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ABSTRACT: A cobalt-catalyzed reductive hydroformylation 
of terminal and 1,1-disubstituted alkenes is described. One-
carbon homologated alcohols were synthesized directly from 
CO and H2, affording anti-Markovnikov products (34–87% 
yield) with exclusive regiocontrol (linear/branch > 99:1) for 
minimally functionalized alkenes. Irradiation of the air-stable 
cobalt hydride, (dcype)Co(CO)2H (dcype = dicyclohex-
ylphosphinoethane) with blue light generated the active cata-
lyst that mediates alkene hydroformylation and subsequent 
aldehyde hydrogenation. Mechanistic origins of absolute 
regiocontrol were investigated by in-situ monitoring of the 
tandem catalytic reaction using multinuclear NMR spectros-
copy with syngas mixtures. 

The introduction of reactive functionality into feedstock 
molecules is a well-established strategy for accessing higher-
value products from abundant hydrocarbons. To this end, 
alcohols are ideal targets for synthetic elaboration,1 support-
ed by an expansive methodological framework that encom-
passes oxidative, redox-neutral, and reductive transfor-
mations.2 Catalytic methods that generate alcohols directly 
from alkenes are therefore impactful in chemical synthesis, 
especially where high chemo- and regioselectivity is 
achieved.3 

Reductive hydroformylation, a transition metal catalyzed 
reaction involving the addition of carbon monoxide (CO), 
and hydrogen (H2) to alkenes, is an atom economical meth-
od for the direct synthesis of C1-homologated alcohols. The 
tandem process involves the initial generation of aldehydes 
and subsequent reduction (Scheme 1A). 4,5–7 Following the 
discovery of Roelen’s cobalt hydroformylation catalyst, 
HCo(CO)4,8 attempts to improve the performance of the 
cobalt complexes by addition phosphines (PR3Co(CO)3H; R 
= alkyl, aryl) modified the product distribution to include 
C1-homologated alcohols arising from a more hydridic Co–
H bond.9 Poor regioselectivity and forcing conditions (>25 
atm CO/H2, >180 ºC) motivated the transition to rhodium 
and ruthenium catalysts that exhibited improved selectivity 

for alcohol formation from minimally-functional alkenes.10 

While cobalt catalysis has been applied commercially for the 
synthesis homologated alcohols from >C10 streams,5 rhodi-
um has also been used emphasizing the value of regioselectiv-
ity in the seminal reaction. 
Scheme 1. A. Cobalt-Catalyzed Reductive Hydroformyla-
tion of Terminal Alkenes. B. Nozaki’s Dual-Catalyst 
(Rh/Ru) System. C. Beller’s Single-Component (Ru) 
Catalyst. D. Cobalt-Catalyzed Tandem Catalysis Driven 
by Visible Light. 

 

Pioneering work by Nozaki introduced a dual rhodium-
ruthenium catalyst,11 where linear alcohol synthesis was 
achieved with regioselectivities as high as 50:1 (l/b).12 The 
combination of [Rh(COD)Cl]2 and XantPhos enabled the 
regiocontrolled synthesis of aldehydes that were reduced in a 
subsequent, chemoselective hydrogenation step using Shvo’s 
ruthenium catalyst (Scheme 1B).13 Nozaki and Beller have 
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since reported single-component ruthenium catalysts for the 
reductive hydroformylation of terminal and internal alkenes 
(Scheme 1C).14 For cobalt, a catalytic method that accom-
plishes highly regioselective reductive hydroformylation has 
not yet been realized, where progress is likely inhibited by the 
requirement for high pressures and temperatures.5 The pauci-
ty of Earth-abundant transition metal catalysts for the syn-
thesis of alcohols from alkenes inspired the development of a 
reductive hydroformylation method, targeting synthetically-
useful selectivities under mild operating conditions readily 
accessed in a synthetic laboratory. 
Table 1. Selected Optimization Experiments for Visible-light-
Driven Cobalt-Catalyzed Reductive Hydroformylation.  

