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ABSTRACT

Deep learning has demonstrated its strengths in numerous binary
analysis tasks, including function boundary detection, binary code
search, function prototype inference, value set analysis, etc. When
applying deep learning to binary analysis tasks, we need to decide
what input should be fed into the neural network model. More
specifically, we need to answer how to represent an instruction in a
fixed-length vector. The idea of automatically learning instruction
representations is intriguing, but the existing schemes fail to capture
the unique characteristics of disassembly. These schemes ignore the
complex intra-instruction structures and mainly rely on control flow
in which the contextual information is noisy and can be influenced
by compiler optimizations.

In this paper, we propose to pre-train an assembly language
model called PALMTREE for generating general-purpose instruction
embeddings by conducting self-supervised training on large-scale
unlabeled binary corpora. PALMTREE utilizes three pre-training tasks
to capture various characteristics of assembly language. These train-
ing tasks overcome the problems in existing schemes, thus can help
to generate high-quality representations. We conduct both intrinsic
and extrinsic evaluations, and compare PALMTREE with other in-
struction embedding schemes. PALMTREE has the best performance
for intrinsic metrics, and outperforms the other instruction embed-
ding schemes for all downstream tasks.
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1 INTRODUCTION

Recently, we have witnessed a surge of research efforts that lever-
age deep learning to tackle various binary analysis tasks, including
function boundary identification [37], binary code similarity detec-
tion [23, 31, 40, 42, 43], function prototype inference [5], value set
analysis [14], malware classification [35], etc. Deep learning has
shown noticeably better performances over the traditional program
analysis and machine learning methods.

When applying deep learning to these binary analysis tasks,
the first design choice that should be made is: what kind of input
should be fed into the neural network model? Generally speak-
ing, there are three choices: we can either directly feed raw bytes
into a neural network (e.g., the work by Shin et al. [37], aDiff [23],
DeepVSA [14], and MalConv [35]), or feed manually-designed fea-
tures (e.g., Gemini [40] and Instruction2Vec [41]), or automatically
learn to generate a vector representation for each instruction using
some representation learning models such as word2vec (e.g., In-
nerEye [43] and EKLAVYA [5]), and then feed the representations
(embeddings) into the downstream models.

Compared to the first two choices, automatically learning
instruction-level representation is more attractive for two reasons:
(1) it avoids manually designing efforts, which require expert knowl-
edge and may be tedious and error-prone; and (2) it can learn higher-
level features rather than pure syntactic features and thus provide
better support for downstream tasks. To learn instruction-level
representations, researchers adopt algorithms (e.g., word2vec [28]
and PV-DM [20]) from Natural Language Processing (NLP) domain,
by treating binary assembly code as natural language documents.

Although recent progress in instruction representation learn-
ing (instruction embedding) is encouraging, there are still some
unsolved problems which may greatly influence the quality of in-
struction embeddings and limit the quality of downstream models:

First, existing approaches ignore the complex internal formats
of instructions. For instance, in x86 assembly code, the number
of operands can vary from zero to three; an operand could be a
CPU register, an expression for a memory location, an immediate
constant, or a string symbol; some instructions even have implicit
operands, etc. Existing approaches either ignore this structural
information by treating an entire instruction as a word (e.g., Inner-
Eye [43] and EKLAVYA [5]) or only consider a simple instruction
format (e.g., Asm2Vec [10]). Second, existing approaches use Con-
trol Flow Graph (CFG) to capture contextual information between
instructions (e.g., Asm2Vec [10], InnerEye [43], and the work by
Yu et al. [42]). However, the contextual information on control flow
can be noisy due to compiler optimizations, and cannot reflect the
actual dependency relations between instructions.


https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1145/3460120.3484587
https://creativecommons.org/licenses/by/4.0/

Session 12A: Applications and Privacy of ML

Moreover, in recent years, pre-trained deep learning models [33]
are increasingly attracting attentions in different fields such as
Computer Vision (CV) and Natural Language Processing (NLP).
The intuition of pre-training is that with the development of deep
learning, the numbers of model parameters are increasing rapidly.
A much larger dataset is needed to fully train model parameters
and to prevent overfitting. Thus, pre-trained models (PTMs) us-
ing large-scale unlabeled corpora and self-supervised training tasks
have become very popular in some fields such as NLP. Represen-
tative deep pre-trained language models in NLP include BERT [9],
GPT [34], RoBERTa [24], ALBERT [19], etc. Considering the nat-
uralness of programming languages [1, 16] including assembly
language, it has great potential to pre-train an assembly language
model for different binary analysis tasks.

To solve the existing problems in instruction representation
learning and capture the underlying characteristics of instructions,
in this paper, we propose a pre-trained assembly language model
called PALMTREE! for general-purpose instruction representation
learning. PALMTREE is based on the BERT [9] model but pre-trained
with newly designed training tasks exploiting the inherent charac-
teristics of assembly language.

We are not the first to utilize the BERT model in binary analysis.
For instance, Yu et al. [42] proposed to take CFG as input and use
BERT to pre-train the token embeddings and block embeddings for
the purpose of binary code similarity detection. Trex [31] uses one
of BERT’s pre-training tasks — Masked Language Model (MLM) to
learn program execution semantics from functions’ micro-traces (a
form of under-constrained dynamic traces) for binary code similar-
ity detection.

Contrast to the existing approaches, our goal is to develop a pre-
trained assembly language model for general-purpose instruction
representation learning. Instead of only using MLM on control flow,
PALMTREE uses three training tasks to exploit special characteristics
of assembly language such as instruction reordering introduced
by compiler optimizations and long range data dependencies. The
three training tasks work at different granularity levels to effectively
train PALMTREE to capture internal formats, contextual control flow
dependency, and data flow dependency of instructions.

Experimental results show that PALMTREE can provide high qual-
ity general-purpose instruction embeddings. Downstream applica-
tions can directly use the generated embeddings in their models. A
static embedding lookup table can be generated in advance for com-
mon instructions. Such a pre-trained, general-purpose language
model scheme is especially useful when computing resources are
limited such as on a lower-end or embedded devices.

We design a set of intrinsic and extrinsic evaluations to systemat-
ically evaluate PALMTREE and other instruction embedding models.
In intrinsic evaluations, we conduct outlier detection and basic
block similarity search. In extrinsic evaluations, we use several
downstream binary analysis tasks, which are binary code similarity
detection, function type signatures analysis, and value set analysis,
to evaluate PALMTREE and the baseline models. Experimental results
show that PALMTREE has the best performance in intrinsic evalua-
tions compared with the existing models. In extrinsic evaluations,

!PALMTREE stands for Pre-trained Assembly Language Model for InsTRuction
EmbEdding
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PALMTREE outperforms the other instruction embedding models
and also significantly improves the quality of the downstream ap-
plications. We conclude that PALMTREE can effectively generate
high-quality instruction embedding which is helpful for different
downstream binary analysis tasks.
In summary, we have made the following contributions:

e We lay out several challenges in the existing schemes in
instruction representation learning.
We pre-train an assembly language model called PALMTREE
to generate general-purpose instruction embeddings and
overcome the existing challenges.
We propose to use three pre-training tasks for PALMTREE
embodying the characteristics of assembly language such as
reordering and long range data dependency.
We conduct extensive empirical evaluations and demonstrate
that PALMTREE outperforms the other instruction embedding
models and also significantly improves the accuracy of down-
stream binary analysis tasks.
We plan to release the source code of PALMTREE, the pre-
trained model, and the evaluation framework to facilitate
the follow-up research in this area.

To facilitate further research, we have made the source code and
pre-trained PALMTREE model publicly available at https://github.
com/palmtreemodel/PalmTree.

2 BACKGROUND

In this section, we firstly summarize existing approaches and back-
ground knowledge of instruction embedding. Then we discuss some
unsolved problems of the existing approaches. Based on the discus-
sions, we summarize representative techniques in this field.

2.1 Existing Approaches

Based on the embedding generation process, existing approaches
can be classified into three categories: raw-byte encoding, manually-
designed encoding, and learning-based encoding.

