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SUMMARY

This paper develops a method based on model-X knockoffs to find conditional associations
that are consistent across environments, controlling the false discovery rate. The motivation
for this problem is that large data sets may contain numerous associations that are statistically
significant and yet misleading, as they are induced by confounders or sampling imperfections.
However, associations replicated under different conditions may be more interesting. In fact,
consistency sometimes provably leads to valid causal inferences even if conditional associations
do not. While the proposed method is widely applicable, this paper highlights its relevance to
genome-wide association studies, in which robustness across populations with diverse ances-
tries mitigates confounding due to unmeasured variants. The effectiveness of this approach is
demonstrated by simulations and applications to the UK Biobank data.

Some key words: Conditional independence; causality; false discovery rate; genome-wide association studies.

1. INTRODUCTION

One goal of statistics is to discover which among many variables are meaningfully associated
with an outcome of interest. Associations can have different meanings, ranging from marginal, a
tendency of two variables to covary, to causal, a relation ensuring interventions on one variable
affect another. For example, a genome-wide association study may reveal some genetic variants
are more frequent among diabetic patients. This marginal association may occur simply because
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the discovered variants are shared, due to common ancestry, by a population following a less
healthy diet (Devlin & Roeder, 1999). Of course, it would be more actionable to identify vari-
ants involved in biological processes which, if modified by a drug, could influence the disease.
Marginal associations are the easiest to recognize but also the least informative, while causal
associations are more elusive, although they better lend themselves to scientific interpretations.

Between marginal and causal associations one finds conditional association: the tendency of
two variables to covary as others are fixed. Conditional testing often relies on parametric models,
but these require assumptions that are not always justified. The alternative “model-X"" approach
of Candes et al. (2018) requires no model for the conditional distribution of the outcome, as-
suming instead that the joint distribution of the predictors is known, at least within a reasonable
approximation in practice. This framework is widely relevant, and especially so in genetic stud-
ies because reliable knowledge is available about the distribution of the genotypes (Sesia et al.,
2018). Two types of model-X methods have been developed: a version of knockoffs (Barber &
Candes, 2015), and the conditional randomization test, both of which can harness the power of
any machine learning algorithm while controlling type-I errors in finite-samples.

Despite the advantages, conditional testing is not fully satisfactory. First, it neglects con-
founders: unobserved variables that would explain the association (Pearl, 2009). For instance,
a genotyped variant may be associated with a disease only because physically close to an unseen
causal one (Pritchard & Przeworski, 2001). Second, data may not be collected exactly from the
target population, due to either sampling bias (Heckman, 1979) or convenience (Harford, 2014).
Third, unknown sample dependencies may lead to spurious associations (Lee & Ogburn, 2020).

This paper mitigates the above limitations by analyzing data from many environments, corre-
sponding to different populations, experimental settings, or sampling strategies. The motivating
conjecture is that the most informative associations are those consistently reproducible, as these
enable robust predictions and may even reflect causal relations. This old idea (Hume, 1739) is
translated into a method for testing hypotheses of consistent conditional association. Our solu-
tion utilizes knockoffs because they scale well to high dimensions and control the false discovery
rate (Benjamini & Hochberg, 1995). However, an alternative approach based on the conditional
randomization test is possible; see Section S1 and Figure S1 in the Supplementary Material.

Related work

We take inspiration from Peters et al. (2016) and Heinze-Deml et al. (2018), which advanced
invariance across environments as a framework for causal inference. Departing from their work,
we do not assume homogeneous effects; indeed, we can obtain meaningful inferences with-
out any reference to a causal model. Further, we seek different guarantees, controlling the false
discovery rate, and we can handle hundreds of thousands of variables. The invariance of Pe-
ters et al. (2016) has been utilized to make predictions robust to covariate shift (Rojas-Carulla
et al., 2018; Rothenhiusler et al., 2021)—changes in the distribution of explanatory variables.
Although prediction is a related problem, our paper concentrates on testing. This work is related
to causal discovery (Pearl, 2009; Mooij et al., 2020), which aims to learn the full graph describ-
ing the relations between many variables, without specifying one outcome. Causal discovery
can uncover causal directions, unlike our method, but it requires parametric assumptions and
asymptotic rather than finite-sample guarantees. Invariance also appears in the feature selection
literature (Yu et al., 2020), though typically without finite-sample inferences. Compared to ear-
lier works on knockoffs (Barber & Candes, 2015; Candes et al., 2018), this paper differs because
those mostly focused on the construction of the knockoffs (Gimenez et al., 2019; Romano et al.,
2019; Bates et al., 2020a), robustness to model misspecifications (Barber et al., 2020), and power
(Katsevich & Ramdas, 2020; Wang & Janson, 2020). Our applications are in genetics, exploit-
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ing knockoff constructions that account for dependencies among genotypes (Sesia et al., 2018,
2020), population structure (Sesia et al., 2021), and other confounders (Bates et al., 2020b), but
did not deal with missing variants. Knockoffs are however applicable to many other fields (Shen
et al., 2019; Chia et al., 2021; Fan et al., 2020) for which our methods may also be helpful.

2. CONDITIONAL ASSOCIATIONS THAT HOLD ACROSS ENVIRONMENTS

Consider observations (X,Y) consisting of p variables, X € XP, and an outcome, Y € ),
sampled from E environments. Here, X’ and )) may be discrete or continuous. Assume the joint
distribution of X within any environment e € [E] = {1, ..., E}, P§, is known. For simplicity,
imagine different samples as mutually independent, although known dependencies can be accom-
modated (Sesia et al., 2021). The model-X framework (Candes et al., 2018) provides methods to
test the hypothesis that Y is independent of the j-th variable conditional on the other ones,

HOC L Ye UL XS | XS, (1)

for all j € [p] = {1,...,p}. Here, X_; denotes all explanatory variables except X;, and the
superscript e clarifies we are focusing on the distribution of the data in the e-th environment. Our
goal is to powerfully test the following consistent conditional independence hypothesis,

’H;St : there exists e € {1, ..., E'} such that the null H;i’e in (1) is true, 2)

controlling the false discovery rate. Intuitively, we would interpret any findings by noting that, if
H;“ (2) is false, the conditional association of X; with Y must hold across all environments.