 

A catalytic method for selective alcohol synthesis applying 
the organometallic photochemistry of well-defined cobalt 
hydrides developed for hydroformylation was envisioned 
(Scheme 1D).15 Irradiation of cobalt hydride precatalysts 
with visible light is known to promote ligand dissociation 
and has enabled chemo- and regiodivergent hydroboration 
and isomerization that complements reactivity under analo-
gous thermal (dark) conditions.16 Our group recently report-
ed the divergent reactivity of the bis(phosphine)cobalt hy-
dride, (R,R)-(iPrDuPhos)Co(CO)2H (Co-1) under both 
thermal and photochemical conditions.17 Hydrogen atom 
transfer (HAT) reactivity was operative at high temperature, 
whereas visible-light-irradiation of Co-1 suppressed one-
electron chemistry and enabled redox neutral catalysis lead-
ing to marked improvement in both rate and scope in hydro-
genation. The possibility of a visible-light-driven reductive 
hydroformylation was explored with Co-1 as the precatalyst, 
recognizing that photochemical CO dissociation under syn-
gas pressure may enable alkene coordination and subsequent 
insertion into a relatively hydridic Co–H bond. To achieve 
the desired selectivity in a tandem process, CO migratory 

insertion from linear cobalt alkyls would follow the 1,2-
insertion of an alkene into a photo-generated, 4-coordinate 
bis(phosphine)cobalt hydride. Acyl hydrogenolysis would 
then have to outcompete alkene isomerization processes that 
might erode regioselectivity for the aldehyde product 
(Scheme 2D). The observation of aldehyde release upon 
exposure of the well-defined cobalt acyl complex (R,R)-
(iPrDuPhos)Co(CO)2C(O)CH2CH2Ph to 4 atm of H2,15 
suggested that the desired reaction may be accelerated by 
visible light. 

Realizing an effective catalytic reaction with Co-1 was 
complicated by the formation of [(R,R)-
(iPrDuPhos)Co(CO)2]2 in the presence of syngas (CO/H2). 
Formation of the carbonyl dimer was observed as the prod-
uct of photodriven H2 release from Co-1 and by thermal hy-
drogen atom abstraction (HAA) by addition of TEMPO•.17 
Suppressing dimer formation under visible light irradiation 
in the presence of synthesis gas was identified as a catalyst 
design principle to improve catalytic reductive hydroformyla-
tion performance. A selection of bis(phosphine)cobalt car-
bonyl hydrides including: (R,R)-(BenzP*)Co(CO)2H (Co-
3), (R,R)-(PhBPE)Co(CO)2H  (Co-4), and (R)-
(BINAP)Co(CO)2H (Co-5)18 was prepared using the pro-
cedure developed for Co-2 and exhibited poor performance 
for the reductive hydroformylation of 1-octene with little 
preference for formation of 1-nonanol. Monitoring the cata-
lytic reactions by 31P NMR spectroscopy established seques-
tration of a significant amount of bis(phosphine)cobalt as 
the carbonyl-bridged dimers.19 

Based on these observations, a bis(phosphine) ligand was 
targeted that would disfavor dimer formation by virtue of 
large alkyl substituents. Accordingly, addition of two equiva-
lents of dicyclohexylphosphinoethane (dcype) to a toluene 
solution of Co2(CO)8 under 4 atm hydrogen gas at 60 °C 
afforded the bis(phosphine)cobalt carbonyl hydride, 
(dcype)Co(CO)2H (Co-2, %Vbur = 53.7)20 in 89% isolated 
yield. Single-crystals suitable for X-ray diffraction were ob-
tained from a concentrated diethyl ether solution at –35 ºC 
(Table 2) and confirmed a five-coordinate, idealized trigonal 
bipyramidal structure. In benzene–d6, a resonance was ob-
served at d –11.2 and assigned to the Co–H. Likewise, a di-
agnostic, broad 31P resonance was observed at d 102.5. Un-
like Co-1,15 exposure of Co-2 to a blue Kessil lamp and 1-4 
atm of syngas did not result in H2 loss and formation of the 
bridging carbonyl dimer, [(dcype)Co(CO)2]2 suggesting 
that bimolecular release of dihydrogen is inhibited by the 
large cyclohexyl substituents. 

The catalytic performance of Co-2 was evaluated with 1-
octene as a representative, minimally functionalized alkene. 
With 4 atm of a 1:1 CO/H2 composition with blue Kessil 
lamp irradiation (34 W) for 48 hours, a 1:2.1 mixture of 1-
nonanol (2a) and n-octane (2b) was obtained (Table 1, en-
try 2) with the mass balance of C9 product made up by for-
mate ester (2a’). Because bis(phosphine)cobalt hydrides are 
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effective hydrogenation catalysts upon irradiation with visi-
ble light,17 the relative amount of CO in the syngas mixtures 
was increased from 50% to 75% (3:1 CO/H2, Table 1, entry 
3), to 90% (9:1 CO/H2, Table 1, entry 1). CO-rich syngas 
(9:1 CO/H2) gave the highest selectivity for alcohol 2a sup-
pressing undesired alkene hydrogenation, leaving isomeriza-
tion as the major competing pathway (Table 1, entry 1, 
“standard conditions”). Worth noting is that syngas mixtures 
in thermal Co- and Rh-catalyzed tandem processes typically 
contain excess hydrogen to prevent formation of carbonylat-
ed metal hydrides (e.g., HCo(CO)4) that show poor activity 
toward aldehyde reduction as a result of a relatively acidic 
metal hydride.5,6 

