Session 8A: Machine Learning #2

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

MAB-MALWARE: A Reinforcement Learning Framework for
Blackbox Generation of Adversarial Malware

Wei Song
wsong008@ucr.edu
University of California, Riverside
Riverside, USA

Xuezixiang Li

x1i287 @ucr.edu
University of California, Riverside

Riverside, USA

Sadia Afroz
sadia.afroz@avast.com
sadia@icsi.berkeley.edu
Avast, ICSI
San Francisco, USA

Deepali Garg Dmitry Kuznetsov Heng Yin
deepali.garg@avast.com kuznetsov@avast.com heng@cs.ucr.edu
Avast Avast University of California, Riverside
Santa Clara, USA Prague, Czech Riverside, USA
ABSTRACT KEYWORDS

Modern commercial antivirus systems increasingly rely on ma-
chine learning (ML) to keep up with the rampant inflation of new
malware. However, it is well-known that machine learning mod-
els are vulnerable to adversarial examples (AEs). Previous works
have shown that ML malware classifiers are fragile to the white-
box adversarial attacks. However, ML models used in commercial
antivirus (AV) products are usually not available to attackers and
only return hard classification labels. Therefore, it is more practical
to evaluate the robustness of ML models and real-world AVs in a
pure black-box manner. We propose a black-box Reinforcement
Learning (RL) based framework to generate AEs for PE malware
classifiers and AV engines. It regards the adversarial attack problem
as a multi-armed bandit problem, which finds an optimal balance
between exploiting the successful patterns and exploring more
varieties. Compared to other frameworks, our improvements lie
in three points: 1) limiting the exploration space by modeling the
generation process as a stateless process to avoid combination ex-
plosions, 2) reusing the successful payload in modeling; and 3)
minimizing the changes on AE samples to correctly assign the re-
wards in RL learning (which also helps identify the root cause of
evasions). As a result, our framework has much higher evasion
rates than other off-the-shelf frameworks. Results show it has over
74%-97% evasion rate for two state-of-the-art ML detectors and
over 32%-48% evasion rate for commercial AVs in a pure black-box
setting. We also demonstrate that the transferability of adversarial
attacks among ML-based classifiers is higher than that between
ML-based classifiers and commercial AVs.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation.

() @

This work is licensed under a Creative Commons Attribution International 4.0
License.

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3497768

990

malware classification, adversarial learning, reinforcement learning

ACM Reference Format:

Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov,
and Heng Yin. 2022. MAB-MALWARE: A Reinforcement Learning Framework
for Blackbox Generation of Adversarial Malware. In Proceedings of the 2022
ACM Asia Conference on Computer and Communications Security (ASIA
CCS °22), May 30-June 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3488932.3497768

1 INTRODUCTION

Malware attacks continue to be one of the most pressing security
issues users face today. Recent research showed that during the
first nine months of 2019, at least 7.2 billion malware attacks and
151.9 million ransomware attacks have been reported.! The attack
rate hit a new high with the COVID-19 pandemic.? The traditional
signature-based methods cannot keep up with this rampant in-
flation of novel malware. Hence commercial antivirus companies
started using machine learning (7, 54]. Machine learning-based de-
tectors are scalable and efficient at protecting against the huge influx
of malware. Since the first paper in 2001 on detecting malware using
machine learning [49], there has been an explosion of academic re-
search papers on predicting malicious content using machine learn-
ing. Many of them flaunting high accuracy and being able to detect
new malware unseen during training [5, 14, 43, 44, 48]. However,
research has also demonstrated that machine-learning-based detec-
tors can be easily evaded by making even trivial changes to mal-
ware [3, 4, 10, 13, 18-20, 22-24, 28, 30, 35, 37, 41, 45, 46, 52, 56, 57].
Even commercial antivirus systems, such as Cylance, have been
shown to be susceptible to trivial adversarial attacks [6].

Since 2014, there have been more than 1400 papers on adversarial
attacks and defense3. However, these works mainly focus on the
image domain. The adversarial attacks on malware samples are
different from attacks in the image domain. For images, adversaries
can alter the value of any pixel, as long as the changes are bounded
with a L,-norm. But for malware samples, a one-byte change can
break the format of a valid PE, or break the original malicious

Uhttps://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-
attacks-2019/

Zhttps://labs.bitdefender.com/2020/04/coronavirus-themed- threat-reports-havent-
flattened- the-curve/
3https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-2019/
https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-2019/
https://labs.bitdefender.com/2020/04/coronavirus-themed-threat-reports-havent-flattened-the-curve/
https://labs.bitdefender.com/2020/04/coronavirus-themed-threat-reports-havent-flattened-the-curve/
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://creativecommons.org/licenses/by/4.0/

Session 8A: Machine Learning #2

functionality. This is why adversaries usually do not directly modify
the raw bytes of the PE file. Instead, they construct a set of actions.
Each action can transform the malware sample without breaking
the original functionality. For example, the action could be adding a
new redundant section (adding a new entry in the section table and
appending the section content at the end). Then, the adversarial
example generation problem is transformed into finding correct
actions and corresponding contents that lead to misclassification.

Adversarial attacks against static malware classifiers are not
new. Researchers have proposed a variety of techniques to gener-
ate evasive samples (the terms “evasive samples” and “adversarial
examples” are used exchangeably in this paper), including genetic
programming [17, 56], Monte Carlo tree search [42], and deep Q-
learning [4]. Although some of these attempts [42, 56] are dealing
with PDF malware and source code authorship respectively, the
general algorithms can be applied to PE malware.

Although these techniques have been demonstrated to be ef-
fective, we have identified several limitations. First, the existing
techniques model the AE generation in a stateful manner. However,
it is hard to train a stateful model given that the search space is
huge. Therefore, we chose a stateless modeling approach, which
can significantly reduce the learning difficulty and result in more
productive AE generation. Second, most of the existing techniques
only learn a decision-making policy that decides what action to
take in the next step and randomly picks content if needed. We
found that contents are as important as actions. If the content as-
sociated with certain action has proved to be useful in generating
one AE, the same action-content pair will likely be useful for some
other samples as well. Third, when an AE is successfully generated,
these techniques will assign rewards to all the actions involved.
In our evaluation, we observe that when AEs are generated, only
a small number of actions applied to these AE are essential. The
rest are redundant and can be removed. Assigning rewards to these
redundant actions will confuse the learning process.

Based on these insights, we propose a reinforcement learning
framework, called MAB-MALWARE to generate AEs for PE malware.
Its name comes from our modeling of the AE generation problem
as a classic multi-armed bandit (MAB) problem.

In summary, the contributions of this paper are as follows:

e We examine the existing algorithms in blackbox AE gen-
eration and provide key insights for stateful vs. stateless
modeling, content-aware vs. content-agnostic modeling, and
redundant vs. essential actions.

e We argue that a stateless and content-aware modeling is
more suitable for generating adversarial PE malware, and an
action minimization process is essential.

e To meet these design choices, we propose and implement
a novel MAB-based reinforcement learning framework for
generating adversarial PE malware.

e We conduct an extensive evaluation on two popular machine
learning models and three commercial AV engines. MAB-
MALWARE outperforms the existing blackbox AE generation
algorithms by large margins.

991

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

e Based on our action minimization, we further look into the
root cause of these evasions. Our experiment results sug-
gest the static classifiers in the commercial AV engines are
vulnerable to trivial changes to malware samples.

To facilitate the follow-up research on this topic, we released the
source code of our framework in a GitHub repository*.

2 PROBLEM

2.1 Threat Model

We follow the study by Carlini et al. [8] to describe our threat model,
from three aspects: adversarial goal, adversarial capabilities, and
adversarial knowledge.

Adversarial Goal. The adversary’s goal is to manipulate malware
samples to evade the detection of static PE malware classifiers.
Other types of malware like PDF malware or Android malware are
not within the scope of this study. This is an untargeted attack be-
cause we only consider a binary classification (benign or malicious)
not specific malware families in this classification task and we are
only interested in causing the malicious samples to be classified as
benign.

Adversarial Capabilities. In this work, we assume that the ad-
versary does not have access to the training phase of the malware
classifiers. For instance, the adversary cannot inject poisonous data
into the training dataset.

Also, the adversary cannot arbitrarily change the input data. In
most scenarios of adversarial attacks, such as image recognition,
the adversary is required to make only “small” changes to the
original sample to keep the manipulation visually imperceptible.
However, when attacking malware classification, the restriction is
not on the number or size of changes, but on the preservation of
malicious functionality. If “small” changes on a malware sample
indeed confuse a malware classifier but prevent the malware from
acting maliciously, this manipulation is not considered successful.

