodes
(𝑃𝑡𝑟𝑎𝑛𝑠 < 𝑃𝑇 )

c432 ISCAS-85 36 7 160 14
c499 ISCAS-85 41 32 202 48
c880 ISCAS-85 60 26 383 74
c3540 ISCAS-85 50 22 1669 218
c5315 ISCAS-85 178 123 2307 169
c6288 ISCAS-85 32 32 2416 245
c7552 ISCAS-85 207 108 3512 266
des MCNC 256 245 6473 2316
ex5 MCNC 8 63 1055 432
i9 MCNC 88 63 1035 85
seq MCNC 41 35 3519 1356
s5378 ISCAS-89 35 49 2958 258
s9234 ISCAS-89 19 22 5825 398

TRIAGE Configuration.We use a population size of 100 and select 20 test inputs with the highest fitness score in
each generation. The probability of crossover and mutation is set to 0.9 and 0.05, respectively. The termination condition
in TRIAGE [25] is used to evolve the test patterns.

AdaTest Configuration. In AdaTest’s circuit profiling stage, we use the Testability Measurement Tool [31] to
compute the SCOAP parameters. The SAT-based smart initialization step of AdaTest’s Phase 2 is performed using the
pycosat library [32]. Our framework is developed in Python language and does not require extensive hyper-parameter
tuning. To ensure the three reward terms in Equation (1) have comparable values within the range of [0, 10], we set the
hyper-parameters to 𝜆1 = 0.05, 𝜆2 = 0.0001, 𝜆3 = 0.00025. The candidate test size and the step size in Algorithm 2 are
set to𝑀 = 200 and 𝐿 = 80 for all benchmarks, respectively. We use the percentage threshold 𝑝 = 95% to identify rare
nodes and set the target activation times to 𝑁 = 20. The maximal iteration time is set to 𝐼𝑚𝑎𝑥 = 500.

According to the performance metrics in Section 3.3, we use the trigger coverage (percentage of trigger nodes
identified by the test set) and the Trojan coverage (i.e., detection rate) to quantify the effectiveness of HT detection.
Meanwhile, we measure the test set generation time and test set size of each technique for efficiency comparison. To
obtain an accurate and comprehensive performance measurement, we design 50 different HTs for each benchmark in
Table 1 while fixing the number of trigger nodes to 3. Each set of devised HTs is inserted into the circuit independently.
We run AdaTest detection on each Trojaned circuit for 20 times. The trigger and Trojan coverage for each benchmark
are computed as the average value over 50 × 20 = 1000 runs.

Fig. 7. Trojan detection rates of AdaTest and prior works on various benchmarks.
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6.1 Detection Effectiveness
We assess the detection performance of AdaTest, MERO, and TRIAGE using the aforementioned experimental setup.
Figure 7 compares the Trojan coverage of the three HT detection techniques on different benchmarks. One can see
that our framework achieves uniformly higher detection rates across various circuits. The superior HT detection
performance of AdaTest is derived from our definition of adaptive, context-aware reward functions in Equation (1).

We use two metrics to quantitatively compare the effectiveness of different HT detection techniques: trigger coverage
rate and Trojan detection rate. Note that AdaTest determine a Hardware Trojan is present in the circuit if the set of test
patterns generated using Alg. 2 result in Trojan activation when the test inputs are applied to the circuit. Therefore, our
detection method does not have any false positives and we focus on evaluating the detection rates (which corresponds
to the false-negative rate). Table 2 summarizes the HT detection results of three different methods on the benchmarks
in Table 1. The trigger coverage and Trojan coverage results are shown in the last two columns of Table 2. It can be seen
that AdaTest achieves the highest Trojan coverage while requiring the shortest test generation time across most of the

Table 2. Performance comparison summary of different Trojan detection techniques.

circuit Method # test vectors Runtime (s) Trigger coverage Trojan coverage

c499
MERO 1660 136.49 100.00% 100.00%
TRIAGE 250000 25.91 100.00% 100.00%
AdaTest 1010 13.60 100.00% 100.00%

c880
MERO 1332 352.54 100.00% 100.00%
TRIAGE 250000 1.75 82.29% 18.00%
AdaTest 429 0.43 100.00% 97.50%

c3540
MERO 1920 1577.36 100.00% 100.00%
TRIAGE 250000 25.85 100.00% 61.00%
AdaTest 905 22.61 100.00% 100.00%

c5315
MERO 9265 1660 100.00% 50.00%
TRIAGE 250000 37.14 100.00% 50.50%
AdaTest 1300 19.76 100.00% 100.00%

c6288
MERO 1906 1867.57 100.00% 100.00%
TRIAGE 250000 44.11 100.00% 91.50%
AdaTest 900 47.06 100.00% 99.50%

c7552
MERO 1916 18650.5 100.00% 50.00%
TRIAGE 250000 20.93 93.88% 5.00%
AdaTest 1600 39.79 98.08% 100.00%

s5378
MERO 1103 30960.11 100.00% 100.00%
TRIAGE 300 0.45 100.00% 100.00%
AdaTest 100 11.58 100.00% 100.00%

s9234
MERO 11 29737.84 100.00% 25.00%
TRIAGE 500 35.625 100.00% 100.00%
AdaTest 140 124.99 100.00% 100.00%

des
MERO 1120 34943.41 100.00% 100.00%
TRIAGE 2500 0.84 100.00% 100.00%
AdaTest 156.8 15.11 92.88% 100.00%

ex5
MERO 904 115.22 100.00% 100.00%
TRIAGE 2500 0.13 99.13% 100.00%
AdaTest 500 12.35 93.81% 100.00%

i9
MERO 268 808.56 100.00% 100.00%
TRIAGE 2500 0.09 100.00% 100.00%
AdaTest 600 12.15 94.58% 100.00%

seq
MERO 1776 3773.3 100.00% 66.67%
TRIAGE 250000 22.11 95.44% 2.00%
AdaTest 3700 20.72 94.58% 82.00%

Manuscript submitted to ACM



18 Huili Chen, et al.

benchmarks. More specifically, AdaTest achieves an average of 15.61% and 29.25% Trojan coverage improvement over
MERO [4] and TRIAGE [25], respectively. The superior HT detection performance of our logic testing-based approach
is derived from the diverse test patterns found by AdaTest adaptive RL-driven input space exploration technique (see
Section 4.2). We not only encourage the activation of rare nodes and differentiate their qualities using SCOAP testability
parameters but also explicitly characterize the graph-level distance of the CUT status under different test stimuli.