2.1.1 Raw-byte Encoding. The most basic approach is to apply a
simple encoding on the raw bytes of each instruction, and then
feed the encoded instructions into a deep neural network. One such
encoding is “one-hot encoding”, which converts each byte into a
256-dimensional vector. One of these dimensions is 1 and the others
are all 0. MalConv [35] and DeepVSA [14] take this approach to
classify malware and perform coarse-grained value set analysis,
respectively.

One instruction may be several bytes long. To strengthen the
sense of an instruction, DeepVSA further concatenates the one-hot
vectors of all the bytes belonging to an instruction, and forms a
vector for that instruction.

Shin et al. [37] take a slightly different approach to detect func-
tion boundaries. Instead of a one-hot vector, they encode each byte
as a 8-dimensional vector, in which each dimension presents a
corresponding digit in the binary representation of that byte. For
instance, the 0x90 will be encoded as

[10010000]

In general, this kind of approach is simple and efficient, because
it does not require disassembly, which can be computationally
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expensive. Its downside, however, is that it does not provide any
semantic level information about each instruction. For instance, we
do not even know what kind of instruction it is, and what operands
it operates on. While the deep neural networks can probably learn
some of this information by itself, it seems very difficult for the
deep neural networks to completely understand all the instructions.

2.1.2  Manual Encoding of Disassembled Instructions. Knowing that
disassembly carries more semantic information about an instruc-
tion, this approach first disassembles each instruction and encodes
some features from the disassembly.

Lietal. [21] proposed a very simple method, which only extracts
opcode to represent an instruction, and encodes each opcode as
a one-hot vector. Unfortunately, this method completely ignores
the information from operands. Instruction2Vec [41] makes use of
both opcode and operand information. Registers, addresses, and
offsets are encoded in different ways, and then concatenated to
form a vector representation. Each instruction is encoded as a
nine-dimensional feature vector. An instruction is divided into
tokens, and tokens are encoded as unique index numbers. While an
opcode takes one token, a memory operand takes up to four tokens,
including base register, index register, scale, and displacement.

While this approach is able to reveal more information about
opcode and operands for each instruction than raw-byte encoding,
it does not carry higher-level semantic information about each
instruction. For instance, it treats each opcode instruction equally
unique, without knowing that add and sub are both arithmetic
operations thus they are more similar to each other than call,
which is a control transfer operation. Although it is possible to
manually encode some of the higher-level semantic information
about each instruction, it requires tremendous expert knowledge,
and it is hard to get it right.

2.1.3 Learning-based Encoding. Inspired by representation learn-
ing in other domains such as NLP (e.g., word2vec [27, 28]), we would
like to automatically learn a representation for each instruction that
carries higher-level semantic information. Then this instruction-
level representation can be used for any downstream binary analysis
tasks, achieving high analysis accuracy and generality.

Several attempts have been made to leverage word2vec [28] to
automatically learn instruction-level representations (or embed-
dings), for code similarity detection [26, 43] and function type
inference [5], respectively. The basic idea of this approach is to
treat each instruction as a word, and each function as a document.
By applying a word2vec algorithm (Skip-gram or CBOW [27, 28])
on the disassembly code in this way, we can learn a continuous
numeric vector for each instruction.

In order to detect similar functions in binary code, Asm2Vec [10]
makes use of the PV-DM model [20] to generate instruction em-
beddings and an embedding for the function containing these in-
structions simultaneously. Unlike the above approach that treats
each instruction as a word, Asm2Vec treats each instruction as one
opcode and up to two operands and learns embeddings for opcodes
and operands separately.
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11| ; store the return value of memcpy() into rcx register
2| mov rex, rax
; conditional jump based on EFLAGS from test instruction
1| je @x40adfo
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2.2 Challenges in Learning-based Encoding

While the learning-based encoding approach seems intriguing,
there exist several challenges.

2.2.1 Complex and Diverse Instruction Formats. Instructions (espe-
cially those in CISC architectures) are often in a variety of formats,
with additional complexities. Listing 1 gives several examples of
instructions in x86.

1 ; memory operand with complex expression
2| mov [ebp+eax*4-0x2c], edx
; three explicit operands,
+| imul [edx], ebx, 100

i ; prefix, two implicit memory operands
6| rep movsbh
; eflags as implicit input
jne 0x403a98

eflags as implicit operand

Listing 1: Instructions are complex and diverse

In x86, an instruction can have between 0 to 3 operands. An
operand can be a CPU register, an expression for a memory location,
an immediate constant, or a string symbol. A memory operand is cal-
culated by an expression of “base+indexxscale+displacement”.
While base and index are CPU registers, scale is a small constant
number and displacement can be either a constant number or a
string symbol. All these fields are optional. As a result, memory
expressions vary a lot. Some instructions have implicit operands.
Arithmetic instructions change EFLAGS implicitly, and conditional
jump instructions take EFLAGS as an implicit input.

A good instruction-level representation must understand these
internal details about each instruction. Unfortunately, the existing
learning-based encoding schemes do not cope with these complexi-
ties very well. Word2vec, adopted by some previous efforts [5, 26,
43], treats an entire instruction as one single word, totally ignoring
these internal details about each instruction.

Asm2Vec [10] looks into instructions to a very limited degree. It
considers an instruction having one opcode and up to two operands.
In other words, each instruction has up to three tokens, one for
opcodes, and up to two for operands. A memory operand with
an expression will be treated as one token, and thus it does not
understand how a memory address is calculated. It does not take
into account other complexities, such as prefix, a third operand,
implicit operands, EFLAGS, etc.

1| ; prepare the third argument for function call

2| mov rdx, rbx

3| ; prepare the second argument for function call
1| mov rsi, rbp

5 ; prepare the first argument for function call
6| mov rdi, rax

7] ; call memcpy() function
s| call memcpy
9| ; test rbx register (this instruction is reordered)

Listing 2: Instructions can be reordered

2.2.2  Noisy Instruction Context. The context is defined as a small
number of instructions before and after the target instruction on
the control-flow graph. These instructions within the context often
have certain relations with the target instruction, and thus can help
infer the target instruction’s semantics.
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Table 1: Summary of Approaches

Name Encoding Internal Structure Context Disassembly Required
DeepVSA [14] 1-hot encoding on raw-bytes no no no
Instruction2Vec [41]  manually designed yes no yes
InnerEye [43] word2vec no control flow yes
Asm2Vec [10] PV-DM partial control flow yes
PALMTREE (this work) BERT yes control flow & data flow yes

While this assumption might hold in general, compiler optimiza-
tions tend to break this assumption to maximize instruction level
parallelism. In particular, compiler optimizations (e.g., “-fschedule-
insns”, “-fmodulo-sched”, “~fdelayed-branch” in GCC) seek to avoid
stalls in the instruction execution pipeline by moving the load from
a CPU register or a memory location further away from its last
store, and inserting irrelevant instructions in between.

Listing 2 gives an example. The test instruction at Line 10 has
no relation with its surrounding call and mov instructions. The
test instruction, which will store its results into EFLAGS, is moved
before the mov instruction by the compiler, such that it is further
away from the je instruction at Line 14, which will use (load) the
EFLAGS computed by the test instruction at Line 10. From this
example, we can see that contextual relations on the control flow
can be noisy due to compiler optimizations.

Note that instructions also depend on each other via data flow
(e.g., lines 8 and 12 in Listing 2). Existing approaches only work on
control flow and ignore this important information. On the other
hand, it is worth noting that most existing PTMs cannot deal with
the sequence longer than 512 tokens [33] (PTMs that can process
longer sequences, such as Transformer XL [8], will require more
GPU memory), as a result, even if we directly train these PTMs
on instruction sequences with MLM, it is hard for them capture
long range data dependencies which may happen among different
basic blocks. Thus a new pre-training task capturing data flow
dependency is desirable.

2.3 Summary of Existing Approaches

Table 1 summarizes and compares the existing approaches, with
respect to which encoding scheme or algorithm is used, whether dis-
assembly is required, whether instruction internal structure is con-
sidered, and what context is considered for learning. In summary,
raw-byte encoding and manually-designed encoding approaches
are too rigid and unable to convery higher-level semantic infor-
mation about instructions, whereas the existing learning-based
encoding approaches cannot address challenges in instruction in-
ternal structures and noisy control flow.