Adversarial Knowledge. Based on the knowledge an adversary
can obtain, an attack can be divided into two types: 1) whitebox
attacks where the adversary has unlimited access to the model; and
2) blackbox attacks where the adversary has no knowledge about
the model and can obtain the classification results only through a
limited number of attempts. A classification result can be a score
or simply a label.

In this work, we consider an adversary with only blackbox access.
The adversary does not know anything about the internals of the
deployed classifiers, can perform a limited number of attempts to
the classifiers, and can observe the classifiers’ actions when the
samples are considered malicious.

2.2 Problem Definition

In this paper, we focus on three state-of-the-art machine learning
classifiers and the static classifiers of 3 top commercial antivirus
products. We aim to automatically generate adversarial examples
for malware classifiers and explain the root cause of the evasions.
The problem can be divided into two sub-problems: adversarial
example generation and feature interpretation.

“https://github.com/bitsecurerlab/MAB-malware.git

https://github.com/bitsecurerlab/MAB-malware.git

Session 8A: Machine Learning #2

We aim to manipulate a malware sample such that malware
classifiers misclassify it as benign, and do not break its malicious
functionalities. For whitebox attacks in the image domain, changes
to original images are bounded with Ly and Lo, norms. It ensures
that the pixel changes are imperceptible to humans. However, in
the malware classification domain, as long as the binary behaviors
remain the same, normal users are unlikely to notice the differ-
ences between the original sample and the modified one. That is
why previous blackbox attacks [4, 11, 21] on malware do not try to
minimize changes when generating AEs. However, we find that the
minimal change requirement is still crucial for three main reasons:
1) it reveals which actions and the corresponding payloads are es-
sential to generate evasive samples that can be applied to other
samples to create successfully evasive samples; 2) it unveils which
feature changes caused the evasion to ensure that the classifier
does not rely on superficial features; and 3) it reduces the chance of
creating broken binaries. In the blackbox setting, instead of mini-
mizing added noises in feature space, we minimize action sequences
applied to generate AEs. It includes removing redundant actions
and replacing actions that cause large changes to the features used
for detection.

Let X be a malware dataset, f be a malware classifier that
maps a sample x € X to a classification label y € {0, 1} (0 rep-
resents benign, 1 represents malicious). We implement an action set
A ={ay,az, ... an} that can be used to perturb malware samples.
We define an objective function for adversarial example generation
in (1). An adversarial example x” = #(x) is generated by applying
a transformation function ¢, which is a sequence of actions sam-
pled from set A. L(f(t(x)), §) measures the difference between the
predicted label of f(¢(x)) and benign label §. The transformation
function ¢ subjects to the constraint that #(x) does not change the
functionality of x, i.e. the functionality difference 5(x, t(x)) before
and after transformation equals to 0.

arg;nin L(f(t(x)), 7).
s.t. 8(x, t(x))=0
y+y

1)

3 MOTIVATION

In this section, we first discuss the existing reinforcement learning-
based and genetic programming-based approaches on AE gener-
ation and their limitations, and then we present our insights that
motivate our MAB-based approach. More related works can be
found in Section 7.

3.1 Existing Approaches

Deep Q-learning. Anderson et al. [4] propose to apply deep rein-
forcement learning (RL) to generate AE for PE malware to bypass
machine learning models. They first define a set of actions (file mu-
tations), including changing PE headers, appending overlay bytes,
packing, and unpacking. Then the agent selects the next action
based on a policy and an environmental state. When an evasive
sample is generated, all applied actions (including early actions that
produce no immediate reward) get promoted for a given state.

992

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Monte Carlo Tree Search. Quiring et al. [42] propose a Monte
Carlo Tree Search (MCTS) based approach to mislead the classifica-
tion of source code authorship. They define a set of actions (code
transformation) for changing stylistic patterns. Then they create a
Monte Carlo search tree, in which each node represents a variant
of the code and each edge represents an action. Then the task of
AE generation is converted to a path search problem. The goal is to
find a path on the tree that leads to misclassification.

Genetic Programming. Demetrio et al. [17] propose a genetic
programming-based approach to generate AEs of PE malware in a
black-box attack manner. It formalizes the problem as a constrained
minimization problem, to trade-off between the probability of eva-
sion and injected payload size. The fitness function is defined as
the sum of confidence scores and injected payload size. In each
iteration, it selects variants with the lowest fitness score. Another
paper from Xu et al. [56] also uses a genetic programming-based
approach to generate adversarial PDF malware.

3.2 Our Insights

While these existing techniques have demonstrated their effec-
tiveness more or less, we observe several key insights, which can
motivate us to develop a better technique for AE generation.

Stateful vs. Stateless Modeling,. Existing reinforcement learning
techniques [4, 17, 42, 56] model the AE generation problem in a
stateful way. They try to build a search tree, each node representing
a state. The original sample is the root state. Each state has multiple
actions to choose from. After applying one action, the sample enters
the next state. Existing works attempt to learn a policy to choose
the next action in different states. For different states, the action
selection strategy is different. However, as the search tree grows, the
total number of states increases exponentially. It makes the training
of action selection strategies difficult or sometimes impossible.

Our first insight is that we don’t need to learn a stateful model
for the malware AE generation problem. A model or AV engine
classifies a sample as malicious may simply because it matches a
specific signature, such as a section name or byte sequence. Before
we find the correct action to change that signature, no matter how
many irrelevant actions are applied, the sample will be detected
for the same reason. Therefore, we don’t need to construct the
search tree to model different states. It makes the learning task
unnecessarily difficult. Instead, we should keep the sample in only
one state: non-evasive. Then our job becomes much easier: how to
choose the correct action to jump from the same non-evasive state
to the desired evasive state. We call it stateless modeling because
there is only one state before evasion.

We propose to utilize a classic reinforcement learning model,
multi-armed bandit (MAB) [34] to solve the malware AE generation
problem. The MAB problem is formally equivalent to a one-state
Markov decision process. It has just one state. From that state, it
selects candidate actions to apply. Through these selections, it grad-
ually learns the reward probability of each action. It maximizes
the total reward by finding the optimal tradeoff between explo-
ration (learning the reward probability of unfamiliar actions) and
exploitation (applying the action with the highest average reward).

Content Modeling. Many actions used for manipulating PE need
to be associated with some contents. For instance, when adding a

Session 8A: Machine Learning #2

new section, we need to specify what content to be filled in that
section. When renaming a section, we need to provide a new section
name. Our second insight is that these contents are as important as
the actions. If content associated with one action has proved to be
useful in generating one AE, the same action-content pair is likely
to be useful for other samples.

Most existing works do not take contents into account. They
only learn a decision-making policy to decide what action to take
in the next step and take random content if required. For example,
if the next action to take is “Section Add” according to the policy,
they will fill the new section with random content. Our MAB-based
framework treats an < action, content > tuple as an integral unit (a
slot machine in MAB) for modeling. If the new content is discovered
to be useful to generate an adversarial example, it will be saved to
be reused for other samples.

Precise Reward Assignment. Reward assignment is essential to
all the existing AE generation techniques described above. When
an AE is successfully generated, a positive reward is assigned to
the corresponding sequence of actions. However, not all actions are
essential to the generation of this AE. According to our evaluation
in Section 5.4, in most cases, only one or two actions are essential.
Therefore, assigning rewards to all the actions involved in an AE
generation will lead to a less accurate reinforcement learning model.
Hence, our third insight is that we should precisely assign rewards
only to the essential actions.

4 METHODOLOGY

4.1 Adversarial Attack as a Multi-armed Bandit
Problem

The Multi-Armed Bandit problem [34] is a classic reinforcement
learning problem that embodies the exploration-exploitation trade-
off dilemma. It is about how to maximize the total reward by allocat-
ing limited resources to multiple competing choices. The property
of each choice is gradually learned in the process of resource allo-
cation.

Slot machines in a typical casino are also called one-armed ban-
dits [50] because the early machines have large mechanical levers
attached to the sides, and they can empty the player’s pockets like a
thief. When the lever of the machine is pulled, its reward probability
is 0. Therefore, a multi-armed bandit can be viewed as multiple slot
machines with different reward probabilities. The reward probabili-
ties are unknown to players. A player can observe each machine’s
reward probability by pulling it. However, the player has limited
money. The goal is to maximize the sum of the rewards obtained
through a series of lever pulls. The multi-armed bandit can be
viewed as a tuple of < M, R >. M is a set of slot machines. R
is a set of reward distributions {61, ..., 0k}, each distribution is
associated a machine.

