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Abstract. We establish eigenvector delocalization and bulk universality for Lévy matrices, which
are real, symmetric, N x N random matrices H whose upper triangular entries are independent,
identically distributed «-stable laws. First, if « € (1,2) and £ € R is bounded away from 0, we
show that every eigenvector of H corresponding to an eigenvalue near E is completely delocalized
and that the local spectral statistics of H around E converge to those of the Gaussian Orthogonal
Ensemble as N tends to oco. Second, we show for almost all a € (0,2), there exists a constant
¢(a) > 0 such that the same statements hold if |E| < ¢(a).

Keywords. Heavy-tailed random matrix, bulk universality, Anderson transition, delocalized

eigenvectors

Contents

Lo Introduction . . ... .ot 3708

2. Results . ..o 3714

3. Proofs of delocalization and bulk universality . . . ........ ... ... ... .. ... .... 3717
3.1. Theintermediate local laws . .. ... ... ... ... . 3718
32, Estimates for V . ... . 3720
3.3. Proofs of Theorem 2.4 and Theorem 2.5 ... ... ... ... ... ... ... ... 3723

4. CompariSOn resUlLS . . . . o vt e e e 3727
4.1. Estimates and identitieS . . . . ... ...t e 3728
4.2. Aheuristic for the comparison . . ... ...... .. .. ... . . 3729
4.3. Improvingthescale ......... ... . i e 3731
4.4. Outline of the proof of Theorem 3.15 ... ... ... ... ... ... ... ... . ... . 3734
4.5. Estimating theentriesof RandU ... ..... .. .. .. .. .. . ... .. ... .... 3736
4.6. The first-, third-, and higher-orderterms .. .............. .. .. ... ...... 3738
477, Terms of degree 2. . . oo u it e e 3741
4.8. Outline of the proof of Theorem 3.15form > 1 .. ... ... .. ... ... .. .... 3746

Amol Aggarwal: Department of Mathematics, Harvard University, Cambridge, MA 02139, USA;
agg_a@math.harvard.edu

Patrick Lopatto: Department of Mathematics, Harvard University, Cambridge, MA 02139, USA;
patricklopatto@gmail.com

Horng-Tzer Yau: Department of Mathematics, Harvard University, Cambridge, MA 02139, USA;
htyau @math.harvard.edu

Mathematics Subject Classification (2020): 60B20



A. Aggarwal, P. Lopatto, H.-T. Yau 3708

5. Intermediate local law fora € (1,2) . ... vttt e e e 3747
5.1. An alternative intermediate local law . . . . .. ... .. .. L L o oL L. 3748
5.2. Identities and eStIMALES . . . . . o v vttt e et e e e 3749
5.3. Outline of proof . . . . .. 3753
5.4. Approximate fixed point equUations . . .. ... .. ... ... 3754

6. Proof of Theorem 5.1 . . . .. . 3755
6.1. Estimating P[A(2) ] . . . oot e 3755
6.2. Establishing Theorem 5.1 . ... .. .. . . . it 3764

7. Intermediate local law for almost all @ € (0, 2) at small energies . . ............... 3772
7.1. An estimate for the intermediate locallaw . . ......... .. ... ... .. ... ..... 3772
7.2. Establishing Theorem 7.8 . . . . ... ... 3777

8. Estimates for the fixed point quantities . .............. ... .. ... 3784
8.1. Concentration results . . .. ...t 3784
8.2. Proof of Proposition 7.9 . . . . .. . e 3785
8.3. Proof of Proposition 7.10. . . . . .. ... . e 3787
8.4. Proof of Proposition 7.17 . . . . ... oot 3789

A. Estimating theentriesof Gy . . .. ... o 3790

B. Comparing deformed stable laws to their removals . ......................... 3793

References . . . . ..ot e 3795

1. Introduction

The spectral analysis of random matrices has been a topic of intense study since Wigner’s
pioneering investigations [86] in the 1950s. Wigner’s central thesis asserts that the spec-
tral statistics of random matrices are universal models for highly correlated systems.
A concrete realization of his vision, the Wigner—Dyson—Mehta conjecture, states that
the bulk local spectral statistics of an N x N real symmetric (or complex Hermitian)
Wigner matrix should become independent of the laws of its entries as N tends to oo; see
[74, Conjectures 1.2.1 and 1.2.2]. This phenomenon is known as bulk universality.

Over the past decade, a framework based on resolvent estimates and Dyson Brownian
motion has been developed to establish this conjecture and extend its conclusion to a wide
class of matrix models. These include Wigner matrices [33,48,52,53,55,56,61-63, 69,
82,83], correlated random matrices [8,40], random graph models [16,45,46,60,61], gen-
eral Wigner-type matrices [9, 10], certain families of band matrices [32, 34, 36, 37, 871,
and various other models. All these models require that the variance of each matrix entry
is finite, an assumption already present in the original universality conjectures [74]. The
moment assumption required for the bulk universality of Wigner matrices has been pro-
gressively improved, and universality is now known to hold for matrix entries with finite
(2 4 €)-th moments [4,45].

While finite variance might seem to be the natural assumption for the Wigner—-Dyson—
Mehta conjecture, in 1994 Cizeau and Bouchaud [42] asked to what extent local eigen-
value statistics and related phenomena remain universal once the finite variance constraint
is removed. Their work was motivated by heavy-tailed phenomena in physics [28, 78],
including the study of spin glass models with power-law interactions [41], and applica-
tions to finance [29-31, 38, 58, 65, 66]. Recent work has also shown the appearance of
heavy-tailed spectral statistics in neural networks [71-73].
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The authors of [42] proposed a family of symmetric random matrix models, called
Lévy matrices, whose entries are random variables in the domain of attraction of an
a-stable law.! Based on numerical simulations, they predicted that bulk universality should
still hold in certain regimes when « < 2. In particular, for o < 1 they proposed that the
local statistics of Lévy matrices should exhibit a sharp phase transition from GOE at small
energies to Poisson at large energies.

Such a transition is called a mobility edge (also known as an Anderson transition
or Mott transition, depending on the physical context) and is a principal concept in the
pathbreaking work of the physicists Anderson and Mott on metal—insulator transitions
in condensed matter physics [3, 12, 13,76, 77]. It is widely believed to exist in the con-
text of random Schrodinger operators, particularly in the Anderson tight-binding model
[1,2,6,7,15], but rigorously establishing this statement has remained a fundamental
open problem in mathematical physics for decades. While localization and Poisson statis-
tics at large energies in the Anderson model have been known since the 1980s, even the
existence of a delocalized phase with GOE local statistics has not been rigorously verified
for any model exhibiting a conjectural mobility edge [5,43,57,59,70,75,80]. As explained
below, Lévy matrices provide one of the few examples of a random matrix ensemble for
which such a transition is also believed to appear. Consequently, the predictions of [42]
have attracted significant attention among mathematicians and physicists over the past 25
years [ 14, 18-20,20,23-27,39,79, 85].

The work [42] further analyzed the large N limiting profile for the empirical spectral
distribution of a Lévy matrix H, defined by g = N1 ZJN=1 ) A;» Where AsAo, oo AN
denote the eigenvalues of H. They predicted that pg should converge to a determinis-
tic, explicit measure p, as N tends to co, which was later proven by Ben Arous and
Guionnet [19]. This measure i, is absolutely continuous with respect to the Lebesgue
measure on R and therefore admits a density o, which is symmetric and behaves as
0a(x) ~ z)cffﬁ as x tends to co (see [18, 19,25]). In particular, o4 is supported on all
of R and has an «-heavy tail. This is in contrast with the limiting spectral density for
Wigner matrices, given by the semicircle law,

05c(x) = (27) My <2 V4 — x2, (1.1)

which is compactly supported on [—2, 2].
Two other phenomena of interest are eigenvector delocalization and local spectral

statistics. Associated with any eigenvalue A of a given Lévy matrix H is an eigenvec-
N

tor ug = (U1k,Usk, ..., Uunk) € RV, normalized such that ||uk||% =) i ul.zk =1.1f

H = GOEy is instead taken from the Gaussian Orthogonal Ensemble’ (GOIE), then the
law of uy, is uniform on the (N — 1)-sphere, and so max;<;<y |u;x| < N%~2 holds with

"When o < 2, we recall that the densities of such laws decay asymptotically like x ¢~ 1 dx.
In particular, they have infinite second moment.

2This is defined to be the N x N real symmetric random matrix GOEy = {g;; }, whose upper
triangular entries g;; are mutually independent Gaussian random variables with variances 2N -1
ifi = j and N~! otherwise.
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Fig. 1. Phase diagram. The thick line indicates the location of the conjectural mobility edge, which
separates the localized phase from the delocalized phase. The gray area indicates the scope of our
results.

high probability for any § > 0. This bound is referred to as complete eigenvector delo-
calization. The local spectral statistics of H concern the behavior of its neighboring
eigenvalues close to a fixed energy level E € R.

The main predictions of [42] were certain transitions in the eigenvector behavior and
local spectral statistics of Lévy matrices. Their predictions are not fully consistent with
the recent work [85] by Tarquini, Biroli, and Tarzia, based on the supersymmetric method.
The latter predictions can be summarized as follows.

Prediction A (1 < o < 2). All eigenvectors of H corresponding to finite eigenvalues are
completely delocalized. Further, for any £ € R, the local statistics of H near E converge
to those of the GOE as N tends to co.

Prediction B (0 < o < 1). There exists a mobility edge E, such that

(1) if |E| < Eq, then the local statistics of H near E converge to those of the GOE and
all eigenvectors in this region are completely delocalized,

(ii) if |E| > Eq, then the local statistics of H near E converge to those of a Poisson point
process and all eigenvectors in this region are localized.

The earlier predictions of [42] are different. Prediction A’ (1 < o < 2): There are two
regions:
(i) for sufficiently small energies, the eigenvectors are completely delocalized and the
local statistics are GOE,

(i) for sufficiently large energies, the eigenvectors are weakly localized according to
a power law decay, and the local statistics are given by certain non-universal laws that
converge to Poisson statistics in the infinite energy limit.
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Prediction B’ (0 < o < 1): essentially the same as Prediction B above except that in the
delocalized region the eigenvectors were predicted to only be partially delocalized, in that
a positive proportion of the mass is completely delocalized and a positive proportion of
the mass is completely localized. In addition, [42] proposes an equation for the mobility
edge Ey; a much simpler (but equivalent) version of this equation was predicted in [85].
The problem of rigorously establishing this mobility edge remains open. In fact, there

have been no previous mathematical results on local statistics for Lévy matrices in any
regime. However, partial results on eigenvector (de)localization were established by Bor-
denave and Guionnet in [26,27]. If 1 < a < 2, they showed that almost all eigenvectors
uy satisfy

max_|u;x| < N¥=°

1<i<N
for any § > 0 with high probability, where

— a _1 .
"~ max{2«, 8 — 3a}’

see [26]. For almost all « € (0, 2), they also proved the existence of some ¢ = ¢(«) such
if ug is an eigenvector of H corresponding to an eigenvalue A € [—c, c], then

max |ujr| < N+

1<i<N
for any § > 0 with high probability [27]. These estimates remain far from the complete

delocalization bounds that have been established in the Wigner case. Furthermore, if
0 <o < 2and G(z) = {Gj;(z)} = (H—z)!, then they showed that

E[(ImG11(2))2] = O(n2 %)

forany § > 0if Re z is sufficiently large and n = Imz > N ~Fatiz , which implies eigen-
vector localization in a certain weak sense at large energy [26].