Note that rejecting ’H;“ does not necessarily suggest that X; has a constant effect on Y. For
example, X; may be associated to Y through interactions with other environment-specific vari-
ables and, in a parametric analysis, this would require environment-specific models. However,
we simply seek variables for which there is evidence of some conditional association with Y
across environments, leaving the modeling task to other statistical methods or follow-up studies.
At first sight, it may be tempting to test 7—[;‘.1’6 (1) environment by environment and report the
common discoveries. Unfortunately, this intersection heuristic does not control the false discov-
ery rate for H;St (2) even if the tests of ’H;l’e (1) control it for all e (Katsevich et al., 2021).
Alternatively, one may analyze the pooled data from all environments, controlling the false dis-
covery rate for ’H;i (1) in the broader population defined by the union of all environments, but
not testing consistency. Indeed, the problem is non-trivial, as illustrated by the simulations in
Figure 1, which will be explained in Section 6.2. This gives a preview of our method, which
provably controls the false discovery rate for H;St (2) and achieves good power.

A limitation of H;St (2) is that it becomes harder to reject if £ grows but the total num-
ber of samples remains constant, because every environment must provide sufficient evidence.
However, consistency across most environments might be satisfactory, especially if some have
smaller sample sizes. This motivates partial consistency testing, or partial conjunction (Ben-
jamini & Heller, 2008). For j € [p] and r € [E], define the null hypothesis

pest,r | . qycie .
H; .Hee{l,...,E}.Hj 1strue}’>E—r. 3)

A rejection of H?CSt’r suggests X; is associated with Y in at least r environments. This general-

izes ’H;St (2), which is recovered if » = E. Note that, unlike Benjamini & Heller (2008), we will
not account for multiplicity over different r, which we take instead as fixed.

85

90

95

100

105

110

115

120



125

130

135

140

145

150

4 S. LIET AL.

(a) Setting 1 (high consistency) (b) Setting 2 (low consistency)
FDR Power FDR Power
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Fig. 1: Performance of the multi-environment knockoff filter (MEKF), implemented with two
alternative statistics, and two heuristics for consistent conditional testing on simulated data from
many environments. The nominal false discovery rate is 0.1. (a) Data in which most conditional
associations are consistent. (b) Data in which most conditional associations are not consistent.

The next section establishes a link between H;St (2) and causal inference under specific as-
sumptions, but consistent associations can be informative even beyond any causal framework,
including in situations where the explanatory variables do not predate the outcome (Castro et al.,
2020) or there is no clear notion of interventions (Herndn & Taubman, 2008). In particular, con-
ditional associations are useful to make reliable predictions, and predictive robustness across
environments is a well-known challenge in many fields (Heckman, 1979; Duncan et al., 2019).
Imagine that Y measures competences acquired by students, and X collects some explanatory
variables, e.g., school attendance, family size. Even without hoping to estimate constant causal
effects, as variables may interact differently across environments (e.g., low vs. high income
neighborhoods), consistent associations may help predict academic difficulties or design useful
interventions. While “one size fits all” is certainly wishful thinking, considerations of practical-
ity, transparency, and fairness make it preferable to focus on policies that have good chances of
being widely effective. Moreover, consistent associations are more likely to be robust to changes
in environments or covariate shifts, such as those that may be expected with the passing of time.

Searching for patterns among a large number of variables can lead to fitted models relating X
to Y with a precision that cannot be replicated in other data sets. We typically rely on “cross-
validation” to mitigate this problem, but that only guarantees internal consistency. For example,
liking curly fries may predict IQ well among some Facebook users (Kosinski et al., 2013) but
this association is probably not universal. Testing for ’H;St (2) can be seen as “external cross-
validation” (Waldron et al., 2014), thereby identifying less ephemeral relations (Efron, 2020).

3. FROM CONSISTENT ASSOCIATIONS TO CAUSAL INFERENCES
3.1. A constant causal model

This section assumes a constant causal model across all environments, which is unnecessary
for the interest or validity of the proposed tests, but helps illustrate how consistent associations
may facilitate the discovery of variables with causal effects in some settings.

Assume a structural equation model (Boolen, 1989) to link p, explanatory variables (Z), of
which p are observed (X) and p. are unobserved (C'), to the outcome (Y'). Note that we will
write Z = (X, C) € AP, with p, = p + pe. In this constant model, the i-th individual outcome,
Y@ is given by Y = £ (Z®, V@), where f is unknown and V' is exogenous noise from a
standard uniform distribution, for example. Assume the causal direction is known: Y is caused
by some combination of Z and V. This simplification is appropriate in genetic studies, for exam-
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ple, because the genotypes predate the phenotype. Consider then the goal of discovering which
variables have a direct effect on Y and do not satisfy the following sharp causal null

Hi® T2y 21,2y 2j4 1, - ooy 0) = f(zl, .. ,Zj_172972j+1, ... ,v) , ‘v’z,z;,v. @)

Intuitively, this says that intervening on Z; holding all other variables fixed would have no effect
at all on Y. Alternatively, one may think of #7* as saying the potential outcomes are identical
under all Z; (Rubin, 2005). Sharp hypotheses do not allow the estimation of heterogeneous treat-
ment effects (Neyman & Iwaszkiewicz, 1935), but they are helpful to discover which variables
are more likely to be causal, especially for a preliminary exploratory analysis (Imbens & Ru-
bin, 2015). Further, our non-parametric causal model is very flexible and does not exclude that
a variable may appear to have different linear effects on the outcome across environments with
covariate shifts. Indeed, the sole purpose of this model is to concretely define causality.
Suppose we have data from E environments, each corresponding to a distribution P7 of ex-
planatory variables, for e € [E]. Conditional on Z, the outcome Y is generated by the above
model. For simplicity we rewrite this model as a function only of the causal variables, listed as
Pa(Y) = {j € [p,] : H}" in (4) is false}, where Pa(Y") stands for parents of Y. In particular,

v = £ (285 v) 5)

where f is the restriction of f on Pa(Y’). For convenience, we split Pa(Y") into observed
Pay(Y) ={j € [p] : j € Pa(Y)} and unobserved Pa.(Y) = Pa(Y") \ Pay(Y") causal variables.
Of course, we only inquire about Pay(Y") as we have no data about Pa.(Y").