In the malware domain, we have many actions that can change
the features of a PE binary without altering its functionality. Many
actions require payload content to work. For example, adding a new
section requires benign content as the content of the new section.
Content plays a vital role in attacking machine learning models,
because the added content can largely change the byte entropy
of the original malware sample in a certain direction. Adversarial
attacks can be viewed as a problem of how to choose a serial of

993

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

action and content pairs to maximize the probability of generating
adversarial examples.

We treat the tuple < action, content > as a slot machine M.
When M is selected, it will apply action to the target binary file
using the payload content. In our framework, we have two kinds
of machines: generic machines and specific machines.

Generic Machine. A generic machine M. ;¢tion,rand> iS @ ma-
chine, when selected, applies action to the target malware sample,
with a random content extracted from benign binary files. For ex-
ample, the OA (overlay Append) generic machine M. o4, rand>
extracts a random section content from a random benign binary
and appends the content to the target malware sample as overlay
data. The reason for creating a generic machines is that at the be-
ginning of the attack, we do not know which content is effective.
By choosing a generic machine, we can explore different benign
content for a certain action.

Specific Machine. A specific machine M« 4¢si0n, x> is a machine,
when selected, applies action to the target malware sample, with
specific content X. After we generate an adversarial example x” by
pulling a generic machine M 4ction, rand>- if M machine is essen-
tial (see details in Section 4.3), we will create a specific machine
Mcaction,x>- The content X is the specific content used in gener-
ating x”. When M« gcrion, x> is selected by other malware samples,
the specific content X is exploited to generate more adversarial
examples.

The workflow of our framework MAB-MALWARE is shown in Fig-
ure 1. It consists of two main modules: the Binary Rewriter and the
Action Minimizer. The Binary Rewriter utilizes Thompson sampling
to select machines from the machine set M and rewrites original
malware sample x to generate adversarial example x’. The Action
Minimizer removes redundant machines to generate adversarial
samples x/ . with minimal feature changes. Redundant machines
are machines selected by the Rewriter in the generation of adver-
sarial example x’, but later we find that without them, the rest
machines can still generate an adversarial example. That is because,
at the beginning of the attack, the property of each machine is
unclear. Rewriter needs to select these redundant machines to infer
their reward probability. The rest necessary machines are called
essential machines.

Our problem can be viewed as a tuple of < M, R >. M is a set of
machines (including generic machines and specific machines), each
machine M; refers to pulling one slot machine < action;, content; >.
R is a set of reward distributions {6, . . ., 0k} (suppose we have
K slot machines), each distribution is associated an action. The
reward distribution 6; of each machine is unknown. We have a
limited number of attempts to pull these machines. The goal is to
maximize the reward through a series of pulls.

Thompson Sampling. In our task, we face a delayed feedback
problem. When evaluating the static modules of commercial an-
tivirus systems, we need to copy the generated sample to the virtual
machine with antivirus and wait for the scanning result. This pro-
cess takes seconds, even minutes for certain AVs. If we adopt a
deterministic algorithm, such as upper confidence bounds, it will
always select the one with the highest values before the result re-
turns. It causes inefficient trials because of outdated information.
To address this issue, we use Thompson sampling algorithm [55],

Session 8A: Machine Learning #2

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Reward Update ‘

Binary Rewriter

Malware Generic Generic Generic Generic
Samples Machine Machine Machine Machine
Mx<sA, rand> M<0A, rand> Mx<sP, rand> M=8c, rand>

Specific Evasive Action Minimized | Functionality

Machine Minimizer Evasive Verification
Samples

Mz<sa, x> Samples

ry

Insert L

Figure 1: Workflow

which is more robust than deterministic algorithms in the delayed
feedback environment [12].

We assume the reward follows a beta distribution [1] specific
to that machine. The beta distribution is a continuous probability
distribution parameterized by two positive parameters, denoted by
a and f, i.e. M ~ Beta(a,). @ and f correspond to the counts of
success or fail respectively.

At each action selection iteration, for each machine, we sample a
value from its Beta(6; «, f§) distribution and select the machine with
the highest value as the next machine. When the « and f§ values
of a machine are small, the uncertainty of M is high. Even if this
average reward is lower than other machines, it still has a relatively
high possibility to get a large value. In this way, new machines are
more likely to be selected for exploration. After several trials, the
a and f value of that machine becom large, and the uncertainty
decreases. In this way, machines with high average rewards are
selected for exploitation.

Reward Propagation. When a machine is created, we set a=1, f=1
for each machine. For every machine that is selected by Rewriter
but fails to generate the adversarial example, we increase its f§ by
1. When an adversarial example is generated and minimized, for
every essential machine, we increase the « by 1. If the machine
is a generic machine, we also create new specific machines using
its specific content (with a=1, f=1). If an essential machine is a
specific machine, we also increase the « of its corresponding generic
machine that it derives from, to encourage the exploration for
certain types of actions.

4.2 Binary Rewriter

4.2.1 Action Set and Features. We implemented 13 actions in Ta-
ble 1. Each action manipulates a set of features that a classifier may
use to detect malware (shown in Table 2).

Macro-actions. We reimplemented actions proposed by Anderson
et al. [4] using the pefile library and fix many corner cases that
may break the functionality. We also adopt a code randomization
action (CR) from Pappas et al. [39]. It is a defense method originally
proposed to prevent Return Oriented Programming (ROP) attacks.

Micro-actions. If action a affects k features {fi, f2, ... fi} of the
malware sample, then an action that affects only a subset of these
features is the micro-action of a. We have implemented 5 micro-
actions: OA1, SP1, SA1, SR1, and CP1. They are similar to the corre-
sponding macro-actions but with minimized feature changes. Take
SA1 as an example. Similar to SA, SA1 also adds a new section
entry in the header, but it only adds a 1-byte section. SA adds a
lot of benign content, and greatly changes the byte entropy of the
original binary, while SA1 does not. Therefore, SA affects features

994

{F1, F3, F10}, SA1 only affect features {F;, F3}. By looking up Ta-
ble 2, you can see that SA’s micro-actions also include OA1 and
OA, affecting features {F;} and {Fj, F10} respectively. OA is also
considered a macro-action during the attack. So, we can see that
micro-action is a relative concept.

Algorithm 1 Adversarial Attack

Input: malware sample set X
Output: adversarial example set X,
1: initialize(M)

2 Xq <]

3: for all x € X do

& list M]

5. for all attempt_idx < 1to N do
6 M « max(betaSampling(M))
7 x" « apply(x, M)
8 list_M.add(M)
9 if isEvasive(x’) then

10: X7 > list_Mmin < minimize(x, list_M)
11: Xg-add(x], ;)

12: for all M’ € list My,in, do

13: incAlpha(M")

14: if isGeneric(M’) then

15: M} « createSpecificMachine(M”)
16: M.add(Mg)

17: else

18: M; « getParentGeneric(M’)

19: incAlpha(M ;)

20: end if

21 end for

22 break

23: else

24: incBeta(M)

25: end if

26: end for

27: end for

28: return X,

4.2.2 Workflow of Binary Rewriter. Algorithm 1 summarizes the
workflow of Binary Rewriter. For a set of malware samples X, our
goal is to generate a set of adversarial samples X, . First, we initialize
M by creating 8 generic machines, and each machine’s « value and
P value are set to 1. To select the next machine, for each machine, we
sample a value from its f distribution and select the machine with
the highest value. Then we apply the corresponding machine to x.
We apply a serial of machines iteratively until we get an evasive

Session 8A: Machine Learning #2 ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Table 1: Action Set.

Type | Abbr | Name Description
OA Overlay Append Appends benign contents at the end of a binary
SP Section Append Appends random bytes to the unused space between sections.
SA Section Add Adds a new section with benign contents.
Macro SR Section Rename Change the section name to a name in benign binaries.
RC Remove Certificate Zero out the signed certificate of a binary.
RD Remove Debug Zero out the debug information in a binary.
BC Break Checksum Zero out the checksum value in the optional header.
CR Code Randomization Replace instruction sequence with semantically equivalent one
OA1 | Overlay Append 1 Byte Appends 1 byte at the end of a binary
Micro SP1 Section Append 1 Byte Appends 1 byte to the unused space at the end of a section.
SA1 Section Add 1 Byte Adds a new section with 1 byte content.
SR1 Section Rename 1 Byte Change 1 byte of a section name.
CP1 Code Section Append 1 Byte | Appends 1 byte to the unused space at the end of the code section.