In this paper, we establish complete delocalization and bulk universality for Lévy
matrices for all energies in any fixed compact interval away from £ =0 if 1 <o < 2.
In addi’gon, for 0 < @ < 2 outside a (deterministic) countable set, we prove that there
exists Eq such that complete delocalization and bulk universality hold for all energies
in [—Eqy, Ey]. These results establish Prediction A of [85] essentially completely for
I < a < 2 and also the existence of the GOE regime for 0 < o < 1, with completely
delocalized eigenvectors. Before describing these results in more detail, we recall the
three-step strategy for establishing bulk universality of Wigner matrices developed in the
works [49,51-53,55, 82] (see [21,44] or the book [55] for a survey).

The first step is to establish a local law for H, meaning that the spectral density of H
asymptotically follows that of its deterministic limit on small scales of order nearly N !,
the typical %nter—eigenvalue distance. The second step is to consider a Gaussian perturba-
tion H + 12 GOEy of H, for some small ¢, and then use the local law to show that the
local statistics of the perturbed matrix are unive¥sal. The third step is to compare the local
statistics of H and its perturbed variant H + 12 GOEy, and show that they are asymp-
totically the same. The comparison of the local statistics can be most efficiently obtained
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by comparing the entries of the resolvents of the ensembles; this is often referred to as
a Green’s function (resolvent) comparison theorem [56].

There are two issues with adapting this framework to the heavy-tailed setting. First,
we do not know of a direct way to establish a local law for the «-stable matrix H on the
optimal scale of roughly N ~!. Second, justifying the removal of the Gaussian perturbation
in the third step has intrinsic problems since the entries of H have divergent variances (and
possibly divergent expectations).

To explain the first problem, we introduce some notation. We recall the Stieltjes
transform of the empirical spectral distribution py is defined by the function

1 &
my (@) =myn(s) =+ )
j=1

1
= —Tr(H-2)"", 1.2
5= = T (12)
for any z € H. Since uy converges weakly to u, as N tends to oo, one expects my (z)
to converge to

Mo (2) = fR (r —2) " 0u(x) dx.

The imaginary part of the Stieltjes transform represents the convolution of the empirical
spectral distribution with an approximate identity, the Poisson kernel, at scale = Im z.
Hence, control of the Stieltjes transform at scale 1 can be thought of as control over the
eigenvalues averaged over windows of size approximately 7.

A local law for the matrix H is an estimate on |my (z) — my(z)| when n = Im z scales
like N~11¢ The typical procedure [46,47,50,51,56,69] for establishing a local law relies
on a detailed understanding of the resolvent of H, defined to be the N x N matrix

G(z) = H~2)"" ={G;;(2)}.

Indeed, since my (z) = N ! TrG(z), it suffices to estimate the diagonal entries of G.
In many of the known finite variance cases, (almost) all of the entries G;; converge to
a deterministic quantity in the large N limit.

This is no longer true in the heavy-tailed setting, where the limiting resolvent entries
are instead random away from the real axis [25]. While the idea that the resolvent entries
should satisfy a self-consistent equation (which has been a central concept in proving local
laws for Wigner matrices [50]) is still applicable to the current setting [18, 19, 26, 27],
the random nature of these resolvent entries poses many difficulties in analyzing the
resulting self-consistent equation. This presents serious difficulties in applying previously
developed methods to establish a local law for oz—lstable matrices on the optimal scale.
While local laws on intermediate scales n > N ™2 were established for such matrices
in [26,27] if « is sufficiently close to two, the value of 1 allowed in these estimates
deteriorates to 1 as o decreases to zero.

For the second problem, all existing methods of comparing two matrix ensembles H
and H (see [4, 33,45,46,61, 69, 82-84]) involve Taylor expanding the matrix entries of
their resolvents to order at least three and then matching the expectations of the first- and
second-order terms of this expansion, which correspond to the first and second moments
of the matrix entries. If the entries of H and H are heavy-tailed, then all second and higher
moments of these matrix entries diverge, and this expansion is meaningless.
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These two difficulties are in fact intricately related, and our solution to them consists
of the following steps.

Step 1. We first rewrite the matrix as H = X + A, where A consists of the “small terms”
of H that are bounded by N ™" in magnitude for some constant 0 < v < é, and X con-
sists of the remaining terms. We prove a comparison theorem for the resolvent entries of
H = X + A and those of ]

V: =X+1t2GOEy,

where GOEy is independent from Xi The parameter 1 ~ N"(©@~2) will be chosen so that
the variances of matrix entries of 12GOEy and A match. By construction, A and X
are symmetric, so the first and third moments of the matrix entries vanish. Hence in the
comparison argument, the problem is reduced to considering the second- and fourth-order
terms.

Notice that A and X are dependent, so the previous heuristic cannot be applied directly.
To remove their correlation, we expand upon a procedure introduced in [4] to produce
a three-level decomposition of H. By conditioning on the decomposition into large and
small field regions, A and X are independent and a version of the comparison theorem
can be proven.

Step 2. From the work of [68], the GOE component in V; improves the regularity of
the initial data V¢, which is a manifestation of the parabolic regularization of the Dyson
Brownian motion flow. Roughly speaking, if the spectral density of V is bounded above
and below at a scale 7 < N ~%¢, then the following three properties for V; hold:

(i)  universality of local statistics,
(ii)) complete eigenvector delocalization,
(ii1)) alocal law at all scalesupton > N §-1 for any ¢ > 0;

see [35,54,67,68].

The fundamental input for this method is an intermediate local law for X on a scale
n <« NY@2) ¢ The existing intermediate local laws for heavy tailed matrices estab-
lished in [26,27] are unfortunately only valid on scales larger than this critical scale when
« is close to one. Our second main result is to improve these laws to scales below N V@~2),
Our method uses self-consistent equations for the resolvent entries and special tools devel-
oped in [26] for Lévy matrices. Note that the resolvent entries of X are random and
self-consistent equations for them are difficult to work with. Still, we are able to derive
effective upper bounds on the diagonal resolvent entries of X, which enable us to improve
the intermediate local laws to scales below NV(©®=2),

Step 3. Combining Steps 1 and 2, we are able to transport the three properties for V; to
our original matrix H. Recall that in the standard comparison theorem, resolvent bounds
on the optimal scale are required on both ensembles. Since our initial estimates on the
resolvent of the original matrix H are far from on the optimal scale, a different approach is
required. In particular, it is known that one can induct on the scale 7 to transfer resolvent
estimates from one ensemble to another using the comparison method [64]. Although
technical estimates must be supplied, the upshot of this step is that all three properties
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for V; hold for the original matrix H. The eigenvector delocalization and universality of
local statistics constitute our main results. For the sake of brevity, we will not pursue the
local law on the optimal scale of approximately N ~!, since it will not be needed to prove
our main results.

Remainder of this article. In Section 2 we explain our results in more detail. In Section 3
we state the comparison between H and V;, as well as the intermediate local laws for X
in the @ € (1,2) case and the small energy « € (0,2) case. Then, assuming these esti-
mates, we establish our results (given by Theorem 2.4, and Theorem 2.5). In Section 4 we
establish the comparison between H and V;. In Section 5 and Section 6 we establish the
intermediate local law on X at all energies away from 0 when « € (1, 2). In Section 7 and
Section 8 we show a similar intermediate local law on X, but at sufficiently small energies
and for almost all o € (0, 2).

2. Results

We fix parameters & € (0,2) and 0 > 0. A random variable Z is a (0, o) a-stable law if
E[e?] = exp(—o®|t|*) forallr € R. (2.1

While many previous works have considered only matrices whose entries are dis-
tributed as «-stable laws, the methods of this work apply to a fairly broad range of
symmetric power-law distributions. We now define the entry distributions we consider
in this paper; the end of this section discusses an extension to more general ones. For sim-
plicity, the reader may consider the concrete case of an «-stable distribution. The proof
for this case contains all essential features of the general one.

Definition 2.1. Let Z be a (0, o) a-stable law with

N
o = (m) > 0. (22)

Let J be a symmetric’ random variable (not necessarily independent from Z) such that
E[J?] < 00, Z + J is symmetric, and
C C
s SPIZ 4T 2] s
(] + D (7] + D
for each # > 0 and some constants C1, C, > 0. Denoting 3 = Z + J, the symmetry of J
and the condition E[J2] < oo are equivalent to imposing a coupling between 3 and Z
such that 3 — Z is symmetric and has finite variance, respectively.
For each positive integer N, let {H;;}1<i<j<ny be mutually independent random
variables that each have the same law as

N=&(Z +J)= N"a3,

2.3)

3By symmetric, we mean that J has the same distribution as —.J .
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Set H;; = Hj; foreach i, j, and define the N x N random matrix

N
H=Hy = {Hij} = {Hi(’j)}»

which we call an «-Lévy matrix.

The N~« scaling in the H;; is different from the more standard N -3 scaling that

occurs in the entries of Wigner matrices. This is done in order to make the typical row
sum of H of order one. Furthermore, the explicit constant o (2.2) was chosen to make our
notation consistent with that of previous works, such as [19,26,27], but can be altered by
rescaling H.

It was shown as [19, Theorem 1.1] that, as N tends to oo, the empirical spectral
distribution of H converges to a deterministic measure [iy. This is the (unique) probability
distribution i on R whose Stieltjes transform [ (x — z) ™! dp(x) is equal to the function
mg(z), which can be explicitly described as follows. Denote the upper half plane by

H={zeC:Imz > 0}
and its image under multiplication by —i by
K={z€C:Rez>0}.

For any z € HI, define the functions ¢ = ¢y ,: K — C and ¥ = ¥ ,: K — C by

1 [ g
/ t%—leitze—r(l—%)th dt,
I'(3) Jo

oo a
e A
0

Pa,z(X) =
2.4)

for any x € K. For each z € H there exists a unique solution y(z) € K to the equation
Y(2) = ¢a,z(y(2)), so let us define

me(z) = 1Wa,z (y(2)). (2.5)

The probability density function of the measure (i, is given by g4, which is defined by
setting

1
0o(E) = — lim Immy(E +in) foreach E € R.
77T n—0

The term bulk universality refers to the phenomenon that, in the bulk of the spectrum,
the correlation functions of an N x N random matrix should converge to those of an
N x N GOE matrix in the large N limit.* This is explained more precisely through the
following definitions.