3 DESIGN OF PALMTREE

3.1 Overview

To meet the challenges summarized in Section 2, we propose PALMTREE,

a novel instruction embedding scheme that automatically learns a
language model for assembly code. PALMTREE is based on BERT [9],
and incorporates the following important design considerations.
First of all, to capture the complex internal formats of instruc-
tions, we use a fine-grained strategy to decompose instructions: we
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consider each instruction as a sentence and decompose it into basic
tokens.

Then, in order to train the deep neural network to understand
the internal structures of instructions, we make use of a recently
proposed training task in NLP to train the model: Masked Language
Model (MLM) [9]. This task trains a language model to predict the
masked (missing) tokens within instructions.

Moreover, we would like to train this language model to cap-
ture the relationships between instructions. To do so, we design a
training task, inspired by word2vec [28] and Asm2Vec [10], which
attempts to infer the word/instruction semantics by predicting two
instructions’ co-occurrence within a sliding window in control
flow. We call this training task Context Window Prediction (CWP),
which is based on Next Sentence Prediction (NSP) [9] in BERT. Es-
sentially, if two instructions i and j fall within a sliding window in
control flow and i appears before j, we say i and j have a contextual
relation. Note that this relation is more relaxed than NSP, where
two sentences have to be next to each other. We make this design
decision based on our observation described in Section 2.2.2: in-
structions may be reordered by compiler optimizations, so adjacent
instructions might not be semantically related.

Furthermore, unlike natural language, instruction semantics
are clearly documented. For instance, the source and destination
operands for each instruction are clearly stated. Therefore, the data
dependency (or def-use relation) between instructions is clearly
specified and will not be tampered by compiler optimizations. Based
on these facts, we design another training task called Def-Use Pre-
diction (DUP) to further improve our assembly language model.
Essentially, we train this language model to predict if two instruc-
tions have a def-use relation.

Figure 1 presents the design of PALMTREE. It consists of three
components: Instruction Pair Sampling, Tokenization, and Lan-
guage Model Training. The main component (Assembly Language
Model) of the system is based on the BERT model [9]. After the
training process, we use mean pooling of the hidden states of the
second last layer of the BERT model as instruction embedding. The
Instruction Pair Sampling component is responsible for sampling
instruction pairs from binaries based on control flow and def-use
relations.

Then, in the second component, the instruction pair is split into
tokens. Tokens can be opcode, registers, intermediate numbers,
strings, symbols, etc. Special tokens such as strings and memory
offsets are encoded and compressed in this step. After that, as intro-
duced earlier, we train the BERT model using the following three
tasks: MLM (Masked Language Model), CWP (Context Window
Prediction), and Def-Use Prediction (DUP). After the model has
been trained, we use the trained language model for instruction
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Instruction Pair Sampling | Tokenization
Raw Instructions |
--------- i .:-f'-g);l ontes Instruction Pair FDI::: | ‘ mov rdx, rbe mov [recx+rbx], Oxo‘
memcpy [
"\ Another node Control .
o Oz, (O Ole | Irton
Lrax], oxze M (D@ EEE
e
( Context Window Prediction Y Def-Use Prediction
Assembly
Language Model

\MLM: internal formats

\_ CWP: contextual dependency \ DUP: data flow dependency

Figure 1: System design of PALMTREE. Trmis the transformer encoder unit, C is the hidden state of the first token of the sequence
(classification token), T, (n = 1... N) are hidden states of other tokens of the sequence

embedding generation. In general, the tokenization strategy and
MLM will help us address the first challenge in Section 2.2, and
CWP and DUP can help us address the second challenge.

In Section 3.2, we introduce how we construct two kinds of
instruction pairs. In Section 3.3, we introduce our tokenization pro-
cess. Then, we introduce how we design different training tasks to
pre-train a comprehensive assembly language model for instruction
embedding in Section 3.4.

3.2 Input Generation

We generate two kinds of inputs for PALMTREE. First, we disassem-
ble binaries and extract def-use relations. We use Binary Ninja?
in our implementation, but other disassemblers should work too.
With the help of Binary Ninja, we consider dependencies among
registers, memory locations, and function call arguments, as well as
implicit dependencies introduced by EFLAGS. For each instruction,
we retrieve data dependencies of each operand, and identify def-use
relations between the instruction and its dependent instructions.
Second, we sample instruction pairs from control flow sequences,
and also sample instruction pairs based on def-use relations. Instruc-
tion pairs from control flow are needed by CWP, while instruction
pairs from def-use relations are needed by DUP. MLM can take both
kinds of instruction pairs.

3.3 Tokenization

As introduced earlier, unlike Asm2Vec [10] which splits an in-
struction into opcode and up to two operands, we apply a more
fine-grained strategy. For instance, given an instruction “mov rax,
qword [rsp+0x58]”, we divide it into “mov”, “rax”, “qword”, “[”,
“rsp”, “+”, “0x58”, and “1”. In other words, we consider each instruc-
tion as a sentence and decompose the operands into more basic

elements.

Zhttps://binary.ninja/
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We use the following normalization strategy to alleviate the
OOV (Out-Of-Vocabulary) problem caused by strings and constant
numbers. For strings, we use a special token [str] to replace them.
For constant numbers, if the constants are large (at least five digits
in hexadecimal), the exact value is not that useful, so we normal-
ize it with a special token [addr]. If the constants are relatively
small (less than four digits in hexadecimal), these constants may
carry crucial information about which local variables, function ar-
guments, and data structure fields that are accessed. Therefore we
keep them as tokens, and encode them as one-hot vectors.

3.4 Assembly Language Model

In this section we introduce how we apply the BERT model to our
assembly language model for instruction embedding, and how we
pre-train the model and adopt the model to downstream tasks.

3.4.1 PALMTREE model. Our model is based on BERT [9], the state-
of-the-art PTM in many NLP tasks. The proposed model is a multi-
layer bidirectional transformer encoder. Transformer, firstly intro-
duced in 2017 [39], is a neural network architecture solely based
on multi-head self attention mechanism. In PALMTREE, transformer
units are connected bidirectionally and stacked into multiple layers.

Input [[CLS]‘ ‘”"movk I ebxx‘“ [”"om ‘ ""tsspj I movk*“ ["”rdx\‘ ‘”"rbxk I ['sspj‘“‘

Esq Esq Es1 Esq Esq Esz Esz Esz Esz

+ + + + + + + + +
+ + + + + + + + +

Eox1

Segment

Token EicLs) Emov Eebx Ejsep) Emov Erax Erbx E[ser)

Figure 2: Input Representation

We treat each instruction as a sentence and each token as a
word. Instructions from control flow and data flow sequences are
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concatenated and then fed into the BERT model. As shown in Fig-
ure 2, the first token of this concatenated input is a special token —
[CLS], which is used to identify the start of a sequence. Secondly,
we use another token [SEP] to separate concatenated instructions.
Furthermore, we add position embedding and segment embedding
to token embedding, and use this mixed vector as the input of the
bi-directional transformer network, as shown in Figure 2. Position
embedding represents different positions in the input sequence,
while segment embedding distinguishes the first and second in-
structions. Position embedding and segment embedding will be
trained along with token embeddings. These two embeddings can
help dynamically adjust token embeddings according to their loca-
tions.

3.4.2 Training task 1: Masked Language Model. The first task we
use to pre-train PALMTREE is Masked Language Model (MLM), which
was firstly introduced in BERT [9]. Here is an example shown
in Figure 3. Assuming that t; denotes a token and instruction
I = t1,t,13, ..., t, consists of a sequence of tokens. For a given
input instruction I, we first randomly select 15% of the tokens to
replace. For the chosen tokens, 80% are masked by [MASK] (mask-
out tokens), 10% are replaced with another token in the vocabulary
(corrupted tokens), and 10% of the chosen tokens are unchanged.
Then, the transformer encoder learns to predict the masked-out
and corrupted tokens, and outputs a probability for predicting a
particular token t; = [MASK] with a softmax layer located on the
top of the transformer network:

exp(w;O(I);)
ZE_ exp(wO(D);)

where £; denotes the prediction of t;. ©(I); is the i’ h hidden vector
of the transformer network © in the last layer, when having I as
input. and w; is weight of label i. K is the number of possible
labels of token t;. The model is trained with the Cross Entropy loss
function:

PG| = 1)

Lym == ), logp(lh (@)

tiem(I)

where m(I) denotes the set of tokens that are masked.