Table 2: Affected Features by Actions.

CR | OA | SP|SA | SR | RC | RD | BC | OA1 | SP1 | SA1 | SR1 | CP1
Hash-Based F;: File Hash v v vV IV v v v Vv Vv v v v N
Signatures F: Section Hash v v v v v
Fj3: Section Count v v
F4: Section Name v v
Rule-based F5: Section Padding v
Signatures Fs: Debug Info v
F7: Checksum v
Fg: Certificate v
Fy: Code Sequence v
Byte Entropy | Fjo: Byte Entropy v v
sample or exceed the total number of attempts N. When an evasive Algorithm 2 Minimize
sample is generated, we further use Action Minimizer to remove Input: malware sample x, applied machines list_M
redundant machines. For the remaining machines list_Muin, we Output: minimized AE x;n > minimized machines list_Mynin

first increase their o by 1. If it is a generic machine, we create a
new specific machine M7. If it is a specific machine, we increase the
a value of its parent generic machine, which has the same action
type but with random content. For failed machine, we increase the
value of § by 1.

1: list_Myin < list_ M

2: for all M € List M do

3. list M' « List Mpyin — M
4 x" « apply(x, list_M")

5. if isEvasive(x’) then

6 list Myyin < List M’
4.3 Action Minimizer 7 X in & X
8 else

9

list_micro <« get_micro_actions(M)

The Action Minimizer removes redundant actions and uses micro-
actions to replace macro-actions, to produce a “minimized” evasive

sample that only changes minimal features. 10: for all Mpmic € list_micro do
As shown in Figure 2, the original malware sample x resides in 11: list M" « List_Mmin — M + Mmic

the malicious region of the feature space. We perform a sequence 12: x" — apply(x, list_M’)

of single actions ay, az and a3 until the generated sample x123 suc- 13: if isEvasive(x’) then

cessfully reaches the benign region. x123 is an adversarial example. 14: list_Mmin « List_M’

In the minimization phase, first, we remove useless actions. The 15: Xpin & X

action ay is essential, because by removing action ay, the generated 16: break

sample x13 is no longer evasive. The action ay is useless because by 17: end if

removing action aj, the generated sample x23 has no effect in the 18: end for

classifier’s decision. Then we disentangle these actions into micro 19: endif

ones (i.e., actions that cause smaller changes). ay can be replaced 20: end for

with micro-actions aé. Action a3 can be replaced with micro-actions 21: return x;, ;. list_Mmin

a; or a;’. We generate three samples x2/3, x2/3 and xz/3~. Finally, we

have an adversarial sample xy/3» with a minimized action sequence

995

Session 8A: Machine Learning #2

—> apply a macro-action
- —>» remove a redundant macro-action
... » replace a macro-acton with a micro-action

Figure 2: An example of action minimization.

(a3,a3’). So a positive reward can be precisely assigned to these
essential actions a;, and af’.

As shown in Algorithm 2, for each machine M in the applied
machines list_M, we try to remove it and apply the new sequence
list_M’ to the original sample x to generate x’. If x” is still eva-
sive, it means that the machine M action is redundant. We can
permanently delete M from list_M. Otherwise, we will find that
all micro-actions list_micro that only change the subset of features
changed by M. Then we try to replace M with each micro-action
Mpmic in list_micro and apply the new sequence to generate x”. If x”
is still evasive, then we use My to permanently replace M. If we
find that M cannot be removed or replaced, it means that machine
M is essential. In this way, we can delete redundant feature changes
and find the essential actions.

For example, to generate an evasive sample x’ for x, Binary
Rewriter has applied 5 actions: CR, OA, SP, BC, SA. Action Mini-
mizer will check every machine to determine if it can be removed.
It finds that the first 4 actions are redundant, only the last action
SA cannot be removed. SA (add a new section) changes 3 features
of the original binary file. It changes the file hash, creates a new
entry in the section table, and adds a content block to the end of the
file. Correspondingly, SA has 3 micro-actions: OA1, SA1, and OA.
Each of them only changes one feature. If we replace SA with any
micro-action, we will remove redundant feature changes. In this
way, we can generate the minimized adversarial example x,,_; .

From a defender’s point of view, we also would like to understand
how an evasion happens, where the weakest point of the classifiers
is. The action minimization of evasive samples provides a good
opportunity to infer that information. Figure 3 shows how we break
macro-actions into micro-actions. Take the action Section Append
(SP) as an example. First, by looking up Table 2, SP changes feature
F = {Fy, F, F5} (File Hash, Section Hash and Section padding). The
actions that only change a subset of F are OA1 that changes {F; }
and SP1 that changes {F;, F»}. Starting from the minimum change,
we try to replace SP with OA1 and check if the file is still evasive. If
so, we can conclude that the evasion is caused by the change of file
hash (F;). If not, we continue to replace SP with SP1. If successful,
the evasion is caused by the change of section hash (F;). Otherwise,
the evasion is caused by the change of signatures in section padding
content (Fs).

996

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

If SP «— OA1, then feature = File Hash
Else If SP « SP1, then feature = Section Hash
Else feature = Section Padding

(a) SP

if SA «— OA1, then feature = File Hash
Else If SA < SA1, then feature = Section Count
Else If SA < OA, then feature = Byte Entropy
Else feature = Section Count & Byte Entropy

(b) SA

If CR < OA1, then feature = File Hash
Else If CR < CP1, then feature = Section Hash
Else feature = Code Sequence

(c) CR

If RD <« OA1, then feature = File Hash
Else If RD < CP1, then feature = Section Hash
Else feature = Debug Information

@ RD
If SR < OA1, then feature = File Hash
Else If SR < SR1, then feature = Section Name
Else feature = Part of Secton Name

(e) SR
If OA — OA1, then feature = File Hash
Else feature = Byte Entropy
(f) OA
If BC « OA1, then feature = File Hash
Else feature = Checksum
(g) BC
If RC < OA1, then feature = File Hash
Else feature = Certificate

(h) RC

Figure 3: Decision rules are used to map actions to feature
space

5 EVALUATION
5.1 Experiment Setup

Dataset: In this paper, we generate adversarial examples for Win-
dows PE binaries. To ensure the executability and functionality of
the generated samples, the format and constraints of PE files must
remain intact. To guarantee the quality of malware samples, we
randomly select 5000 samples from VirusTotal that meet the follow-
ing requirements: 1) more than 80% antivirus engines of VirusTotal
label them malicious; and 2) the execution of those samples in a
Cuckoo sandbox shows malicious behavior.

Setup: The experiments are performed on 20 virtual machines of
the Microsoft Azure cloud platform. The configuration of each vir-
tual machine is Standard D2s v3 (2 vcpus, 8 GiB memory). For all
the antivirus software under testing, free versions and default set-
tings are used. We choose three top commercial antivirus products
for blackbox testing, which are anonymized as AV1, AV2, and AV3.
Each antivirus is installed on an Azure virtual machine with Win-
dows 7. To ensure the malware will not infect other machines in the
network and the stability and reproducibility of our experiments,
all network traffic is routed to an InetSim instance on the host
machine to provide simulated network services.

Session 8A: Machine Learning #2

We choose the following models as our target models:

¢ EMBER (5] is an open-source machine-learning-based clas-
sifier that uses a tree-based classifier model LightGBM to
detect malware. It generates a 2350-dimensional feature vec-
tor for each sample consisting of two main types of features:
raw features (e.g. ByteHistogram, ByteEntropyHistogram,
Strings) and parsed features (e.g. GeneralFileInfo, Header-
FileInfo, SectionInfo, ImportsInfo, ExportsInfo). We use the
model provided in MLSEC2019 (Machine Learning Security
Evasion Competition) [38].

e MalConv [43] is a malware detection model that uses a
convolutional neural network to learn knowledge directly
on the raw bytes of malware samples. We also use the model
provided in MLSEC2019 [38].

o Commercial AVs. We also test the static classifiers of 3 top
commercial antivirus systems.

5.2 Adversarial Example Generation

Comparison with Other Off-the-Shelf Frameworks. We com-
pare our MAB-Malware with other two off-the-shelf attack frame-
works: SecML-Malware® and Gym-Malware®. SecML-Malware is
a plugin for the SecML Python library. It contains many kinds of
attacks, including black-box attacks with hard labels. We utilize
its genetic programming-based black-box attack (GAMMA) in this
experiment. Gym-Malware is a reinforcement learning-based mal-
ware manipulation environment using OpenAI’s gym. Its agents
learn how to manipulate PE files to bypass AV based on a reward
provided by taking specific manipulation actions.