3.2.  The gap between conditional testing and causal inference
Rejecting H;l’e (1) yields a causal inference if there is no confounding, i.e., if the unobserved
causal variables are non-existent or conditionally independent of the observed ones.

PROPOSITION 1. Fix e and j. Under the causal model and the data sampling scheme in Sec-
tion 3.1, assuming (i) Pa.(Y") = 0 or (ii) X7 Cf,ac(y) | X¢, then HS® (4) implies H;l,e ).

The first assumption above would require measuring every relevant variable, which seems
unrealistic. The second holds in randomized experiments and in certain observational studies
such as those involving genetic parents-child trio data (Bates et al., 2020b). However, it is unclear
why the missing variables should generally be conditionally independent of the observed ones.
Therefore, causal inference remains challenging even if the model in Section 3.1 is acceptable.
Note that more formal statements of our theoretical results, along with all mathematical proofs,
can be found in Section S2, Supplementary Material.

3.3.  Consistency improves robustness to missing variables

The assumptions necessary for causal inferences can be relaxed if the associations are con-
sistent, because shifts in 7 may induce different variables to pick up spurious associations in
different environments while causal associations tend to remain unchanged. Figure 2 visualizes
this idea with a toy example involving two causal variables, one of which is unmeasured. Here the
environments differ in P} to a sufficient extent that their spurious associations have no overlap.
Section 5 will explain the relevance of this idea to genome-wide association studies.

PROPOSITION 2. Fix any j and consider E environments. In the setting of Proposition 1, if
(i) Pac(Y') = 0 or (ii) there exists e € [E] : X5 C’f)ac(y) | X€, the HS® (4) implies H;st Q).

3.4. Consistency improves robustness to sampling imperfections

Perfect random samples from the target population are not always available, as real data sam-
pling may involve unknown biases (Heckman, 1979; Hargittai, 2015) or network effects (Shalizi
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Fig. 2: Consistency improves robustness to missing variables. (a) Causal model for Y | X, C.
(b,c) Conditional associations in two environments. Shaded nodes: outcome or observed vari-
ables. White nodes: unobserved variables. Dotted arrows: causal links. The dashed segments
represent Pg, which differs across environments: C is associated with X5 in the first one, and
with X3 in the second one, while X; and X5 are conditionally independent of C, X3 and of each
other. Solid arrows: observable conditional associations with Y (thick if causal, thin if spurious).

& Thomas, 2011; Lee & Ogburn, 2020). Consistency will not fully resolve these difficulties, but
it can mitigate them, as explained in Section S3, Supplementary Material. These results make our
method relevant in many fields, including the social sciences, where collecting random samples
is difficult, and where it is increasingly common to find large data sets with many associations,
for which controlling the false discovery rate is desirable.

4. METHODS
4.1. Review: the methodology of model-X knockoffs

Knockoffs enable testing 7" (1), for all j € [p] and any e € [E]. The idea is to augment
the data for each of the n individuals with p knockoffs, based on the joint distribution of X,
which is assumed to be known (Candes et al., 2018). The knockoffs X are created without
looking atY,so Y Il X | X, and they are pairwise exchangeable with the original variables. If
[X¢, X¢] € R™2P is obtained by concatenating X¢ € R™*? with the corresponding X¢ € R"*P,
this has the same distribution as [ X¢, X “Jswap(j)» the matrix obtained from the latter by swapping
the j-th column of X ¢ with the j-th column of X¢, forall j € [p]. Therefore, swaps of a variable
with its knockoff cannot be detected without looking at Y': the only significant difference between
X and X; may be the lack of conditional association of X; with Y. As our contribution does not
concern this aspect of the analysis, we assume valid knockoffs are available based on the known
P, referring to the prior works mentioned in Section 1 for specific algorithms to construct them.

The second step is to fit a model predicting Y from X, X, computing importance measures
T and Tje for each X; and X j» respectively. Any model can be employed, as long as swapping
X with X j results in T being swapped with Tje. A typical choice is to fit a sparse generalized
linear model, e.g., the lasso (Tibshirani, 1996), tuning its regularization via cross-validation; then,
the absolute values of the (scaled) regression coefficients are powerful importance measures.
For any true H;l’e (1), the sign of W¢ =T — Tf is a coin flip, while a large positive value
is evidence against the null. Further, if a random €® € {—1,+1}” is such that € = +1 if 7—[;1’6
is false and otherwise pr(ef = +1) = 1/2 independently of everything else, then W* has the
same distribution as W*¢ © €, where © indicates element-wise multiplication. Thus, the signs
of W€ are independent one-bit conservative p-values for 7-[5.1’6 (1), if transformed as p5 =1 /2
if W7 > 0 and pj = 1 otherwise. The ordering provided by the absolute values of W* allows
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one to powerfully test the above hypotheses sequentially. Concretely, the knockoff filter (Barber
& Candes, 2015) computes a significance threshold such that rejecting H;l’e (1) for all 7 with
larger W7 controls the false discovery rate below a desired level cv. Equivalently, this can be seen
as applying the selective SeqStep+ test (Barber & Candes, 2015) to the above ordered one-bit
p-values. We will extend this method to analyze data from many environments, testing /H;St ).

4.2.  Definition of multi-environment knockoff statistics

_ Consider E environments, each corresponding to data Y¢ € R", X* € R"*?, and knockoffs
X¢ e R™P; all environments have n samples here, although this is unnecessary. The first ingre-
dients for testing ’H;St are the following statistics, generalizing those of Candes et al. (2018).

DEFINITION 1. W € RE*P are multi-environment knockoff statistics if W has the same dis-
tribution as W © ¢, where ¢ € {£1}F>P has independent entries and rows ¢© such that € ==+1
with probability 1/2 if H;" (1) is true and ¢ = +-1 otherwise, for j € [p] and e € [E].