The bis(phosphine)cobalt hydride precatalyst Co-2 was 
essential for the desired reactivity given that attempts to gen-
erate the catalyst in situ from addition of dcype to Co2(CO)8 
furnished alkane 3 as the major product with comparatively 
low conversion of 1a (Table 2, entry 5). Combinations of 2 
equiv dcype and Co2(CO)8 in toluene generated a diethyl 
ether-insoluble product with a single sharp resonance at 
d 107.8 in the 31P NMR spectrum. An FT-IR spectrum rec-
orded in pentane revealed a number of features resembling 
Co-2 with the exception of a sharp band at 1918 cm–1, as-
signed as the Co(CO)4

– anion.21 Single crystals suitable for 
X-ray diffraction were grown from a saturated toluene solu-
tion at –35 ºC, and confirmed the structure  of 
[(dcype)Co(CO)3][Co(CO)4]. Revisiting the other cobalt 
hydride precatalysts using optimized conditions still gave 
poor conversion of starting material as a consequence of rap-
id dimer formation (entries 10–13). Temperature was found 
to affect product selectivity: at room temperature, alkene 
isomerization, yielding 2-octene (4), became the predomi-
nant competing reaction (Table 2, entry 4), whereas hydro-
genation was entirely suppressed. In all cases, only the linear 
isomer of the C1-homologate alcohol (2a) was observed. To 
our knowledge, this is the only example of a reductive hydro-
formylation process involving a minimally functionalized 
alkene (i.e., 1-octene) with exclusive regioselectivity in alco-
hol products. Competing pathways including isomerization 
can be suppressed by the presence of alkyl groups at the vi-
nylic position. Stanley and coworkers recently employed a 
class of cationic cobalt(II) catalysts for the hydroformylation 
of 3,3-dimethylbutene, reporting exceptional activity and 
selectivity for linear aldehyde (l/b = 58).6b,22 

Having identified conditions for regiocontrolled alcohol 
synthesis, a variety of feedstock alkenes was subjected to the 
visible-light-mediated reaction with yields ranging from 44-

73%. Product distributions from a series of 6-carbon skeletal 
isomers including 1-hexene (1c), vinyl cyclobutane (1d), 
and 3,3-dimethylbutene (1e) illustrates a sensitivity of the 
cobalt catalyst towards substitution at the α-carbon of termi-
nal alkenes (Table 2), with increased substitution suppress-
ing alkene isomerization in favor of hydrogenation as the 
major competing pathway. Notably, the alcohol 2d was syn-
thesized on a 10 mmol-scale from vinyl cyclobutane (1d, 
0.82 g) using a lower precatalyst loading of 0.8 mol%, though 
multiple additions of syngas were required to ensure full con-
version. Styrenes with electron-withdrawing and donating 
substituents were tolerated under optimized conditions af-
fording products (2f–h) in 63–78% yield. The ability of the 
catalyst to discriminate between terminal and internal al-
kenes in the same substrate was demonstrated in the selective 
reductive hydroformylation of 4-vinyl-cyclohex-1-ene, where 
the endocyclic alkene was retained in the product alcohol 
(2i). Alkenes bearing esters were also tolerated, providing 
the corresponding alcohols 2j, 2p, and 2r in modest to good 
yield (59–73%). 