We measure the evasion rate for two machine learning-based
models, MalConv and EMBER. Evasion Rate is defined as: R, =
Ne /Ny, where Ng is the total number of successful evasive samples,
and Ny is the total number of original samples that can be detected
by the target model. For a fair comparison, we use the same dataset
(5000 samples from VirusTotal) and MalConv and EMBER models
(from the Machine Learning Static Evasion Competition 2019 [38].)
We run each experiment five times to calculate an average.

From Figure 4, we can see that MAB-MALWARE performs much
better than the other approaches. It can generate AEs for 97.72%
samples to evade MalConv, 74.4% samples to evade EMBER. The
evasion rate of SecML-Malware (GAMMA-hard label) is 63.6% and
50.0% respectively. Gym-Malware has the lowest evasion rate (27.1%
and 12.3%). The evasion rate is almost identical to random action
selection using its own action set (28.8% and 12.1%). This indicates
that this deep Q-learning model does not learn meaningful knowl-
edge to guide the evasion. The reason is that the problem modeling
creates an exponentially large search space. And without action
minimization, the reward assignment is chaotic. Within 60 trials, it
cannot explore enough in such a large space and learn meaningful
policy to select the correct action and corresponding content.

Comparison with Other Algorithms. The action sets of these
three frameworks are different. SecML-Malware only uses benign
content injection and appending. Gym-Malware’s operation set is
similar to ours, but it also includes packing and unpacking. As a

Shttps://github.com/zangobot/secml_malware.git
Shttps://github.com/endgameinc/gym-malware.git

997

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

—— MAB-Malware
100 SecML-Malware 97.72%
—— Gym-Malware
R 801 — Gym-Malware action set (Random)
9 —— MAB-Malware action set (MCTS)
© —— MAB-Malware action set (Random)
S 60,
c 49.96%
o | 49.16%
@ 1
g 40
28.8%
(]
27.1%
204 ’
0 T T T T T T
0 10 20 30 40 50 60

total number of attempts
(a) MalConv

—— MAB-Malware
100 SecML-Malware

o —— Gym-Malware

= 4 — -| i _ —

> 80 Gym-Malware act.lon set (Random) E— 75 049

9 —— MAB-Malware action set (MCTS) e —

© —— MAB-Malware action set (Random)

c g

S .

0

©

>

[
15.26%
13.06%

~ 1514
0 T T T T T T
0 10 20 30 40 50 60
total number of attempts
(b) EMBER

Figure 4: Evasion Results

result, we cannot see the effectiveness of the MAB-based action
selection algorithm.

So in this experiment, we only use our own action set and change
the action selection algorithms. The baseline is random selection.
Then we compare our method with the other reinforcement learn-
ing algorithm. In the experiment above, we have already shown
that the Q-learning models cannot directly improve the evasion rate
over random selection. In this experiment, we further implement
another MCTS-based reinforcement learning algorithm. Quiring et
al. [42] proposed an MCTS-based approach to mislead the classi-
fication of source code authorship. Because their code cannot be
directly applied to malware classifiers, we borrowed their idea and
reimplemented it for malware classification.

It can be seen from Figure 4 that in the same action set, our
MAB algorithm greatly improves the evasion rate compared to
random action selection, while the MCTS algorithm hardly provides
any improvement. Existing frameworks model AE generation in a
stateful way and try to find the best state path leading to escape.
This makes it difficult to train in a large search space. In addition,
the existing framework does not have a mechanism to effectively
reuse the successful payload.

Attacking Commercial Antivirus. We also test our framework
on three commercial antivirus engines. The throughputs of commer-
cial AV engines are much lower than machine learning classifiers.
We need to copy a lot of generated samples into the virtual machine
with a particular AV installed and wait for AV engines to scan them
to get labels. It usually takes seconds or even minutes to get the
result. As a result, we only use 1000 samples for this experiment.

https://github.com/zangobot/secml_malware.git
https://github.com/endgameinc/gym-malware.git

Session 8A: Machine Learning #2

Table 3: Evasion Result on Antivirus.

Antiviras Frameworks
SecML-Malware | MAB-Malware
AV1 5.61% 31.99%
AV2 11.40% 46.2%
AV3 12.75% 48.3%

Also, we do not compare Gym-malware since it cannot finish the
experiment within a reasonable time frame.

As shown in Table 3, SecML-Malware only achieves 5% - 12%
evasion rate for all AVs, while MAB-Malware achieves 31% - 48%
evasion rate. It shows the advantages of MAB-MALWARE in gener-
ating adversarial examples in a pure blackbox setting.

Number of bytes changed. The Action Minimizer ensures that
the minimized evasive samples only change minimal content to flip
the classification label. So by checking how many bytes we need to
change, we can infer the robustness of different malware classifiers.
To measure the difference between the minimized evasive example
and the original malware, we compute the total number of bytes
appended or modified by our framework.

By positioning the samples in a line sorted by byte changes
(Figure 5), we notice that:

e By only changing one byte of the original malware, we can
generate 33 for AV1, 32 for AV2, 3 for AV3.

o Machine learning models are not vulnerable to small changes.
However, it does not mean that ML models are more robust
than commercial AVs. From the previous evasion rate results,
we can see that using our framework, ML models are easier
to evade than commercial AVs.

5.3 Testing Functionality Preservation

We found that the action set in Gym-Malware, which is imple-
mented using LIEF [31] library, is not safe. According to our exper-
iment result in Table 4, more than 60% of the generated binaries
after a single action cannot be executed, or behave differently. To
solve this problem, we carefully reimplement most actions using
the pefile [9] library to avoid many corner cases that may lead to a
broken binary. For example, before adding a new section, we check
whether there is enough space between the last section header
entry and the first section.

We implement our own action set using the pefile library whereas
the Gym-Malware rewrites binaries using the LIEF library. We no-
ticed that rewriting a binary with the LIEF library can cause unnec-
essary changes to the binary that can sometimes result in broken
files, thus destroying the functionality of the original malware sam-
ples. To compare our actions with the actions from Gym-Malware,
we randomly select 50 malware samples from our dataset, create
adversarial samples by applying different actions, analyze all vari-
ants in the Cuckoo sandbox, and compare the behaviors with the
original samples.

From Table 4 we can see that except for the Overlay Append
action, most actions in the Gym-Malware framework cause 63.24%
of the rewritten samples to lose functionality. In contrast, only less

998

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Table 4: Functionality Preservation Rate of the Actions

Actions

Functional Rate

Gym-Malware Actions

MAB-Malware Actions

OA) Overlay Append
SP) Section Append
SA) Section Add

45/48 (93.75%)
11/47 (23.40%)
11/47 (23.40%)

46/48 (95.83%)
42/43 (97.67%)
39/42 (92.86%)

42/43 (97.67%)
3/3 (100.00%)
13/13 (100.00%)
32/33 (96.97%)
217/225 (96.44%)

RC) Remove Certificate
RD) Remove Debug
BC) Break Checksum
Average

1/3 (33.33%)
5/13 (38.46%)
9/48 (18.75%)

93/253 (36.76%)

(

((

((

(SR) Section Rename 11/47 (23.40%)
((

((

(

than 8% of the rewritten samples using our actions create broken
binaries.

5.4 Explanation

Understanding why an evasion happens can help improve the ro-
bustness of a classifier against adversarial attacks. For each evasive
sample, the Action Minimizer first removes all redundant actions
and uses micro-actions to replace the macro-actions. We summa-
rize the most frequent action sequence combination is Figure 6.
According to the rules in Figure 3, we can infer the root cause of
each evasion, shown in Figure 7. We found that:

e For two machine learning-based classifiers, the most im-
portant action is Overlay Append (OA). Other actions that
only change a few bytes have almost no effect on them. It
shows that the change in byte entropy is the root cause of
the evasions.

e The Section Add 1 Byte (SA1) action plays a significant role
in evading all AVs. It indicates that all AVs utilize section
count as an important feature for detecting malware.

e Comparing to AV2 and AV3, AV1 is also vulnerable to the
Code Section Append 1 Byte (CP1) action. CP1 alters the
hash of the code section. It indicates AV1 uses code section
hash as an important feature for detecting malware.

e The Section Rename 1 Byte (SR1) action itself can generate
many adversarial examples for AV2. SR1 changes one byte
of one section name. It indicates that AV2 relies heavily on
the section name for detecting malware.

o Comparing with AV2 and AV3, the Section Add (SA) action
and the Overlay Append (OA) action have almost no effect
on AV1. SA and OA greatly change the byte entropy of the
original malware samples. It indicates that AV2 and AV3
integrate some machine learning models in static detection.
And AV1 mainly uses the signature-based approach to detect
malware.