We measure the dynamic rare node coverage versus the number of executed iterations to validate the time-evolving

property of AdaTest framework. Figure 8 shows the coverage results of AdaTest with random initialization and SAT-based
smart initialization on the 𝑐3540 benchmark. We can make two observations from Figure 8: (i) AdaTest consistently
improves the rare node coverage over time (with either initializationmethod); (ii) SAT-based smart initialization improves
the convergence speed of AdaTest, thus reducing our test set generation time. The first observation corroborates the
efficacy of our RL-based progressive test pattern generation method. The second observation reveals the importance
of proper initialization for fast convergence of RL exploration. Note that a shorter convergence time (i.e., a smaller
number of iterations in Algorithm 2) indicates s smaller test set returned by AdaTest, which is beneficial to reduce the
test generation time for higher detection efficiency.

Fig. 8. The rare node coverage of AdaTest versus the number of executed iterations on c3540 benchmark.

6.2 Detection Efficiency

We characterize the efficiency of AdaTest for logic testing based HT detection using two metrics: the test set size (space
efficiency), and the test set generation time (runtime efficiency). The quantitative efficiency measurements of three HT
detection methods are shown in the third and fourth columns of Table 2. It can be computed that AdaTest engenders an
average of 2.04× and 155.04× reduction of the test set size compared to MERO and TRIAGE across all benchmarks,

Fig. 9. Test set generation time comparison between AdaTest and prior works. The runtime shown by the y-axis is represented in
the log scale.
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respectively. The reduction of test set size has two benefits: (i) A smaller test set features a lower memory footprint; (ii)
For on-chip test pattern generation, a smaller test set suggests a shorter test generation time.

Figure 9 compares the required test generation time of AdaTest, MERO, and TRIAGE to achieve the coverage results
on various benchmarks in Table 2. Note that we use log-scale for the vertical axis since the range of runtime is diverse
across different circuits. We can observe that AdaTest is the most efficient HT detection method among the three and
it also achieves high Trojan coverage (last column of Table 2). More specifically, AdaTest engenders an average of
366.26× and 0.63× test generation speedup compared to MERO [4] and TRIAGE [25], respectively. Note that although
the runtime of TRIAGE is smaller, its Trojan detection rate is 30% lower than AdaTest.

6.3 AdaTest Architecture Evaluation
The resource utilization of AdaTest depends on the input length and the circuit size. We report the resource utilization
results of the evaluated benchmarks in Table 3. Figure 10 shows that AdaTest architecture achieves approximately
linear speedup w.r.t. to the number of CEs. Our hardware design can be scaled up by adding more reward computing
engines to parallel the circuit emulation process as AdaTest’s computation bottleneck is reward evaluation of the test
patterns. Nevertheless, the speedup saturates when 𝑁𝐶𝐸 is sufficiently high. AdaTest broadcasts the wire values of the
circuit response (given a test input) to all CEs via a shared data bus. Each CE scans the DAG buffer and obtains the
broadcast wire values to compute the corresponding reward. Therefore, increasing the number of CEs does not lead to
extra wire delay. However, more CEs suggest a higher overhead during reward accumulation.

Table 3. Resource utilization of the auxiliary circuitry on c432,c880, c2670 and des benchmarks with default settings (𝑁𝐶𝐸 = 16) on
Zynq ZC706.

Benchmarks c432 c880 c2670 des
BRAMS 26 36 65 237
DSP48E1 0 0 0 0

KLUTs (emulator usage) 14.9 (0.5) 25.5 (0.6) 61.1 (3.5) 267.9 (26.1)
FFs (emulator usage) 4,440 (80) 5,743 (160) 6,717 (317) 12,943 (1190)

Fig. 10. AdaTest’s scalability to the number of DAG reward computing engines. The speedup is near-linear with 𝑁𝐶𝐸 on large
circuits where reward evaluation is the computation bottleneck.

7 CONCLUSION
In this paper, we present a holistic solution to Hardware Trojan detection using adaptive, reinforcement learning-based
test pattern generation. To formulate logic testing-based HT detection as an RL problem, we design an innovative
reward function to characterize the quality of a test pattern from both static and dynamic aspects. AdaTest progressively
expands the test set by identifying test input vectors with high reward values in an iterative approach. AdaTest
integrates adaptive sampling to identify and encourage high-reward test patterns, thus accelerating our RL-based
input space exploration. We devise AdaTest using a Software/Hardware co-design approach. Particularly, we develop
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a domain-specific system-on-chip architecture for efficient hardware implementation of AdaTest. Our architecture
optimizes reward evaluation via circuit emulation and pipelines the computation of AdaTest. We perform extensive
evaluations of AdaTest on various benchmarks and compare its performance with two counterparts, MERO and TRIAGE.
Empirical results corroborate that AdaTest achieves superior effectiveness, efficiency, and scalability for HT detection
compared to prior works. AdaTest is a generic test pattern generation framework, we plan to investigate its performance
on other hardware security problems such as logic verification and built-in self-test in our future work.
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