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FORMULATION AND PROPERTIES OF A DIVERGENCE USED TO

COMPARE PROBABILITY MEASURES WITHOUT ABSOLUTE

CONTINUITY∗,∗∗

Paul Dupuis1,*** and Yixiang Mao2

Abstract. This paper develops a new divergence that generalizes relative entropy and can be used
to compare probability measures without a requirement of absolute continuity. We establish properties
of the divergence, and in particular derive and exploit a representation as an infimum convolution of
optimal transport cost and relative entropy. Also included are examples of computation and approx-
imation of the divergence, and the demonstration of properties that are useful when one quantifies
model uncertainty.
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1. Introduction

To compare different probabilistic models for a given application, one needs a notion of “distance” between
the distributions. The specification of this distance is a subtle issue. Probability models are typically large
or infinite dimensional, and the usefulness of the distance will depend on its mathematical properties. Is it
convenient for analysis and optimization? Does it scale well with system size?

For situations that require an analysis of (probabilistic) model form uncertainly, the quantity known as
relative entropy (or Kullback-Leibler divergence) is the most widely used such distance. This is true because
relative entropy has all the attractive properties asked for in the last paragraph, and many more. (Relative
entropy is not a true metric since it is not symmetric in its arguments, but owing to its other attributes it is
more widely used for these purposes than any legitimate metric.)

The definition of relative entropy is as follows. Suppose S is a Polish space with metric d(·, ·) and associated
Borel σ-algebra B. Let P(S) be the space of probability measures over (S,B). If µ, ν ∈ P(S) and µ is absolutely
continuous with respect to ν (denoted µ� ν), then

R(µ‖ν)
.
=

∫
S

(
log

dµ

dν

)
dµ
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(even though log dµ/dν can take both positive and negative values, as we discuss in the beginning of section 2,
the definition is never ambiguous). Otherwise, we set R(µ‖ν) =∞.

While we cannot go into all the reasons why relative entropy is so useful, it is essential that we describe why
it is convenient for the analysis of model form uncertainty. This is due to a dual pair of variational formulas
which relate R(µ‖ν), integrals with respect µ, and what are called risk-sensitive integrals with respect to ν.
Let Cb(S) denote the set of bounded and continuous functions on S. Then Proposition 1.4.2 and Lemma 1.4.3
of [9] give

R(µ ‖ν ) = sup
g∈Cb(S)

{∫
S

gdµ− log

∫
S

egdν

}
, (1.1)

and for any g ∈ Cb(S),

log

∫
S

egdν = sup
µ∈P(S)

{∫
S

gdµ−R(µ ‖ν )

}
. (1.2)

It is immediate from either of these that for µ, ν ∈ P(S) and g ∈ Cb(S),

∫
S

gdµ ≤ R(µ ‖ν ) + log

∫
S

egdν

(in fact these expressions hold with Cb(S) replaced by the bounded and measurable functions on S). If we inter-
pret ν as the nominal or design model (chosen perhaps on the basis of data or for computational tractability)
and µ as the true model (or at least a more accurate model), then according to the last display one obtains
a bound on an integral with respect to the true model. (In fact by introducing a parameter one can obtain
bounds that are in some sense optimal [11].) We typically interpret the integral

∫
S
gdµ as a performance

measure, and so we have a bound on the performance of the system under the true distribution in terms of the
relative entropy distance R(µ ‖ν ), plus a risk-sensitive performance measure under the design model. From this
elementary but fundamental inequality, and by exploiting the helpful qualitative and quantitative properties of
relative entropy, there has emerged a set of tools that can be used to answer many questions where probabilistic
model form uncertainty is important, including [3, 7, 8, 10–13, 15, 16, 18, 19].

However, relative entropy has one important shortcoming: for the bound to be meaningful we must have
R(µ ‖ν ) <∞, which imposes the requirement of absolute continuity of the true model with respect to the design
model. For various uses, such as model building and model simplification, this restriction can be significant.
In the context of model building, it can happen that one attempts to fit distributions to data by comparing
an empirical measure constructed using data with the elements of a parameterized family, such as a collection
of Gaussian distributions. In this case the two distributions one would compare are singular, and so relative
entropy cannot be used. A second example, and one that occurs frequently in the physical sciences, operations
research and elsewhere, is that a detailed model (such as the population process of a chemical reaction network,
which takes values in a lattice) is approximated by a simpler process that takes values in the continuum (for
example a diffusion process). For exactly the same reason as in the previous example, these processes, as well
as their corresponding stationary distributions, are not absolutely continuous.

Because relative entropy is not directly applicable to such problems, significant effort has been put into
investigating alternatives ([4, 5] and references therein). A class that has attracted some attention (e.g., in the
machine learning community) are the type-1 Wasserstein or, more generally, optimal transport distances [14,
20, 25]. These distances, which are true metrics, have certain attractive properties but also some shortcomings.
One is that the distances do not have an interpretation as the dual of a strictly convex function. To be a little
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more concrete, it is the strict concavity of the mapping g → H[g;µ, ν] with

H[g;µ, ν]
.
=

∫
S

gdµ− log

∫
S

egdν (1.3)

in the variational representation for R(µ ‖ν ) that leads to tight bounds when applied to problems of control
or optimization of stochastic uncertain systems [10]. As an elementary example, given a fixed bound M on
R(µ ‖ν ), it follows from (1.2) that for any c > 0∫

S

gdµ ≤ 1

c

[
M + c log

∫
S

ecgdν

]
,

and bounds that are tight for the collection {µ : R(µ ‖ν ) ≤ M} can be obtained by optimizing on c > 0. This
is not possible for the analogous variational representation for Wasserstein type distances which involves

H[g;µ, ν]
.
=

∫
S

gdµ−
∫
S

gdν. (1.4)

Also, in some problems of learning, one encounters optimization problems such as infθM(µ, νθ) where M is
a “distance” and νθ is a parameterized family. For M(µ, νθ) corresponding to relative entropy one obtains a
min/max problem of the form

inf
θ∈Θ

sup
g∈Cb(S)

H[g;µ, νθ]

that is solved iteratively, with H as in (1.3). Although we would prefer to avoid the restriction µ � ν, the
(strong) concavity/convexity properties of the mapping (g, ν) → H[g;µ, ν] appear preferable to those of the
analogous affine mapping that corresponds to (1.4).

A second limitation of Wasserstein distances is that, owing to the absence of a chain rule, they do not in
general scale well with respect to system dimension. This is an issue in applications to problems from the
physical sciences, where large time horizons and large dimensions are common.

Rather than give up entirely the attractive features of the dual pair (R(µ ‖ν ), log
∫
S
egdν), an alternative is to

be more restrictive regarding the class of costs or performance measures for which bounds are required. Indeed,
the requirement of absolute continuity in relative entropy is entirely due to the very large class of functions,
Cb(S), appearing in (1.1). For a collection Γ ⊂ Cb(S) one can consider in lieu of R(µ ‖ν ) what we call the
Γ-divergence, which is defined by

GΓ(µ ‖ν )
.
= sup

g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
. (1.5)

By imposing regularity conditions on Γ (e.g., Lipschitz continuity, additional smoothness) one generates (under
mild additional conditions on Γ) divergences which relax the absolute continuity condition. Thus one is trading
restrictions on the class of performance measures or observables for which bounds are valid, for the enlargement
of the class of distributions to which the bounds apply. These divergences are of course not as nice as relative
entropy, but one can prove that they retain versions of its most important properties (in particular, the sense
in which a version of the chain rule persists is discussed in Sect. 6.2). In addition, the dual function remains
log
∫
S
egdν. As noted this is useful owing to its convexity properties, and it is also useful when considering

problems of optimization or control since the corresponding risk-sensitive optimization and optimal control
problems are well studied in the literature.
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In our formulation of the Γ-divergence the underlying idea is that to extend the range of probability measures
that can be compared, one must restrict the class of integrands that will be considered. However, this leads
directly to an interesting connection with the Wasserstein distance mentioned previously, which is that for
suitable collections Γ we will prove the inf-convolution expression

GΓ(µ ‖ν ) = inf
γ∈P(S)

{WΓ(µ− γ) +R(γ ‖ν )} ,

where WΓ is the Wasserstein metric whose dual (sup) formulation uses the set of functions Γ. Moreover one
recovers relative entropy by taking the limit b → ∞ in GbΓ(µ ‖ν ), which may be useful if one wants to allow
relatively small violations of the absolute continuity restriction, while at the same time taking advantage of
simple approximations for the Wasserstein distance in the high transportation cost limit. The sup formulation
(1.5) can also be used as the basis for sampling based computation, by adapting the approach of [17].

The organization of the paper is as follows. In Section 2 we define the Γ-divergence, and prove the first main
result of this paper, which is the inf-convolution formula described above (Thm. 2.4). In Section 3, we show
several properties of the Γ-divergence, and establish a convex duality formula for the Γ-divergence. Section 4
investigates the Γ-divergence for a special choices of Γ, which are sets of bounded Lipschitz continuous functions.
We establish a relation between Γ-divergence and optimal transport cost, and prove existence and uniqueness for
optimizers of variational representations of Γ-divergence (Thm. 4.9), and also formulas for directional derivatives
of the Γ-divergence (Thm. 4.16). Section 5 considers limits for the Γ-divergence, and in Section 6 there is a
preliminary discussion on how one can apply the Γ-divergence to obtain uncertainty quantification bounds.

As last remarks we note that the paper [1] defines a “relaxation” of Wasserstein distance by putting in an
entropy term of the mass-transfer matrix. The new divergence so defined is easier to compute than the original
Wasserstein distance, but is not the same as the divergences we develop here. Also, [24] makes use of an inf-
convolution formula analogous to the one presented above to extend type-1 Wasserstein distances to positive
measures.

2. Definition of the Γ-divergence

Throughout this section, S is a Polish space with metric d(·, ·) and associated Borel σ-algebra B. Cb(S) denotes
the space of all bounded continuous functions from S to R. Let P(S) be the space of probability measures over
(S,B), M(S) be the space of finite signed (Borel) measures over (S,B), and M0(S) be the subspace of M(S)
whose total mass is 0. R .

= R ∪ {∞} is the extended real numbers. Throughout this section, we consider Cb(S)
equipped with weak topology induced by M(S). Thus for fn, f ∈ Cb(S), fn → f if

∫
S
fndµ →

∫
S
fdµ for all

µ ∈M(S).
We recall that

R(µ‖ν)
.
=

∫
S

(
log

dµ

dν

)
dµ

whenever µ is absolutely continuous with respect to ν. For t ∈ R define t−
.
= −(t ∧ 0). Since the function

s(log s)− is bounded for s ∈ [0,∞), whenever µ� ν,∫
S

(
log

dµ

dν

)−
dµ =

∫
S

dµ

dν

(
log

dµ

dν

)−
dν <∞.

Thus R(µ‖ν) is always well defined.
We recall the Donsker-Varadhan variational representation (1.1) for relative entropy. We will use equation

(1.1) as an equivalent characterization of R(·‖ν) on P(S), and consider an extension toM(S). With an abuse of
notation, we will also call the extended function R. The following lemma states basic properties of the extension.
Its proof appears in the Appendix.
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Lemma 2.1. Consider R :M(S)× P(S)→ (−∞,∞] defined by (1.1). Then

(1) R(µ‖ν) ≥ 0 and R(µ‖ν) = 0 if and only if µ = ν,
(2) R(·‖·) is convex,
(3) R(µ‖ν) =∞ if µ ∈M(S)\P(S).

Though relative entropy has very attractive regularity and optimization properties, as noted R(µ‖ν) is finite
if and only if µ� ν. As such, it cannot be used to give a meaningful notion of “distance” without this absolute
continuity restriction. In order to define a meaningful divergence for a pair of probability measures that are
not mutually absolute continuous, but at the same time not to lose the useful properties of the “dual” function
g → log

∫
S
egdν appearing in (1.1), a natural approach is to restrict the set of test functions in the variational

formula. We define a criterion for the classes of “admissible” test functions we want to use.