One way to compute the matrix W is to separately analyze the data from each environment and
stack the output W€ row by row. This approach is fast but not necessarily very data efficient. For
example, if all environments are identical, statistics obtained by separate analyses can only utilize
a fraction 1/ F of the samples compared to a pooled analysis, even though pooling already tests
the correct target hypotheses ’H;St (2) in this special case. Therefore, we also consider a more
general and potentially more powerful joint analysis of all environments, as explained next.

LetY € RF" X € RE"™ P X e RP"¥P be the matrices obtained by stacking all observations
or knockoffs. We define [T, T] € RE*?P a5 a matrix of multi-environment importance measures
computed by a randomized function 7: [T, T] = 7(Y, [X, X]). The function 7 may involve any
machine learning algorithms (examples are in the next section), as long as swapping variables
and knockoffs in one environment has the effect of swapping the corresponding importance mea-
sures in that environment, leaving all other elements of 7 unchanged. This only needs to hold in
distribution conditional on X, Y, X,asT may be randomized. Formally, conditional on Y, [ X X l,

T (Ya X, X]swap(w) < [T (K X, X})Lwap(;;)’ (6)

for any S C [E] x [p|, where 2 indicates equality in distribution and [X, X Jswap(s) is obtained
from [X, X | by swapping the column X ; for environment e with the corresponding )N(;, for

all (e, ) € S. The definition of [7(Y, [X, X ])]swap(s) is analogous. Note the slight change of
notation compared to Section 4.1: there, swapping was defined only for one environment.

The next section discusses how to compute importance measures satisfying (6) through a joint
analysis of the data from all environments, with relatively lower power loss compared to pooling.
Here, we note that the property in (6) is sufficient to obtain valid multi-environment statistics.

PROPOSITION 3. Let [T, T] € RE*?P be importance measures satisfying (6), and define W €
REXP through Wi =Ty — Tje foralle € [E] and j € [p|. Then, W satisfies Definition 1.

4.3.  Computation of multi-environment knockoff statistics

Some care must be exercised to ensure statistics computed by a joint multi-environment anal-
ysis satisfy (6), as standard techniques (Candes et al., 2018) naively applied to the pooled data
would not be valid; see Figure S3, Section S4. A solution that works well is to allow each row of
W€ to leverage the data from other environments after perturbing the latter through random col-
umn swaps. This perturbation acts on a copy of [ X, X], so the order in which the environments
are processed is irrelevant, and consists of swapping each observation of one variable with its
knockoff based on independent coin flips. Then, we estimate importance weights that are sym-
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metric with respect to variables and knockoffs; these will serve as prior information for the next
step, capturing the importance of a variable or its knockoff based on the information from all
other environments. The influence of this prior information on the final statistics is controlled by
a scalar parameter v¢ € [0, 1] designed to summarize the overall relevance of the data from other
environments to the prediction task in that of interest. The value of 7€ is tuned by cross-validation
within the e-th environment, following the intuition that the most important features are those
enabling the most accurate predictions (Candes et al., 2018). Figure 3 provides a schematic of
this procedure, while the details are below. As it will become clear, if the data distributions in all
environments are identical, this joint analysis is comparable to pooling with 1/2 of all samples,
and this is more efficient than the separate analysis described in the previous section if F is large.

Data from different environments

Outcome Variables Knockoffs
Xfl) Xél) Xél) X.l(u X;l) f(él)
Environment 1 XF) Xél) Xél) Xil) X—;l) j{él) Multi-environment knockoff statistics

XO[xP[x® :

Environment 2 -2 |s@[+@ 3
X[ X7 | X
y®) X1(3) X2(3) X§3) Xf») Xé3) Xéii)
Environment 3 ) | = oy
y®) X1(3) X2(3) X§3) Xi«*) X§3) Xg(;‘)

\4

v |

Output ordered p-values

Empirical prior

Pooled data, with randomly swapped knockoffs

Fig. 3: Schematics for a multi-environment knockoff analysis. In this example, there are 3 vari-
ables, 3 environments, and 2 observations per environment. The solid arrows represent separate
environment-by-environment analyses before combining the resulting knockoff statistics. The
dashed arrows represent the additional steps corresponding to a joint analysis based on empirical
cross-prior statistics. The darker blocks indicate data, while the lighter ones indicate knockoffs.

Let V € {0,1}7"*? be independent coin flips, and [X, X Jswap(v) be the matrix obtained by
swapping the i-th observation of X; with the corresponding X ;j if and only if V;; = 1. Prior im-
portance measures TP (resp. TP"") are computed for all variables (resp. knockoffs) as the ab-
solute values of the regression coefficients estimated by fitting a sparse generalized linear model
to predict Y given [X, X ]Swap(v), using the data from all environments and tuning the regular-
ization parameter by cross-validation. The results are combined symmetrically into an empirical
prior weight 7; for each j, e.g., m; = ( (T]F'rior + T]Prior) for some positive and decreasing func-

tion ¢, such as ((¢) = 1/(0.05 + ). Finally, we compute the importance measures 7¢ and T
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based on the unperturbed data in the e-th environment with an approach similar to the separate
analysis of Section 4.2. The difference is that now the regularization is feature-specific and de-
pends on two scalar hyper-parameters, A > 0 and ¢ € [0, 1], both tuned by cross-validation,
as well as on the prior weights, which are fixed. In particular, the regularization parameter for
Xj, Xjis Af = (1 —~¢) 4+ v°m;. This recovers the separate analysis statistics if v¢ = 0, but
a larger v° may improve power by making it less likely to select spurious variables. If 7¢ =1,
the data from the target environment are ignored when deciding which variables to include in
the sparse model; this may be reasonable if the data from other environments are overwhelm-
ingly more informative, perhaps due to larger sample sizes. As it is unclear how informative the
prior may be in general, the value of 7€ is determined adaptively via cross-validation. To avoid a
two-dimensional search, in practice we first tune A\° and then ~°. 3

PROPOSITION 4. The statistics W obtained by applying I/Vj6 = Tje - Tje to the empirical
cross-prior importance measures described above satisfy Definition 1.