The scope of cobalt-catalyzed reductive hydroformylation 
was extended to 1,1-disubstituted alkenes. With these sub-
strates, 1:1 CO/H2 syngas mixtures were effective in generat-
ing the homologated alcohols with yields typically above 
60% with exclusive linear selectivity. Accordingly, substrates 
were cleanly converted to the corresponding alcohols with 
trace alkene isomerization due to steric blocking of the al-
kene α-methyl substituent. Increasing α-substitution (e.g., 
from methyl to ethyl) resulted in a significant decrease in 
conversion, a result of the sterically encumbered nature of 
the cobalt center imparted by the dcype ligand. Several natu-
rally occurring terpenes and sesquiterpenes were identified 
as substrates in the photodriven tandem reaction. Under op-
timized conditions, the 1,1-disubstitued alkenyl fragment of 
(R)-(–)-carvone was cleanly converted to the homologated 
alcohol (2aa). Medicinally-relevant exocyclic alkenes derived 
from piperidine, pyrrolidine, and azetidine were all cleanly 
converted to their corresponding alcohols 2t–w in good 
yields (67–87%). Exploring the generality of alcohol for-
mation driven by visible light illustrates the remarkable 
chemoselectivity and regiocontrol arising from the cobalt 
catalyst for a variety of functionalized alkenes. 

Monitoring the catalytic reaction by NMR spectroscopy 
was carried out to gain insight into the cobalt-catalyzed re-
ductive hydroformylation. Notably, all spectroscopic meas-
urements were performed in the absence of blue light irradia-
tion. At 30-50% con

 

 

Table 2. A. Scope of Cobalt-catalyzed Visible-Light-Driven Reductive Hydroformylation with Terminal and 1,1-Disubstituted Al-
kenes. B. Scope of Cobalt-catalyzed Visible-Light-Driven Reductive Hydroformylation with Naturally Occurring Terpenes and Ses-
quiterpenes. 



 

 

 
version of 1-octene, the benzene-d6 31P NMR spectrum ex-
hibited the resonance for Co-2 (δ 102.54) along with two 
new peaks centered at 88.7 and 83.1 ppm, assigned as the 
formate complex (dcype)CoC(O)OC9H19, arising from CO 
migratory insertion into the putative cobalt alkoxide.23 When 
the catalytic reaction reached complete (>99%) conversion, 
only Co-2 was observed by 31P NMR spectroscopy. To de-
termine if both cobalt-catalyzed hydroformylation and alde-
hyde hydrogenation are photodriven, 3-phenylbutyraldehyde 
was cleanly converted to 3-phenylbutanol using 5.0 mol% 
Co-2 under all mixtures of CO/H2 used in this study with 
blue light irradiation (Scheme 2C). Notably, aldehyde reduc-
tion was not observed under thermal conditions, illustrating 

that visible light is required for both steps of the tandem cata-
lytic process. Under variable H2 pressures (1–4 atm), visible-
light-mediated aldehyde reduction did not occur demonstrat-
ing that CO is needed in both steps of the tandem catalytic 
reaction.24 

The origins of anti-Markovnikov regioselectivity in the 
photodriven cobalt-catalyzed reaction were investigated by 
subjecting both vinyl epoxide (butadiene monoxide) and cis-
1,2-oct-1-ene-d2 to the optimized catalytic conditions 
(Scheme 2A). Monitoring the progress of the reaction by 1H 
NMR spectroscopy for the epoxide example revealed a mix-
ture of C1-homologated (linear) alcohol and 2-buten-1-ol, 
the result of irreversible β-oxygen elimination from the prod
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Scheme 2. A. Cobalt-Catalyzed Reductive Hydroformylation of Vinyl Epoxide. B. Reductive Hydroformylation of cis-
1,2-dideuteriooctene. C. Catalytic Hydrogenation of Branched Aldehyde under CO/H2. D. Proposed Catalytic Cycle for 
both Hydroformylation (Above) and Hydrogenation (Below). 

 
uct of 2,1 alkene insertion (Scheme 2B). For the labeled oc-
tene, only 1-nonanol with no detectable deuterium migration 
was observed. These observations support a pathway where 
2,1-insertion generates a branched alkyl but does not under-
go productive CO insertion en route to product formation. 
Notably, when an isolated 18-electron bis(phosphine)cobalt 
acyl complex was irradiated with visible light, CO deinser-
tion took place, even in the presence of syngas (vide supra), 
generating styrene following β-hydrogen elimination.15 

In summary, a cobalt-catalyzed tandem hydroformyla-
tion/hydrogenation mediated by visible-light has been real-
ized. The method has been applied to the synthesis of C1-
homologated alcohols from a variety of terminal and 1,1-
disubstituted alkenes with exclusive linear selectivity. Prelim-
inary mechanistic results including catalytic reactions with a 
deuterium labelled alkene25 support a scenario where both 
1,2- and 2,1 alkene insertion occurs under visible light, but 
only linear aldehydes are produced in the first of two concur-
rent transformations in the catalytic reaction.  
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