4Since the latter ensemble of matrices is exactly solvable through the framework of orthogonal
polynomials and Pfaffian point processes, its correlation functions can be evaluated explicitly in
the large N limit. We will not state these results here, but they can be found in [74, Chapter 6]
or [11, Chapter 3.9].
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Definition 2.2. Let N be a positive integer and let Hbe an N x N real symmetric random
matrix. Denote by piIN) (A1, A2, ..., An) the density of the symmetrized joint eigenvalue
distribution of H.” For each integer k € [1, N|, define the k-th correlation function of H
by

N
k N
pé)(xl,xz,...,xk)zélv_kpﬁl Y00t %2, Xk Vit Vi o) [y
j=k+1

Definition 2.3. Let {H = Hy }yez., be a set of matrices, let {0 = on}nez., be a set
of a probability density functions, and let E € R be a fixed real number. We say that the
correlation functions of H are universal at energy level E with respect to o if, for any
positive integer k and compactly supported smooth function F € €g° (R¥), we have

*) a ® (2
L@ (‘” Hy (E " W) ~ Pooey (NQSC(O))) @@

where d a denotes the Lebesgue measure on R¥ and we recall that o, was defined by (1.1).

lim
N—oo

=0, (26

Now we can state our main results. In what follows, we set ||Vl = max;¢[1,q] |v;|
forany v = (v1,v2,...,04) € RY.

Theorem 2.4. Let Hdenote an N X N «-stable matrix, as in Definition 2.1. Suppose that
a € (1,2), and fix some compact interval K C R \ {0}.
(1) Forany d > 0 and D > 0, there exists a constant C = C(«, 6, D, K) > 0 such that

P[max{[lufeo : Hu = Au, ul, = 1, A € K} > N®~3] < CN~P.
(2) Fix some E € K. Then the correlation functions of H are universal at energy level E
with respect to 04, as in Definition 2.3.

Theorem 2.5. Let H denote an a-stable matrix, as in Definition 2. 1. There exists a count-
able set A C (0, 2) with no accumulation points in (0, 2) such that for any o € (0,2) \ #A,
there exists a constant ¢ = c¢(«) > 0 such that the following holds.

(1) Forany 8 > 0and D > 0, there exists a constant C = C(«, 8, D) > 0 such that
P[max{[|lullos : Hu = Au, ul, =1, 1 € [—c,c]} > NS_%] <CN7P.

(2) Fix E € [—c, c]. Then the correlation functions of H are universal at energy level E
with respect to 9y, as in Definition 2.3.

The above two theorems comprise the first complete eigenvector delocalization and
bulk universality results for a random matrix model whose entries have infinite vari-
ance. For « € (1,2), Theorem 2.4 completely settles the bulk universality and complete

STn particular, with respect to the symmetrized density, A1, A2,..., Ay are exchangeable ran-
dom variables. Such a density exists because each entry distribution of the random matrix has
a density.
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eigenvector delocalization for all energies (except if « € #4 and E = 0), consistent with
Prediction A in Section 1. When o < 1, Theorem 2.5 can be viewed as establishing
a lower bound on the mobility edge in Prediction B.

Let us make four additional comments about the results above. First, although they
are only stated for real symmetric matrices, they also apply to complex Hermitian random
matrices. In order to simplify notation later in the paper, we only pursue the real case here.

Second, the exceptional set 4 of o to which Theorem 2.5 does not apply should
be empty. Its presence is due to the fact that we use results of [27] stating that certain
deterministic, a-dependent fixed point equations can be inverted when o ¢ 4.

Third, our conditions in Definition 2.1 allow for the entries of H to be not exactly
a-stable, but they are not optimal. Although our methods currently seem to require the
symmetry of J and Z + J, they can likely be extended to establish our main results under
weaker moment constraints on J. In particular, they should apply assuming only this
symmetry, (2.3), and that E[|J|#] < oo, for some fixed 8 > «. Pursuing this improvement
would require altering the statements and proofs of (6.13), Lemma 6.8, and Lemma B.1
below (with the primary effort being in the former).® However, for the sake of clarity and
brevity, we do not develop this further here.

Fourth, local statistics of a random matrix H are also quantified through gap statistics.
For some fixed (possibly N -dependent) integer i and uniformly bounded integer m > 0,
these statistics provide the joint distribution of the gaps between the (nearly) neighboring
eigenvalues {N(A; — Ax)}|j—i|,|k—i|<m- Our methods can be extended to establish univer-
sality of gap statistics of Lévy matrices, by replacing the use of Proposition 3.11 below
with [68, Theorem 2.5], but we do not pursue this here.

3. Proofs of delocalization and bulk universality

In this section we establish the theorems stated in Section 2 assuming some results that
will be proven in later parts of this paper. For the remainder of this paper, all matrices
under consideration will be real and symmetric.

Throughout this section, we fix a compact interval K C R and positive parameters
o, b, v, p satisfying

1 1
e (0,2, v=——-b>0, 0<p<v<-~—,
o 2

! <v< ,
4—o 4 —2u
Viewing o € (0, 2) as fixed, one can verify that it is possible to select the remaining
parameters b, v, p > 0 such that conditions (3.1) all hold. The reason for these constraints
will be explained in Section 4.2. The proofs of Theorem 2.4 and Theorem 2.5 will proceed
through the following three steps.

3.1)

ap < (2—a)v.

For the improvement of Theorem 2.5, which considers « € (0,2) \ 4 and small energies,
it suffices to modify only the statements and proofs of Lemma 6.8, and Lemma B.1.
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(1) First we define a matrix X obtained by setting all entries of H less than N ™" to zero,
and we establish an intermediate local law for X on a certain scale n = N~% with
w >v(2— ).

(2) Next we study V=V; =X+ I%W, for a GOE matrix W and ¢ ~ N@2_ The
results of [35,67] imply that if the Stieltjes transform and diagonal resolvent entries
of X are bounded on some scale 79 < ¢, then all resolvent entries of V are bounded
by N on the scale 7 ~ N1 for any § > 0, and bulk universality holds for V. In
particular, this does not require that the resolvent entries of X approximate a deter-
ministic quantity. Thus, the previously mentioned local law for X (which takes place
on scale N~ which is less than t ~ N @=2v) implies that the resolvent entries of
the matrix V are bounded by N § when n=N 8 —1 and that the local statistics of V
are universal.

(3) Then we establish a comparison theorem between the resolvent entries of H and V.
Combining this with the estimates on the resolvent entries of V from the previous step,
this allows us to conclude that the resolvent entries of H are bounded by N? on the
scalen =N =1, implying complete eigenvector delocalization for H. Further com-
bining this comparison with bulk universality for V will also imply bulk universality
for H.

We will implement the first, second, and third steps outline above in Section 3.1, Sec-
tion 3.2, and Section 3.3, respectively.

Remark 3.1. In the above outline we use [67] to prove the strongest form of convergence
of local statistics, which is given by (2.6). However, if one is content to establish this
convergence after averaging the eigenvalues over a small interval of size N4~ (known as
averaged energy universality), then one can instead use [68, Theorem 2.4]. Moreover, if
one is only interested in proving complete delocalization for the eigenvectors of H, then
it suffices to instead use [35, Theorem 2.1 and Proposition 2.2].

3.1. The intermediate local laws

In this subsection we introduce a removal variant, denoted by X, of our az-stable matrix H,
given by Definition 3.2 and Definition 3.3 below. Then we state two intermediate local
laws for X, depending on whether o € (1,2) or « € (0,2). These are given by Theo-
rem 3.4 and Theorem 3.5, respectively.

Definition 3.2. Fix constants « and b satisfying (3.1), and let Z, J,and 3 = Z + J be
as in Definition 2.1. Let Y = 31, cy», and let X =3 — Y. We call X the b-removal of
a deformed (0, 0) «-stable law.

Definition 3.3. Let {X;;}1<i<;j<ny be mutually independent random variables with the
property that each have the same law as N ™« X, where X is given by Definition 3.2. Set
X;j = Xj; foreach1 < j <i < N, and define the N x N matrix X = {X;;}. We call X
a b-removed a-Lévy matrix. For any complex number z € H, define the resolvent

R =R(z) = {Rijhzijen = X—2)7\.
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Further denote m = my = my(z) = N"!TrR,and also set z = E +inwith E,n € R
and n > 0.

Let{Z;;}1<i<j<n and {J;;j }1<i<;<n be mutually independent random variables with
the property that each have the same laws as N~ « Z and N~ « J, respectively, where Z
and J are as in Definition 2.1. Let {H;;}1<i<j<ny be mutually independent random
variables such that H;; = Z;; + J;;. Couple each H;; with X;; so that

Xij = Hij = Hij lNélHi_/lsNb'

Set H;; = Hj; foreach 1 < j <i < N, and define the N x N matrix H = {H;;}. The
matrix H is an o-Lévy matrix that is coupled with X, and we refer to this coupling as the
removal coupling. For any z € H, let G(z) = {G;;(z)} = H—z)" L.

Now let us state intermediate local laws for the removal matrix X at all energies away
from 0 when « € (1, 2) (given by Theorem 3.4 below) and at sufficiently small energies
for almost all o € (0, 2) (given by Theorem 3.5 below). The scale at which the former
local law will be stated is n = N @ for some w € ((2 — «)v, v), and the scale at which
the latter will be is n = N%~ 3 for any 6 > 0. These should not be optimal and do not
match that at which local laws were proven in finite variance cases, which is n = N -1
(see [4,8,10,17,40,44,46,47,50,51,55,56,60]), but they will suffice for our purposes. In
fact, one can establish a local law on this optimal scale by combining Theorem 3.15 and
Theorem 3.16 with Theorem 3.4 and Theorem 3.5, but we will not pursue this here.

The below result will be established in Section 5.1.

Theorem 3.4. Fix a,b,v > 0 satisfying (3.1). Assume that « € (1,2) and K C R\ {0}.
Let w be such that
Q-av<w <y,

and define the domain
Dxkwec={z=E+ineH:EcK, N¥ <n<C}, (3.2)

There exist a small constant x = x (o, b, v, w, K) > 0 and large constants 6 = B(a) > 0
and C = C(a, b, v, w, K) > 0 such that

P|: sup  |my (2) —mq(2)] > %i| <C exp(—M),

Di. oy N C
Z€DK w8 (3.3)

log N)?
IP’|: sup max |Rjj ()] > C(logN)“ l} = Cexp(—%).

ZEéD](w% —=J =

Theorem 3.4 is similar to [26, Theorem 3.5], but there are several differences. For
appropriate ch01ces of constants satisfying constraints (3.1), we control the Stieltjes trans-
form forn > N~ 3 , which essentlally equals the scale achieved for o € (2 5, 2)in [26] and
improves the scale n > N ™83« “3a achieved for o € (1, &) in [26]. The latter improvement
is important for our work because it permits us to access the critical scale ¢ ~ N @2 for
all @ € (1,2). This would not have been possible for @ near 1 using the scales achieved
in [26]. Theorem 3.4 also asserts estimates on the diagonal resolvent entries R;;(z),
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which are crucial for our main results but were not estimated in[26] for any «. Finally,
in [26, Theorem 3.5], a finite, non-explicit set of energies must be excluded, while we
need only exclude the energy O.

Next let us state the intermediate local law for X at sufficiently small energies when
a € (0,2) \ A, which is a consequence of Theorem 7.6 (and Remark 7.7), stated in Sec-
tion 7.1.3 below.