The random data perturbation may dilute some of the potentially useful information from
other environments, decreasing power compared to pooling, but it is necessary to guarantee false
discovery rate control; see the proof of Proposition 4 and the example of Figure S3. Fortunately,
random swapping does not prevent the empirical prior from learning which pairs (X}, X ;) may
be important, although it makes approximately half of the samples uninformative. In any case,
the role of the prior is modulated by v, which is adaptively tuned via cross-validation. Thus, we
expect at worst to select v¢ ~ 0 and thus approximately recover the separate analysis solution
from Section 4.2, meaning that this joint analysis typically is at least as powerful as the latter.

4.4.  The multi-environment knockoff filter

The rows of a matrix of multi-environment knockoff statistics W can be combined to obtain
one-bit conservative p-values for testing H;St in (2). Precisely, for each j € [p], we compute
et ) 1/2, if min{sign(W¢)}2, = +1, .
P = . (7

1, otherwise.

The order in which these hypotheses will be tested depends on the absolute values of W, which
we combine column-wise with some symmetric function w to obtain invariant statistics \Wj?5t| =
w(\le|, ce ]WJE\) Concretely, we will adopt w(ijl\, ce |W]E\) =T1Z, |W¢]. In general,
the one-bit p-values in (7) are valid for ’H;St (2) even conditional on |Wj°5t|.

PROPOSITION 5. If W satisfies Definition 1, the p-values p;?St in (7) for true H;St (2) are
stochastically larger than uniform conditional on |W*| = ([W7*|, ... |WS*|), and “almost
independent”; that is, p,,(p;;st <al||wet, pcf’;) < a, forall a € [0,1] if H;St is true.

Proposition 5 suggests sequential testing, e.g., selective SeqStep+. However, this is not obvi-
ously valid because the null p§5t are not independent as required by Barber & Candes (2015). In
fact, each of them is also affected by the signs of W corresponding to non-null environments;
H;St only says there is a null in the j-th column, but p;?St also counts the other signs. Fortunately,
our p-values are at worst conservative, provably retaining false discovery rate control.

THEOREM 1. Selective SeqStep+ applied to pngt (7) ordered by |WJ-CSt| controls the false dis-
covery rate ifpr(p?st <al |WCSt|,pCf§) < a forany a € |0, 1].

In addition to being useful here to test consistency, the above results indicates broader applica-
bility of selective SeqStep+ than previously known, and suggests possible interesting connections
to Fithian & Lei (2020), where false discovery rate control under known dependency is studied
for the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).
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4.5. Testing partially consistent conditional associations
Fix any r € [E]. For each j € [p], let n; count the negative signs in the j-th column of the
multi-environment statistics VW, and let n? be the number of zeros. Then, compute

P =W(n; —LE—r+1-n$,1/2)+U;-¢(n; ,E—r+1-nJ,1/2), (8

where W(x, m,7) is the binomial cumulative distribution function at = and ¢ (z,m, ) is the
corresponding probability mass (m is truncated at O if negative), while Uj is uniform on [0,1],
independently of all else. Intuitively, p?CSt’T is a randomized binomial p-value based on the ob-
served number of negative signs among the non-zero statistics, which we can compute because

we know there must be at least £ — r + 1 null environments under ’H?CSt’T (3). As in Section 4.4,
we will filter these p-values in decreasing order of |W]PCSt’r = o(|W}|,...,|W}F]), for a sym-
metric function w. For example, w(|[W},...,|WF]) =T[_, |Wj|(Efe+1), where \Wj|(e) are
the order statistics for the absolute values in the j-th column of W. The next result states these
ordered p-values are conservative for ”H? b (3), and “almost independent” as in Proposition 5.
Combined with Theorem 1, this guarantees false discovery rate control with selective SeqStep+.

PROPOSITION 6. If W satisfies Definition 1, for any fixed r € [E), the pj-St (8) corresponding
fo true ’H?CSt’T (3) satisfy pr(p?CSt’r < a | [Wrestr ,pIiCjSt’r) < a, forall a € [0,1].

Note that, if » = F, the p£="" (8) is not identical to p$* (7) since the latter is always 1

J
when ng-) > (. This discrepancy is practically irrelevant because it would not make sense to reject

H;?St 2) if n? > (. While randomization here allows us to deal powerfully with the case in
which n? > (), it would have not helped earlier as the p;?St in (7) have one bit of information, and
selective SeqStep+ only looks at whether they are above 1/2. Note also that a pooled analysis
generally tests %?CSt’l (3), possibly more powerfully compared to our method because it allows
additional flexibility in the statistics. Thus, our method should only be applied with r» > 1.

A limitation of selective SeqStep+ applied to the p-values p?CSt’T (8), which have more
than one bit of information, is that it involves a parameter c, the baseline rejection thresh-
old (Barber & Candes, 2015), whose choice can affect power. This problem did not arise
in Section 4.4 because ¢ = 1/2 is the only option for one-bit p-values such as p‘j"fSt (7). To

avoid having to guess a good value of ¢, we also consider filtering p?csw (8) with the ac-
cumulation test of Li & Barber (2017). If the p-values are independent, this test controls a

modified false discovery rate, mFDR, = E[|{j : ’H;i’e is rejected} N {J : ’H;i’e is true}| /({7 :

'H;l’e is rejected }| + ¢)], for some constant ¢ specified below. If ¢ is small and the discoveries are
numerous, the above is close to the false discovery rate. Although the p?CSt’T (8) are dependent,
this method remains valid in our context if we randomize the p-values slightly, as explained next.

Starting from multi-environment statistics W, randomly assign imaginary positive or negative
signs to any zero entry by flipping independent coins. Then, define n;” as the number of negative
entries in the j-th column of the resulting tie-breaking W, and compute, with the notation of (8),

P =0(n; —LE—7r+1,1/2)+ U; -¢p(n; , E —r+1,1/2). )

THEOREM 2. The accumulation test with increasing accumulation function (e.g., HingeExp
with parameter C' = 2) applied to the p-values in (9) controls the mFDR, defined above (e.g.,
with ¢ = C/«). That is, Theorem 1 of Li & Barber (2017) holds for the p-values in (9).