Definition 2.2. Let Γ be a subset of Cb(S) endowed with the inherited weak topology. We call Γ admissible
if the following hold.

1) Γ is convex and closed.
2) Γ is symmetric in that g ∈ Γ implies −g ∈ Γ, and Γ contains all constant functions.
3) Γ is determining for P(S), i.e., for any µ, ν ∈ P(S) with µ 6= ν, there exists g ∈ Γ such that∫

S

gdµ 6=
∫
S

gdν.

We next define a new divergence by restricting the class of test functions in the definition of relative entropy.
Let Γc denote the complement of Γ.

Definition 2.3. Fix ν ∈ P(S). For µ ∈M(S), we define the Γ-divergence associated with the admissible set
Γ by

GΓ(µ‖ν)
.
= sup

g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
.

We also define the following related quantity. For η ∈M(S) let

WΓ(η)
.
= sup

g∈Γ

{∫
S

gdη

}
= sup
g∈Cb(S)

{∫
S

gdη −∞1{g∈Γc}

}
.

When Γ is clear based on context, we will drop the subscript from GΓ and WΓ. Using a similar argument as
in Lemma 2.1, one can show that GΓ(µ‖ν) =∞ if µ(S) 6= 1. The next theorem states an important property of
the Γ-divergence, which is that it can be written as a convolution involving relative entropy and WΓ.

Theorem 2.4. Assume Γ is an admissible set. Then for µ ∈M(S), ν ∈ P(S),

GΓ(µ‖ν) = inf
γ∈P(S)

{R(γ‖ν) +WΓ(µ− γ)}

Remark 2.5. It will be pointed out in Section 4 that if Γ is taken to be the Lipschitz functions with respect
to a cost function c(x, y) that satisfies some specified conditions, WΓ(µ− ν) will be the corresponding optimal
transport cost from µ to ν. If Γ is also admissible then the theorem tells us that by restricting the set of test
functions in the variational representation of relative entropy to Γ, we get a quantity which is an inf-convolution
of relative entropy and a metric.

The rest of this section is focused on the proof of Theorem 2.4. In order to do this, we need a few definitions
and also will find it convenient to consider a more general setting.
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Definition 2.6. Points x and y in a topological space Y can be separated if there exists an open neighborhood
U of x and an open neighborhood V of y such that U and V are disjoint (U ∩ V = ∅). Y is a Hausdorff space
if all distinct points in Y are pairwise separable.

Definition 2.7. A subset C of a topological vector space Y over the number field R is
1. convex if for any x, y ∈ C and any t ∈ [0, 1], tx+ (1− t)y ∈ C,
2. balanced if for all x ∈ C and any λ ∈ R with |λ| ≤ 1, λx ∈ C,
3. absorbant if for all y ∈ Y , there exists t > 0 and x ∈ C such that y = tx.
A topological vector space Y is called locally convex if the origin has a local topological basis of convex,

balanced and absorbent sets.

Definition 2.8. For a topological vector space Y over the number field R, its topological dual space Y ∗ is
defined as the space of all continuous linear functionals ϕ : Y → R.

The weak∗ topology on Y ∗ is the topology induced by Y . In other words, it is the coarsest topology such
that functional y : Y ∗ → R, y(ϕ) = ϕ(y) is continuous in Y ∗.

For y ∈ Y and ϕ ∈ Y ∗, we also write 〈y, ϕ〉 .= ϕ(y) = y(ϕ).

Now let Y be a Hausdorff locally convex space with Y ∗ being its topological dual space and endowed with
the weak* topology.

Definition 2.9. For a function f : Y → R, its convex dual f∗ : Y ∗ → R is defined by

f∗(z) = sup
y∈Y
{〈y, z〉 − f(y)} .

Definition 2.10. Let f1, f2 : Y → R be two functions. We define the inf-convolution of f1 and f2 by

[f1�f2] (y)
.
= inf
y1∈Y
{f1(y1) + f2(y − y1)}.

Definition 2.11. For a function f : Y → R the lower semicontinuous hull f is defined by

f(x)
.
= sup{g(x) : g ≤ f, g : Y → R is continuous}.

Definition 2.12. A convex function f : Y → R is proper if there exists y ∈ Y such that f(y) < ∞. The
domain of a convex, proper function f is defined by

dom(f)
.
= {y ∈ Y : f(y) <∞}.

Now let us introduce an important lemma.

Lemma 2.13. ([6], Thm. 2.3.10) Let fi : Y → R be convex, proper and lower-semicontinuous functions fulfilling⋂m
i=1 dom(fi) 6= ∅. Then one has (

m∑
i=1

fi

)∗
= f∗1� · · ·�f∗m.

In our use we take Y = Cb(S) equipped with topology induced by M(S), i.e., the topological basis around
g ∈ Y is taken as sets of the form

{
f ∈ Y :

∫
S

fdµk ∈
(∫

S

gdµk − εk,
∫
S

gdµk + εk

)
, k = 1, 2, . . . ,m

}
,



FORMULATION AND PROPERTIES OF A DIVERGENCE 7

where m ∈ N, {µk}k=1,2,...,m ⊂ M(S) and εk > 0, k = 1, 2, . . . ,m are arbitrary. It can be easily verified that
under this topology, Cb(S) is a Hausdorff locally convex space, with Cb(S)∗ = M(S) ([22], Thm. 3.10). For
g ∈ Cb(S) and µ ∈M(S), we define the bilinear form

〈g, µ〉 .=
∫
S

gdµ.

We are now ready to prove the main theorem.

Proof of Theorem 2.4. Define H1, H2 : Cb(S)→ R by

H1(g)
.
= log

∫
S

egdν and H2(g)
.
=∞1Γc(g).

Then

GΓ(µ‖ν) = sup
g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
= sup
g∈Cb(S)

{∫
S

gdµ− log

∫
S

egdν −∞1Γc(g)

}
= (H1 +H2)

∗
(µ).

Notice that {0} ∈ dom(H1) ∩ dom(H2) 6= ∅, and both H1 and H2 are proper and convex. For lower-
semicontinuity, under the topology induced by M(S), H1 is lower semicontinuous because of (1.2) and the
fact that supremum of continuous functions are lower semicontinuous, and H2 is lower semicontinuous since Γ
is closed. Thus, by Lemma 2.13

GΓ(µ‖ν) = (H1 +H2)∗(µ) = [H∗1�H
∗
2 ](µ).

By equation (1.1) and the definition of WΓ, we know that

R(µ‖ν) = H∗1 (µ) and WΓ(η) = H∗2 (η).

In the following display, the first equality is due to the definition of inf-convolution, and the second is since
R(γ‖ν) <∞ only when γ ∈ P(S):

H∗1�H
∗
2 (µ) = inf

γ∈M(S)
{R(γ‖ν) +WΓ(µ− γ)} = inf

γ∈P(S)
{R(γ‖ν) +WΓ(µ− γ)} .

Thus the last thing we need to prove is that H∗1�H
∗
2 is lower semicontinuous. Note that relative entropy

is lower semicontinuous in the first argument in the weak topology ([9], Lem. 1.4.3 (b)), and WΓ is lower
semicontinuous in the weak topology since it is the supremum of a collection of linear functionals. Let

F (µ)
.
= H∗1�H

∗
2 (µ) = inf

γ∈P(S)
{R(γ‖ν) +WΓ(µ− γ)} .

Consider any sequence µn ⇒ µ with µn, µ ∈ M(S). Here “⇒” means convergence in the weak∗ topology, i.e.,
for any f ∈ Cb(S),

∫
fdµn →

∫
fdµ. Let ε > 0, and for each µn let γn satisfy

R(γn‖ν) +WΓ(µn − γn) ≤ F (µn) + ε.
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We want to show that

lim inf
n→∞

F (µn) ≥ F (µ). (2.1)

If lim infn→∞ F (µn) = ∞, the inequality above holds automatically. Assuming lim infn→∞ F (µn) < ∞, let nk
be a subsequence such that

lim
k→∞

F (µnk) = lim inf
n→∞

F (µn).

Notice that

R(γnk‖ν) ≤ R(γnk‖ν) +WΓ(µnk − γnk) ≤ F (µnk) + ε.

Since {F (µnk)}k≥1 is bounded, we know that {γnk}k≥1 is tight ([9], Lem. 1.4.3(c)). Then we can take a further
subsequence that converges weakly. For simplicity of notation, let nk denote this subsequence, and let γ∞ denote
the weak limit of γnk . Then using the lower semicontinuity of R(·‖ν) on P(S) and the lower semicontinuity of
WΓ on M(S),

lim inf
n→∞

F (µn) + ε = lim
k→∞

F (µnk) + ε

≥ lim
k→∞

[R(γnk‖ν) +W (µnk − γnk)]

≥ R(γ∞‖ν) +W (µ− γ∞)

≥ inf
γ∈P(S)

{R(γ‖ν) +WΓ(µ− γ)}

= F (µ).

Since ε > 0 is arbitrary this establishes (2.1), and thus F is lower semicontinuous in M(S). The theorem is
proved.

3. Properties of the Γ-divergence

Theorem 2.4 provides an interesting characterization of the Γ-divergence. Before we continue to specific
choices of Γ, we first state some general properties associated with Γ-divergence. Throughout this section we
fix an admissible set Γ, and thus drop the subscript from GΓ and WΓ in this section. Also, now that we have
established the expression for G as an inf-convolution as in Theorem 2.4, we no longer need to consider G as
a function on M(S) × P(S), and instead can consider it just on P(S) × P(S), since we want to use G as a
measure of how two probability distributions differ.

Lemma 3.1. For (µ, ν) ∈ P(S)×P(S) define G(µ‖ν) by Definition 2.3 and assume Γ is admissible. Then the
following properties hold.

1) G(µ‖ν) ≥ 0, with G(µ‖ν) = 0 if and only if µ = ν.
2) G(µ‖ν) is a convex and lower semicontinuous function of (µ, ν). In particular, G(µ‖ν) is a convex, lower

semicontinuous function of each variable µ or ν separately.
3) G(µ‖ν) ≤ R(µ‖ν) and G(µ‖ν) ≤W (µ− ν).

Remark 3.2. 1) The first property justifies our calling G a divergence as the term is used in information theory.
2) Relative entropy has the property that for each fixed ν ∈ P(S), R(·‖ν) is strictly convex on {µ ∈ P(S) :

R(µ‖ν) <∞}. However, G(·‖ν) in general is not strictly convex.
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Proof of Lemma 3.1. 1) As noted in Lemma 2.1, R(·‖·) is non-negative ([9], Lem. 1.4.1), and for any µ ∈ P(S)

W (µ) = sup
g∈Γ

{∫
S

gdµ

}
≥
∫
S

0dµ = 0.

Thus

G(µ‖ν) = inf{R(µ1‖ν) +W (µ2) : µ1 + µ2 = µ} ≥ 0.

Also by Lemma 2.1, R(µ1‖ν) = 0 if and only if µ1 = ν. Thus G(µ‖ν) = 0 if and only if

W (µ− ν) = sup
g∈Γ

{∫
S

gd(µ− ν)

}
= 0,

which tells us µ = ν since Γ is admissible.
2) This is a straightforward corollary of Theorem 2.4, since the supremum of a collection of linear and

continuous functionals is both convex and lower semicontinuous.
3) This follows from Theorem 2.4 and that R(ν‖ν) = W (0) = 0.

For relative entropy we have the following lemma ([9], Prop. 1.4.2).

Lemma 3.3. For all g ∈ Cb(S)

log

∫
S

egdν = sup
µ∈P(S)

{∫
S

gdµ−R(µ‖ν)

}
,

where the supremum is achieved uniquely at µ0 satisfying

dµ0

dν
(x)

.
=

eg(x)∫
S
egdν

.

A similar duality formula holds for the Γ-divergence when g ∈ Γ.