5.5

Transferability refers to the property that allows an adversarial sam-
ple that can evade one model can also evade other similar models. If
the adversarial malware samples are transferable, then evading one
malware detector would be enough to evade all malware detectors.

Transferability

Figure 8 shows the percentage of evasive samples generated for
one classifier that can also evade other classifiers. The number in
the cell (model A, model B) shows the percentage of evasive samples
generated for model A can also evade model B. We noticed:

Session 8A: Machine Learning #2

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

107

2

10°

k3

i3

10°

change byte amount
change byte amount

evasive samples 1 - 123

(a) MalConv

evasive samples 1 - 155

(b) EMBER

change byte amount
g &8 8

U

change byte amount

I)

change byte amount

5

evasive samples 1 - 317

evasive samples 1 - 452

evasive samples 1 - 463

(c) AV1 (d) AV2 (e) AV3
Figure 5: Number of Changed Bytes of Adversarial Examples.
e\° 100 N 100
o 75 @ 75
5 50 5 50
P25 O 25
[ﬂ)
e 9 e 9
& & P T B T T N P Y
2 Sa F & & Sa & a Sa Sa a FF
& & & & & T T T
& G & & & &
& & T F
&
\QV
(a) MalConv (b) EMBER
= 100 < 100 = 100
g s L s g s
B 50 E 50 E 50
2 2 2
o [[
L 25 Q25 L 25
[[[
2 o 2 o 2 o
AR I R I C R A
& & & B & & & F & & & & &
< NI N < < < A& N
& & & N Cl
\ < N (3"
\
(c) AV1 (d) AV2 (e) AV3

Figure 6: Action Sequences for Adversarial Examples

o The transferability between machine learning models is quite
high, although EMBER and MalConv are trained on different
features (2350-dimensional extracted features vs. raw bytes),
and the architecture is different (decision tree vs. neural
network).

e Both AV2 and AV3 utilize machine learning models and con-
sider Section count as an important feature. So the trans-
ferability between AV2 and AV3 is relatively higher than
others.

6 DISCUSSIONS

Triviality of Defense. The triviality of the defense depends on the
type of attack. To defend the overlay append attack, the defender
can ignore the overlay data when training models. To defend against
the SA attack, the defender can lower the importance of benign
features in models, and only consider malware features. To defend
against RD, SR, and BC attacks, defenders should avoid using fragile
patterns as malware features. However, completely ignoring the
trivial features can reduce the accuracy of a malware detector. The

999

code randomization (CR) attack is hard to defend because the de-
fender cannot locate the small snippet of binary that is randomized.

Recommendation for Researchers. We demonstrate how adver-
sarial examples can be used to explain a complex blackbox system.
When training malware classifiers, researchers should use explana-
tion techniques to understand the behavior of the classifiers and
check if the learned features are fragile features that can be easily
evaded or if they conflict with expert knowledge. We also argue
that for security applications, demonstrating harm to real users is
crucial to understanding the real ramification of an attack.

The generality of our evasive techniques. First, our proposed
framework conducts blackbox attacks against classifiers. Unlike
whitebox attacks, blackbox attacks do not require knowledge of the
architecture and parameters of the target classifier. Theoretically,
our approach can be used on any malware classifier, as long as the
classifier returns a label for testing samples. Second, we attacked 5
representative malware detectors of diverse techniques, including
a decision tree-based model (EMBER), a deep learning model (Mal-
Conv), and 3 commercial AV engines from top-level AV companies.

Session 8A: Machine Learning #2

£ A
£ A A, S, 9: 0.
S g Se, S 6. >, 3 0% 8
Ly S, "ty S, Oy Tony Ve, sy, Mo
Vo, o, ne ", R,y Sk e, e,
sp By g g g gy Ny, g g oy
;

80

EMBER- 0.00% 0.00% 0.05% 145% 010% 0.00% 0.00% 0.05% 0.28%

98.06 %

MalColnv - 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 1.33% [EEERY

60

AV1- 0.00% 30.66% 39.52% 6.47% 0.17% 136% 034% 0.00% 1823% 3.24%

40

AV2- 0.00% 0.71% 30.92% 23.32% 0.18% 265% 0.00% 0.18% 5.83% 36.22%

AV3-012% 132% 3222% 814% 048% 144% 0.00% 0.12% 22.16% 34.01%

Figure 7: Feature changes that cause evasion.

& A”e/
”fe&? Cop, AU, AW AUy

EMBER - PR 3.90% 4.57% 1.88%

MalConv +10.44 % 328% 430% 1.74%

AV1- 0.32% 3.15% 536% 2.52%

From

Av2 - 0.88 % [11.06 %

5.18 % EER:R/ENPIER) -
0

Figure 8: Transferability of Adversarial Samples

1.77 % = 9.96 %

AV3 - 3.67 %

The significant evasion rate improvement of these detectors proves
the generality of our method.

Mitigation using Dynamic Detection Our solution cannot by-
pass dynamic detectors, but we argue that dynamic evasion is an-
other research topic. Static evasion itself is an important research
direction because it provides a defense before users execute poten-
tially dangerous programs. This is why ML-based static classifiers,
such as EMBER and MalConv, increasingly attract attention in the
security community.

7 RELATED WORK

Adversarial attacks on machine learning are a rapidly growing field.
Since 2014, there have been more than 1400 papers on adversarial
attacks and defense.” However, only about 42 papers focused on
the malware domain, the rest focuses on the image domain. These
works performed attacks on Android malware [18, 20, 41, 57], PDF

"https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

1000

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

malware [13, 19, 37, 56], Windows malware (PE files) [3, 4, 22—
24, 28, 30, 46, 52], IoT malware [2] and Flash-based malware [36].
We compare ourselves with the papers on attacking Windows mal-
ware detectors (See Table 5). In this domain, only three papers
performed blackbox attacks [4, 11, 21] where an adversary has only
external access to the malware detector and also tested their ap-
proach against commercial AVs. Ceschin et al. [11] developed a
white-box attack using open-source models and then submitted the
examples to VirusTotal. We refrained from submitting adversar-
ial samples to VirusTotal because many AVs use these samples to
retrain their model and the adversarial samples can cause model
poisoning. Fleshman et al. [21] performed blackbox random attacks
against four commercial AVs. Anderson et al. [4] propose a rein-
forcement learning framework gym-malware to perform blackbox
attacks against malware classifier EMBER. However, their method
only shows about 15% improvement over random selection. Our
attack demonstrates a much higher evasion rate against commercial
AVs. We also perform an in-depth analysis of the AVs to understand
why evasion was successful. Ashkenazy et al. [6] performed a tar-
geted attack against Cylance, a machine learning-based malware
detector, which cannot be generalized to other AVs.

Only two papers verified the functionalities of the adversarial
malware samples using the Cuckoo sandbox [11, 47]. However,
none of them used adversarial examples to interpret how anti-
virus systems work. Our work is the first to generate minimized
adversarial examples that can be used for blackbox interpretation
of anti-virus systems.

Many papers propose blackbox attacks to generate AEs for mal-
ware classifiers. However, most of them still assume that they can
get the confidence score from the target classifier. For example, Lu-
cas et al. [33] propose an attack that adopts in-place randomization
and code displacement to transform malware. It follows a general
hill-climbing approach and applies a serial of transformations. How-
ever, it still relies on the confidence score to decide whether to keep
the transformations.

8 CONCLUSION

We design a reinforcement learning guided framework MAB-Malware
to perform adversarial attacks on state-of-the-art machine learning
models for malware classification and top commercial antivirus
static classifiers. We model the action selection problem as a multi-
armed bandit problem. During the attack, MAB-Malware infers the
property of actions and dynamically adding new machines with
unseen successful content. It finds an optimal balance between
exploitation and exploration to maximize the evasion rate within
limited trials. The Action Minimization module of MAB-Malware
filters out the actions that are ineffective for adversarial sample
generation and only change minimal features, so our framework
can also be used to explain why evasion occurs. For each commer-
cial antivirus system, we compute the effectiveness of each action
and the key features that cause evasions. Our results show that
MAB-Malware largely improves the evasion rate over other rein-
forcement learning frameworks and that some of the adversarial
attacks are transferable between different antivirus systems that
are similar to one another.