Theorem 3.5. There exists a countable set A C (0, 2), with no accumulation points in
the interval (0, 2), that satisfies the following property. Fix a and b satisfying (3.1), set

,_b-He-a)
20 ’
and let § € (0, 0). Define the domain
1 1
Des=1z=E+ineH:E<—, N2 << -\ (3.4)
’ C C
Then there exists a large constant C = C(a, b, §) > 0 such that
1 log N)?
IP’[ sup |mpy(z) —mq(2)| > —— ] <C exp(—M) (3.5
ze€Dc s N8 C
and 5
log N
IP’|: sup max |R;j(z)| > (logN)Ci| < Cexp ( M) (3.6)
z€Dc.s <j=< C

Theorem 3.5 is similar to [27, Proposition 3.2], except that it also bounds the diag-
onal resolvent entries R;;(z). Furthermore, Theorem 3.5 estimates the Stieltjes trans-
form m y (z) for smaller values of n = Imz >> N2 than in [27, Proposition 3.2], which
requires n 3> N~ 2+a . This improvement is again important for us to access the critical
scale t ~ N@ 2 forall o € (0,2).

3.2. Estimates for V

In this subsection we implement the second step of our outline, in which we define
a matrix ]
V=X+12W,
establish that its resolvent entries are bounded by N § on scale N 5_1, and show that its
local statistics are universal.
Recall that &, b, v, p > 0 are parameters satisfying (3.1), and define ¢ = ¢(p, v) by the
conditional expectation

NIE[H1211|H11|<N*”]
Pl|H11| < N77]
We require the following lemma that provides large N asymptotics for ¢; with the

definitions of (3.1), it in particular implies = o(1). Its proof will be given in Section 4.1
below.

t = NE[H{ g, |<n— ||H11| < N*] = (3.7)
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Lemma 3.6. There exist a small constant ¢ = c(a, v, p) > 0 and a large constant C =
C(a,v, p) > 0 such that
cN@2V <4 <N, (3.8)

Now let us define a matrix V that we will compare to H.

Definition 3.7. Define the N x N random matrix V = {v;;} = X + I%W, where ¢ is
given by (3.7); X is the removal matrix from Definition 3.3;and W = {w;;}isan N x N
GOE matrix independent from X. Forany z € H, let T = T(z) = {T;;(z)} = (V—2)"L.

Now we would like to bound the entries of T and show that bulk universality holds
for V. To do this, we first require the following definition from [68], which defines a class
of initial data on which Dyson Brownian motion is well-behaved.

Definition 3.8 ([68, Definition 2.1]). Let N be a positive integer, let Hy be an N x N
matrix, and set mo(z) = N~ ! Tr(Hy — z)"'. Fix Eg € R, § € (0, 1), and y > 0 indepen-
dently of N. Let 79 and r be two (N -dependent) parameters satisfying N*~1 < 5o and
N%po < r < 1. Define

D(Eo,r,mo,y) ={z=E+ineH:E€[Eo—r,Eo+r],n€novl}. (39

Although D(Ey, r, no, y) in the above definition depends on § through the choice of 7,
we omit this from the notation.

We say that Hg is (19, ¥, )-regular with respect to E| if there exists a constant 4 > 1
(independent of N) such that

1
[Ho| < N4, 1< sup Immo(z) < A. (3.10)

2€D(Eo,r,10,7)
Now let N be a positive integer and let Hy denote an N x N matrix. Recall that

= {w;;} is an N X N GOE matrix (which we assume to be independent from Hy),
and define Hy = Hp + s2W for each s > 0. For each z € H, let

Gs = Gy(2) = {G;j(s,2)} = H; —z) 7"

If Hy is (no, y, r)-regular and s is between 719 and r, then the following proposition
estimates the entries of Gy(E + in), when 1 can be nearly of order N™!, in terms of
estimates on the diagonal entries of Go(E + ing). Its proof will appear in Appendix A
and is based on results of [35, 68].

Proposition 3.9. Adopt the notation of Definition 3.8. Let B € (1, %) be an N -dependent
parameter. Assume that Hy is (no, y, r)-regular with respect to Eo and that

Gi; (0, <B
énjang| ]]( z)| <

for all z € D(Eg,r,no,y). Let s € (N®no, N7r). Then, for any D > 1 there exists
a large constant C = C(8, D) > 0 such that

P[sup max |Gj; (s, Z)|>NSB:|<CN -D

ze® 1=i,j =N

where we have abbreviated ® = D(Ey, 5, N1y — £
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Now we can bound the entries of T.

Corollary 3.10. Let «,b,v, p > 0 satisfy (3.1). For given Eg € R and §,y,r > 0, we

abbreviate ©® = D(Ey, 5, N&=1 y — 5) (as in (3.9)).

(1) If e € (1,2) and K C R\ {0} is a compact interval, we let y denote the constant
B = B(a) from Theorem 3.4. Let Eg € K and §,r > 0 be constants (independent
of N) such that [Eg —r, Eo +r] C K and r < y. Then, for any D > 0 there exists
a large constant C = C(w, v, p, 6, D, K) > 0 such that

P[sup max [T} (2)] >N5] <CND, 3.11)

ze® 1=i,/=N

(2) If A C (0,2) is as in Theorem 3.5 and a € (0,2) \ A, then let y = 2C’ where the
constant C is from Theorem 3.5. Further let Eg € R and r € (0,y) be constants
(independent of N ) such that [Eg — r, Eo + r] C [-2y,2y]. Then, for any 6, D > 0,
there exists a large constant C = C(a, v, p,8, D) > 0 such that (3.11) holds.

Proof. We assume « € (1,2), since the case & € (0, 2) \ 4 is entirely analogous. By The-
orem 3.4, there exist large constants B = B(«) > 0 and C = C(a, b, w,5,D,K) >0
such that

IP’[ sup Lnja<XN |R;j(z)| > N%] < Cexp(— (3.12)

€DK w3 =I=

(log N)?
)

forany (2 —o)v < w < v, where we recall the definition of Dk 4 % from (3.2). Further-
more, observe (after increasing C if necessary) that

IP’[ Da+3] N CN_ZD,

smceﬁ < 2 and the probability that the magnitude of a given entry of H is larger than
N~@ isatmost CN~2P~2,

Therefore, we may apply Proposition 3.9 with that Hy equal to our X; that o equal
to our N~ that ¢ equal to our 7, which is defined by (3.7) and satlsﬁes l ~ N@2v py
Lemma 3.6; that d to be sufficiently small, so that it is less than our g 8 and 1 (@ —2—a))
(if o were in (0, 2), we would require that § be less than (2 oc)v) instead); that
Ey equal to the E¢ here; that y equal to our B; that r equal to the min{r, SB} here; and
that A sufficiently large. Under this choice of parameters, G; = T, so Proposition 3.9
implies (3.11). [

We will next show that the local statistics of V are universal, which will follow from
the results of [54,67,68] together with the intermediate local laws Theorem 3.4 and Theo-
rem 3.5. Specifically, the results of [54,67,68] state that, if we start with a (ng, y, r)-regular
matrix (recall Definition 3.8) and then add an independent small Gaussian component of
order greater than 7o but less than r, then the local statistics of the result will asymptoti-
cally coincide with those of the GOE. To state this more precisely, we must introduce the
free convolution [22] of a probability distribution with the semicircle law.

Fix N € Z-¢ and an N x N matrix A. For each s > 0, define

AD = A 453w,
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where W is an N x N GOE matrix. For any z € H, also define
m®(z) = N 'Tr(A® —z)~!

to be the Stieltjes transform of the (N-dependent) empirical spectral density of A®),
which we denote by p® (x) = 77! lim, Imm (E + in).

The following proposition establishes the universality of correlation functions of the
random matrix M), assuming that M is regular in the sense of Definition 3.8.

Proposition 3.11 ([67, Theorem 2.2]). Fix some § € (0,1) andy > 0, let N be a positive
integer, and let r € (0, N=%) and no € (N1, 1) be N -dependent parameters satisfying
no < N™2%r. Let M be an N x N matrix, and assume that M is (19, y, r)-regular with
respect to some fixed E € K. Then, for any s € (N®no, N78r), the correlation functions
of M®) are universal at energy level E with respect to p'S, as in Definition 2.3.

Using Proposition 3.11, one can deduce the following result. In what follows, we
recall the matrices X and V = X from Definition 3.3 and Definition 3.7, respectively
(where ¢ was given by (3.7)).

Proposition 3.12. Assume o € (1,2) and K C R\ {0}, and let E € K. Then the correla-
tion functions of V are universal at energy level E with respect to 04, as in Definition 2.3.
Moreover, the same statement holds if A and C are as in Theorem 3.5, o € (0,2) \ A,
and E C [—%, %]

To establish this proposition, one conditions on X and uses its intermediate local law
(Theorem 3.4 or Theorem 3.5) and Lemma 3.6 to verify the assumptions of Proposi-
tion 3.11. The latter proposition implies that the correlation functions of V are universal
at E with respect to p. The remaining difference between universality with respect to
p®)(E) and the desired result is in the scaling in (2.6). Specifically, one must approximate
the factors of p® (E) by 04 (E) in Definition 2.3. This approximation can be justified
using the intermediate local law (Theorem 3.4 or Theorem 3.5) for X through a very simi-
lar way to what was explained in [61, Lemmas 3.3 and 3.4]. Thus, we omit further details.

3.3. Proofs of Theorem 2.4 and Theorem 2.5

In this subsection we establish Theorem 2.4 and Theorem 2.5. This will proceed through
a comparison between the resolvent entries of H and V (from Definition 3.7). In Sec-
tion 3.3.1, we state this comparison; we will provide a heuristic for its proof in Section 4.2,
and the result will be established in detail in Section 4. We will then in Section 3.3.2 use
the comparison to deduce eigenvector delocalization and bulk universality for H from the
corresponding results for V established in Section 3.2.

3.3.1. The comparison theorem. To formulate our specific comparison statement, we
require a certain way of decomposing the matrix H so that the elements of this decompo-
sition remain largely independent. A less general version of this procedure was described
in [4] under different notation to establish bulk universality for Wigner matrices whose
entries have finite (2 4 ¢)-th moment. This is done through the following two definitions.
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Definition 3.13. Let ¢ and y be independent Bernoulli 0-1 random variables defined by

P[|Hy| € [N™".N~*)]
P[|Hij| < N=F]
In particular, ¥ has the same law as the indicator of the event that |H;;| > N~°. Simi-
larly, y has the same law as the indicator of the event that |H;;| > N ™", conditional on
|Hij| < N7°.
Additionally, let a, b, and ¢ be random variables such that

_ P[Hj € (-N"",N")nI]

Py =11 =P[H;| =Nl Plx=1=

D= T <N

P[H;; € ((—oo,—N"PJ]U[N",00)) N I]
Plc;j € I = / PllHy | = N-7] ,
P(by € 1) = P[H;; € (—N"?,—=N"Y]JU[N"",N~P))NI]

P[|Hij| € [NV, N=°)]

for any interval I C R. Again, a has the same law as H;; conditional on |H;;| < N7";
similar statements hold for b and c.