Theorem 3.4. If Γ is admissible then for g ∈ Γ

log

∫
S

egdν = sup
µ∈P(S)

{∫
S

gdµ−G(µ‖ν)

}
.

Proof. Using the definition of the Γ-divergence

sup
µ∈P(S)

{∫
S

gdµ−G(µ‖ν)

}
= sup
µ∈P(S)

{∫
S

gdµ− sup
f∈Γ

{∫
S

fdµ− log

∫
S

efdν

}}

≤ sup
µ∈P(S)

{∫
S

gdµ−
{∫

S

gdµ− log

∫
S

egdν

}}
= log

∫
S

egdν.
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On the other hand, we know for relative entropy that

log

∫
S

egdν = sup
µ�ν

{∫
S

gdµ−R(µ‖ν)

}
.

Since G(µ‖ν) ≤ R(µ‖ν),

log

∫
S

egdν = sup
µ�ν

{∫
S

gdµ−R(µ‖ν)

}
≤ sup
µ�ν

{∫
S

gdµ−G(µ‖ν)

}
≤ sup
µ∈P(S)

{∫
S

gdµ−G(µ‖ν)

}
.

The statement of the theorem follows from the two inequalities.

The last theorem has two important implications. The first is related to the fact that Lemma 3.3 implies
bounds for

∫
S
gdµ when R(µ‖ν) is bounded, an observation that has served as the basis for the analysis of

various aspects of model form uncertainty [8, 11]. Using Theorem 3.4, we obtain analogous bounds on
∫
S
gdµ

for g ∈ Γ when G(µ‖ν) is bounded. Applications of these bounds will be further developed elsewhere. The
second is that for g ∈ Γ, if we take µ0 as defined in Lemma 3.3, then

log

∫
S

egdν =

∫
S

gdµ0 −R(µ0‖ν)

≤
∫
S

gdµ0 −G(µ0‖ν)

≤ sup
µ∈P(S)

{∫
S

gdµ−G(µ‖ν)

}
= log

∫
S

egdν,

where the first inequality comes from G(µ0‖ν) ≤ R(µ0‖ν). Since both inequalities above must be equalities, we
must have

R(µ0‖ν) = G(µ0‖ν).

The next lemma gives a more detailed picture of G(µ‖ν) when µ� ν.

Lemma 3.5. For µ, ν ∈ P(S), if µ� ν then

G(µ‖ν) = sup
γ∈A(S)

{∫
S

log

(
dγ

dν

)
dµ

}
,

where

A(S)
.
=

{
γ ∈ P(S) : γ � ν, ∃g ∈ Γ such that

dγ

dν
(x) = eg(x) for x ∈ supp(ν)

}
.

Proof. We use the definition

G(µ‖ν) = sup
g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
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to prove this lemma. For any g ∈ Γ, we define γg ∈ P(S) by the relation

dγg
dν

(x) =
eg(x)∫
S
egdν

for x ∈ supp(ν), and γg(supp(ν)c) = 0. Then for x ∈ supp(ν),

log

(
dγg
dν

(x)

)
= g(x)− log

∫
S

egdν.

Since µ� ν, we have ∫
S

log

(
dγg
dν

)
dµ =

∫
S

gdµ− log

∫
S

egdν,

and thus

G(µ‖ν) = sup
g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
≤ sup
γ∈A(S)

{∫
S

log

(
dγ

dν

)
dµ

}
.

On the other hand, for any γ ∈ A(S), by definition, we can find a gγ ∈ Γ such that

gγ(x) = log

(
dγ

dν
(x)

)
for x ∈ supp(ν). Then

∫
S

gγdµ− log

∫
S

egγdν =

∫
S

log

(
dγ

dν

)
dµ.

Thus

sup
γ∈A(S)

{∫
S

log

(
dγ

dν

)
dµ

}
≤ sup

g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
= G(µ‖ν).

Combining the two inequalities completes the proof.

Remark 3.6. When µ ∈ A(S) we always have G(µ‖ν) = R(µ‖ν). This is because if γ ∈ A(S) then µ� γ, and
therefore ∫

S

log

(
dµ

dν

)
dµ−

∫
S

log

(
dγ

dν

)
dµ =

∫
S

log

(
dµ

dγ

)
dµ = R(µ‖γ) ≥ 0.

Rearranging gives ∫
S

log

(
dγ

dν

)
dµ = R(µ‖ν)−R(µ‖γ),
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and so

G(µ‖ν) = sup
γ∈A(S)

{∫
S

log

(
dγ

dν

)
dµ

}
= R(µ‖ν).

This statement is not valid when µ � ν does not hold, since then log(dγ/dν) is not defined in
supp(µ)\supp(ν), thus ∫

S

log

(
dγ

dν

)
dµ

is not well defined.

4. Connection with optimal transport theory

In the proceeding sections, we discussed general properties for the Γ-divergence with an admissible set
Γ ⊂ Cb(S). In this section, we discuss specific choices of Γ which relate the Γ-divergence with optimal transport
theory. First we state some well known results in optimal transport theory.

4.1. Preliminary results from optimal transport theory

The results in this section are from Chapter 4 of [20]. The general Monge-Kantorovich mass transfer problem
with given marginals µ, ν ∈ P(S) and cost function c : S × S → R+ is

C(c;µ, ν)
.
= inf
π∈Π(µ,ν)

{∫
S×S

c(x, y)π(dx, dy)

}
,

where Π(µ, ν) denotes the collection of all probability measures on S × S with first and second marginals being
µ and ν, respectively.

A natural dual problem with respect to this is

B(c; ρ)
.
= sup
f∈Lip(c,S;Cb(S))

{∫
S

f(x)ρ(dx)

}
,

where ρ = µ− ν, Cb(S) denotes the set of bounded continuous functions mapping S to R and

Lip(c, S;Cb(S))
.
= {f ∈ Cb(S) : f(x)− f(y) ≤ c(x, y) for all x, y ∈ S} . (4.1)

We want to know when

C(c;µ, ν) = B(c, ρ) (4.2)

holds. The following is a necessary and sufficient condition. As with many results in this section, one can extend
in a trivial way to the case where costs are bounded from below, rather than non-negative. Recall that S is a
Polish space.

Condition 4.1. There is a nonempty subset Q ⊂ Cb(S) such that the cost c : S × S → [0,∞] has the
representation

c(x, y) = sup
u∈Q

(u(x)− u(y)) for all (x, y) ∈ S × S. (4.3)
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Theorem 4.2. ([20], Thm. 4.6.6) Under Condition 4.1, (4.2) holds.

Remark 4.3. Condition 4.1 implies that c satisfies the triangle inequality, i.e., for all x, y, z ∈ S

c(x, z) ≤ c(x, y) + c(y, z).

This follows easily from

sup
u∈Q

(u(x)− u(z)) = sup
u∈Q

((u(x)− u(y)) + (u(y)− u(z)))

≤ sup
u∈Q

(u(x)− u(y)) + sup
u∈Q

(u(y)− u(z)) .

On the other hand, Condition 4.1 also allows for a wide range of choices of c(x, y). For example, suppose
that c is a continuous metric on S, where continuity is with respect to the underlying metric of S. Then we can
choose

Q = {min(c(x, x0), n) : x0 ∈ S, n ∈ N} .

It is easily verified that Q ⊂ Cb(S), and that with this choice of Q (4.3) holds.

4.2. Γ-divergence with the choice Γ = Lip(c, S;Cb(S))

Suppose Γ = Lip(c, S;Cb(S)), with c : S × S → [0,∞] satisfying Condition 4.1. To make the presentation
simple, we have assumed that c is non-negative, and further assume it is symmetric, meaning c(x, y) = c(y, x) ≥ 0
for any x, y ∈ S. To distinguish from WΓ(µ− ν) for general Γ, we denote the transport cost for µ, ν ∈ P(S) by

Wc(µ, ν)
.
= sup
g∈Lip(c,S;Cb(S))

{∫
S

gd(µ− ν)

}
.

Then by Theorem 4.2

Wc(µ, ν) = sup
g∈Lip(c,S;Cb(S))

{∫
S

gd(µ− ν)

}
= inf
π∈Π(µ,ν)

{∫
S×S

c(x, y)π(dx, dy)

}
.

Condition 4.4. Suppose Lip(c, S;Cb(S)) is measure determining, i.e., for all µ, ν ∈ P(S), µ 6= ν, there exists
f ∈ Lip(c, S;Cb(S)) such that ∫

S

fdµ 6=
∫
S

fdν.

Remark 4.5. It is well known that if d(x, y) denotes the metric on S, then Lip(d, S;Cb(S)) is determining.
Hence a simple sufficient assumption for Condition 4.4 is that for some θ > 0, θd(x, y) ≤ c(x, y) for x, y ∈ S. In
fact, it is enough that for each compact set K ⊂ S there is θ with θd(x, y) ≤ c(x, y) for x, y ∈ S. To see this, let
f ∈ Lip(d, S;Cb(S)) satisfy ∫

S

fdµ ≥
∫
S

fdν + δ,

where δ > 0 and we can assume that 0 ≤ f ≤ 1. Since a single probability measure is always tight we can find a
compact set K such that µ(Kc) ≤ δ/8 and ν(Kc) ≤ δ/8. Then under the assumption f is bounded and Lipschitz
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continuous with respect to c on K, and using

f(z) = min{c(z, x) + f(x), x ∈ K} ∧ 1

to redefine f off K, we obtain f ∈ Lip(c, S;Cb(S)) such that∫
S

fdµ ≥
∫
S

fdν + δ/2.

Under Condition 4.4, Γ is admissible (see Def. 2.2), and by Theorem 2.4

GΓ(µ‖ν) = sup
g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
= inf
γ∈P(S)

{Wc(µ, γ) +R(γ‖ν)} . (4.4)

Hence by choosing Γ properly, we get that the Γ-divergence is an infimal convolution of relative entropy, which
is a convex function of likelihood ratios, and an optimal transport cost, which depends on a cost structure on
the space S. Natural questions to raise here are the following.

i) Do there exist optimizers γ∗ and g∗ in the variational problem (4.4)? If so, are they unique?
ii) How can one characterize γ∗ and g∗?
iii) For a fixed ν ∈ P(S) (resp., µ ∈ P(S)), what is the effect of a perturbation of µ (resp., ν) on GΓ(µ‖ν)?

We will address these questions sequentially in this section. From now on, we will drop the subscript Γ in this
section for the simplicity of writing. We consider the case where G(µ‖ν) <∞. To impose additional constraints
on µ and ν such that G(µ‖ν) <∞ holds, we make a further assumption on c.

Condition 4.6. There exists a : S → R+ such that

c(x, y) ≤ a(x) + a(y).

Now consider µ, ν ∈ L1(a)
.
= {θ ∈ P(S) :

∫
S
a(x)θ(dx) <∞}. Then

G(µ‖ν) = inf
γ∈P(S)

{Wc(µ, γ) +R(γ‖ν)}

≤Wc(µ, ν)

= inf
π∈Π(µ,ν)

{∫
S×S

c(x, y)π(dx, dy)

}
≤ inf
π∈Π(µ,ν)

{∫
S×S

[a(x) + a(y)]π(dx, dy)

}
=

∫
S

a(x)µ(dx) +

∫
S

a(y)ν(dy)

<∞.

We will assume the following mild conditions on the space S and cost c to make Lip(c, S;Cb(S)) precompact.

Condition 4.7. There exists {Km}m∈N such that Km ⊂ S is compact, Km ⊂ Km+1 for all m ∈ N, and
S = ∪m∈NKm. For each m, there exists θm : R+ → R+, such that lima→0 θm(a) = 0, and δm > 0, such that for
any x, y ∈ Km satisfying d(x, y) ≤ δm,

c(x, y) ≤ θm(d(x, y)).
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Recalling the definition (4.1), we define the unbounded version as follows

Lip(c, S)
.
= {f ∈ C(S) : f(x)− f(y) ≤ c(x, y) for all x, y ∈ S} ,

where C(S) is the set of continuous functions mapping S to R. Before we proceed, we state the following lemma,
which will be used repeatedly in this section.