Note that Theorem 1 accommodates the p-values in (9), but Theorem 2 would not hold with
those in (8) because n may vary across j, breaking the symmetry needed by our martingale

J
proof. Nonetheless, simulations suggest this may not be a problem in practice; see Figure S7.
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5. CONSISTENT GENOME-WIDE ASSOCIATIONS ACROSS DIVERSE ANCESTRIES
5.1. Missing variants and knockoffs in genome-wide association studies

Genome-wide association studies search for variants with biological effects on a phenotype.
These studies are exploratory, aiming to prioritize genetic loci for follow-up investigations, and
nowadays largely concentrate on polygenic phenotypes using large samples, resulting in numer-
ous associations and making it desirable to control the false discovery rate (Storey & Tibshirani,
2003). As the DNA is fixed prior to any phenotypes, it is relatively easy to deduce causal rela-
tions. It is also reasonable that all humans share the same biology: modulo some genetic diversity
across populations, we can imagine a common causal mechanism and attempt to uncover which
variants are involved in it by testing H$*" (2) or H?C“’T Q).

In practice, only a few hundred thousands variants across the genome are measured (geno-
typed), as sequencing is expensive. Such relatively few markers can capture most genetic vari-
ation because nearby alleles are in linkage disequilibrium (Slatkin, 1994): they have strong de-
pendencies and can be accurately inferred from one another. This facilitates the localization of
broad regions, loci, containing associations with the phenotype, but it complicates the attribution
of distinct signals to specific variants. Indeed, many genotypes can be marginally associated with
the phenotype simply because they are in linkage disequilibrium with the same causal variant;
conditional testing alleviates this issue but does not fully account for missing variants.

The traditional analysis imputes the missing variants using linkage disequilibrium models fit-
ted on fully-sequenced reference samples (Marchini & Howie, 2010). The imputed variants are
analyzed alongside the typed ones, through either genome-wide marginal tests or multivariate
linear models within narrow regions (Schaid et al., 2018). However, this is not fully satisfactory
because imputation is not as informative as a direct measurement; in fact, imputed variants carry
no information in addition to that contained in the typed ones, as they are a function of the latter,
conditionally independent of the phenotype. This may pass unnoticed if one fully trusts a multi-
variate linear model for the outcome—imputed variants may be significant within such models
because their dependence with the measured variants is nonlinear—but it makes it impossible to
find evidence that a missing variant is causal within our model-X perspective (Sesia et al., 2020).
Therefore, we will leverage consistency to gather indirect evidence of causal associations. First
though, we must briefly recall some details of the existing methodology.

The current knockoff analysis partitions the genome into contiguous segments and tests
whether any of these contain conditional associations (Sesia et al., 2020). Letting G C [p] in-

dex the genotypes in one segment, knockoffs can test a slightly generalized version of H;i’e (1):
HYC Ve I XE | X, (10)

where X¢ = {X; : j € G}, X_q = {Xj : j & G}. Under H;“ (10), the variants in G are inde-
pendent of the phenotype conditional on all other genotypes. This analysis can be performed at
different resolutions, separately controlling the false discovery rate for increasingly refined ge-
nomic partitions to balance between power and the value of each discovery (Sesia et al., 2020).
Hypotheses involving smaller groups (higher resolution) are harder to reject because the vari-
ables have strong local dependencies, making it difficult to distinguish the signal of one variant
from those of its neighbors. Higher-resolution hypotheses are more specific and informative.
Although Hg’e (10) is not asking whether a genetic segment contains causal variants, it is a
reasonable proxy. Intuitively, we will verify that low-resolution hypotheses are more robust to
missing variants. The robustness of 7—[8’6 (10) is less clear at high resolution because there each
tested segment contains few measured genotypes; this is where consistency will be most useful.
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5.2.  Linkage disequilibrium in populations with different ancestries

Linkage disequilibrium is explained by the inheritance of long and randomly cut genetic seg-
ments from parents to offspring, with occasional mutations. Generation after generation, the
genotypes thus come to resemble an imperfect mosaic of ancestral motifs, which can be encoded
as a hidden Markov model (Li & Stephens, 2003); this is at the heart of imputation (Marchini
& Howie, 2010) and knockoff generation (Sesia et al., 2018). The block-like patterns of link-
age disequilibrium vary across populations because these share different recent ancestors, and so
their mosaics involve different patterns, and possibly different transition (recombination) rates
(Laan & Paibo, 1997). In other words, different populations differ by covariate shift. This het-
erogeneity has already been factored into the generation of knockoffs for pooled analyses (Sesia
et al., 2021), and it will be leveraged here to help highlight causal variants.

Figure 4 visualizes why covariate shift helps localize causal variants within an example in-
volving two populations, four observed and five missing variables, one of which is causal. This
toy genome is partitioned into segments containing one or two typed variants each; three seg-
ments are highlighted. Linkage disequilibrium is described by hidden Markov models yielding
genetic blocks separated by high-recombination spots (Wall & Pritchard, 2003). If the alleles
across these spots are independent, the only consistent association is that of the segment con-
taining the causal variant. Of course, in reality linkage disequilibrium is not perfectly organized
into blocks, although this is a common simplification (Berisa & Pickrell, 2016). Further, we can
only study a limited number of populations, so not all spurious associations may be removed.
Nonetheless, consistency enables a useful step forward in a challenging problem.

G1 G2 Gs

Causal Spurious

Fig. 4: Consistency in genome-wide association data from two populations. The unobserved
causal variant (star-shaped node) induces different spurious associations depending on the pat-
terns of linkage disequilibrium, described by population-specific hidden Markov models. Shaded
nodes: measured variables. Squares: variables that are not conditionally independent of the causal
one. The broken segments symbolize the boundaries of linkage disequilibrium blocks.