Observe that if a, b, ¢, ¥, y are mutually independent, then H;; has the same law as
(I=y)(1—x)a+ (1—v)xb + Yc and X;; has the same law as (1 — ) xb + c. Thus,
although the random variables H;; 1|y, |>N—», HijIN—v<|H,;|<N—0, and H;j1 g, |<N—v
are correlated, this decomposition expresses their dependence through the Bernoulli ran-
dom variables 1 and y.

Definition 3.14. For each 1 <i < j < N, let a;;, b;j, cij, ¥i;j, and x;; be mutually

independent random variables whose laws are given by those of a, b, ¢, ¥, and y from

Definition 3.13, respectively. For each 1 < j <i < N, define a;; = a;; by symmetry,

and similarly for each b;;, c;;, ¥;;, and x;;. Let P and E denote the probability measure

and expectation with respect to the joint law of these random variables, respectively.
Now foreach 1 <i,j < N, set

Aij = (U =vi))(A = xipaij.  Bij = A —=vij)xijbij.  Cij = ijei;,  (3.13)

and define the four N x N matrices A = {4;;}, B = {B;;}, C = {C;;},and ¥ = {y;; }.
Sample H and X by setting H=A + B + C and X = B + C. We will commonly
refer to W as the label of H (or of X). Defining H and X in this way ensures that they
have the same laws as in Definition 2.1 and Definition 3.3, respectively. Furthermore,

this sampling induces a coupling between H and X, which coincides with the removal
coupling of Definition 3.3.

To state our comparison results, we require some additional notation. Define A, B,
C, H, and X as in Definition 3.14, and let W = {w;;} be an independent N x N GOE
matrix. Recalling the parameter ¢ from (3.7), define for each y € [0, 1] the N x N random
matrices

HY = {H]} =yA+X+(1-y")22W. G ={G}}} =@ —2)7".
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Observe in particular that H° =V,G° =T,H! = H, and G! = G, where we recall the
matrices V and T from Definition 3.7. Our comparison result will approximate the entries
of GY by those of G° for any y € [0, 1], after conditioning on ¥ and assuming it to be in
an event with high probability with respect to IP.

So, it will be useful to consider the laws of H and X conditional on their label W.
This amounts to conditioning on which entries of H are at least N °. For any N x N
symmetric 0-1 matrix W, let Py and Eg denote the probability measure and expectation
with respect to the joint law of the random variables {a;;, b;;,c;;, Vi;, xij} from Defi-
nition 3.14 conditional on the event that {1;;} is equal to W. This induces a probability
measure and expectation on the H” and G?, denoted by Py and E, respectively.

It will also useful for us to further condition on a single y;;. Thus, for any y € {0, 1}
and1 < p,g < N, let

Py[-1xpgl = Pl |xpq = xl
be the probability measure Py after additionally conditioning on the event that y,, = yx,
and let

E\D['|qu] = Eyg[- |qu = x]

denote the associated expectation. Observe in particular that

EX[Egl- [Xpqll = Ew[-].

where EX denotes the expectation with respect to the Bernoulli 0-1 random variable y
from Definition 3.13.

The following theorem, which will be a consequence of Proposition 4.4 stated in Sec-
tion 4.4 below, provides a way to compare conditional expectations of G° to those of G
for any y € [0, 1]. After conditioning on the label W to not have too many entries equal
to 1, it roughly states that one compare expectations of smooth functions of these resolvent
entries, assuming a bound on the probability they are large.

Theorem 3.15. Let a, b, p, v satisfy (3.1), and fix a positive integer m. Then there exist
(sufficiently small) constants ¢ = e(a, v, p,m) > 0 and = w(a, v, p,m) > 0 such that
the following holds. Let N be a positive integer. For each integer j € [1,m], fix real
numbers E; € R and n; > N2, and denote z; = E; + in; for each j € [l,m]. Fur-
thermore, let F : R™ — R be a function such that

sup  |F®W(x1,...,xm)| < N0, sup  |FW(x1,....xm)| < N (3.14)

0<|u|<d 0<|ul=<d
lxj|<2N¢ x;|<2N?
for some real numbers Co,d > 0. Here . = (1, U2, - - ., [m) Is an m-tuple of nonneg-

ative integers, || = Z;n:l Wj, and

w ﬁ o \"
F) — (_) F
i1 an

J

Assume d > do(a, v, p,m, Cy) is sufficiently large. For any symmetric 0-1 matrix ¥ and
complex number z, define the quantities § = §(V) and Qo = Qo(e, 21,22, ..., Zm, V)
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and the event Qo = Qq(e, z) by

§= max  sup Ey[|[F¥IAmG!, .....ImG] )| (3.15)
0<|ul=d 1<is, jo<N "
0<y=<1
and
m
90={ sup |G (2)] §N8}, 0o =1-Y Py[R0()]. (3.16)
1<i,j<N | =1
0<y=<1

Now let W be a symmetric 0-1 random matrix with at most N 'T%°¥¢ entries equal to 1.
Then there exists a large constant C = C(«, v, p,m) > 0 such that

sup |[Eg[F(ImG] , ..., ImG} , )] —Eg[F(Im Ggp»---ImGy 4 ]|
o<y<l1 (3‘17)
<CN72F+1)+CQuNC+Co
foranyindices 1 < ay,as,...,am,b1,ba,...,bym < N.Thesame estimate (3.17) holds if

some of the Im ng b; and Im GZI_ b, are replaced by Re ng b; and Re GZI_ by respectively.

Although the conditioning on the label W might notationally obscure the statement of
Theorem 3.15, we will see in Section 4.3 that this particular statement of the result will
be useful for the proof of Proposition 3.17 below. Additionally, we note the constants &,
w, and dy from Theorem 3.15 are explicit; see (4.24) and (4.25) for their values in the
casem = 1.

3.3.2. Eigenvector delocalization and bulk universality for H. In the present subsection
we establish Theorem 2.4 and Theorem 2.5. We first show that the resolvent entries of H
are bounded by N¢ on the nearly optimal scale 7 = N®~! for arbitrarily small § > 0.

Theorem 3.16. In both regimes (1) and (2) in Corollary 3.10, we have for sufficiently
large C = C(a, v, p, 6, D, K) > 0 that

]P’[ sup sup max |G (2)] >N8] <CN7P, (3.18)
0<y<lze®l
Theorem 3.16 is a consequence of Corollary 3.10 and the following comparison result,
which allows one to deduce bounds on the entries of G¥ from bounds on those of T; the
latter result will be established using Theorem 3.15 in Section 4.3 below.

Proposition 3.17. Assume that «, b, v, p > 0 satisfy conditions (3.1), recall that K C R
is a compact interval. Fix ¢ > 0, and suppose that for each § > 0 and D > 0 there exists
a constant C = C(«, p, v, 8, D, K) such that
]P[ sup sup max [Tj;(E +in)| >N8] <CN~D. (3.19)
n>Ns—1 EeK 1=i,]
Then, for each § > 0 and D > 0 there exists a large constant A = A(a, p,v, 68, D, K)
such that

]P’[ sup sup sup max |G (E+177)|>N8] <AN7P, (3.20)
0<y<ly>Ns—1 EeK 1=i,j=
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Now we can establish Theorem 2.4 and Theorem 2.5.

Proof of Theorem 2.4 and Theorem 2.5. 1t is known from [56, Corollary 3.2] that com-
plete eigenvector delocalization of the form given by the first parts of Theorem 2.4 and
Theorem 2.5 follows from bounds on the resolvent entries |G;;(z)| = |Gl.1j (z)| of the
form (3.18). Thus, the first parts of Theorem 2.4 and Theorem 2.5 follow from Theo-
rem 3.16.

To establish the second parts of these two theorems, fix a positive integer m, and let
Z1,22,...,Zm € C be such that Imz; > ﬁ for each j € [1, N]. Furthermore, if we are
in the setting of Theorem 2.4, we additionally impose that each Rez; € K: if we are in
the setting of Theorem 2.5, we require that each |[Rez;| < %, where C is from Theo-
rem 3.5. We now apply Theorem 3.15 with F(x1, X2, ..., Xm) = [ |1y Xi-

Then Theorem 3.16 implies that the quantity o from Theorem 3.15 is bounded above
by NP for any D > 0 if N is sufficiently large. Furthermore, that theorem and the
deterministic bounds |7};],|G;;| < N? (due to (4.2) below) imply that for each § > 0
there exists a constant C = C(8) such that the quantity §(¥) from (3.15) is bounded
by CN?. Also observe from (2.3) and the Chernoff bound that there exists a large constant
C > 0 such that

1+oap

C

P[l{(i,j) D |Hij| € [N, 00)}| ¢ [ ,CN”“P]] <CeC. (3.21)

Thus, the probability that the matrix W from Theorem 3.15 has more than N !+er+¢
entries equal to one is bounded by ¢~'e™°V for some constant ¢ > 0. On this event,
we apply the deterministic bounds |7}, 1, |G;;| < N2. Off of this event, we apply (3.17)
(averaged over all (ay,az,...,am) = (b1, b2, ...,by) in[1, N]) and then average over W
conditional on the event that W has at most N !T#°*¢ entries equal to one. Combining
these estimates implies

<CN~¢, (3.22)

IE|:N_’" 1_[ ImTrG(z;) - N~ l_[ ImTrT(Zj):|

Jj=1 j=1

after increasing C and decreasing c if necessary. It is known from [56, Theorem 6.4] that
a comparison of this form implies that the correlation functions of G and T asymptotically
coincide. Now the universality of the correlation functions for H at energy level E follows
from the corresponding statement for V, given by Proposition 3.12. ]

4. Comparison results

In this section we establish Theorem 3.15. After recalling several identities and estimates
in Section 4.1, we provide a heuristic for the proof of Theorem 3.15 in Section 4.2.
Next, assuming Theorem 3.15, we use it to establish Proposition 3.17 in Section 4.3.
We then outline the proof of Theorem 3.15 in Section 4.4 and implement this outline in
the remaining sections: Section 4.5, Section 4.6, and Section 4.7.
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4.1. Estimates and identities

In this subsection we state several identities and estimates that will be used throughout
this article. We first recall that, for any square matrices M and K of the same dimension,
we have the resolvent identity

K!-M!'=K!M-KML 4.1)

Furthermore, for any symmetric matrix M and z = E + in € H with E,n € R, we have
the deterministic estimate (see [55, equation (8.34)])

1
|Kij| < E where K = {K;;} = (M—Z)_l- (4.2)

Moreover, observe from (2.3) and the fact that H;; has the same law as N - (Z+J)
that

G <P[|H;;|>1] < G t>0 4.3)
e —— ii e —— or an . .
Nee 41— == e Y

Using (4.3), we can establish the following lemma, which bounds moments of trun-
cations of H;;. As a consequence, we deduce Lemma 3.6.