Lemma 4.8. If g ∈ Lip(c, S) and θ, ν ∈ P(S) satisfy
∫
S
|g|dθ <∞, then∫

S

gdθ − log

∫
S

egdν ≤ G(θ‖ν) ≤ R(θ‖ν).

Proof. We use a standard truncation argument. Since by Lemma 3.1 we already have G(θ‖ν) ≤ R(θ‖ν), we only
need to prove the first inequality in the statement of the lemma. If

∫
S
egdν =∞, then∫

S

gdθ − log

∫
S

egdν = −∞ < 0 ≤ G(θ‖ν).

Hence we only need consider the case
∫
S
egdν < ∞. Let gn = min(max(g,−n), n) ∈ Lip(c, S;Cb(S)) = Γ for

n ∈ N. We have |gn(x)| ≤ |g(x)| and

lim
n→∞

gn(x) = g(x) x ∈ S.

Thus by the dominated convergence theorem limn→∞
∫
S
gndθ =

∫
S
gdθ. Also we have

egn(x) ≤ eg(x) + 1 and lim
n→∞

egn(x) = eg(x).

Then again using the dominated convergence theorem, limn→∞
∫
S
egndν =

∫
S
egdν. Together with (1.1), this

gives ∫
S

gdθ − log

∫
S

egdν = lim
n→∞

(∫
S

gndθ − log

∫
S

egndν

)
≤ sup
f∈Γ

{∫
S

fdθ − log

∫
S

efdν

}
= G(θ‖ν).

Now we are ready to state the first main theorem of this section.

Theorem 4.9. Suppose Conditions 4.1, 4.4, 4.6 and 4.7 are satisfied. Fix µ, ν ∈ L1(a). Then the following
conclusions hold.
1) There exists a unique optimizer γ∗ in the expression (4.4).
2) There exists an optimizer g∗ ∈ Lip(c, S) in the expression (4.4), which is unique up to an additive constant
in supp(µ) ∪ supp(ν).
3) g∗ and γ∗ satisfy the following conditions:
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i)

dγ∗

dν
(x) =

eg
∗(x)∫

S
eg∗(y)dν

, ν − a.s.

ii)

Wc(µ, γ
∗) =

∫
S

g∗d(µ− γ∗).

Remark 4.10. With many analogous expressions related to relative entropy, one can only conclude the unique-
ness of γ∗ and g∗ (up to constant addition) almost everywhere according to either the measure µ or ν. However,
because of the regularity condition g∗ ∈ Lip(c, S;C(S)) and Condition 4.7, the uniqueness of g∗ (up to constant
addition) on supp(µ) ∪ supp(ν) will follow.

Proof. For n ∈ N consider γn ∈ P(S) that satisfies

R(γn‖ν) +Wc(µ, γn) ≤ G(µ‖ν) + 1/n.

Then by Lemma 1.4.3(c) in [9] {γn}n≥1 is precompact in the weak topology, and thus has a convergent subse-
quence {γnk}k≥1. Denote γ∗

.
= limk→∞ γnk . Then by the lower semicontinuity of both R(·‖ν) and Wc(µ, ·), we

have

R(γ∗‖ν) +Wc(µ, γ
∗) ≤ lim inf

k→∞
(R(γnk‖ν) +Wc(µ, γnk)) ≤ G(µ‖ν).

Since

G(µ‖ν) = inf
γ∈P(S)

{R(γ‖ν) +Wc(µ, γ)} ≤ R(γ∗‖ν) +Wc(µ, γ
∗)

it follows that

G(µ‖ν) = R(γ∗‖ν) +Wc(µ, γ
∗),

which shows that γ∗ is an optimizer in expression (4.4). If there exist two optimizers γ1 6= γ2, the strict convexity
of R(·‖ν) and convexity of Wc(µ, ·) imply that for γ3 = 1

2 (γ1 + γ2)

R(γ3‖ν) +Wc(µ, γ3) <
1

2
((R(γ1‖ν) +Wc(µ, γ1)) + (R(γ2‖ν) +Wc(µ, γ2)))

= G(µ‖ν) ≤ R(γ3‖ν) +Wc(µ, γ3),

a contradiction. Thus the existence and uniqueness of an optimizer γ∗ of (4.4) is proved, which establishes 1)
in the statement of the theorem. Before proceeding, we establish the following lemma, whose proof appears in
the Appendix.

Lemma 4.11. If g ∈ Lip(c, S), then
∫
S
gdγ∗ <∞.

Now we consider the other variational representation of G(µ‖ν), which is

G(µ‖ν) = sup
g∈Lip(c,S;Cb(S))

{∫
S

gdµ− log

∫
S

egdν

}
.
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Take gn ∈ Lip(c, S;Cb(S)) such that

G(µ‖ν)− 1/n ≤
∫
S

gndµ− log

∫
S

egndν ≤ G(µ‖ν).

Without loss of generality, we can assume gn(x0) = 0 for some fixed x0 ∈ K0 ⊂ S. Since for any m ∈ N Km ⊂ S
is compact, we have that {gn}n∈N is bounded and equicontinuous on Km by Condition 4.7. By the Arzelà-
Ascoli theorem, there exists a subsequence of {gn}n∈N that converges uniformly in Km. Using a diagonalization
argument, by taking subsequences sequentially along {Km}m∈N, where the next subsequence is a subsequence of

the former one, and taking one element from each sequence, we conclude there exists a subsequence
{
gnj
}
j∈N,

that converges uniformly in any Km. Since S = ∪m∈NKm, we conclude that
{
gnj
}
j∈N converges pointwise in

S. Denotes its limit by g∗. It can be easily verified that g∗ ∈ Lip(c, S).
Since gnj (x) ≤ gnj (x0)+c(x0, x) ≤ a(x0)+a(x) and

∫
S

(a(x0) + a(x)) dµ <∞, by the dominated convergence

theorem limj→∞
∫
S
gnjdµ =

∫
S
g∗dµ. By Fatou’s lemma, we have lim infj→∞

∫
S
egnj dν ≥

∫
eg

∗
dν, and therefore

− log

∫
eg

∗
dν ≥ lim sup

j→∞
−
∫
S

egnj dν.

Putting these together, we have

G(µ‖ν) = sup
g∈Lip(c,S;Cb(S))

{∫
S

gdµ− log

∫
S

egdν

}
≤ lim sup

j→∞

{∫
S

gnjdµ− log

∫
S

egnj dν

}
≤
∫
S

g∗dµ− log

∫
S

eg
∗
dν

=

(∫
S

g∗dµ−
∫
S

g∗dγ∗
)

+

(∫
S

g∗dγ∗ − log

∫
S

eg
∗
dν

)
.

We can add and subtract
∫
S
g∗dγ∗ because we have proved in Lemma 4.11 that γ∗ is integrable with respect to

functions in Lip(c, S), and g∗ ∈ Lip(c, S). By Lemma 4.8 we have∫
S

g∗dγ∗ − log

∫
S

eg
∗
dν ≤ R(γ∗‖ν).

We also have ∫
S

g∗dµ−
∫
S

g∗dγ∗ ≤Wc(µ, γ
∗),

which is due to

Wc(µ, γ
∗) = sup

g∈Lip(c,S;Cb(S))

∫
S

gd(µ− γ∗)

≥ lim sup
n→∞

∫
S

max(min(g∗, n),−n)d(µ− γ∗)

=

∫
S

g∗d(µ− γ∗),
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where the last equality is because of the dominated convergence theorem and integrability of |g∗| with respect
to µ and γ∗ (Lem. 4.11). We can therefore continue the calculation above as(∫

S

g∗dµ−
∫
S

g∗dγ∗
)

+

(∫
S

g∗dγ∗ − log

∫
S

eg
∗
dν

)
≤Wc(µ, γ

∗) +R(γ∗‖ν) = G(µ‖ν).

Since both the upper and lower bounds on the inequalities coincide, we must have all inequalities to be
equalities, and therefore

G(µ‖ν) =

∫
S

g∗dµ− log

∫
S

eg
∗
dν,

∫
S

g∗dµ−
∫
S

g∗dγ∗ = Wc(µ, γ
∗),

and ∫
S

g∗dγ∗ − log

∫
S

eg
∗
dν = R(γ∗‖ν).

The last equation gives us the relationship

dγ∗

dν
(x) =

eg
∗(x)∫

S
eg∗dν

ν − a.s.

Thus we have shown the existence of optimizer g∗ ∈ Lip(c, S) and its relationship with γ∗. Lastly, for any
other optimizer ḡ ∈ Lip(c, S) the analogous argument shows

dγ∗

dν
(x) =

eḡ(x)∫
S
eḡdν

ν − a.s.

Hence uniqueness of the optimizer g∗ in supp(ν) up to ν − a.s. is also proved.
To determine the uniqueness of the optimizer g∗ in supp(µ), we take an optimal transport plan between µ

and γ∗, π∗ ∈ Π(µ, γ∗) for Wc(µ, γ
∗), which means

Wc(µ, γ
∗) = inf

π∈Π(µ,γ∗)

{∫
S×S

c(x, y)π(dx, dy)

}
=

∫
S×S

c(x, y)π∗(dx, dy).

(Note that c satisfying Condition 4.1 is lower semicontinuous, and therefore ([2], Thm. 1.5) shows the existence
of an optimal transport plan π∗.)

Since g∗(x)− g∗(y) ≤ c(x, y),

Wc(µ, γ
∗) =

∫
S×S

c(x, y)π∗(dx, dy)

≥
∫
S×S

[g∗(x)− g∗(y)]π∗(dx, dy)

=

∫
S

g∗(x)(µ− γ∗)(dx)

= Wc(µ, γ
∗).

Then the only inequality above must be equality, which implies that for (x, y) ∈ supp(γ∗), g∗(x)−g∗(y) = c(x, y),
π∗ − a.s. This is also true for any other optimizer ḡ ∈ Lip(c, S) for (4.4). Thus we are able to determine g∗
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uniquely in supp(µ) µ− a.s. with the help of π∗ and data of g∗ in supp(ν). Lastly, since g∗ ∈ Lip(c, S) and by
Condition 4.7, we conclude the uniqueness of g∗ in supp(µ) ∪ supp(ν) by the continuity of g∗.

Remark 4.12. When µ� ν Theorem 4.9 implies that for some constant c0

g∗(x) = log

(
dγ∗

dν
(x)

)
− c0 ν − a.s.

Hence

G(µ‖ν) =

∫
S

g∗dµ− log

∫
S

eg
∗
dν =

∫
S

log

(
dγ∗

dν
(x)

)
dµ,

and so the Γ-divergence of µ with respect to ν looks like a “modified” version of relative entropy.

The next theorem tells us that 3) of Theorem 4.9 is not only a description of the pair of optimizer (g∗, γ∗),
but also a characterization of it.

Theorem 4.13. Suppose Conditions 4.1, 4.4, 4.6 and 4.7 are satisfied. Fix µ, ν ∈ L1(a). If g1 ∈ Lip(c, S) and
γ1 ∈ P(S) satisfy condition 3) in Theorem 4.9, then (g1, γ1) are optimizers in the corresponding variational
problem (4.4):

GΓ(µ‖ν) =

∫
S

g1dµ− log

∫
S

eg1dν = Wc(µ, γ1) +R(γ1‖ν).

Proof. The theorem follows from the two variational characterization of Γ-divergence in (4.4). Condition 3) of
Theorem 4.9 implies

R(γ1‖ν) =

∫
S

g1dγ1 − log

∫
S

eg1dν and Wc(µ, γ1) =

∫
S

g1d(µ− γ1),

and therefore

R(γ1‖ν) +Wc(µ, γ1) =

∫
S

g1dµ− log

∫
S

eg1dν.

This implies

G(µ‖ν) = inf
γ∈P(S)

{R(γ‖ν) +Wc(µ, γ)}

≤ R(γ1‖ν) +Wc(µ, γ1)

=

∫
S

g1dµ− log

∫
S

eg1dν

≤ sup
g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
= G(µ‖ν).