Prediction

Input [ [CLSI | [ mov ) (IMASKI) " 0x1 | ["[SEP] | [ mov | rdx H iz | [IsEP |

Figure 3: Masked Language Model (MLM)

Figure 3 shows an example. Given an instruction pair “mov ebx,
0x1; mov rdx, rbx”, we first add special tokens [CLS] and [SEP].
Then we randomly select some tokens for replacement. Here we
select ebx and rbx. The token ebx is replaced by the [MASK] token
(the yellow box). The token rbx is replaced by the token jz (another
token in the vocabulary, the red box). Next, we feed this modified
instruction pair into the PALMTREE model. The model will make a
prediction for each token. Here we care about the predictions of
the yellow and red boxes, which are the green boxes in Figure 3.
Only the predictions of those two special tokens are considered in
calculating the loss function.
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3.4.3  Training task 2: Context Window Prediction. We use this train-
ing task to capture control flow information. Many downstream
tasks [5, 14, 40, 43] rely on the understanding of contextual rela-
tions of code sequences in functions or basic blocks. Instead of
predicting the whole following sentence (instruction) [18, 38], we
perform a binary classification to predict whether the two given
instructions co-occur within a context window or not, which makes
it a much easier task compared to the whole sentence prediction.
However, unlike natural language, control flows do not have strict
dependencies and ordering. As a result, strict Next Sentence Pre-
diction (NSP), firstly proposed by BERT [9], may not be suitable
for capturing contextual information of control flow. To tackle this
issue, we extend the context window, i.e., we treat each instruction
w steps before and w steps after the target instruction in the same
basic block as contextually related. w is the context windows size.
In Section C.3, we evaluate the performance of different context
window sizes, and pick w = 2 accordingly. Given an instruction I
and a candidate instruction I 4,4 as input, the candidate instruction
can be located in the contextual window of I, or a negative sample
randomly selected from the dataset. § denotes the prediction of
this model. The probability that the candidate instruction I, ,,4 is
a context instruction of I is defined as

1

®)
1+ exp(@([ | Leand)ets)
where I.,,4 € C, and C is the candidate set including negative
and positive samples. O, is the first output of the transformer
network in the last layer. And “||” means a concatenation of two
instructions. Suppose all instructions belongs to the training set D,
then the loss function is:

P(ﬁlL Icund) =

Lewp = - Z log p(911, Icana)
IeD

Prediction [IsContext

input (1611 ] (mov ) ebx ) (“oxt | (tsEp) | (“mov ) rax ) (x| (TsER)

Figure 4: Context Window Prediction (CWP)

Here is an example in Figure 4. We use the input mentioned
above. We feed the unchanged instruction pairs into the PALMTREE
model and pick the first output vector. We use this vector to predict
whether the input are located in the same context window or not.
In this case, the two instructions are next to each other. Therefore
the correct prediction would be “true”.

3.4.4  Training task 3: Def-Use Prediction. To further improve the
quality of our instruction embedding, we need not only control
flow information but also data dependency information across in-
structions. Sentence Ordering Prediction (SOP), first introduced
by Lan et al. [19], is a very suitable choice. This task can help the
PALMTREE model to understand the data relation through DFGs,
and we call it Def-Use Prediction (DUP).

Given an instruction pair I; and I as input. And we feed I1 || I
as a positive sample and I; || I; as a negative sample. 7 denotes the
prediction of this model. The probability that the instruction pair
is swapped or not is defined as
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: ©)
1+ exp(O(I | I2)crs)
where O, is the first output of the transformer network in the
last layer. The Cross Entropy loss function is:

(Gl I2) =

Lpup =~ Z PG, I2) (6)
IeD
Prediction (fzsxzpeed)
vl (o (e (Y o (o ) (T

Figure 5: Def-Use Prediction (DUP)

We show an example in Figure 5. We still use the instruction
pair discussed in Figure 4, but here we swap the two instructions.
So the sequence is “[CLS] mov rdx rbx [SEP] mov ebx ox1
[SEP]”. We feed it into PALMTREE and use the first output vector to
predict whether this instruction pair remains unswapped or not. In
this case, it should be predicted as “false” (which means this pair is
swapped).

The loss function of PALMTREE is the combination of three loss
functions:

™

3.4.5 Instruction Representation. The transformer encoder pro-
duces a sequence of hidden states as output. There are multiple
ways to generate instruction embeddings from the output. For in-
stance, applying a max/mean pooling. We use mean pooling of
the hidden states of the second last layer to represent the whole
instruction. This design choice has the following considerations.
First, the transformer encoder encodes all the input information
into the hidden states. A pooling layer is a good way to utilize the
information encoded by transformer. Second, results in BERT [9]
also suggest that hidden states of previous layers before the last
layer have offer more generalizability than the last layer for some
downstream tasks. We evaluated different layer configurations and
reported the results in Section C.2.

L=Lyim+ Lcwp + Lpup

3.4.6 Deployment of the model. There are two ways of deploy-
ing PALMTREE for downstream applications: instruction embedding
generation, where the pre-trained parameters are frozen, and fine-
tuning, where the pre-trained parameters can be further adjusted.

In the first way (instruction embedding generation), PALMTREE
is used as an off-the-shelf assembly language model to generate
high-quality instruction embeddings. Downstream applications
can directly use the generated embeddings in their models. Our
evaluation results show that PALMTREE without fine-tuning can
still outperform existing instruction embedding models such as
word2vec and Asm2Vec. This scheme is also very useful when com-
puting resources are limited such as on a lower-end or embedded
devices. In this scenario, we can further improve the efficiency by
generating a static embedding lookup table in advance. This lookup
table contains the embeddings of most common instructions. A
trade-off should be made between the model accuracy and the avail-
able resources when choosing the lookup table size. A larger lookup

3242

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

table will consume more space but can alleviate the OOV problem
(happens when the encountered instruction is not in the table) and
improve the accuracy.

In the second way (fine-tuning), PALMTREE is fine-tuned and
trained together with the downstream model. This scheme will
usually provide extra benefits when enough computing resources
and training budget are available. There are several fine-tuning
strategies [33], e.g., two-stage fine-tuning, multi-task fine-tuning.

4 EVALUATION

Previous binary analysis studies usually evaluate their approaches
by designing specific experiments in an end-to-end manner, since
their instruction embeddings are only for individual tasks. In this
paper, we focus on evaluating different instruction embedding
schemes. To this end, we have designed and implemented an exten-
sive evaluation framework to evaluate PALMTREE and the baseline
approaches. Evaluations can be classified into two categories: in-
trinsic evaluation and extrinsic evaluation. In the remainder of this
section, we first introduce our evaluation framework and experi-
mental configurations, then report and discuss the experimental
results.

4.1 Evaluation Methodology

Intrinsic Evaluation. In NLP domain, intrinsic evaluation refers
to the evaluations that compare the generated embeddings with
human assessments [2]. Hence, for each intrinsic metric, manu-
ally organized datasets are needed. This kind of dataset could be
collected either in laboratory on a limited number of examinees
or through crowd-sourcing [25] by using web platforms or offline
survey [2]. Unlike the evaluations in NLP domain, programming
languages including assembly language (instructions) do not neces-
sarily rely on human assessments. Instead, each opcode and operand
in instructions has clear semantic meanings, which can be extracted
from instruction reference manuals. Furthermore, debug informa-
tion generated by different compilers and compiler options can also
indicate whether two pieces of code are semantically equivalent.
More specifically, we design two intrinsic evaluations: instruction
outlier detection based on the knowledge of semantic meanings of
opcodes and operands from instruction manuals, and basic block
search by leveraging the debug information associated with source
code.