Lemma 4.1. Fix R > N~= and let sij = Hijlm;;|<R- For any positive real number
p > o, we have
cNT'RP™ < E[|s;;|P] < CN'RP™®
for a small constant ¢ = c(«, p, C2) > 0 and a large constant C = C(a, p,Cy) > 0.
Proof. From (4.3), we have
R R _
C CipRP™®
Elsi;|?] = P/ PP Hy | = slds < =L | gprie gy = AP
0 N Jo N(p—a)

which establishes the upper boundlin the lemma. To establish the lower bound, observe
from (4.3) and the bound R > N~ « that

R
Efls1?] = p / P VP[|Hy| = s]ds
0

- Cip R ds
- N g sa—i—l—p + N—lsl—p
R _ _
S G gp—a—1 ¢ Cip(1 —2""P)RP a. .
T 5N Jr 5N(p — )

Proof of Lemma 3.6. From Lemma 4.1 applied with R = N~V and p = 2, we deduce the
existence of constants C = C(«, C1) > 0 and ¢ = ¢(«, C2) > 0 such that

eNO DV <E[H} 1y, j<n—] < CNO2VTL

Combining this with the fact that P[|Hq1| < N7°] > % for sufficiently large N (due
to (4.3)), we deduce the lemma. [
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We close this subsection with the following lemma, which bounds the conditional
moments of the random variables 4;; and B;; from Definition 3.14.

Lemma 4.2. Let p > «. There exists a large constant C = C(v, p, p) such that, for any
indices 1 <i,j < N, we have that

Ew[l4i;|7|xi;] < CN"@P71 0 Ey[|B;|P] < CNP@P7L, (4.4)

Proof. Let us first establish the bound on Ey[|B;;|?]. There are two cases to consider,
depending on the entry ¥ € {0, 1}. If v;; = 1, then B;; = 0 and thus (4.4) holds. If
Yi; = 0, then there exists a constant C = C(p, p) > 0 such that

E[|Bij|7] _ EllHi 1”1, 1<n—]

< < CNP(OL—P)—I’
Plyi; = 0] P[|H;j| < N—*]

Eg[|Bij|?] =

where to deduce the last estimate above we used Lemma 4.1 and the fact that
1
PllHij| > N7*] > 5

for sufficiently large N (due to (4.3)). This yields the second estimate in (4.4).

Through a very similar procedure, we deduce after increasing C if necessary that
Efla;;j|?] < CN v@=p)=1 where a; ; has the same law as the random variable a given
in Definition 3.13. Now the first estimate in (4.4) follows from the deterministic bound
[Aij| < laij]. =

4.2. A heuristic for the comparison

Here we provide a heuristic for the estimate (3.17) if a =i = b for some i € [1, N].
Conditioning on W (and abbreviating Ey as [E here for brevity), we obtain

1
yt2
EG = > E[G?j(Ajk——éwjk)G]Zi],

1<jk<N (1-y2)2

where we used (4.1) to compute the derivative on the left side.

Now let us consider two cases. The first is the “large field case,” meaning that ¥, = 1
(which implies that A;x = 0 = Bj and |H x| > N 7). Recall the formula for Gaussian
integration by parts (see, for example, [81, Appendix A.4]): for a differentiable function
F:R — R subject to a mild growth condition, and a centered Gaussian g,

E[gF(g)] = E[g*IE[F'(g)].

: . . . 1 .
We integrate by parts with respect to the Gaussian random variable x = N 2w, which
is centered and has variance one. This yields

v
(1-y?)?

where the additional terms are degree three monomials in the Giyj (and we again used (4.1)

1
r\2 yt
(ﬁ) E[G/xG[,] = ﬁE[GiijszJZi + -],
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to compute the derivatives of the resolvent entries). Assuming that each |Gl?’j | is bounded,
and using Lemma 3.6 and the fact that the number of pairs (j, k) for which ¥;x = 1 is
essentially bounded by N%’*1, we can bound the total contribution of these terms by

a multiple of
tN—lNap+1 ~ Nu(a—2)+(xp‘

The second is the “small field case,” meaning that ¥;x = 0 (so |Hjx| < N™°). Recall
that A;x = a;x (1 — x,x) and Bjx = bj xjk,and abbreviate a;x = a,bjx = b, xjx = ),
and wjx = w. Letting U = {Uj);c} denote the resolvent of H whose (j, k) and (k, j)
entries are set to zero, we can expand G” around U” using (4.1) to obtain

yt%w

= E[((l —xa+ yt—zwl)(y(l —)a+ b+ (1— yz)%t%w)
(1-y2)2

x (USUL U] + )}

3 o
(1-y2)2

x (UY...U” _|_...)]
= yE[(1 — p)a® — tw?|E[US UL US + -]
+ yE[y2(1 — pa* +3y2(1 — ptw?a® + 3ytw?b* + (1 — yz)t2w4]

XIE[U”-~-UV + ]
where the additional terms refer to polynomials in the entries of U. To deduce the first
equality, we used the fact that terms not involving a factor of

1
y(l=pa+ xb+ (1 —y>) 212w

(first-order terms) and those involving (ya(l — y) + by + (1 — yz)%t% w)? (third-order
terms) vanish because a, b, and w are symmetric and U, a, b, w, and y are mutually
independent.

From the choice of ¢, we have

YE[(1 = p)a® —tw?] = 0.

Hence the second-order terms vanish if ¥z = 0. Assuming that the entries of U” are
bounded, we can also estimate the sum of all fourth-order terms by a multiple of

NzE[(l — pa* + (1 = ptw?a® + ytw?b* + t2w4]
< Nv(oc—4)+1 +N(p+v)(a—2) + N2v(a—2)
< Nv(ot—4)+1 + N7
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for some r > 0. Here, we used (2.3), Lemma 3.6, and the facts that
(1—=x)a = Hijlig,;)<n— and xb = Hjjly-v<m,;|<N—»
to deduce that
E[(1 — y)a*] ~ N*@ =1 E[(1 = y)a?] ~ N@ 2=l E[yp?] ~ NP@ D1

as shown in Lemma 4.2.
Hence the total contribution from the second- and fourth-order terms is bounded by
a multiple of
Nv(oc—2)+ozp + Nv(a—4)+1 + N
For this to tend to 0, we require

v>;, ap<2—a), 0<p<uv,
4 -«
where the last restriction is by definition. This recovers a number of the constraints
imposed by (3. 1) To motivate the others, recall that the local law for X was proved
forany scale N with Q—a)y < w <V < 5 for a € (1,2) (Theorem 3.4) and at the
scale N¥~2 for almost all o € (0,2) in the small energy regime (Theorem 3.5). In order to
apply the results on Dyson Brownian motion from Section 3.2, we need the scale of these
local laws to be smaller than t ~ NV@2) Forg e (1, 2), this condition is guaranteed.

For o < 1, this requires v < ;= 2 , which is the remaining condition in (3.1).

4.3. Improving the scale

In this subsection we establish Proposition 3.17, assuming Theorem 3.15 holds, using an
induction on the scale 7.
To that end, recall the definitions of the matrices G” (z) for any y € [0, 1], and define

B©,n) = IP’[ max |G (E +in)| > N‘S]
10<y<1
forany £ e R, n > NS~ and § > 0. Moreover, fix £ and @ as in Theorem 3.15, choosing
k = 1 in that theorem, and let o0 = %. We omit the dependence of «, b, p, v, &, w, and k
in the notation for the constants appearing in the following lemma and view them as fixed
parameters.
We begin with the following lemma.

Lemma 4.3. Adopt the notation and assumptions of Proposition 3.17. For any § > 0 and
integer D > 0, there exists a large constant C = C(8, D) such that

PG m) < CNCSG(%,N%) +CNP
foralln > NS~L,

Proof. Letp = [2 §30], and define F,(x) = |x|?” + 1. Observe that there exists a con-
stant Cp, only dependent on p (and therefore only dependent on § and D) such that

|Fp(”)(x)| < CpFy(x) forallx e Randa € Zxy. 4.5)
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Now we apply Theorem 3.15 with F(x) = F,(x). Observe that the Coy from that
theorem can be taken to be 4p and that d can also be taken to be bounded by constant
multiple of p (where the implicit constants depend v, p, and ¢, although in the future we
will not mention the dependence on these parameters, since they are already fixed). In

view of (3.17) and (4.5), there exists a large constant B, (only dependent p) such that
]E\IJ[Fp(Im GZb(Z))] = E\P[Fp(lm Tab(z))] (4.6)
By(N™°3»(V) + Qo(e, ¥)N B + 1), '

for any 0-1 symmetric N x N matrix ¥ with at most N 1T#°*¢ entries equal to 1, where

3(W) = sup Ey[F,(ImG), Qo(s,z,\lf):]P’q,[Kmax G (z)|>N8]
oI 0<y=1

Now observe that taking the supremum over all 1 <a,b < N and 0 <y <1 on the
left side of (4.6) yields ), (W). Therefore,

(1= B, N"?)3p(¥) < 1<1’;12bl7iNE\p[Fp(Im Tap(2))] + Bp(Qole,z, W)N B> +1). (4.7)

We now take the expectation of (4.7) over W. On the event when there are at most
N 1*@P+e entries equal to C in W, we apply (4.7). The complementary event has prob-
ability bounded by ¢ Ye=N  for some constant ¢ > 0, due to (3.21); on this event, we
apply the deterministic bounds

Fp(ImG!,) < N°? and F,(ImT,;) < N°P.
Combining these estimates and fact that B, N ™% < l for sufficiently large N yields that

3, < N? max IE[F (Im T (2))] + B, (NB2B(e,n) + 1) + B,NBre™N | (4.8)

1<a,b<

where
3p = max E[F,(ImG/, ]
1;2;{§1
Here we increased B, and used § < E[J, (V)] and
IE[ max IE\p[F (Im Tab(z))]] < N? mngIE[Fp(Im Tab(z))].
1<a,b<

1<a,b<

After increasing B, again if necessary, we find from (3.19) and the trivial bound (4.2) that
E[F,(ImTzp(2))] < BpN forany 1 <a,b < N.Inserting this into (4.8) yields

3y < B,N® + B,NB (e, ) < B,N® + B,NB>B(e — 0, N7)), (4.9)

where in the second estimate above we have used the fact that (e, n) < B(e — o, N%n),
which follows from the bound

max{ max |G (E +in)l, 1} §Rmax{ max |G (E +1iRn)|, 1} (4.10)

1<i,j< 1<i,j<
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for any R > 0, given as [17, Lemma 2.1]. Applying (4.9), a Markov estimate, the fact that
o= %, and the fact that p§ > D + 30, we see for any i, j that

sup IP’[ max |ImGiy.(z)|>N%]

yelo,1] L1=ij=N /
2 v 3
<N 1§T?§NP[|ImGU(Z)| > N2]
0=<y=<1
E[F,(Im G, @10
s BIN2)
. S _p N-D-2 + B, NBp( S NO

Applying a union bound over the i, j and the same reasoning with Im G;’b replaced
by Re Gzl’b, we deduce the estimate

sup IP’[ max |Gl?’j(z)|>Ng]<BI,N_D_2°+BpNBP“fB(E,N"n). (4.12)
yelo,1] H1sii=N 2

Now the proposition follows from applying a union bound in inequality (4.12) over all
y €[0,1] N N=29Z, then extending these range of y to all of [0, 1] through the determin-
istic estimate

Y Yy’ TEENG .
G}@) = GL @) <2y =y IEN(1 4 max ).
due to (4.1), (4.2), the fact that n > N 2, and the bound P[|w;;| > 2] < eV, ]

We can now establish Proposition 3.17.