The first inequality comes from the fact that γ1 ∈ P(S), while the second needs a little more discussion, which
will be given below. Assuming this, the last display shows that (g1, γ1) are optimizers. The second inequality
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follows from Lemma 4.8 and the fact that∫
S

|g1(x)|µ(dx) ≤
∫
S

[|g1(0)|+ c(0, x)]µ(dx) ≤
∫
S

[|g1(0)|+ a(0) + a(x)]µ(dx) <∞.

The proof is complete.

The last theorem answers questions i) and ii) raised earlier in this section, now we want to answer iii), which
is to characterize the directional derivatives of G(µ‖ν) in the one variable when fixing the other, e.g.,

lim
ε→0+

1

ε
(G(µ+ ερ‖ν)−G(µ‖ν))

for ρ ∈M0(S) which satisfies certain conditions. From Theorem 4.9 and remarks following it we know that any
optimizer g∗ of expression (4.4) is unique in supp(µ) ∪ supp(ν). However, there is still freedom to choose g∗ in
S\ {supp(µ) ∪ supp(ν)}, since the variational problem in (4.4) does not take into account of the information
of g∗ outside supp(µ) ∪ supp(ν), other than requiring that g∗ belong to Lip(c, S). We will define a special
g∗ that is uniquely defined not only in supp(µ) and supp(ν), but also on S\ {supp(µ) ∪ supp(ν)}. For x ∈
S\ {supp(µ) ∪ supp(ν)}, set

g∗+(x)
.
= inf
y∈supp(ν)

{g∗(y) + c(x, y)} , (4.5)

also known as the “c-transform” in the optimal transport literature. The following lemma confirms that this
construction of g∗+ still lies in Lip(c, S). While part 1 is standard, we could not find a reference for part 2, and
so the proof appears in the Appendix.

Lemma 4.14. The following two statements hold.
1) For x ∈ supp(µ), the expression (4.5) also holds. In other words, for x ∈ S\supp(ν), we have

g∗(x) = inf
y∈supp(ν)

{g∗(y) + c(x, y)} .

2) g∗+ defined by equation (4.5) is in Lip(c, S). In addition,

g∗+(x) = sup{h(x) : h ∈ Lip(c, S), h(y) = g∗(y) for y ∈ supp(ν)} (4.6)

Remark 4.15. We also will make use of the function

g∗−(x) = inf{h(x) : h ∈ Lip(c, S), h(y) = g∗(y) for y ∈ supp(µ) ∪ supp(ν)}. (4.7)

Then based on these constructions, we have the following result. A sufficient condition for the requirement
that

∫
S
g∗−dρ be well defined and finite and the related assumption regarding convergence is

∫
ec(x,x0)ρ(dx) <∞.

Theorem 4.16. Take Γ = Lip(c, S;Cb(S)) where c satisfies the conditions of Theorem 4.9 and µ, ν ∈ L1(a).
Take ρ = ρ+ − ρ− ∈ M0(S) where ρ+, ρ− ∈ P(S) are mutually singular probability measures, ρ+ ∈ L1(a), and
assume there exists ε0 > 0 such that µ+ ερ ∈ P(S) for 0 < ε ≤ ε0. Then

lim
ε→0+

1

ε
(G(µ+ ερ‖ν)−G(µ‖ν)) =

∫
S

g∗+dρ.
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where g∗+ is given by (4.6). Suppose that
∫
S
eg

∗
−dρ is well defined and finite, where g∗− is given by (4.7), that if

gn ∈ Lip(c, S) converges to g∗− pointwise then
∫
S
egndρ→

∫
S
eg

∗
−dρ, and that there is ε0 > 0 such that ν + ερ ∈

P(S) for 0 < ε ≤ ε0. Then

lim
ε→0+

1

ε
(G(µ‖ν + ερ)−G(µ‖ν)) = −

∫
S

g∗−dρ

/∫
S

g∗−dν.

Proof. We use the variational formula (4.4) for G(µ+ ερ‖ν), where µ+ ερ ∈ P(S) and ρ+ ∈ L1(a). Recall that
g∗+ is an optimizer for (4.4). Using Lemma 4.8 with θ = µ+ ερ,

G(µ+ ερ‖ν) = sup
g∈Γ

{∫
S

gd(µ+ ερ)− log

∫
S

egdν

}
≥
∫
S

g∗+d(µ+ ερ)− log

∫
S

eg
∗
+dν

= ε

∫
S

g∗+dρ+

∫
S

g∗+dµ− log

∫
S

eg
∗
+dν

= ε

∫
S

g∗+dρ+G(µ‖ν).

Thus

lim inf
ε→0+

1

ε
(G(µ+ ερ‖ν)−G(µ‖ν)) ≥

∫
S

g∗+dρ. (4.8)

The other direction is more delicate. Take f(ε) = G(µ+ ερ‖ν). From Lemma 3.1 we know that f is convex,
lower semicontinuous and finite on [0, ε0]. Using a property of convex functions in one dimension, we know f
is differentiable on (0, ε0) except for a countable number of points. Take ε ∈ (0, ε0) to be a place where f is
differentiable, and δ > 0 small. Take g∗ε ∈ Lip(c, S) to be the optimizer for G(µ + ερ‖ν) satisfying g∗ε (x0) = 0
for some x0 in the support of ν, so that

G(µ+ ερ‖ν) =

∫
S

g∗εd(µ+ ερ)− log

∫
S

eg
∗
εdν.

Then using an argument that already appeared in this proof, we have

G(µ+ (ε± δ)ρ‖ν)−G(µ+ ερ‖ν) ≥ ±δ
∫
S

g∗εdρ.

It follows that ∫
S

g∗εdρ ≤ lim
δ→0

1

δ
(G(µ+ (ε+ δ)ρ‖ν)−G(µ+ ερ‖ν))

= f ′(ε)

= lim
δ→0

1

δ
(G(µ+ ερ‖ν)−G(µ+ (ε− δ)ρ‖ν))

≤
∫
S

g∗εdρ.
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and therefore

f ′(ε) =

∫
S

g∗εdρ. (4.9)

If we denote

f ′+(0) = lim
ε→0+

1

ε
(f(ε)− f(0)),

then by a property of convex functions ([21], Thm. 24.1), for any sequence of {εn}n∈N such that ε0 > εn ↓ 0
and f is differentiable at εn > 0, we have

f ′+(0) = lim
n→∞

f ′(εn) = lim
n→∞

∫
S

g∗εndρ.

By the same argument used in the proof of Theorem 4.9 (paragraphs following Lem. 4.11), i.e., by applying the
Arzelà-Ascoli theorem to {gεn} on each compact set Km ⊂ S, and then doing a diagonalization argument, there
exists a subsequence of {nk}k≥0 ⊂ {n}n≥0, such that g∗εnk

converges pointwise to a function that we denote by

g∗0 ∈ Lip(c, S). To simplify the notation, let n denote the convergent subsequence.
Since ρ = ρ+ − ρ−, where ρ+ ∈ L1(a) and µ+ ε0ρ ∈ P(S), µ ∈ L1(a) implies ρ− ∈ L1(a), and therefore∫

S

ad|ρ| <∞.

Here |ρ| = ρ+ + ρ−. Recall that for any ε ∈ (0, ε0), g∗ε (0) = 0. For any x ∈ S,

g∗ε (x) ≤ g∗ε (0) + c(0, x) ≤ a(0) + a(x).

Thus by the dominated convergence theorem

f ′+(0) = lim
n→∞

∫
S

g∗εndρ =

∫
S

g∗0dρ.

Lastly, to connect g∗0 back to g∗+, note that by the lower semicontinuity of G(·‖ν),

G(µ‖ν) ≤ lim inf
n→∞

G(µ+ εnρ‖ν)

= lim inf
n→∞

(∫
S

g∗εnd(µ+ εnρ)− log

∫
S

eg
∗
εndν

)
≤ lim sup

n→∞

∫
S

g∗εnd(µ+ εnρ)− lim inf
n→∞

log

∫
S

eg
∗
εndν

≤
∫
S

g∗0dµ− log

∫
S

eg
∗
0 dν

≤ G(µ‖ν).

The third inequality uses dominated convergence, (4.9), and Fatou’s lemma. The fourth inequality uses
Lemma 4.8.

Since both sides of the inequality coincide, g∗0 must be an optimizer for the variational expression (4.4). By
Theorem 4.9 and equation (4.6), we have g∗0(x) ≤ g∗+(x) for all x ∈ S and g∗0(x) = g∗+(x) for all x ∈ supp(ρ−) ⊂
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supp(µ). Thus

f ′+(0) =

∫
S

g∗0dρ ≤
∫
S

g∗+dρ, (4.10)

and the other direction of the inequality is proved. Combining (4.10) and (4.8) gives

lim
ε→0+

1

ε
(G(µ+ ερ‖ν)−G(µ‖ν)) =

∫
S

g∗+dρ.

We next consider the second statement, and now use that we have

GΓ(µ‖ν) = sup
g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
=

∫
S

g∗−dµ− log

∫
S

eg
∗
−dν.

For the given ρ ∈M0(S) and ε ∈ (0, ε0) we have

GΓ(µ‖ν + ερ) = sup
g∈Γ

{∫
S

gdµ− log

∫
S

egd(ν + ερ)

}
≥
∫
S

g∗−dµ− log

∫
S

eg
∗
−d(ν + ερ)

= GΓ(µ‖ν)− ε
∫
S
eg

∗
−dρ∫

S
eg

∗
−dν

+O(ε2),

and thus

lim inf
ε→0+

1

ε
(GΓ(µ‖ν + ερ)−GΓ(µ‖ν)) ≥ −

∫
S
eg

∗
−dρ∫

S
eg

∗
−dν

.

For the reverse direction the line of argument parallels the previous case. With now f(ε) = GΓ(µ‖ν + ερ),
we again have a right derivative at ε = 0. Let g∗ε ∈ Lip(c, S) satisfy g∗ε (x∗) = 0 for some point x0 in the support
of ν, and

GΓ(µ‖ν + ερ) =

∫
S

g∗εdµ− log

∫
S

eg
∗
ε d(ν + ερ).

Without loss we can assume f(ε) is differentiable at ε > 0, and for δ > 0 have the bounds

GΓ(µ‖ν + (ε± δ)ρ) ≥
∫
S

g∗εdµ− log

∫
S

eg
∗
ε d(ν + (ε± δ)ρ).

Therefore

lim inf
δ→0

1

δ
[GΓ(µ‖ν + (ε± δ)ρ)−GΓ(µ‖ν + ερ)] ≥ − lim inf

δ→0

1

δ
log

(
1± δ

∫
S
eg

∗
εdρ∫

S
eg

∗
ε d(ν + ερ)

)

= ∓
∫
S
eg

∗
εdρ∫

S
eg

∗
ε d(ν + ερ)

,
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which implies

f ′(ε) = −
∫
S
eg

∗
εdρ∫

S
eg

∗
ε d(ν + ερ)

.

We can assume that there is a sequence εn → 0 and g∗0 such that g∗εn converges pointwise to g∗0 , and so under
the assumptions of the theorem

f ′(0) = lim
n→∞

f ′(ε) = −
∫
S
eg

∗
0 dρ∫

S
eg

∗
0 dν

.

Using lower semicontinuity of GΓ(µ‖·), as in the proof of the first part

GΓ(µ‖ν) =

∫
S

g∗0dµ− log

∫
S

eg
∗
0 dν,

and so g∗0 is an optimizer. Again we have that g∗0 = g∗− in supp(µ) ∪ supp(ν) and hence in supp(ρ−). Since
g∗0 ≥ g∗− otherwise, this implies

f ′(0) = −
∫
S
eg

∗
0 dρ∫

S
eg

∗
0 dν

= −
∫
S
eg

∗
0d(ρ+ − ρ−)∫
S
eg

∗
0 dν

≤ −
∫
S
eg

∗
−dρ∫

S
eg

∗
−dν

.