6. NUMERICAL EXPERIMENTS
6.1. Setup
Our method is applied with the separate and joint analysis statistics describe above. Inter-
section and pooling are taken as benchmarks. All statistics are computed with the R package
glmnet (Friedman et al., 2010), or bigstatsr (Privé et al., 2019) for genetic data. Our
computer code is available from https://github.com/1sn235711/MEKF _code. Sev-
eral additional experiments are in Section S5 due to lack of space.
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6.2. Testing for full consistency with synthetic data

In each environment, p variables X are generated from an autoregressive model of order one
with correlation 0.2. We leverage the known Px to construct semi-definite Gaussian knockoffs
(Candes et al., 2018). The distribution of Y¢ | X ¢ in the e-th environment is given by a logistic
model with logit pr(Y¢=1| X¢) = X°3°, where ¢ € RP are environment-specific effects.
We consider two settings corresponding to different £, p, and 5°.

In setting one, E¥ = 4, p = 500, and there are n = 1000 observations per environment. First,
100 effects are randomly chosen to be non-zero in all environments; then, for each e, 10 of the
remaining ones are non-zero in all but the e-th environment, and these 40 associations are thus not
consistent. See Figure S8 (a) for a sketch of this setup. The absolute values of the 100 consistent
effects are a/+/n, where a is a signal amplitude parameter which we will vary; the remaining
non-zero values are 0.5a/+/n. The effect signs are independent coin flips. In setting two, £ = 3,
p = 200, and n = 2000, while ¢ is determined as follows. First, 50 effects are randomly chosen
to be non-zero in all environments; then, for each e, 50 of the remaining ones are non-zero in
all but the e-th environment; see Figure S8 (b). The 100 consistent effects are a/+/n in absolute
value, and the remaining ones are 0.5a/+/n. All effect signs are independent coin flips.

Our goal is to discover the subset of consistent effects, controlling the false discovery rate
below 10%. Figure 1, previewed earlier, compares our method to the benchmarks, averaging
over 100 experiments. Here, our p-values (7) are filtered with selective SeqStep+, using ¢ = 1/2.
The results confirm our method controls the false discovery rate, as predicted by the theory. The
joint analysis statistics are more powerful than the separate analysis ones in the first setting, in
which most associations are consistent, and equivalent to the latter in the second setting, where
most associations are not consistent. Pooling yields too many false discoveries because it reports
all associations regardless of whether they are consistent, while the intersection heuristic may
lead to either low power (first setting) or high false discovery rate (second setting).

6.3. Causal inference in a simulated genome-wide association study

We analyze simulated yet realistic genetic data involving different populations, based on
the haplotypes in the 1000 Genomes Project (Consortium et al., 2015). This resource con-
tains phased haplotypes from five populations: African (AFR), Admixed American (AMR), East
Asian (EAS), European (EUR), and South Asian (SAS). We utilize these haplotypes to simulate
genetic data from a hidden Markov model for 50,000 individuals (10,000 per population); see
Section S6. This approach ensures the genotype distribution is known exactly, allowing us to
concentrate on missing variants, as we can simply apply the algorithm from Sesia et al. (2020) to
generate knockoffs separately for each population. We construct knockoffs for testing Hg’e (10)
at two resolutions, with genetic segments of median lengths 233 kb or 15 kb. In the interest of
time, we only analyze 359,811 biallelic single-nucleotide polymorphisms on chromosome 22.

Conditional on the genotypes, we simulate a continuous trait for all 50,000 individuals from a
constant linear model with independent Gaussian errors and 50 causal variants. The causal vari-
ables are randomly chosen such that each population has at least 10 with minor allele frequency
above 0.1. The effect signs are independent coin flips, and their sizes are inversely proportional
to the standard deviation of the allele count, so that rarer variants have larger effects. The total
heritability of the trait is varied. All causal variants are unmeasured, so that their exact identi-
fication is impossible; however, we can localize genetic segments likely to contain them. The
proportion of typed variants is varied between 1% and 10%. Knockoffs are constructed only for
the measured variants. This setup is particularly challenging because our genotyping is random,
while real studies often preferentially type potentially interesting variants (Bycroft et al., 2018).
Thus, confounding may be a less severe problem in practice.
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We carry out conditional independence tests at the 10% false discovery rate level but measure
performance in stricter terms, based on the causal false discovery rate and power: a discovery is
counted as true if and only if it reports a genetic segment containing a causal variant. The power
is defined as the average proportion of segments containing causal variants that are discovered.
All results are averaged over 100 experiments with independent traits. In theory, the genotypes
should also be resampled to ensure false discovery rate control because the knockoffs treat them
as random; however, that would be computationally expensive with such large data.

Figure 5 (a) summarizes the results of separate population-specific analyses with 1% geno-
typing density. These analyses correctly test conditional association but do not yield valid causal
inferences, demonstrating the need for consistency, especially at high resolution. Our method is
applied with » = 3, and with separate analysis statistics due to the large size of the data. Sta-
tistical significance is determined with the accumulation test or with selective SeqStep+, using
¢ = 1/2 for the latter. Our method controls the causal false discovery rate and, when applied
with the accumulation test, is only slightly less powerful than pooling at low resolution. The se-
lective SeqStep+ tends to yield lower power, plausibly because it extracts less information from
the p-values. At higher resolution, our method is not as powerful as pooling while the causal
false discovery rate inflation of the latter becomes more severe. Unsurprisingly, all methods are
less powerful at high resolution. The causal false discovery rate violation for the intersection is
smaller but noticeable.

(a) Separate analyses (b) Joint analysis
Causal FDR Power Causal FDR Power
1.00 - 1.004 .
0.75 1 /,,_—_;ﬁ» - 0.75+ o
P - @ [N
0.50 1 b @ 0.504 @
7 F3 &
0257, o s_s—ggtiull| 0.251
ooo{ " TTTTTTTT 0.005=%
1.00 A 1.00
0.75 0.754
(9] o
0.50 - = - — - - | — 0.501 =
o i o o
0.25 1 e = =i 0.251 :
_____________ B o e s — oS
000 - T T T T T T T T OOO 1 T T T T T T T T
0.01 0.10 030 0.60 0.01 0.10 0.30 0.60 0.01 0.10 030 0.60 0.01 0.10 0.30 0.60
Heritability Heritability
. AFR -= EAS SAS MEKF (accumulation) —- Heuristic (intersection)
Population Method
AMR —+ EUR —=— MEKF (SeqStep+) Heuristic (pool)

Fig. 5: Analysis of a simulated multi-population genome-wide association study with missing
causal variants. Top: low-resolution analysis (233 kb); bottom: high-resolution analysis (15 kb).
The empirical performance is evaluated in a strict causal sense. Our method seeks associations
supported by the data from at least 3 populations. The nominal false discovery rate is 10%.