Proof of Proposition 3.17. Set k = [leg] We first claim that, for any integers D > 0
and k € [—1, k], there exists a constant C = C(D, k) > 0 such that

13(% N_k") <CND.

To establish this, we proceed by induction on k. Because « is constant, only finitely
many inductive steps are required. Therefore, we may permit the constants C(D, k) to
increase at each step.

The base case k = —1 is trivial, because inequality (4.2) implies that (5, ) = 0 for
any 1 € (1, N?]. For the induction step, suppose the claim holds fork = m € [—1,k — 1].
Fix some integer D > 0. We must show that there exists a constant C = C(D,m+1) >0
such that (£, N~m+D7)y < CN P,

To that end, applying Lemma 4.3 yields an integer C; = C{(D, m) > 0 such that

%(E,N‘(’"“)“) < ClNcliB(g,N—’"") + ;NP (4.13)
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Next, recall by the induction hypothesis for k = m that, for any integer D’ > 0, there
exists a constant C = C(D’, m) > 0 such that

sp(g N—’"“) <CN7P.

In particular, taking D’ = C; + D, there exists a constant C; = C,(D, m) > 0, given by
the C(C; + D, m) from the induction hypothesis, such that

EB(%,N""") < CoN~C1D,

Inserting this into (4.13) yields B(£, N~"+D) < (C;C; + C1)N P, which completes
the induction after setting C(D,m + 1) = C1C, + C;.

Now fix §, D > 0. For any n > N¢~!, applying Lemma 4.3 shows there exist con-
stants B = B(8, D) > 0and C = C(§, D) > 0 such that

BG,n) < CNCiB(g, N"n) +CN P <BN7P, (4.14)

where we used the fact that N9 > N 7%, the bound (5, N 77) < CN—C~D and the
monotonicity of (8, n) in n (which follows from (4.10)).

Let O denote the set of z € H of the form E + in, where E € K and Ns—1 < n<l1
are both of the form % for some integer k. Then a union bound applied to (4.14) shows
that B

IP’[su su max |G (z zN‘s]fM.
zeg yG[OI,)I] 1<i,j<N 1G5 @) ND
From (4.15) and the deterministic estimate |G;;(z) — G;;(z')| < N8|z — z/| we deduce
that

(4.15)

Bs,p+2s
IP’[ su su max |G’ ()] > 2N3] < ——_= 4.16
r/zNE—l ye[OI,)l] I=i,j=N G5 NP (10
Here, we used the fact that bound holds trivially in the region where n > 1 by (4.2). Thus
(3.20) follows by setting y = 0in (4.16). [

4.4. Outline of the proof of Theorem 3.15

For the remainder of Section 4, we assume that m = 1 in Theorem 3.15, and we abbre-
viate z; = z,a; = a, and b; = b. Since the proof of Theorem 3.15 for m > 1 is entirely
analogous, it is omitted. However, in Section 4.8 we briefly outline how to modify the
proof in this case.

Observe that

0
gE\p[F(Im Gl

3w (4.17)
- ¥ mafing,6p) (4 - L2 ) Fanay,|
1< ! (1 - )/2)5
<p.g=<N
and so it suffices to establish the following proposition. We recall that § = S, (¥) and
Qo were defined in Theorem 3.15.
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Proposition 4.4. Adopt the notation of Theorem 3.15. Then there exists a large constant
C = C(a, v, p) > 0 such that, for sufficiently large N,

2

1
tzw
Eg |:Im(G21’p G, (qu V—”ql) F'(Im ng)] ‘
1<p,g<N

C(—y2)?

C
< — oy C+Co
_—(l—yZ)%(N (S +1)+ QoN ).

To establish Proposition 4.4, we estimate each summand on the right side of (4.17).
Thus, in what follows, let us fix some integer pair (p,q) € [1, N] x [1, N].

If G¥ were independent from A,, and w4, then each expectation on the left side
of (4.18) would be equal to zero, from which the proposition would follow. Since this
independence does not hold, we will approximate G¥ with a matrix that is indepen-
dent from A,, and wp, (after conditioning on W, as we will do throughout the proof
of Proposition 4.4) and estimate the error incurred by this replacement.

In fact, it will be useful to introduce two matrices. The first will be independent from
Wpq but not quite independent from Ay, (although it will be independent from A, after
additionally conditioning on x,,); the second will be independent from both w),, and A4,

More specifically, we define the N x N matrices D = D74 = {D;;} = {D};"*
and E = EV?4 = {E;;} = {Eiyj’p’q} by setting

Dy = H}; = Ei; if(i,j) ¢ {(p.9). (4. p)}

(4.18)

and
Dpg = Dgp = Xpg = Bpg + Cpq.  Epg = Eqp = Cpq.
We also define the N x N matrices I' = I'""?9 = {I';;} = {Fl?;.’p’q} =H" —D and
A = AVP4 = {A;;} = {A];P?} = D — E, so that
1
Tij =yOi + (1—=y»)20;,  Aij = Bpgli.jyel(p.a).a.p)- (4.19)
where .
0ij = AijLi, pHetp.a.@my  Pij = 12Wii LG, j)e((p.g).(@.p)}- (4.20)
In addition, we define the resolvent matrices
R =R" = (Ry} = (REP!) = D —2)7", o)
U=U"" = Uy} = U7 = E—2)7". '

Remark 4.5. Observe that, after conditioning on W, the matrices I' and A are both inde-
pendent from U. After further conditioning on j,4, the matrices ® = {©;;}, ® = {PD;;},
and R become mutually independent.

We would first like to replace the entries Giyj in the (p, g) summand on the left side of
(4.18) with the entries R;; = Rl?'j’p 4 To that end, we set

& =£&(y)=(G" —R);; = (—R['R + (RT)’R— (R[)?G");;, ¢ =Im&;, (4.22)

for any 1 < i, j < N, where the third equality in (4.22) follows from the resolvent iden-
tity (4.1). We abbreviate { = {gp.
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By a Taylor expansion, there exists some ¢y € [Im G;/b, Im R3] such that
F'(ImG),) = F'(ImRgp + ¢)
= F(Im Rgp) + ¢F® (Im Rap)
¢2
2

(4.23)

3
+EFOIm Ry) + 5 ),

where )
FO(y) = JdF _
(x) = W(x) foranyi € Z>p and x € R.

Using (4.20), (4.22) and (4.23), we deduce that the (p, g)-summand on the left side of
(4.18) can be expanded as a finite sum of (consisting of less than 22?) monomials in ® g
and ®,,, whose coefficients depend on the entries of G” and R. We call such a monomial
of degree k (or a k-th-order term) if it is of total degree k in ®,, and ®,,. We will
estimate the (p, g)-summand on the left side of (4.18) by bounding the expectation of
each such monomial, which will be done in the following sections.

Before proceeding, let us fix an integer pair (p, q) € [1, N] x [1, N] throughout this
the remainder of section. It will also be useful for us to define some additional parameters
that will be fixed throughout this section. In what follows, we define the positive real
numbers w > ¢ > 0 through

o
&= —min{(4—(x)v— 1,(2—0()1)—0{,0,1)—,0,8,1},

100 2
w = min{(oz —28)p—15¢, 2 —a)v —ap — 15¢, 4.24)
4—a)yv—1—10¢, (4 —20)v — 158}.
Moreover, let us fix integers o, d > 0 such that
V(p—2e) > Coe+3, d>39+5. (4.25)

The remainder of this section is organized as follows. We will estimate the contri-
bution to the left side of (4.18) resulting from the first, third, and higher degree terms
in Section 4.6, and we will estimate the contribution from the second degree terms in
Section 4.7. However, we first require estimates on the entries of R and U (from (4.21)),
which will be provided in Section 4.5. We then outline the modifications necessary in the
proof of Theorem 3.15 in Section 4.8.

4.5. Estimating the entries of R and U

Recall that the event £2¢ from (3.16) bounds the entries of G”. In this subsection we will
provide similar estimates on the entries of R and U on an event slightly smaller than 2.
More specifically, define

Q= Qi(p) = || max fwy| <N},

Q= Q(p,e,z) = Qo Ny,
0 = 1—Py[Q(p, &, 2)] = Pe[Q°],
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where Q¢ denotes the complement of Q2. Since p < % and w;; is a Gaussian random
variable with variance at most %, there exists small constant ¢ = ¢(p) > 0 such that

1—P[Q] < e N, (4.26)

Thus, it suffices to establish (4.18) with Q¢ there replaced by Q. The following lemma
estimates |R;;| and |U;;| on the event €2.

Lemma 4.6. For N sufficiently large, we have

lg sup [R;j| <2N® 1g sup |U;j(z)] <2N°. 4.27)
1<i,j<N 1<i,j<N
Proof. We only establish the second estimate (on |Uj;|) in (4.27), since the proof of the
first is entirely analogous. Let us also restrict to the event €2, since the lemma holds off
of Q.
Recall from the resolvent identity (4.1) and the definitions (4.19), (4.20), and (4.21)
that

)
U-G’ = Z(G” (T + A))/GY + (G¥(T + A))*T'U (4.28)
Jj=1
for any integer s > 0.
Now, set s = [—2-1, which is positive by (4.24). Observe that

p—2¢
1o max |G/ |<N°®
1<i,j<N Y

and that the only nonzero entries of 1o(I" + A) are 1o(I" + A)pq and 1o(I' + A)gp.
which satisfy

1o(T + A)pg = 1a(T + A)gp < N7 + 12 |wpg|l, < 2N (4.29)
Thus, (4.28) yields
s
. _ Y 2e—pyJ —py\(s+1) o
1o|U;; — G| 5;(41\7 £P)] 4 (4NEP)G max Uyl <1 @430

if N is sufficiently large, where we have also used the deterministic estimate
Uyl <7 < N2
Now estimate (4.27) on |U;;| follows from inequality (4.30), the choice of s, and the fact
that 1|G/;| < N°. m
We also require the following lemma, which states that we can approximate quantities
near |F®)(Im R,3)| and | F®) (Im U,p)| in terms of derivatives of F®(ImG?)).

Lemma 4.7. Let ¢ € R satisfy either ¢ € [Im G;’b,lm Uap| or ¢ € [Im ng,Im Rap).
Then there exists a large constant C = C(9) > 0 such that, for any integer k > 0, we have

¥
i : C
1o|[F®(p)| = Clg Y NG| FED(m G, )| + R (4.31)
j=0
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Moreover, if ¢ € [Im G:llb, Im R3], then

)
1o|F®(p)| = Clg ) NP |FEHD (Im Rp)| + % (432)
j=0
Proof. The proof of this lemma will be similar to that of Lemma 4.6. We only estab-
lish (4.31) when ¢ € [Im GZb,Im U,p], since the proofs of (4.32) and of (4.31) when
¢ € [Im G;’b, Im R3] are entirely analogous.
Through a Taylor expansion, we have

v

Y/ . TU+1
F®p) - FOImGY) =>" _—‘F(/ T (ImGY,) + ———FOTO(1)), (4.33)
J:

= @+ 1)!

where Yy € ImG),, ¢], and T = ¢ —Im G}, , which satisfies
|T| < |ImU,p — Im GZbl = [Im(U(T" + A)G")apl, (4.34)

where in (4.34) we used the resolvent identity (4.1) and the definition (4.19) of I" and A.