Remark 4.17. When ρ ∈ M0(S) is taken such that there exists ε0 > 0 such that for ε ∈ [−ε0, ε0], µ + ερ ∈
P(S), then by applying the above theorem to ρ and −ρ respectively, we can conclude GΓ(µ+ ερ‖ν) as a function
of ε is differentiable at ε = 0 with derivative

∫
S
g∗+dρ. A similar statement applies to GΓ(µ‖ν + ερ).

Remark 4.18. One can consider g∗+ defined in (4.5) the unique potential associated with GΓ(µ‖ν). This g∗+
is similar to the Kantorovich potential in the optimal transport literature. However, for the optimal transport
cost Wc(µ, ν) more conditions are needed (e.g., [23], Prop. 7.18) to ensure the uniqueness of the Kantorovich
potential. Here under very mild conditions we are able to confirm the uniqueness of the potential, and prove
that it is the directional derivative of the corresponding Γ-divergence, as is case of the Kantorovich potential
for optimal transport cost when its uniqueness is established.

5. Limits and approximations of Γ-divergence

In this section, we consider limits that are obtained as the admissible set gets large or small, and the Γ-
divergence will be approximated by relative entropy or a transport distance, respectively. We also consider in
special cases more informative expansions. Throughout the section we assume the conditions of Theorem 4.9.

Fix an admissible set of Γ0 of the form Lip(c, S;Cb(S)) as in (4.1). Then the conditions of Theorem 4.9 hold
for Γ = bΓ0 = {b · f : f ∈ Γ0} if b > 0, and the following proposition holds.

Proposition 5.1. For µ, ν ∈ P(S),

lim
b→∞

GbΓ0
(µ‖ν) = R(µ‖ν).

Proof. We separate the proof into two cases, R(µ‖ν) <∞ and R(µ‖ν) =∞.
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1) If R(µ‖ν) <∞, then for any b > 0,

GbΓ0
(µ‖ν) = inf

γ∈P(S)
{WbΓ0

(µ, γ) +R(γ‖ν)} ≤ R(µ‖ν) <∞. (5.1)

From Theorem 4.9 we know there exists a unique optimizer γ∗ for each b, which we write as γ∗b . Note that

R(γ∗b ‖ν) ≤ R(µ‖ν) <∞,

and therefore {γ∗b }b>0 is precompact in the weak topology ([9], Lem. 1.4.3(c)). Given any subsequence bk, there
exists a further subsequence (again denoted by bk) and γ∗∞ ∈ P(S) such that γ∗bk ⇒ γ∗∞. On the other hand,

WbΓ0(µ, γ∗b ) = sup
f∈bΓ0

{∫
S

fd(µ− γ∗b )

}
= b sup

f∈Γ0

{∫
S

fd(µ− γ∗b )

}
= bWΓ0(µ, γ∗b ),

and WbΓ0(µ, γ∗b ) ≤ GbΓ0(µ‖ν) ≤ R(µ‖ν) <∞. Thus

WΓ0(µ, γ∗∞) ≤ lim inf
k→∞

WΓ0(µ, γ∗bk) = lim inf
k→∞

1

bk
WbkΓ0

(µ, γ∗bk) ≤ lim inf
k→∞

1

bk
R(µ‖ν) = 0,

and since Γ0 is admissible, γ∗∞ = µ. We thus conclude that

lim inf
k→∞

GbkΓ0
(µ‖ν) = lim inf

k→∞

(
WbkΓ0

(µ, γ∗bk) +R(γ∗bk‖ν)
)
≥ lim inf

k→∞
R(γ∗bk‖ν) ≥ R(µ‖ν),

and since the original subsequence was arbitrary

lim inf
b→∞

GbΓ0
(µ‖ν) ≥ R(µ‖ν).

On the other hand, we have by (5.1) that

lim sup
b→∞

GbΓ0(µ‖ν) ≤ R(µ‖ν),

and the statement is proved.

2) R(µ‖ν) = ∞. For this case, we want to prove that lim infb→∞GbΓ0(µ‖ν) = ∞. If not, then there exists a
subsequence {bk}b∈N such that

lim
k→∞

GbkΓ0
(µ‖ν) <∞.

For this subsequence, we can apply the argument used in part 1) to conclude there exists γ∗bk such that

GbkΓ0(µ‖ν) = WbkΓ0(µ, γ∗bk) +R(γ∗bk‖ν).

Moreover there exists a further subsequence of this sequence, which for simplicity we also denote by {bk}k∈N,
which satisfies γ∗bk ⇒ µ. Then by the same argument as in 1), we would conclude

lim
k→∞

GbkΓ0
(µ‖ν) ≥ R(µ‖ν) =∞.
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This contradiction proves the statement.

On the other hand, if Γ = δΓ0 for small δ > 0, we can approximate the Γ-divergence in terms of the WΓ0
.

Proposition 5.2. For µ, ν ∈ P(S)

lim
δ→0

1

δ
GδΓ0

(µ‖ν) = WΓ0
(µ, ν).

Proof. For any δ > 0, Jensen’s inequality implies

1

δ
GδΓ0

(µ‖ν) =
1

δ
sup
g∈δΓ0

{∫
S

gdµ− log

∫
S

egdν

}
≤ 1

δ
sup
g∈δΓ0

{∫
S

gdµ−
∫
S

gdν

}
= sup
g∈Γ0

{∫
S

gdµ−
∫
S

gdν

}
= WΓ0(µ, ν),

and therefore

lim sup
δ→0

1

δ
GδΓ0

(µ‖ν) ≤WΓ0
(µ, ν).

For the reverse inequality we consider two cases.

1) WΓ0(µ, ν) <∞. For 0 < δ < 1 the argument used above shows

GδΓ0
(µ‖ν) ≤ δWΓ0

(µ, ν) ≤WΓ0
(µ, ν) <∞.

By Theorem 4.9, we know there exists γ∗δ ∈ P(S), such that

GδΓ0
(µ‖ν) = WδΓ0

(µ, γ∗δ ) +R(γ∗δ ‖ν).

Since R(γ∗δ ‖ν) < GδΓ0
(µ‖ν) ≤WΓ0

(µ, ν) for δ ∈ (0, 1), for any sequence δk ⊂ (0, 1) there a further a subsequence
(again denoted δk) such that δk is decreasing, limk→∞ δk = 0, and γ∗δk converges weakly to a probability measure,
which we denote as γ∗0 . Then by the lower semicontinuity of R(·‖ν)

R(γ∗0‖ν) ≤ lim inf
k→∞

R(γ∗δk‖ν) ≤ lim inf
k→∞

GδkΓ0
(µ, ν) ≤ lim

k→∞
δkWΓ0

(µ, ν) = 0.

Since R(γ∗0‖ν) ≥ 0 with equality if and only if γ∗0 = ν, we conclude R(γ∗0‖ν) = 0 and γ∗0 = ν. Therefore

lim inf
k→∞

1

δk
GδkΓ0(µ‖ν) ≥ lim inf

k→∞

1

δk
WδkΓ0(µ, γ∗δk)

= lim inf
k→∞

WΓ0(µ, γ∗δk)

≥WΓ0
(µ, γ∗0 ) = WΓ0

(µ, ν),
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and since the original sequence was arbitrary

lim inf
δ→0

1

δ
GδΓ0

(µ‖ν) ≥WΓ0
(µ, ν).

2) WΓ0(µ, ν) = ∞. If lim infδ→0
1
δGδΓ0(µ‖ν) < ∞, then there is a subsequence {δl}l∈N ⊂ (0, 1) that achieves

this lim inf. From essentially the same proof above applied to this subsequence, it can be shown there exists a
further subsequence (again denoted {δl}) and γ∗0 ∈ P(S) such that

GδlΓ0(µ‖ν) = WδlΓ0(µ, γ∗δ ) +R(γ∗δl‖ν),

and γ∗l ⇒ γ∗0 . Denote M
.
= lim infδ→0

1
δGδΓ0

(µ‖ν) = liml→∞
1
δl
GδlΓ0

(µ‖ν) <∞. Since for l large enough

R(γδ∗l ‖ν) ≤ GδlΓ0
(µ‖ν) ≤ δl(M + 1),

we have

R(γ∗0‖ν) ≤ lim inf
l→∞

R(γ∗δl‖ν) ≤ lim
l→∞

δl(M + 1) = 0,

and thus γ∗0 = ν. However this leads to

M = lim
l→∞

1

δl
GδlΓ0

(µ‖ν) ≥ lim
l→∞

1

δl
WδlΓ0

(µ, γ∗δl)

= lim
l→∞

WΓ0
(µ, γ∗δl) ≥WΓ0

(µ, ν) =∞.

This contradiction implies

lim inf
δ→0

1

δ
GδΓ0(µ‖ν) =∞ = WΓ0(µ, ν).

We now consider more refined approximations when b is large. Previously we described the limiting behavior
when we vary the size of Γ. From Proposition 5.1, we know that when µ 6� ν, limb→∞GbΓ0(µ‖ν) =∞. In some
applications one might use a large transport cost as “penalty” so that while allowing non-absolutely continuous
perturbations, control on GΓ(µ‖ν) will ensure that µ is not too far away from ν.

In the rest of this section, we investigate the behavior when b → ∞, and in particular how GbΓ0
(µ‖ν) will

behave for fixed µ and ν. We only consider the case that Γ0 = Lip(c, S;Cb(S)) for some function c satisfies the
condition of Theorem 4.2, Assumption 4.4 and Assumption 4.6, and µ, ν ∈ L1(a) with a in Assumption 4.6. We
separate the cases depending on whether µ and ν are discrete or continuous. The results presented here are only
for special cases, and further development of these sorts of expansions would be useful.

5.1. Finitely supported discrete measures

We will consider the case where supp(ν) has finite cardinality, and µ is also discrete with finite support. The
proof of the following appears in the Appendix.
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Theorem 5.3. Suppose ν and µ are discrete with finite support, where supp(ν) = {xi}1≤i≤N and supp(µ) =
{yj}1≤j≤M . Then there exists γ̃ ∈ P(S) with γ̃ � ν such that

GbΓ0(µ‖ν) = bWΓ0(µ, γ̃) +R(γ̃‖ν) + e(b), (5.2)

where e(b) ≤ 0 satisfies e(b)→ 0 as b→∞. Furthermore, we can characterize γ̃ as the measure that minimizes
R(γ‖ν) over the collection of γ ∈ P(S) that satisfy the constraint

WΓ0(µ, γ) = inf
θ�ν

WΓ0(µ, θ). (5.3)

If to simplify the statement below we further assume that

c(yj , xi) 6= c(yj , xl)

for 1 ≤ j ≤ M and 1 ≤ i 6= l ≤ N , then γ̃ has the following form. Let Si be the indices j in {1, . . . ,M} for
which xi is the point in {xl}1≤l≤N closest to yj. Then for 1 ≤ i ≤ N ,

γ̃({xi}) =
∑
j∈Si

µ({yj}).

Remark 5.4. In discrete case, it is easily checked that the infimum in (5.3) is achieved. Take a sequence of
θn � ν such that

WΓ0(µ, θn) ≤ inf
θ�ν

WΓ0(µ, θ) + 1/n.

Since θn is supported on the compact set supp(ν) = {xi}1≤i≤N {θn}n∈N is compact, and hence there exist
θ∗ � ν and a subsequence {θnk}k∈N that converges to θ∗ weakly. By the lower semicontinuity of WΓ0

WΓ0
(µ, θ∗) ≤ lim inf

n→∞
WΓ0

(µ, θn) ≤ inf
θ�ν

WΓ0
(µ, θ),

and therefore θ∗ achieves the infimum of (5.3).