Extrinsic Evaluation. Extrinsic evaluation aims to evaluate the
quality of an embedding scheme along with a downstream machine
learning model in an end-to-end manner [2]. So if a downstream
model is more accurate when integrated with instruction embed-
ding scheme A than the one with scheme B, then A is considered
better than B. In this paper, we choose three different binary analy-
sis tasks for extrinsic evaluation, i.e., Gemini [40] for binary code
similarity detection, EKLAVYA [5] for function type signatures in-
ference, and DeepVSA [14] for value set analysis. We obtained the
original implementations of these downstream tasks for this evalu-
ation. All of the downstream applications are implemented based
on TensorFlow®. Therefore we choose the first way of deploying
PALMTREE in extrinsic evaluations (see Section 3.4.6). We encoded all

Shttps://www.tensorflow.org/
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the instructions in the corresponding training and testing datasets
and then fed the embeddings into downstream applications.

4.2 Experimental Setup

Baseline Schemes and PALMTREE Configurations. We choose In-
struction2Vec, word2vec, and Asm2Vec as baseline schemes. For
fair comparison, we set the embedding dimension as 128 for each
model. We performed the same normalization method as PALMTREE
on word2vec and Asm2Vec. We did not set any limitation on the
vocabulary size of Asm2Vec and word2vec. We implemented these
baseline embedding models and PALMTREE using PyTorch [30].
PALMTREE is based on BERT but has fewer parameters. While in
BERT #Layers = 12, Head = 12 and Hidden_dimension = 768, we
set #Layers = 12, Head = 8, Hidden_dimension = 128 in PALMTREE,
for the sake of efficiency and training costs. The ratio between the
positive and negative pairs in both CWP and DUP is 1:1.

Furthermore, to evaluate the contributions of three training tasks
of PALMTREE, we set up three configurations:

e PALMTREE-M: PALMTREE trained with MLM only
e PALMTREE-MC: PALMTREE trained with MLM and CWP
o PALMTREE: PALMTREE trained with MLM, CWP, and DUP

Datasets. To pre-train PALMTREE and evaluate its transferability
and generalizability, and evaluate baseline schemes in different
downstream applications, we used different binaries from different
compilers. The pre-training dataset contains different versions of
Binutils?, Coreutils®, Diffutils®, and Findutils’ on x86-64 platform
and compiled with Clang® and GCC® with different optimization
levels. The whole pre-training dataset contains 3,266 binaries
and 2.25 billion instructions in total. There are about 2.36 billion
positive and negative sample pairs during training. To make sure
that training and testing datasets do not have much code in common
in extrinsic evaluations, we selected completely different testing
dataset from different binary families and compiled by different
compilers. Please refer to the following sections for more details
about dataset settings.

Hardware Configuration. All the experiments were conducted
on a dedicated server with a Ryzen 3900X CPU@3.80GHzx12, one
GTX 2080Ti GPU, 64 GB memory, and 500 GB SSD.

4.3 Intrinsic Evaluation

4.3.1 Outlier Detection. In this intrinsic evaluation, we randomly
create a set of instructions, one of which is an outlier. That is, this
instruction is obviously different from the rest of the instructions
in this set. To detect this outlier, we calculate the cosine distance
between any two instructions’ vector representations (i.e., embed-
dings), and pick whichever is most distant from the rest. We de-
signed two outlier detection experiments, one for opcode outlier
detection, and one for operand, to evaluate whether the instruc-
tion embeddings are good enough to distinguish different types of
opcodes and operands respectively.

https://www.gnu.org/software/binutils/
Shttps://www.gnu.org/software/coreutils/
Ohttps://www.gnu.org/software/diffutils/
"https://www.gnu.org/software/findutils/
Shttps://clang llvm.org/
“https://gec.gnu.org/
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We classify instructions into 12 categories based on their opcode,
according to the x86 Assembly Language Reference Manual [29].
More details about this process can be found in Table 8 in the Appen-
dix. We prepared 50,000 instruction sets. Each set consists of four
instructions from the same opcode category and one instruction
from a different category.

Table 2: Intrinsic Evaluation Results, Avg. denotes the aver-
age of accuracy scores, and Stdev. denotes the standard devi-
ation

opcode operand basicblock

Model outlier outlier sim search
Avg.  Stdev. Avg.  Stdev. AUC
Instruction2Vec  0.863  0.0529 0.860  0.0363 0.871
word2vec 0.269 0.0863 0.256 0.0874 0.842
Asm2Vec 0.865 0.0426 0.542  0.0238 0.894
PALMTREE-M 0.855 0.0333 0.785 0.0656 0.910
PALMTREE-MC 0.870  0.0449 0.808 0.0435 0.913
PALMTREE 0.871 0.0440 0.944 0.0343 0.922

Similarly, we classify instructions based on their operands. Ta-
ble 9 in the Appendix provides details about this process. Essentially,
we classify operand lists, according to the number of operands as
well as the operand types. We created another 50,000 sets of instruc-
tions covering 10 categories, and each set contains four instructions
coming from the same category, and one from a different category.
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Figure 6: Accuracy of Opcode Outlier Detection
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Figure 7: Accuracy of Operands Outlier Detection
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The first and second columns of Table 2 present the accuracy dis-
tributions for opcode outlier detection and operand outlier detection
respectively. We can make the following observations: (1) word2vec
performs poorly in both experiments, because it does not take into
account the instruction internal structures; (2) Instruction2Vec, as
a manually-designed embedding, performs generally well in both
experiments, because this manual design indeed takes different
opcodes and operands into consideration; (3) Asm2Vec performs
slightly better than Instruction2Vec in opcode outlier detection,
but considerably worse in operand outlier detection, because its
modeling for operands is not fine-grained enough; (4) Even though
PALMTREE-M and PALMTREE-MC do not show obvious advantages
over Asm2Vec and Instruction2Vec, PALMTREE has the best accuracy
in both experiments, which demonstrate that this automatically
learned representation can sufficiently capture semantic differences
in both opcodes and operands; and (5) All the three pre-training
tasks contribute positively to PALMTREE in both outlier detection
experiments. Particularly, the DUP training task considerably boots
the accuracy in both experiments, demonstrating that the def-use
relations between instructions indeed help learn the assembly lan-
guage model. A complete result of outlier detection can be found
in Figure 6 and Figure 7.

4.3.2 Basic Block Search. In this intrinsic evaluation, we compute
an embedding for each basic block (a sequence of instructions
with only one entry and one exit), by averaging the instruction
embeddings in it. Given one basic block, we use its embedding
to find semantically equivalent basic blocks based on the cosine
distance between two basic block embeddings.

We use openssl-1.1.0h and glibc-2.29.1 as the testing set,
which is not included in our training set. We compile them with
01, 02, and O3 optimization levels. We use the same method used
in DeepBinDiff [11], which relies on the debug information from
the program source code as the ground truth.

Figure 8 shows the ROC curves of Instruction2Vec, word2vec,
Asm2Vec, and PALMTREE for basic block search. Table 2 further
lists the AUC (Area Under the Curve) score for each embedding
scheme. We can observe that (1) word2vec, once again, has the
worst performance; (2) the manually-designed embedding scheme,
Instruction2Vec, is even better than word2vec, an automatically
learned embedding scheme; (3) Asm2Vec performs reasonably well,
but still worse than three configurations of PALMTREE; and (4) The
three PALMTREE configurations have better AUC than other base-
lines, while consecutive performance improvements are observed.

PALMTREE ranks the first in all intrinsic evaluation experiments,
demonstrating the strength of the automatically learned as-
sembly language model. And the performance improvements
between different PALMTREE configurations show positive con-
tributions of individual training tasks.

4.4 Extrinsic Evaluation

An extrinsic evaluation reflects the ability of an instruction embed-
ding model to be used as an input of downstream machine learning
algorithms for one or several specific tasks [2]. As introduced earlier,
we select three downstream tasks in binary analysis field, which are
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Figure 8: ROC curves for Basic Block Search

binary code similarity detection, function type signature analysis,
and value set analysis.

Output: Binary function
embeddings for similarity search

| Original Model H
Gemini [ Structure2Vec ] | [ Structure2Vec ]
|
S
T I :
[ Mean Pooling ] | [ Manually Designed Vector ] H
x :

u
[ Instruction Embeddings ]

PALMTREE and other
Instruction Embedding Model:

—_——

mov rbp, rdi

7?