Figure S10 shows confounding decreases as the genotyping density increases, unsurprisingly.
As the density increases, our method becomes very conservative compared to pooling; this may
seem unavoidable but Figure 1 suggests our method may perform better with the cross-prior
statistics. Figure S11 shows similar results corresponding to analyses at the 20% false discovery
rate level, emphasizing the causal type-I error inflation incurred by the heuristics. Figure S12
shows our method performs similarly regardless of whether the accumulation test is applied to
the p-values computed with random tie breaking (9) or without it (8).

515



555

560

Searching for robust associations with a multi-environment knockoff filter 15

7. ANALYSIS OF UK BIOBANK GENOME-WIDE ASSOCIATION DATA
7.1.  Data pre-processing

We study four continuous traits (body mass index, height, platelet count, and systolic blood
pressure) and four diseases (cardiovascular disease, diabetes, hypothyroidism, and respiratory
disease) using the UK Biobank (Bycroft et al., 2018) data; see Table S1 for more details. This
analysis is based on the same pre-processing and knockoffs for 486,975 genotyped and phased
subjects in the UK Biobank (application 27837) as in Sesia et al. (2021). The knockoffs pre-
serve the population structure, including familial relatedness; this accounts for most possible
confounders except missing variants. Our goal is to address this remaining limitation. As in
Sesia et al. (2021), we only analyze 591,513 biallelic single nucleotide polymorphisms with mi-
nor allele frequency above 0.1% and in Hardy-Weinberg equilibrium (10~%) among the subset
of 350,119 unrelated British individuals previously studied by Sesia et al. (2020). The genome
is partitioned at 7 levels of resolution, ranging from that of single polymorphisms to that of 425
kb-wide groups. The resolution of each partition is defined as its median segment width.

The UK Biobank subjects are divided into five populations based on their self-reported ances-
try (African: 7,635; Asian: 3,284; British: 429,934; Non-British European: 28,994; and Indian:
7,628). We exclude subjects with unreported ancestry, as well as those outside these five cate-
gories; this leaves us with a total of 477,475 individuals; see Table S2 for more details.

7.2.  Searching for consistent associations

We apply our method to search for associations consistent in at least  environments, with
r = 2,3,4, 5. Significance is computed by applying the accumulation test to the p-values in (8)
because this test without the random tie breaking (9) tends to be more powerful than selective
SeqStep+ (Section 6), and tie breaking seems practically unnecessary; see Figure S7. The analy-
sis is performed at the 10% false discovery rate level, separately for each resolution (Sesia et al.,
2020). We apply separate analysis statistics because the data set is very large. The intersection
heuristic and the pooled analysis from Sesia et al. (2021) will serve as benchmarks.

All tests are repeated for 100 independent realizations of U; (8); this allows some understand-
ing and a reduction of the variability of any findings, as our method is randomized. Alternatively,
one may repeat the entire analysis starting from the knockoff generation (Ren et al., 2021);
however, that would be impractical for such large data. In comparison, resampling U; is compu-
tationally negligible. Table S3 reports the numbers of discoveries for height and platelet count
obtained in at least 51% of the randomizations. The results for other phenotypes are in Table S4.
Unfortunately, there are fewer consistent associations for the other phenotypes, consistently with
previous observations that height and platelet count display the strongest signals (Sesia et al.,
2020, 2021). This reporting rule is not guaranteed to control the false discovery rate, but the sim-
ulations in Figure S13 empirically confirm it to be conservative. The variability of the findings
over different p-value randomizations is summarized in Figure S14.

Several consistent associations are discovered, although these are relatively few compared to
those obtained by pooling because our power is limited by the paucity of non-British samples.
Fortunately, the awareness that genetic studies should increase the representation of different
ancestries (Duncan et al., 2019) suggests promising future opportunities, especially as some
large diverse studies already exist (Gaziano et al., 2016). Some of our discoveries for platelet
count are visualized in Figure 6 through a Chicago plot (Sesia et al., 2020). It is not guaranteed
that all discoveries corresponding to a fixed r are also found with 7' < r, although this occurs
often; see Figure S15. The findings obtained with selective SeqStep+ instead of the accumulation
test, as well those obtained with the intersection heuristic, are summarized in Table S5.
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Fig. 6: Some discoveries for platelet count based on UK Biobank data from five populations (en-
vironments). Each block represents a genetic segment containing distinct associations; the colors
indicate the numbers of environments across which they are consistent. The vertical position de-
notes the resolution of the discovery measured in millions of base pairs (Mb).

7.3.  Validation of genetic findings

Table S6 demonstrates almost all of our consistent discoveries for height and platelet count
are confirmed by the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) (accessed on April 15,
2021). We say that a discovered genetic segment is confirmed if it spans a region containing re-
ported associations for the same phenotype. Relatively fewer discoveries obtained by pooling are
thus confirmed. Of course, this is not fully conclusive because the GWAS Catalog may include
spurious associations and is likely to miss many causal ones, although it is a standard reference.
Table S6 also summarizes the numbers of findings obtained with the intersection heuristic, as
well as the proportions of those which are confirmed by the GWAS Catalog. This shows the
intersection heuristic yields either fewer discoveries, or a (slightly) lower validation rate. This is
consistent with our simulations suggesting the intersection heuristic is often either underpowered
or excessively liberal. Analogous information for the other phenotypes is in Table S7. Table S8
reports the names and associated genes of the genetic variants identified by our method at the
single-nucleotide resolution. These results indicate all but two of our high-resolution consistent
discoveries correspond to variants with known biological consequences, which are located on
genes previously reported to be associated with the phenotypes of interest. The full list of dis-
coveries is available online at https://msesia.github.io/knockoffgwas/.
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