5.2. An example with ν is continuous

To illustrate an interesting scaling phenomenon, here we consider the example with S = R, c(x, y) = |x− y|,
ν = Unif([0, 1]), µ = δ0. Consider γ∗(dx) = c0e

−bxdx and g∗(x) = −bx for 0 ≤ x ≤ 1, where c0 is the normalizing
constant. For this example Γ0 = Lip(c, S;Cb(S)) is the set of bounded functions over R with Lipschitz constant
1. It is easily checked using Theorem 4.13 that γ∗ and g∗ are the optimizers in

GbΓ0
(µ‖ν) = inf

γ∈P(S)
{WbΓ0

(µ, γ) +R(γ‖ν)} = sup
g∈bΓ0

{∫
S

gdµ− log

∫
S

egν

}
.

Thus we have

GbΓ0
(µ‖ν) = −

∫ 1

0

bxdµ− log

∫ 1

0

e−bxdν = − log

∫ 1

0

e−bxdx = log

(
b

1− e−b

)
,

and in this case, GbΓ0
(µ‖ν) scales as log(b) + o(log(b)).
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For comparison we consider the optimal transport cost between µ and ν. We have

Wbc(µ, ν)
.
= sup
g∈bΓ0

{∫
S

gdµ−
∫
S

gdν

}
= b sup

g∈Γ0

{∫
S

gdµ−
∫
S

gdν

}
= bWc(µ, ν)

and one can calculate that Wc(µ, ν) = 1/2. Thus Wbc(µ, ν) = b/2, and so GbΓ0(µ‖ν) gives a much smaller
divergence between non absolutely continuous measures µ and ν than the corresponding optimal transport cost
when the admissible Γ = bΓ0 is becoming large.

6. Application to uncertainty bounds

6.1. Extension to unbounded functions

From

GΓ(µ‖ν)
.
= sup

g∈Γ

{∫
S

gdµ− log

∫
S

egdν

}
we get for all g ∈ Γ, ∫

S

gdµ ≤ GΓ(µ‖ν) + log

∫
S

egdν.

The inequality above with relative entropy in place of GΓ(µ‖ν) is the key to uncertainty bounds in [11]. We
would like to extend this inequality to unbounded functions. Define

Γ̂+ = {f : there exist gi ∈ Γ with c ≤ gi(x) ↑ f(x) for x ∈ S} ,

and

Γ̂− = {f : there exist gi ∈ Γ with c ≥ gi(x) ↓ f(x) for x ∈ S} .

Proposition 6.1. For g ∈ Γ̂+ ∪ Γ̂−, we have∫
S

gdµ ≤ GΓ(µ‖ν) + log

∫
S

egdν. (6.1)

Proof. The proof is straightforward. Take g ∈ Γ̂+. Then there exist gi ∈ Γ, which are bounded below, and
increase to g pointwise in S. By monotone convergence theorem,

lim
i→∞

∫
S

gidµ =

∫
S

gdµ,

and

lim
i→∞

∫
S

egidν =

∫
S

egdν.

Since gi ∈ Γ, for all i ∫
S

gidµ ≤ GΓ(µ‖ν) + log

∫
S

egidν.
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Taking i→∞ in the last display gives (6.1). For g ∈ Γ̂− the reasoning is essentially the same.

In the case when Γ = Lip(c, S;Cb(S)), where c satisfies the conditions introduced in Section 4, we can get a
stronger version of the result. The proof is essentially the same as in Lemma 4.8, and is omitted.

Proposition 6.2. Assume c : S × S → R ∪ {+∞} satisfies Conditions 4.1, 4.4, 4.6 and 4.7. Fix µ, ν ∈ L1(a).
Then for g ∈ Lip(c, S) ∫

S

gdµ ≤ GΓ(µ‖ν) + log

∫
S

egdν.

6.2. Decomposition and scaling properties

A property of great importance in applications of relative entropy is the chain rule. When probability measures
can be decomposed, such as when Markov measures on a path space are written as the repeated integration
with respect to transition kernels, the chain rule allows one to decompose the relative entropy of two such
measures on path space in terms of the simpler relative entropies of the transition kernels. This decomposition
also exhibits important scaling properties of relative entropy, e.g., that for such Markov measures on path space
the relative entropy scales proportionate to the number of time steps.

Except in special circumstances, optimal transport metrics do not possess a property like the chain rule, and
it is therefore not to be expected that Γ-divergence would either. However, if one considers certain classes of
functions on path space, then one can show there are analogous decomposition and scaling properties. In this
section we will discuss a setting relevant to many applications, though the results have many analogues and
possible generalizations.

As usual, we assume that S is a Polish space, and let p : S × B(S) be a probability transition kernel:

– for every A ∈ B(S) the map x→ p(x,A) is Borel measurable, and
– for every x ∈ S, p(x, ·) is in P(S).

The quantities of interest are large and infinite time averages, both with respect to time and the underlying
distribution, and we wish to bound in a tight fashion the error in such quantities due to model misspecification.
Thus if q is some other transition kernel, then we seek useful bounds on differences of the form

1

cT
logEγ,p

[
ec

∑T
i=1 f(Xi)

]
− Eθ,q

[
1

T

T∑
i=1

f(Xi)

]
,

where Eγ,p indicates that the chain uses transition kernel p and initial distribution γ, and similarly for Eθ,q.
Under conditions, relative entropy can provide useful bounds when q(x, ·)� p(x, ·) for a suitable set of x ∈ S.
One question then is under what conditions will the Γ-divergence allow one to weaken the absolute continuity
restriction. It is also worth noting that even when q(x, ·)� p(x, ·) the bounds obtained using the Γ-divergence
(when applicable) are tighter, since it is never greater than relative entropy, and in some cases the improvement
can be dramatic. These issues will be explored in greater detail elsewhere.

It follows directly from discussion in earlier sections that even in the setting of product measures that one
must restrict the class of functions f under consideration. When considering Markov measures, the following
definition is relevant.

Definition 6.3. For a transition kernel p, let

R(Γ, p) =

{
− log

∫
S

e−g(y)p(x, dy)− g(x) + a : g ∈ Γ and a ∈ R
}
.
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Then R(Γ, p) will determine the set of costs f such that bounds can be obtained using the Γ-divergence. In
particular, we have the following.

Theorem 6.4. Suppose that f ∈ R(Γ, p) for some g and a. Consider any transition kernel q on S and any
stationary probability measure πq of q. Then∫

S

f(x)πq(dx) ≤
∫
S

GΓ(q(x, ·)‖p(x, ·))πq(dx) + a.

Remark 6.5. If p is ergodic then we recognize

f(x) = − log

∫
S

e−g(y)p(x, dy)− g(x) + a

as the equation that uniquely characterizes the multiplicative cost

a = lim
M→∞

1

M
logEpe−

∑M−1
i=0 f(Xi),

with g a type of cost potential. Note that for a given f the function g plays no role in the bound. We need to
check that f is in the range of Γ (which of course imposes restrictions on f), but the bound does not depend
on knowing the specific form of g.

Proof. Since g ∈ Γ

g(x) = −f(x)− log

∫
S

e−g(y)p(x, dy) + a

= −f(x) + inf
q(x,dy)

[
GΓ(q(x, ·)‖p(x, ·)) +

∫
S

g(y)q(x, dy)

]
+ a.

For the given transition kernel q

g(x) ≤ −f(x) +

[
GΓ(q(x, ·)‖p(x, ·)) +

∫
S

g(y)q(x, dy)

]
+ a,

and integrating both sides with respect to πq(dx) and using
∫
S
q(x, dy)πq(dx) = πq(dy) gives the result.

We next consider two examples to illustrate Definition 6.3.

Example 6.6. S = R, p(x, ·) ∼ N(αx, σ2) is normal distribution with mean αx and variance σ2, where 0 <
α < 1. Let g(x) = −bx2 − cx− d, for b, c, d ∈ R.

Then direct computation gives that when 1 − 2bσ2 > 0

− log

∫
S

e−g(y)p(x, dy)− g(x) + a

= −bα
2x2 + cαx+ c2σ2/2

1− 2bσ2
+ bx2 + cx+ a

= b

(
1− α2

1− 2bσ2

)
x2 + c

(
1− α

1− 2bσ2

)
x+ a.
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Letting k(b) = b(1− α2

1−2bσ2 ),

k′(b) = 1− α2

(1− 2bσ2)2
.

Since 1 − 2bσ2 > 0, we can conclude k reaches its maximum at 1 − 2bσ2 = α, i.e., b = 1−α
2σ2 , where k(b) =

(1−α)2

2σ2 .If b→ 1
2σ2 then k(b)→ −∞. Also notice that when b 6= 1−α

2σ2 , we can pick c to make the coefficient of x
to be any given number. Thus with p(x, ·) ∼ N(αx, σ2) and Γ =

{
bx2 + cx+ d : b, c, d ∈ R

}
,

R(Γ, p) =

{
bx2 + cx+ d : b <

(1− α)2

2σ2
, c, d ∈ R

}
∪
{

(1− α)2

2σ2
x2 + d : d ∈ R

}
.

Example 6.7. S = {x1, x2, . . . , xn} is a finite space, and there is a cost function c : S × S → R+ associated
with this space. Take Γ = Lip(c, S;Cb(S)). Since p is a transition matrix we denote pij = p(xi, xj) and P =
(pij)1≤i,j≤n ∈ Rn×n.

A question we ask here is whether there exists σ > 0 such that σΓ ∈ R(Γ, p). In other words, does there exist
σ > 0 such that for any f ∈ σΓ we can find g ∈ Γ and a ∈ R such that

f(xi) = −g(xi)− log
n∑
j=1

p(xi, xj)e
−g(xj) + a, i = 1, 2, . . . , n.

If R(Γ, p) includes such a neighborhood of zero, then when combined with Theorem 6.4 it would allow for
sensitivity bounds, i.e., bounds on quantities of the form

d

dθ

∑
x∈S

π(θ, x)f(x),

where f ∈ Γ, π(θ, ·) is the stationary distribution of P (θ), P (0) = P , and P (θ) depends smoothly on a vector
of parameters θ (see [11]). In contrast with [11], we would not need that the transition matrices be mutually
absolutely continuous.

Since S is finite we write fi for f(xi) and let f = (f1, . . . , fn), and similarly for g. Then the relation above
defines a mapping from (g, a) to f , which we denote it by f = ϕ(g, a). Note that

(0, 0, . . . , 0) = ϕ((0, 0, . . . , 0), 0),

The (n, n+ 1) dimensional matrix of partial derivatives takes the form

J = [(P − I) ,1] ,

where I is the n × n identity matrix and 1 is a column vector of ones. If we can show that J is of full rank
then the range of the mapping defined by J , i.e., the linearization of ϕ will be onto Rn. Then by the implicit
function theorem there will be an open neighborhood U of 0 ∈ Rn and a continuous function γ : Rn → Rn such
that for all f ∈ U ,

f = ϕ(0, γ(f)).



FORMULATION AND PROPERTIES OF A DIVERGENCE 33

Since O
.
= {(y1, y2, . . . , yn)|(0, y1, . . . , yn−1) ∈ int(Lip(c, S)), yn ∈ R} is open, 0 ∈ U ∩ γ−1(O) ⊂ Rn is also open.

Thus we can pick σ > 0 such that 0 ∈ σΓ ⊂ U ∩ φ−1(O). So we have shown the existence of σ > 0 such that
σΓ ∈ R(Γ, p).

Whether or not J is of full rank will depend on the structure of P . We have the following lemma.

Lemma 6.8. Suppose that S = S̄ ∪M , where M consists of the transient states, and that when restricted to
S̄, P is ergodic. Then J is of full rank.

Proof. Let π denote the stationary distribution of P . Then interpreting π as a column vector, it is the unique
vector in the null space of (P − I)T . According to the Fredholm alternative, the range of (P − I) is the n− 1
dimensional collection of vectors b ∈ Rn such that 〈b, π〉 = 0. Now 〈1, π〉 > 0, which shows that 1 is not in the
range of (P − I). Therefore the range of J is all of Rn.