Figure 9: Instruction embedding models and the down-
stream model Gemini

4.4.1 Binary Code Similarity Detection. Gemini [40] is a neural
network-based approach for cross-platform binary code similarity
detection. The model is based on Structure2Vec [7] and takes ACFG
(Attributed Control Flow Graph) as input. In an ACFG, each node
is a manually formed feature vector for each basic block. Table 3
shows the attributes (i.e., features) of a basic block in the original
implementation.

Table 3: Attributes of Basic Blocks in Gemini [40]

Type Attribute name

String Constants

Numeric Constants
Block-level attributes No. of Transfer Instructions

No. of Calls

No. of Instructions

No. of Arithmetic Instructions

No. of offspring

Inter-block attributes
Betweenness

In this experiment, we evaluate the performance of Gemini,
when having Instruction2Vec, word2vec, Asm2Vec, PALMTREE-M,
PALMTREE-MC, and PALMTREE as input, respectively. Moreover, we
also used one-hot vectors with an embedding layer as a kind of
instruction embedding (denoted as “one-hot”) as another baseline.
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The embedding layer will be trained along with Gemini. Figure 9
shows how we adopt different instruction embedding models to
Gemini. Since Gemini takes a feature vector for each basic block,
we use mean pooling to generate basic block embeddings based on

embeddings of the instructions in the corresponding basic block.

The architectures of our modified model and the original model
are both shown in Figure 9. We also included its original basic
block features as an additional baseline (denoted as “Gemini”) for
comparison.

one-hot
Instruction2Vec
word2vec
Asm2Vec
PALMTREE-M
PALMTREE-MC
PALMTREE
Gemini

True positive rate

T T T T T
0.2 0.4 0.6 0.8

False positive rate

Figure 10: ROC curves of Gemini

The accuracy of the original Gemini is reported to be very high
(with an AUC of 0.971). However, this might be due to overfitting,
since the training and testing sets are from OpenSSL compiled by
the same compiler Clang. To really evaluate the generalizability (i.e.,
the ability to adapt to previously unseen data) of the trained models
under different inputs, we use binutils-2.26, binutils-2. 39,
and coreutils-8.30 compiled by Clang as training set (237 bi-
naries in total), and used openssl-1.1.0h, openssl-1.0.1, and
glibc-2.29.1 compiled by GCC as testing set (14 binaries). In
other words, the training and testing sets are completely different
and the compilers are different too.

Table 4: AUC values of Gemini

Model AUC | Model AUC
one-hot 0.745 | Gemini 0.866
Instruction2Vec  0.738 | PALMTREE-M 0.864
word2vec 0.826 | PALMTREE-MC  0.866
Asm2Vec 0.823 | PALMTREE 0.921

Table 4 gives the AUC values of Gemini when different models
are used to generate its input. Figure 10 shows the ROC curves
of Gemini when different instruction embedding models are used.
Based on Table 4, we can make the following observations:

(1) Although the original paper [40] reported very encouraging
performance of Gemini, we can observe that the original
Gemini model does not generalize very well to completely
new testing data.

(2) The manually designed embedding schemes, Instruction2Vec
and one-hot vector, perform poorly, signifying that manually
selected features might be only suitable for specific tasks.
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(3) Despite that the testing set is considerably different from the
training set, PALMTREE can still perform reasonably well and
beat the remaining schemes, demonstrating that PALMTREE
can substantially boost the generalizability of downstream
tasks.

All the three pre-training tasks contribute to the final model
(PALMTREE) for Gemini. However, both PALMTREE-M and
PALMTREE-MC do not show obvious advantages over other
baselines, signifying that only the complete PALMTREE with
the three training tasks can generate better embeddings than
previous approaches in this downstream task.
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Figure 11: Instruction embedding models and EKLAVYA

4.4.2  Function Type Signature Inference. Function type signature
inference is a task of inferring the number and primitive types of
the arguments of a function. To evaluate the quality of instruction
embeddings in this task, we select EKLAVYA, an approach proposed
by Chua et al. [5]. It is based on a multi-layer GRU (Gated Recurrent
Unit) network and uses word2vec as the instruction embedding
method. According to the original paper, word2vec was pre-trained
with the whole training dataset. Then, they trained a GRU network
to infer function type signatures.

In this evaluation, we test the performances of different types
of embeddings using EKLAVYA as the downstream application.
Since the original model is not an end-to-end model, we do not
need an embedding layer between instruction embeddings and the
GRU network. We replaced the original word2vec in EKLAVYA
with one-hot encoding, Instruction2Vec, Asm2Vec, PALMTREE-M,
PALMTREE-MC, and PALMTREE, as shown in Figure 11. Similarly, in
order to evaluate the generalizability of the trained downstream
models, we used very different training and testing sets (the same
datasets described in Section 4.4.1).

Table 5: Accuracy and Standard Deviation of EKLAVYA

Model Accuracy Standard Deviation
one-hot 0.309 0.0338
Instruction2Vec 0.311 0.0407
word2vec 0.856 0.0884
Asm2Vec 0.904 0.0686
PALMTREE-M 0.929 0.0554
PALMTREE-MC 0.943 0.0476
PALMTREE 0.946 0.0475
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Figure 12: Accuracy of EKLAVYA

Table 5 and Figure 12 presents the accuracy of EKLAVYA on the
testing dataset. Figure 15, and Figure 16 in the Appendix shows the
loss value and accuracy of EKLAVYA during training and testing.
From the results we can make the following observations:

(1) PALMTREE and Asm2Vec can achieve higher accuracy than
word2vec, which is the original choice of EKLAVYA.
PALMTREE has the best accuracy on the testing dataset, demon-
strating that EKLAVYA when fed with PALMTREE as instruc-
tion embeddings can achieve the best generalizability. More-
over, CWP contributes more (see PALMTREE-MC), which im-
plies that control-flow information plays a more significant
role in EKLAVYA.

Instruction2Vec performs very poorly in this evaluation, sig-

nifying that, when not done correctly, manual feature selec-

tion may disturb and mislead a downstream model.

(4) The poor results of one-hot encoding show that a good in-
struction embedding model is indeed necessary. At least in
this task, it is very difficult for the deep neural network to
learn instruction semantic through end-to-end training.
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Figure 13: Instruction embedding models and the down-
stream model DeepVSA
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4.4.3  Value Set Analysis. DeepVSA [14] makes use of a hierarchi-
cal LSTM network to conduct a coarse-grained value set analysis,
which characterizes memory references into regions like global,
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heap, stack, and other. It feeds instruction raw bytes as input into a
multi-layer LSTM network to generate instruction embeddings. It
then feeds the generated instruction representations into another
multi-layer bi-directional LSTM network, which is supposed to cap-
ture the dependency between instructions and eventually predict
the memory access regions.

In our experiment, we use different kinds of instruction em-
beddings to replace the original instruction embedding generation
model in DeepVSA. We use the original training and testing datasets
of DeepVSA and compare prediction accuracy of different kinds of
embeddings. The original datasets contain raw bytes only, thus we
need to disassemble these raw bytes. After that we tokenize and
encode these disassembled instructions for training and testing. We
add an embedding layer before the LSTM network to further adjust
instruction embeddings, as shown in Figure 13.

We use part of the dataset provided by the authors of Deep-
VSA. The whole dataset provided by the authors has 13.8 million
instructions for training and 10.1 million for testing. Our dataset
has 9.6 million instructions for training and 4.8 million for testing,
due to the disassembly time costs. As explained in their paper [14],
their dataset also used Clang and GCC as compilers and had no
overlapping instructions between the training and testing datasets.
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Figure 14: Loss value of DeepVSA during training

Table 6 lists the experimental results. We use Precision (P), Recall
(R), and F1 scores to measure the performance. Figure 14 depicts the
loss values of DeepVSA during training, when different instruction
embedding schemes are used as its input. From these results, we
have the following observations:

(1) PALMTREE has visibly better results than the original Deep-
VSA and the other baselines in Global and Heap, and has
slightly better results in Stack and Other since other base-
lines also have scores greater than 0.9.

The three training tasks of PALMTREE indeed contribute to
the final result. It indicates that PALMTREE indeed captures
the data flows between instructions. In comparison, the other
instruction embedding models are unable to capture data
dependency information very well.