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

Session 8A: Machine Learning #2

ACKNOWLEDGMENTS

We appreciate the anonymous reviewers for the valuable comments.
The research work is partly supported by National Science Founda-
tion under grant No. 1719175 and a gift fund from Avast Inc. Any
opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation and Avast Inc.

REFERENCES

(1]
(2]

=

(9]
[10]

[11]

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21]

[22]

[n.d.]. Beta distribution. https://en.wikipedia.org/wiki/Beta_distribution.
Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Af-
sah Anwar, Ulku Meteriz, and Aziz Mohaisen. 2019. Examining Adversarial
Learning against Graph-based IoT Malware Detection Systems. arXiv preprint
arXiv:1902.04416 (2019).

Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. 2018.
Adversarial deep learning for robust detection of binary encoded malware. In
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 76-82.

Hyrum S Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth. 2018.
Learning to evade static PE machine learning malware models via reinforcement
learning. arXiv preprint arXiv:1801.08917 (2018).

Hyrum S Anderson and Phil Roth. 2018. Ember: an open dataset for training
static PE malware machine learning models. arXiv preprint arXiv:1804.04637
(2018).

Adi Ashkenazy and Shahar Zini. 2019. Cylance, I Kill You! https://skylightcyber.
com/2019/07/18/cylance-i-kill-you/.

Avast 2018. Al & Machine Learning. https://www.avast.com/en-us/technology/ai-
and-machine-learning.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, and Aleksander Madry. 2019. On
evaluating adversarial robustness. arXiv preprint arXiv:1902.06705 (2019).

Ero Carrera. 2016. pefile. https://github.com/erocarrera/pefile.

Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo. 2019. AIMED: Evolv-
ing Malware with Genetic Programming to Evade Detection. In 2019 18th IEEE
International Conference On Trust, Security And Privacy In Computing And Commu-
nications/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 240-247.

Fabricio Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S Oliveira, and
André Grégio. 2019. Shallow Security: on the Creation of Adversarial Variants
to Evade Machine Learning-Based Malware Detectors. In Proceedings of the 3rd
Reversing and Offensive-oriented Trends Symposium. 1-9.

Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. In Advances in neural information processing systems. 2249-2257.
Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. 2017. Adversarial machine
learning in malware detection: Arms race between evasion attack and defense.
In 2017 European Intelligence and Security Informatics Conference (EISIC). IEEE,
99-106.

George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. 2013. Large-scale malware
classification using random projections and neural networks. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing. IEEE, 3422-3426.
Park Daniel, Khan Haidar, and Yener Biilent. 2019. Generation & Evaluation of
Adversarial Examples for Malware Obfuscation. arXiv preprint arXiv:1904.04802
(2019).

Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. 2019. Explaining Vulnerabilities of Deep Learning to Adversarial
Malware Binaries. arXiv preprint arXiv:1901.03583 (2019).

Luca Demetrio, B. Biggio, Giovanni Lagorio, F. Roli, and A. Armando. 2020.
Functionality-preserving Black-box Optimization of Adversarial Windows Mal-
ware. arXiv: Cryptography and Security (2020).

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio,
Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. 2019. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In
28th {USENIX} Security Symposium ({USENIX} Security 19). 321-338.

Saeed Ehteshamifar, Antonio Barresi, Thomas R Gross, and Michael Pradel. 2019.
Easy to Fool? Testing the Anti-evasion Capabilities of PDF Malware Scanners.
arXiv preprint arXiv:1901.05674 (2019).

Aurore Fass, Michael Backes, and Ben Stock. 2019. Hidenoseek: Camouflaging
malicious javascript in benign asts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1899-1913.

William Fleshman, Edward Raff, Richard Zak, Mark McLean, and Charles
Nicholas. 2018. Static malware detection & subterfuge: Quantifying the ro-
bustness of machine learning and current anti-virus. In 2018 13th International
Conference on Malicious and Unwanted Software (MALWARE). IEEE, 1-10.
Weiwei Hu and Ying Tan. 2017. Generating adversarial malware examples for
black-box attacks based on GAN. arXiv preprint arXiv:1702.05983 (2017).

1001

[23

[24]

[25

Iy
&

[27

[28

[29

@
2

[37

[38

[39

[40

[41

[42]

[43

[44

S
&

[46

[47

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Weiwei Hu and Ying Tan. 2018. Black-box attacks against RNN based malware
detection algorithms. In Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence.

Alex Huang, Abdullah Al-Dujaili, Erik Hemberg, and Una-May O’Reilly. 2018.
On visual hallmarks of robustness to adversarial malware. arXiv preprint
arXiv:1805.03553 (2018).

Yonghong Huang, Utkarsh Verma, Celeste Fralick, Gabriel Infantec-Lopez, Bra-
jesh Kumar, and Carl Woodward. 2019. Malware Evasion Attack and Defense. 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W) (Jun 2019). https://doi.org/10.1109/dsn-w.2019.00014
Kyriakos K. Ispoglou and Mathias Payer. 2016. malWASH: Washing Malware
to Evade Dynamic Analysis. In 10th USENIX Workshop on Offensive Technolo-
gies (WOOT 16). USENIX Association, Austin, TX. https://www.usenix.org/
conference/woot16/workshop-program/presentation/ispoglou

Aminollah Khormali, Ahmed Abusnaina, Songging Chen, DaeHun Nyang, and
Aziz Mohaisen. 2019. COPYCAT: Practical Adversarial Attacks on Visualization-
Based Malware Detection. arXiv preprint arXiv:1909.09735 (2019).

Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio
Giacinto, Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries:
Evading deep learning for malware detection in executables. In 2018 26th European
Signal Processing Conference (EUSIPCO). IEEE, 533-537.

Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and
Joseph Keshet. 2018. Adversarial examples on discrete sequences for beating
whole-binary malware detection. arXiv preprint arXiv:1802.04528 (2018).

Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and
Joseph Keshet. 2018. Deceiving end-to-end deep learning malware detectors
using adversarial examples. arXiv preprint arXiv:1802.04528 (2018).

Lief [n.d.]. LIEF. https://github.com/lief-project/LIEF.

Xinbo Liu, Jiliang Zhang, Yaping Lin, and He Li. 2019. Atmpa: Attacking machine
learning-based malware visualization detection methods via adversarial examples.
In 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS).
IEEE, 1-10.

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
2021. Malware Makeover: Breaking ML-based Static Analysis by Modifying
Executable Bytes. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security. 744-758.

MAB [n. d.]. Multi-armed bandit. https://en.wikipedia.org/wiki/Multi-armed_
bandit.

Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth attacks: An extended insight into the obfuscation effects on android
malware. Computers & Security 51 (2015), 16-31.

Davide Maiorca, Battista Biggio, Maria Elena Chiappe, and Giorgio Giacinto. 2017.
Adversarial Detection of Flash Malware: Limitations and Open Issues. CoRR
abs/1710.10225 (2017).

Davide Maiorca, Battista Biggio, and Giorgio Giacinto. 2018. Towards Robust
Detection of Adversarial Infection Vectors: Lessons Learned in PDF Malware.
arXiv preprint arXiv:1811.00830 (2018).

MLSEC2019 [n. d.]. Machine Learning Static Evasion Competition 2019. https:
//github.com/endgameinc/malware_evasion_competition.

Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smash-
ing the gadgets: Hindering return-oriented programming using in-place code
randomization. In 2012 IEEE Symposium on Security and Privacy. IEEE, 601-615.
Jithin Pavithran, Milan Patnaik, and Chester Rebeiro. 2019. D-TIME: Distributed
Threadless Independent Malware Execution for Runtime Obfuscation. In 13th
USENIX Workshop on Offensive Technologies (WOOT 19). USENIX Association,
Santa Clara, CA. https://www.usenix.org/conference/woot19/presentation/
pavithran

Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. 2020
IEEE Security and Privacy (2020).

Erwin Quiring, Alwin Maier, and Konrad Rieck. 2019. Misleading authorship
attribution of source code using adversarial learning. In 28th {USENIX} Security
Symposium ({USENIX} Security 19). 479-496.

Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. 2018. Malware detection by eating a whole exe. In Workshops
at the Thirty-Second AAAI Conference on Artificial Intelligence.

Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. 2011. Auto-
matic analysis of malware behavior using machine learning. Journal of Computer
Security 19, 4 (2011), 639-668.

Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2018. Query-
Efficient GAN Based Black-Box Attack Against Sequence Based Machine and
Deep Learning Classifiers. arXiv preprint arXiv:1804.08778 (2018).

Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2018. Generic
black-box end-to-end attack against state of the art API call based malware
classifiers. In International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 490-510.

Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2018. Generic
black-box end-to-end attack against state of the art API call based malware

https://en.wikipedia.org/wiki/Beta_distribution
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://github.com/erocarrera/pefile
https://doi.org/10.1109/dsn-w.2019.00014
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
https://www.usenix.org/conference/woot16/workshop-program/presentation/ispoglou
https://github.com/lief-project/LIEF
https://en.wikipedia.org/wiki/Multi-armed_bandit
https://en.wikipedia.org/wiki/Multi-armed_bandit
https://github.com/endgameinc/malware_evasion_competition
https://github.com/endgameinc/malware_evasion_competition
https://www.usenix.org/conference/woot19/presentation/pavithran
https://www.usenix.org/conference/woot19/presentation/pavithran

Session 8A: Machine Learning #2

classifiers. In International Symposium on Research in Attacks, Intrusions, and

Defenses. Springer, 490-510.
[48] Joshua Saxe and Konstantin Berlin. 2015. Deep neural network based malware de-
tection using two dimensional binary program features. In 2015 10th International
Conference on Malicious and Unwanted Software (MALWARE). IEEE, 11-20.
Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. 2000. Data
mining methods for detection of new malicious executables. In Proceedings 2001
IEEE Symposium on Security and Privacy. S&P 2001. IEEE, 38-49.
slot-machine [n.d.]. Slot machine. https://en.wikipedia.org/wiki/Slot_machine.
Jack W Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone.
2017. Attack and defense of dynamic analysis-based, adversarial neural malware
classification models. arXiv preprint arXiv:1712.05919 (2017).
Jack W Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone.
2018. Attack and Defense of Dynamic Analysis-Based, Adversarial Neural Mal-
ware Detection Models. In MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM). IEEE, 1-8.
Octavian Suciu, Scott E Coull, and Jeffrey Johns. 2019. Exploring adversarial
examples in malware detection. In 2019 IEEE Security and Privacy Workshops
(SPW). IEEE, 8-14.
Microsoft Defender ATP Research Team. 2019. New machine learning
model sifts through the good to unearth the bad in evasive malware.
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-
model-sifts- through-the- good- to-unearth-the-bad-in-evasive-malware/.
TS [n.d.]. Thompson Sampling. https://en.wikipedia.org/wiki/Thompson_
sampling.
Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically evading classifiers.
In Proceedings of the 2016 network and distributed systems symposium. 21-24.
Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. 2017. Malware detection
in adversarial settings: Exploiting feature evolutions and confusions in android
apps. In Proceedings of the 33rd Annual Computer Security Applications Conference.
288-302.

[49]

[50
[51

[52

[53]

(54

[55

[56]

[57

A BROKEN MALWARE EXAMPLES

Case 1: Implementation errors in instruction replacement. As shown
in Figure 9, the original implementation of code randomization only
supports 8-bit and 32-bit, not 16-bit instruction. It tries to replace a
16-bit add/sub instruction in a wrong way (assuming 32-bit format).
It treats the last four bytes as the second operand, but actually, only
the last two bytes are the second operand. This would break the
CFG of the program.

add cx, 0x2a06 => sub cx, -0x2a06

Figure 9: Implementation Errors in CR

Case 2: Overwriting overlay. As shown in Figure 10, when adding a
new section at the end of the last section, if the sample has overlay
data, the added new data may affect the overlay data extraction of
the malware.

B MORE DISCUSSIONS

Why do commercial AVs rely on simple features? Looking
at the result, it seems surprising that trivial changes to malware
can evade professionally developed commercial anti-virus systems
used by millions of users. Why have not commercial AVs fixed
these problems already? One hypothesis could be that adversarial
examples are a result of the trade-off between true positive and
false-positive rates. The commercial systems need to provide a fast

1002

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Figure 10: Errors after Overlay Data Append

decision while maintaining a low false-positive rate. The relatively
simple features, such as file hash or white-listing benign strings
can help gain a high accuracy with a low false-positive rate. For
example, in their attack against Cylance [6], researchers noticed
that to reduce their false positive rate the Cylance team whitelisted
some families of executables, one of them was an online game. So,
the whitelisting used to reduce the false-positive rate was enough
to create an adversarial attack. Another hypothesis is that anti-virus
systems need to protect against the malware of today, instead of
focusing on new attacks that are not currently happening. Real
adversaries probably use techniques different from the ones used
to create ML-based adversarial attacks. A third hypothesis is that
anti-virus systems do not rely only on static detection, but also on
dynamic and behavioral detection. If all the adversarial malware
samples get detected when they are executed, the AVs are not
concerned with the static-only adversarial attacks as these attacks
cannot infect real users.

Are adversarial attacks harmful to users? We perform a pre-
liminary test to see the extent to which static-only adversarial
examples evade the full AV pipeline and infect users. We create
adversarial samples by modifying 30 ransomware samples and test
whether the samples that evade static classifiers can infect users’
machines. We hypothesize that the dynamic and behavioral classi-
fiers of the AVs will detect and stop the static adversarial examples
when they are executed, thus, posing no real harm to the users.
Except for AV2, all the other AVs blocked the execution of adver-
sarial ransomware samples. All of the 30 adversarial ransomware
samples evade the behavior detector of AV2; files are encrypted
and blackmail messages are shown on the screen. However, the
online version of AV2 can detect all the samples as AV2 relies heav-
ily on cloud techniques. This represents a potentially new attack
surface to investigate in the future, where static-only evasion can
sometimes evade the entire AV pipeline and infect users due to the
design decision of an AV.

Recommendation for Antivirus Systems. Our attacks demon-
strate that static classifiers are easy to evade. So for full protection,
commercial AV systems need to rely more on dynamic and behavior-
based detection. Even though some papers already demonstrated
that dynamic classifiers can be evaded by splitting a malware sample
into many different pieces [26, 40], currently no one demonstrated
a scalable and generalized attack against dynamic classifiers.

https://en.wikipedia.org/wiki/Slot_machine
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://en.wikipedia.org/wiki/Thompson_sampling
https://en.wikipedia.org/wiki/Thompson_sampling

Session 8A: Machine Learning #2

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Table 5: Adversarial attacks on Windows malware detectors

Year | Paper Target Model Threat model | Problem space attack | Verification
2020 | Demetrio et al. [17] AV, MalConv, GBDT blackbox Yes Yes
2019 | Ashkenazy etal. [6] | AV (Cylance) greybox Yes No
2019 | Ceschin et al. [11] MalConv, EMBER, AVs blackbox Yes Yes
2019 | Demetrio et al. [16] MalConv whitebox Yes No
2019 | Huang et al. [25] DNN (API existence) grey&whitebox No No
2019 | Khormali et al. [27] CNN (Visualization) whitebox Yes No
2019 | Liu et al. [32] CNN (Visualization), RF, SVM whitebox Yes No
2019 | Park et al. [15] CNN (Visualization), MalConv whitebox Yes No
2019 | Suciu et al. [53] MalConv, EMBER whitebox Yes No
2018 | Al-Dujaili et al. [3] DNN whitebox No No
2018 | Fleshman et al. [21] | MalConv, AVs blackbox Yes No
2018 | Hu et al. [23] RNN (API call sequence) greybox No No
2018 | Kolosnjaji et al. [28] | MalConv whitebox Yes No
2018 | Kreuk et al. [29] MalConv whitebox Yes No
2018 | Rosenberg et al. [47] | RNN (API call sequence) greybox Yes Yes
2018 | Rosenberg et al. [45] | RNN (API call sequence) greybox Yes No
2017 | Anderson et al. [4] EMBER blackbox Yes No
2017 | Chen et al. [13] DNN (API existence), AVs whitebox Yes No
2017 | Hu et al. [22] DNN (API existence) greybox No No
2017 | Stokes et al. [51] DNN whitebox No No

1003

	Abstract
	1 Introduction
	2 Problem
	2.1 Threat Model
	2.2 Problem Definition

	3 Motivation
	3.1 Existing Approaches
	3.2 Our Insights

	4 Methodology
	4.1 Adversarial Attack as a Multi-armed Bandit Problem
	4.2 Binary Rewriter
	4.3 Action Minimizer

	5 Evaluation
	5.1 Experiment Setup
	5.2 Adversarial Example Generation
	5.3 Testing Functionality Preservation
	5.4 Explanation
	5.5 Transferability

	6 Discussions
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Broken Malware Examples
	B More Discussions