To give a simple example of how the Γ-divergence could be used for model simplification, consider the
situation where we are given an ergodic chain P with state space S̄, and would like to replace P by a chain Q
with state space S = S̄ ∪M , where the new states are intended to replace a (possibly large) number of states in
S̄, with the goal being to maintain good approximation of certain functionals of the stationary distribution. If
πq denotes the stationary distribution of Q on S and πp that of P on S̄, then one could not use relative entropy
to obtain any bounds. Suppose we were to extend P to S̄ ∪M (while keeping P as the transition matrix), by
making all states in M transient. Then one could use the Γ-divergence as long as the functionals of interest
are in R(Γ, p) (with respect to the extended transition probabilities). Note that the location of the new states
would be relevant to this question, since the costs f depend on these locations. Similarly, one could do sensitivity
bounds for non-absolutely continuous transitions by using such a device.

7. Conclusion

In this paper, we defined a new divergence by starting with a variational representation for relative entropy
and placing additional restrictions on the collection of test functions used in the representation, so as to relax
the requirement of absolute continuity. Basic qualitative properties of the divergence were investigated, as well
as its relationship with optimal transport metrics. Future work will use the divergence to develop uncertainty
quantification bounds, sensitivity bounds and methods for model approximation and simplification for stochastic
for models without the absolute continuity requirement. Also needed is further investigation of qualitative and
computational aspects of the Γ-divergence.

Appendix A.

In this appendix we collect proofs of some intermediate results.

Proof of Lemma 2.1. If we prove item 3, then items 1 and 2 will follow from the corresponding statements when
µ is restricted to P(S) [9]. If m = µ(S) 6= 1, then taking g(x) ≡ c a constant,∫

S

gdµ− log

∫
S

egdν = cµ(S)− c = c(m− 1).

Since m 6= 1 and c ∈ R, the right hand side of equation (1.1) is ∞.
Suppose next that µ(S) = 1 but µ ∈M(S)\P(S). Then there exist sets A,B ∈ B such that A ∩B = ∅, A ∪

B = S, µ(A) < 0 and µ(B) > 0. For c > 0, let g(x) = −c for x ∈ A and g(x) = 0 for x ∈ B. Then∫
S

gdµ− log

∫
S

egdν = c |µ(A)| − Cc,
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where Cc ∈ (log ν(B), 0) for all c. Letting c → ∞ and using (1.1) (or more precisely the analogous statement
using bounded measurable functions) shows R(µ‖ν) =∞.

Proof of Lemma 4.11. This can be shown by contradiction. Assume there exists h ∈ Lip(c, S) such that∫
S
|h|dγ∗ = ∞. By symmetry, we can just consider h to be non-negative, since max(h, 0) ∈ Lip(c, S) and

h = max(h, 0)−max(−h, 0). Thus we can assume there exists non-negative h ∈ Lip(c, S) satisfying∫
S

hdγ∗ =∞,

and by the fact that µ ∈ L1(a) together with Condition 4.6,∫
S

hdµ ≤
∫
S

[h(0) + c(x, 0)]µ(dx) = h(0) + a(0) +

∫
S

a(x)µ(dx) <∞.

Then

Wc(µ, γ
∗) = sup

g∈Lip(c,S)

∫
S

gd(µ− γ∗)

≥ lim sup
n→∞

∫
S

max(−h,−n)d(µ− γ∗)

= lim sup
n→∞

[∫
S

max(−h,−n)dµ+

∫
S

min(h, n)dγ∗
]

=

∫
S

−hdµ+

∫
S

hdγ∗

=∞,

where the second to last equation comes from dominated and monotone convergence theorems applied to the
first and second terms respectively. However, since γ∗ is the optimizer, we have

Wc(µ, γ
∗) ≤Wc(µ, γ

∗) +R(γ∗‖ν) = G(µ‖ν) <∞.

This contradiction shows the integrability of γ∗ with respect to any Lip(c, S) function.

Proof of Lemma 4.14. 1) For x ∈ supp(µ), from an optimal transport plan between µ and γ∗, π∗ ∈ Π(µ, γ∗) for
Wc(µ, γ

∗), we know there exists yx ∈ supp(ν) such that (x, yx) ∈ supp(π∗). Thus by Remark 1.15 in [2],

g∗(x) = g∗(yx) + c(x, yx).

On the other hand, by Theorem 4.9, g∗|supp(ν)∪supp(µ) ∈ Lip(c, S). Thus, for other y ∈ supp(ν), g∗(x) ≤ c(x, y) +
g∗(y), which in turn gives

g∗(x) ≤ inf
y∈supp(ν)

{g∗(y) + c(x, y)} .

By combining the two expressions above, we have for x ∈ supp(µ), (4.5) also holds. In other words, g∗ is totally
characterized by g∗|supp(ν) and (4.5).
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2) We check the Lipschitz condition for g∗+ for pairs of points according to whether they are in supp(ν).
First, since g∗+|supp(µ)∪supp(ν) is an optimizer for (4.4), by Theorem 4.9, g∗+|supp(µ)∪supp(ν) satisfies the Lipchitz
condition, i.e., for y1, y2 ∈ supp(ν),

g∗+(y2)− c(y1, y2) ≤ g∗+(y1) ≤ g∗+(y2) + c(y1, y2). (A.1)

For x 6∈ supp(ν) and y ∈ supp(ν), by (4.5) we have

g∗+(x) ≤ g∗+(y) + c(x, y).

On the other hand, for any 0 < n <∞, there exists y1 ∈ supp(ν) such that

g∗+(x) ≥ g∗+(y1) + c(x, y1)− 1/n.

Notice that both y and y1 are from supp(µ), so from (A.1), we have g∗+(y1) ≥ g∗+(y)− c(y, y1), thus we have

g∗+(x) ≥ g∗+(y1) + c(x, y1)− 1/n

≥ g∗+(y)− c(y, y1) + c(x, y1)− 1/n

≥ g∗+(y)− c(y, x)− 1/n,

where the last equation uses the triangle inequality property of c. Now since n > 0 is arbitrary, by getting
n→∞, we have

g∗+(x) ≥ g∗+(y)− c(x, y).

Combining, we have for x /∈ supp(ν), y ∈ supp(µ),

g∗+(y)− c(x, y) ≤ g∗+(x) ≤ g∗+(y) + c(x, y).

Lastly, we check for x1, x2 6∈ supp(ν) the Lipschitz constraint is satisfied. From the definition (4.5), we know
for any n <∞ there exists y1 ∈ supp(ν) such that

c(x1, y1)− 1/n ≤ g∗+(x1)− g∗+(y1).

Also, because y1 ∈ supp(ν),

g∗+(x2)− g∗+(y1) ≤ c(x2, y1).

Therefore

g∗+(x2)− g∗+(x1) ≤ (c(x2, y1)− c(x1, y1)) + 1/n ≤ c(x1, x2) + 1/n,

where the last inequality uses the triangle inequality property of c. Since n > 0 is arbitrary and we can swap
the roles of x1 and x2, we have proved the Lipschitz condition of g∗+ for x1, x2 6∈ supp(ν). Thus the statement
that g∗+ ∈ Lip(c, S) is proven.

For (4.6), notice that for h ∈ Lip(c, S), x ∈ S and y ∈ supp(ν),

h(x) ≤ h(y) + c(x, y).



36 P. DUPUIS AND Y. MAO

So if h(y) = g∗+(y) for y ∈ supp(ν), then for x ∈ S\supp(ν),

h(x) ≤ inf
y∈supp(ν)

{h(y) + c(x, y)} = inf
y∈supp(ν)

{
g∗+(y) + c(x, y)

}
= g∗+(x).

Since g∗+ is also in Lip(c, S), this proves (4.6).

Proof of Theorem 5.3. We use the representation GΓ(µ‖ν) = infγ∈P(S) {R(γ‖ν) +WΓ(µ, γ)}. First note that

GbΓ0
(µ‖ν) = inf

γ∈P(S)
{R(γ‖ν) +WbΓ0

(µ, γ)} ≤ R(γ̃‖ν) +WbΓ0
(µ, γ̃) = R(γ̃‖ν) + bWΓ0

(µ, γ̃).

Next, fix any ε > 0, and take a near optimizer γb, so that for each b

GbΓ0(µ‖ν) ≥ R(γb‖ν) +WbΓ0(µ, γb)− ε.

We must have γb � ν. By the characterization (5.3), we know

WbΓ0(µ, γb) = bWΓ0(µ, γb) ≥ bWΓ0(µ, γ̃) = WbΓ0(µ, γ̃).

Thus

R(γ̃‖ν) +WbΓ0
(µ, γ̃) ≥ inf

γ∈P(S)
{R(γ‖ν) +WbΓ0

(µ, γ)}

= GbΓ0
(µ, ν)

≥ R(γb‖ν) +WbΓ0
(µ, γb)− ε

≥ R(γb‖ν) +WbΓ0
(µ, γ̃)− ε. (A.2)

Since WbΓ0(µ, γ̃) is finite we can subtract it on both sides, and get

R(γb‖ν) ≤ R(γ̃‖ν) + ε

for any b <∞. Then by Lemma 1.4.3(c) in [9] {γb}b∈(0,∞) is tight. Take a convergent subsequence {γbk}, and

denote its limit by γ∞. It is easily checked that γ∞ � ν, so WΓ0
(µ, γ∞) ≥ WΓ0

(µ, γ̃). On the other hand, by
(A.2)

WΓ0
(µ, γ∞)−WΓ0

(µ, γ̃) ≤ lim inf
k→∞

WΓ0
(µ, γbk)−WΓ0

(µ, γ̃)

= lim inf
k→∞

1

bk
(WbkΓ0

(µ, γbk)−WbkΓ0
(µ, γ̃))

≤ lim inf
k→∞

1

bk
(R(γ̃‖ν)−R(γbk‖ν) + ε)

≤ lim inf
k→∞

1

bk
(R(γ̃‖ν) + ε)

= 0.

Thus we conclude that WΓ0
(µ, γ∞) = WΓ0

(µ, γ̃). By the definition of γ̃ we must have R(γ∞‖ν) ≥ R(γ̃‖ν).
Choose k0 such that bk0 ≥ 1. Then

lim inf
k→∞

(GbkΓ0
(µ‖ν)− [Rγ̃‖ν) + bkWΓ0

(µ, γ̃)])
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≥ lim inf
k→∞

(R(γbk‖ν) + bkWΓ0(µ, γbk)− ε− (R(γ̃‖ν) + bkWΓ0(µ, γ̃)))

≥ lim inf
k→∞

(R(γbk‖ν)−R(γ̃‖ν)) + lim inf
k→∞

bk(WΓ0
(µ, γbk)−WΓ0

(µ, γ̃))− ε

≥ (R(γ∞‖ν)−R(γ̃‖ν)) + lim inf
k→∞

(WΓ0
(µ, γbk)−WΓ0

(µ, γ̃))− ε

≥ 0 + (WΓ0(µ, γ∞)−WΓ0(µ, γ̃))− ε
= −ε,

where the fourth inequality is because R(γ∞‖ν) ≥ R(γ̃‖ν) and the lower semi-continuity of WΓ0
(µ, ·). Since

ε > 0 is arbitrary, this establishes (5.2) along the given subsequence. For any other sequence {bk}k∈N along which
limk→∞ (GbkΓ0

(µ‖ν)− [R(γ̃‖ν) + bkWΓ0
(µ, γ̃)]) has a limit, we can also take a subsequence from it according

to the discussion above. Thus the statement is proved.
The proof of the claimed form for γ̃ is as follows. Let θ be any probability measure with θ � ν, and assume

that for some i

θ({xi}) <
∑
j∈Si

µ({yj}). (A.3)

Then there exists j ∈ Si for which some of the mass is sent to a point xk with c(xk, yj) > c(xi, yk). By taking
this mass from xk and assigning it to xi, while keeping all other assignments the same, we get a strictly lower
cost. Thus (A.3) cannot hold for any i at an optimizer, and therefore equality must hold for all i.
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