PALMTREE converged faster than original DeepVSA (see Fig-
ure 14), indicating that instruction embedding model can
accelerate the training phase of downstream tasks.

—~
N
~



Session 12A: Applications and Privacy of ML

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Table 6: Results of DeepVSA

. Global Heap Stack Other
Embeddings P R Fi 3 R F1 P R 1 P R Fi
one-hot 0453 0670 0540 | 0507 0.716 0594 | 0.959 0866 0910 | 0.953 0965 0.959
Instruction2Vec | 0595 0726 0.654 | 0512 0.633 0566 | 0.932 0898 0914 | 0.948 0946  0.947
word2vec 0.147 0535 0230 | 0435 0595 0503 | 0.802 0420 0776 | 0.889 0863  0.876
Asm2Vec 0482 0557 0517 | 0410 0320 0359 | 0.928 0894 0911 | 0933 0964 0.948
DeepVSA 0.961 0738 0835 | 0589 0580 0584 | 0.974 0917 0944 | 0.943 0976  0.959
PALMTREE-M 0.845 0732 0784 | 0572 0625 0597 | 0.963 0909 0935 | 0.956 0969  0.962
PALMTREE-MC | 0.910 0755  0.825 | 0.758 0.675 0.714 | 0.965 0.897 0929 | 0.958 0.988 0.972
PALMTREE 0912 0.805 0.855 | 0755 0678 0.714 | 0.974 0.929 0.950 | 0.959 0983 0.971

PALMTREE outperforms the other instruction embedding ap-
proaches in each extrinsic evaluation. Also, PALMTREE can speed
up training and further improve downstream models by provid-
ing high-quality instruction embeddings. In contrast, word2vec
and Instruction2Vec perform poorly in all the three downstream
tasks, showing that the poor quality of an instruction embedding
will adversely affect the overall performance of downstream ap-
plications.

4.5 Runtime Efficiency

In this section, we conduct an experiment to evaluate runtime
efficiencies of PALMTREE and baseline approaches. First, we test the
runtime efficiencies of different instruction embedding approaches.
Second, we test the runtime efficiency of PALMTREE when having
different embedding sizes. We use 64, 128, 256, and 512 as embedding
sizes, while 128 is the default setting. In the transformer encoder
of PALMTREE, the width of each feed-forward hidden layer is fixed
and related to the size of the final output layer, which is 4 times of
the embedding size [19]. We use Coreutils-8. 30 as the dataset. It
includes 107 binaries and 1,006,169 instructions. We disassembled
the binaries with Binary Ninja and feed them into the baseline
models. Due to the limitation of GPU memory, we treated 5,000
instructions as a batch.

Table 7: Efficiency of PALMTREE and baselines

embedding size encoding time throughput (#ins/sec)
Instruction2vec 6.684 150,538
word2vec 0.421 2,386,881
Asm2Vec 17.250 58,328
PALMTREE-64 41.682 24,138
PALMTREE-128 70.202 14,332
PALMTREE-256 135.233 7,440
PALMTREE-512 253.355 3,971

Table 7 shows the encoding time and throughput of different
models when encoding the 107 binaries in Coreutils-8.30. From
the results, we can make several observations. First, PALMTREE is
much slower than previous embedding approaches such as word2vec
and Asm2Vec. This is expected, since PALMTREE has a deep trans-
former network. However, with the acceleration of the GPU, PALMTREE
can finish encoding the 107 binaries in about 70 seconds, which

is acceptable. Furthermore, as an instruction level embedding ap-
proach, PALMTREE can have an embedding lookup table as well to
store some frequently used embeddings. This lookup table works as
fast as word2vec and can further boost the efficiency of PALMTREE.
Last but not least, from the results we observed that it would be 1.7
to 1.9 times slower when doubling the embedding size.

4.6 Hyperparameter Selection

To further study the influences of different hyperparameter configu-
rations of PALMTREE, we trained PALMTREE with different embedding
sizes (64, 128, 256, and 512) and different context window sizes (1,
2, 3, and 4). We also evaluated different output layer configurations
when generating instruction embeddings. Interested readers are
referred to the Appendix for more details.

5 RELATED WORK

Representation Learning in NLP. Over the past several years, rep-
resentation learning techniques have made significant impacts in
NLP domain. Neural Network Language Model (NNLM) [4] is the
first work that used neural networks to model natural language
and learn distributed representations for words. In 2013, Mikolov et
al. introduced word2vec and proposed Skip-gram and Continuous
Bag-Of-Words (CBOW) models [28]. The limitation of word2vec
is that its embedding is frozen once trained, while words might
have different meanings in different contexts. To address this issue,
Peters et al. introduced ELMo [32], which is a deep bidirectional lan-
guage model. In this model, word embeddings are generated from
the entire input sentence, which means that the embeddings can be
dynamically adjusted according to different contextual information.

In 2017, Vaswani et al. introduced transformer [39] to replace
the RNN networks (e.g., LSTM). Devlin et al. proposed BERT [9] in
2019, which is a bi-directional transformer encoder. They designed
the transformer network using a full connected architecture, so that
the model can leverage both forward and backward information.
Clark et al. [6] proposed ELECTRA and further improved BERT
by using a more sample-efficient pre-training task called Replaced
Token Detection. This task is an adversarial learning process [13].

Representation Learning for Instructions. Programming languages,
including low level assembly instructions, have clear grammar and
syntax, thus can be treated as natural language and be processed
by NLP models.

Instruction representation plays a significant role in binary anal-
ysis tasks. Many techniques have been proposed in previous studies.
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Instruction2Vec [41] is a manually designed instruction represen-
tation approach. InnerEye [43] uses Skip-gram, which is one of
the two models of word2vec [28], to encode instructions for code
similarity search. Each instruction is treated as a word while a code
snippet as a document. Massarelli et al. [26] introduced an approach
for function-level representation learning, which also leveraged
word2vec to generate instruction embeddings. DeepBindiff [11]
also used word2vec to generate representations for instructions
with the purpose of matching basic blocks in different binaries.
Unlike InnerEye, they used word2vec to learn token embeddings
and generate instruction embeddings by concatenating vectors of
opcode and operands.

Although word2vec has been widely used in instruction repre-
sentation learning. It has the following shortcommings: first, using
word2vec at the instruction level embedding will lose internal in-
formation of instructions; on the other hand, using word2vec at the
token level may fail to capture instruction level semantics. Second,
the model has to handle the OOV problem. InnerEye [43] and Deep-
Bindiff [11] provided good practices by applying normalization.
However, normalization also results in losing some important infor-
mation. Asm2Vec [10] generates embeddings for instructions and
functions simultaneously by using the PV-DM model [20]. Unlike
previous word2vec based approaches, Asm2Vec exploits a token
level language model for training and did not have the problem
of breaking the boundaries of instructions, which is a problem
of token level word2vec models. Coda [12] is a neural program
decompiler based on a Tree-LSTM autoencoder network. It is an
end-to-end deep learning model which was specifically designed
for decompilation. It cannot generate generic representations for
instructions, thus cannot meet our goals.

Representation Learning for Programming Languages. NLP tech-
niques are also widely used to learn representations for program-
ming languages. Harer et al. [15] used word2vec to generate token
embeddings of C/C++ programs for vulnerability prediction. The
generated embeddings are fed into a TextCNN network for classi-
fication. Li et al. [22] introduced a bug detection technique using
word2vec to learn token (node) embedding from Abstract Syntax
Tree (AST). Ben-Nun et al. [3] introduced a new representation
learning approach for LLVM IR in 2018. They generated conteXtual
Flow Graph (XFG) for this IR, which leverages both data depen-
dency and control flow. Karampatsis et al. [17] proposed a new
method to reduce vocabulary size of huge source code dataset.
They introduced word splitting, subword splitting with Byte Pair
Encoding (BPE) [36] cache, and dynamic adaptation to solve the
OOV problem in source code embedding.

6 DISCUSSION

In this paper, we focus on training an assembly language model
for one instruction set or one architecture. We particularly eval-
uated x86. The technique described here can be applied to other
instruction sets as well, such as ARM and MIPS.

However, in this paper, we do not intend to learn a language
model across multiple CPU architectures. Cross-architecture means
that semantically similar instructions from different architectures
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can be mapped to near regions in the embedded space. Cross-
architecture assembly language model can be very useful for cross-
architecture vulnerability/bug search. We leave it as a future work.

It is worth noting that instead of feeding a pair of instructions
into PALMTREE, we can also feed code segment pairs or even ba-
sic block and function pairs, which may better capture long-term
relations between instructions (currently we use sampling in the
context window and data flow graph to capture long-term rela-
tions) and has a potential to further improve the performance of
PALMTREE. We leave this as a future work.

7 CONCLUSION

In this paper, we have summarized the unsolved problems and
existing challenges in instruction representation learning. To solve
the existing problems and capture the underlying characteristics
of instruction, we have proposed a pre-trained assembly language
model called PALMTREE for generating general-purpose instruction
embeddings.

PALMTREE can be pre-trained by performing self-supervised train-
ing on large-scale unlabeled binary corpora. PALMTREE is based on
the BERT model but pre-trained with newly designed training tasks
exploiting the inherent characteristics of assembly language. More
specifically, we have used the following three pre-training tasks to
train PALMTREE: MLM (Masked Language Model), CWP (Context
Window Prediction), and DUP (Def-Use Prediction). We have de-
signed a set of intrinsic and extrinsic evaluations to systematically
evaluate PALMTREE and other instruction embedding models. Ex-
perimental results show that PALMTREE has the best performance
in intrinsic evaluations compared with the existing models. In ex-
trinsic evaluations that involve several downstream applications,
PALMTREE outperforms all the baseline models and also significantly
improves downstream applications’ performance. We conclude that
PALMTREE can effectively generate high-quality instruction embed-
ding which is helpful for different downstream binary analysis
tasks.
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OPCODE AND OPERAND TYPES FOR
OUTLIER DETECTION

Table 8 shows how we categorize different opcodes by referring
to [29]. Table 9 shows how we categorize different operand types.
The first column shows the type of operands combination. “none”
means the instruction has no operand, such as retn. “tri” means the
instruction has three operands. The other ones are instructions that
have two operands. For instance, “reg-reg” means both operands
are registers. The type of each operand has been listed in the second
and third columns.

B

MORE FIGURES IN EVALUATIONS

Figure 15 and Figure 16 show the results of EKLAVYA in the Func-
tion Type Signature Inference task. Figure 15 is the loss value curves
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Table 8: Types of Opcodes

Types Opcodes
Data Movement mov, push, pop, cwtl, cltq, cqto,
cqtd

Unary Operations
Binary Operations

inc, dec, neg, not
lea, leaq, add, sub,imul, xor, or,

and
Shift Operations sal, sar, shr, shl
Special Arithmetic imulq, mulq, idivq, divq
Operations
Comparison and Test ~ cmp, test

Instructions

Conditional Set sete, setz, setne, setnz, sets,
Instructions setns, setg, setnle,setge, setnl,

setl, setnge,setle, setng, seta,
setnbe, setae, setnb, setbe, setna
jmp, je, jz, jne, jnz, js, jns, jg,
jnle, jge, jnl, jl jnge, jle, jng, ja,
jnbe, jae, jnb, jb, jnae, jbe, jna

Jump Instructions

Conditional Move cmove, cmovz, cmovne,
Instructions cmovenz, Cmovs, Cmovns,
cmovg, cmovnle, cmovge,

cmovnl, cmovnge, cmovle,

cmovng, cmova, cmovnbe,

cmovae, cmovnb, cmovb,

cmovnae, cmovbe, cmovna

Procedure Call
Instructions
String Instructions

call, leave, ret, retn

cmps, cmpsb, cmpsl, cmpsw,
lods, lodsb, lodsl, lodsw,mov,
movsb, movsl, movsw

Floating Point fabs, fadd, faddp, fchs, fdiv,
Arithmetic fdivp, fdivr, fdivrp, fiadd, fidivr,
fimul, fisub, fisubr, fmul, fmulp,
fprem, fpremlfrndint, fscale,
fsqrt, fsub,fsubp, fsubr, fsubrp,
fxtract
one-hot
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Figure 15: Loss value during training

of EKLAVYA during training. Figure 16 shows the accuracy curves
during the training.
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Table 9: Types of Operands

Type Operand 1 Operand 2 # of Operands
none - - 0
addr address - 1
memor
ref y - 1
reference
reg-reg register register 2
reg-addr register register 2
. constant
reg-cnst register 2
value
. memory
reg-ref register 2
reference
memory constant
ref-cnst 2
reference value
memor .
ref-reg Y register 2
reference
tri - - 3
1.0 o
0.8 -
L. 0.6
2
]
2 04 4 one-hot
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Figure 16: Accuracy during training

C HYPERPARAMETERS
C.1 Embedding sizes

In this experiment, we evaluate the performance of PALMTREE with
different embedding sizes. Here we use 64, 128, 256, and 512 as
instruction sizes, which is the same as the previous experiment. We
test these 4 models on our intrinsic evaluation tasks.

Table 10 shows all of the results of intrinsic evaluation when
having different embedding sizes. From the results, we can observe
that there is a clear trend that the performance becomes better
when increasing the embedding size. The largest embedding size
has the best performance in all three metrics. However, considering
efficiency, we recommend having a suitable embedding size config-
uration according to the hardware capacities. For example, we only
have a single GPU (GTX 2080Ti) in our server, thus we chose 128
as the embedding size.

C.2 Output layer configurations

In this experiment, we evaluate the performance of PALMTREE with
different output layer configurations. It means that we select a dif-
ferent layer of the transformer model as the output of PALMTREE.
By default, PALMTREE uses the second-last layer as the output layer.
And we evaluate five different settings, which are the last layer, the
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Table 10: Embedding sizes

. opcode outlier operand outlier basicblock
Embedding . . .
Sizes detection detecion sim search
Avg.  Stdev.  Avg. Stdev. AUC
64 0.836  0.0588 0.940 0.0387 0.917
128 0.871  0.0440 0.944  0.0343 0.922
256 0.848  0.0560 0.954 0.0343 0.929
512 0.878 0.0525 0.957  0.0335 0.929

second-last layer, the third-last layer, and the fourth-last layer, on
our intrinsic evaluation tasks. The embedding size in this experi-
ment is set as 128.

Table 11: Output layer configurations

opcode outlier operand outlier basicblock
Layers detection detecion sim search

Avg.  Stdev.  Avg. Stdev. AUC
last 0.862  0.0460  0.982 0.0140 0.915
2nd-last  0.871  0.0440 0.944 0.0343 0.922
3rd-last 0.868  0.0391 0.956 0.0287 0.918
4th-last 0.866 0.0395 0.961 0.0248 0.913

Table 11 shows all of the results of the intrinsic metrics when
having a different layer as the output layer. There is no obvious
advantage to choose any layer as the output layer. However, the
second-last layer has the best results in opcode outlier detection

3251

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

and basicblock similarity search. Thus we chose the second-last
layer as the output layer in this paper.

C.3 Context window for CWP

Table 12: Context Window Sizes

' opco.de oper:.and bb sim EKLAVYA
Sizes outlier outlier search
Avg.  Stdev. Avg. Stdev.  AUC Avg.  Stdewv.
1 0.864 0.0467 0.962 0.0168  0.923 0.930  0.0548
2 0.871 0.0440 0.944 0.0343 0.922 0.945 0.0476
3 0.849 0.0444 0.873 0.0514 0.916 0.908  0.0633
4 0.864 0.0440 0.957 0.0238 0.914 0.916  0.0548

In this experiment, we evaluate the performance of PALMTREE
with different context window sizes in the CWP task. For instance,
if the context window size is 2, it means that we consider n—2,n—1,
n+ 1 and n + 2 as contextual instruction when given instruction
n as a sample. We evaluate 1, 2, 3, and 4 as four different context
window sizes in this experiment. Table 12 shows all of the results of
the intrinsic metrics when training PALMTREE with different context
window configurations. We can observe that context window size
1 and 2 have similar performance on the three intrinsic evaluation
metrics, but context window size 2 has the best performance on
the downstream task EKLAVYA. Further increasing the context
window size to 3 and 4 will lead to worse results. Based on these
results, we choose the context window size to be 2.
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