Recalling that I' + A has only two nonzero entries, both of which are at most 2N ~*
on © (due to (4.29)), and further recalling that the entries of G¥ and U are bounded
by 2N ¢ on Q (due to Lemma 4.6), we deduce that

1g|Y| < 16N*"1q.

Inserting this and the first estimate of (3.14) into (4.33), we deduce the existence of a
constant C = C(¢) > 0 such that

lo|F®(ImUy) — FOm G|

s
<Clg Y N@PJ|FUFR (ImGl,)| + CN D= FCoe, (4.35)
B a
Jj=1
Now the second estimate in (4.31) follows from inequality (4.35) and the fact (4.25) that
(p—2)0 > Coe + 3. ¢

4.6. The first-, third-, and higher-order terms

In this subsection we show that the expectations of the first- and third-order terms in
the expansion of (4.18) are equal to O through Lemma 4.8, and we also estimate the
higher-order terms through Lemma 4.9 and Lemma 4.10.

Observe that any degree one or degree three term appearing in the expansion of the
(p, g)-summand on the left side of (4.18) (using (4.22) and (4.23)) contains either zero or
two factors of I". The following lemma indicates that the expectation of any such term is
equal to 0.

Lemma 4.8. For any integers 1 <i,j < N and k € {0, 1,2}, define

£ = (FRD*R);.
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Let M be a (possibly empty) product of s > 0 of the Sl YRY that
(kr)
M = 1_[ Slr]r

forsome 1l <i,, j, < Nandk, € {0,1,2}. If Zr:l k, is even (in particular, if it is either
0or2)and m € {1,2, 3}, then

1

tz

Eq;[F(m) (Im Rab)(qu - ”—w”ql)M] = 0. (4.36)
(1-y?)2

The same estimate (4.36) holds if some of the S (k’ are replaced by Re E (k’ orIm § (k’ in

the definition of M.

Proof. First observe from the symmetry of the random variables H;; that

]E‘IJ[A |qu] =0= ]ElP[wpq|qu]

for any odd integer m > 0. Now, recall from Remark 4.5 that A,,, wp,, and R are
mutually independent after conditioning on y,, and W. Therefore,

1
/3
Ey [F(k)(lm Rab)(qu _ prql)M]
(1-y?)2

1
tz
— EX|:]E\I/ |:F(k)(lm Rab)(qu — y—wl’ql)M qu:|:| =0,
(1-y?)2

where we have used the fact that the term inside the first expectation in the middle of
equation (4.37) is a linear combination of products of expressions that each either contain
a term of the form E[A7 | xpq] or E[wr |xpg] for some odd integer m > 0 (by (4.19),
(4.20), and the fact that the sum Y _, k 1s even), and each of these expectations is equal
to 0. This establishes (4.36). [

(4.37)

Now let us consider the fourth- and higher-order terms that can occur in (4.18) through
the expansions (4.22) and (4.23). Two types of such terms can appear. The first is when
the final term in (4.23) appears, giving rise to a factor of 3 F® (¢,). The second is when
£3F®(£o) does not appear and instead the term is a product of F ) (Im R,) (for some
1 < m < 3) with at most four expressions of the form (—RI')*R or (—RI")*G? (and their
real or imaginary parts).

The following lemma addresses terms of the first type.

Lemma 4.9. There exists a large constant C = C(a, v, p, %) > 0 such that
tzw
IEI\I:[ Im(Gng;/b)(A (i/_—p)q)f F® (%) ]
CN 10¢e

1
2
23 1
<—— (NeoigpS 4 QNCo+10 L ).
(1-y2)2

(4.38)

N2 N3



A. Aggarwal, P. Lopatto, H.-T. Yau 3740

Proof. We first establish an estimate that holds off of the event €2. In this case, to bound
the left side of (4.38), we use the deterministic facts that |G?;.|, |Rij|,{ <n~! < N?and
|A4;;| < 1, which implies from (3.14) that | F(Im R;; )| < N *°. This yields for sufficiently

large N,
1
IEq,[ Im(G?,G” )(qu w){'sF(4)(§o)lgc }

AN TP (4.39)
. Co+10 )
< NC0+1OIE\IJ|:IQC + yE[leQ|lgl2 ]] < 4N 1Q
(1-y2)2 (1-y2)2

Next we first work on the event Q2. To that end, observe from (4.1), (4.22), and
Lemma 4.6 that

[¢|1q < [(G'TR)g|1q
= (IG), TpgRgp| + |G, TgpRpp|)1a < 8N2¢|Tyy|1q.

Furthermore, since ¢y € [Im GZb, Im R,p], (4.32) yields that

Wi
Im(G};G},) (qu - R 7 )§3F(4)(§0)19

(1-y?)2
512N 108 3 1 4)
= WE\I]UFP“ (|AP£I| +t2|wij|)|F (§O)|1S2] (440)
< ——— > N PIEG[|FU (Im Rap)|(|4pg] + 12 [wpgD*] + —5
(1 - y2)2 j=0 N

for some constant C = C(¢}) > 0. To estimate the right side of (4.40), we condition
on xpq, and apply Remark 4.5 to deduce that

: 1
Eg[|FYt(Im Rup)|(|Apg| + 12 [wpgl)*]
< 8EX[Eg[|FY+ (Im Rop)|(|Apg|* + 12 1wpqg|*) | xpq]]

= SEX[Eu[|FU(m Rao)| | 1pa)Ew[(14pg|* + 2 10pl*) | 204]]

Then Lemma 4.1 (with p = 4) and the fact that E[|w,,|*] < % yields after enlarging
C =C(a,v, p, ) that

Eg[|FYt(Im Rup) (| Apg|* + 12 wpgl®)]

2 ,
[—)IEX[]E\I,[IF(J“)(Im Rap)| | xpq]] (4.41)

(e—4)v—1
§C(N°‘ v +N2

(a—4)v—1 tz & C
<C|N +m ) +m,

where we used (4.31) to deduce the last estimate.
Now (4.38) follows from applying (4.39) off of Q2 and (4.40) and (4.41) on 2. [
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The following lemma addresses the higher-order terms of the second type. Its proof is
very similar to that of Lemma 4.9 and is therefore omitted.

Lemma 4.10. Recall the definitions of the £ for k € {0,1,2} from Lemma 4.8, and
further define

5(3) = ((-RT')*G?);; foreach1<i,j <N.
There exists a large constant C = C (a v, p, ) > 0 such that the following holds. Let M

be a product of s € {1,2,3,4} of the gu ), so that

kr)
M = l_[ g:lrjr
for some 1 <i,, j, < Nandk, € {1,2,3}. If Zr:l ky >3 andm € {1,2,3}, then
1
ytzw
E\u[w |‘(qu - l—j)ql)F(’")(Im Rab) ]

(I —y2)2 (4.42)

16¢ 2y
SCN—l Nv(a—4)—18_|_t J +L
(1-y?)2

N2 N3

The same estimate holds if some of the gi(,?])', are replaced by Gl);

4.7. Terms of degree 2

In this subsection we estimate the contribution of terms of degree two to the (p, g)-sum-
mand of the left side of (4.18). In Section 4.7.1 we will state this bound use it to establish
Proposition 4.4; we will then establish this estimate in Section 4.7.2.

4.7.1. Estimates on the degree two terms. Here we bound the contribution of the second-
order terms to the (p, g)-summand left side of (4.18). There are two types of terms to
consider. The first corresponds to when the factor of {F”(Im R,j) appears in the expan-
sion (4.23) for F’'(Im Gyb) and the second corresponds to when either Im(—RI'R),, or
Im(—RI'R),5 appears in the expansion (4.22) for Im Gy Both such terms are estimated
through the following proposition.

Proposition 4.11. Define

6:) _ N48+(Ol 2)p— 2tcS _|_NC()+6tQ 4+ NZ’

€y = NoPT37113,

Then there exists a large constant C = C(«, v, p, %) > 0 such that

Eq [Im((RFR)aqub) (qu (Tt—w")q) F'(Im Rab)]

SC(C1+ Ca(Ypg +1p=9)),

(4.43)
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and similarly if (RT'R) gy, Ryp is replaced by (RT'R) 4 Ryp. Moreover,
1
12
Ew[lm(Raqub)(qu _ V—w”ql) Im(RI'R),; F”(Im Rab)}
(1-y?)2
= C(€1 + C2(Ypg + 1p=¢)).

We can now establish Theorem 3.15 assuming Proposition 4.11.

(4.44)

Proof of Proposition 4.4 assuming Proposition 4.11. As mentioned previously, through
(4.22) and (4.23), the right side of (4.18) expands into a sum of expectations of degrees
one, two, three, four, and higher. By Lemma 4.8, we deduce that the expectation of
each term of degree one or three in this expansion is equal to 0. Furthermore, summing
Lemma 4.9 and Lemma 4.10 over all N? possibilities for (p, g) yields the existence of
a constant C = C(«, v, p) > 0 such that the sum of the fourth- and higher-order terms is
bounded by

C 1
(1 - )/2)% N168(Nv(0{—4)+184 + t284 + QNCO+10 + N)
(4.45)
C
it QN ),
— )/ 2 w

where we used the definition (4.24) of @ and recalled that  ~ N ©=2" from Lemma 3.6.
Next, summing Proposition 4.11 over all N2 possibilities for (p, ¢) and using the fact that
W has at most N ! T#P*¢ entries equal to 1, we estimate the second-order terms by

1
CN* (N(“‘z)”tg + N%t3 +14+ NToQ 4 —)

N (4.46)

<CN™®§ + 1+ NC*t7Q),

after increasing C if necessary. We have again used the definition (4.24) of w and recalled
thatt ~ N©@=2v,

Now the proposition follows from summing the contributions from (4.45) and (4.46)
and using (4.26) to replace Q with Q¢ (up to an additive error that decays exponentially
in N). [

4.7.2. Proof of Proposition 4.11. In this subsection we establish Proposition 4.11. In fact,
we will only establish the first estimate (4.43) of that proposition, since the proof of the
second estimate (4.44) is entirely analogous.

To that end, we will first through Lemma 4.12 estimate the error incurred be replacing
all entries of R on the left side of (4.43) with those of U. Then, using the mutual indepen-
dence of U, 4,4, and w,, conditional on W (recall Remark 4.5) and the definition (3.7)
of ¢, we will deduce Proposition 4.11.

In order to implement the replacement, first observe that, since 4,,(R—U) =0
by (4.21),

Im((RTR)ap Ryp) Apg F'(Im Ryp) = Im((UT'U) 4y Uyp) Apg F'(Im Uyy).
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Now write

1

yi3w ,
Im((RFR)aqub)(ﬁ)F (Im R,p)

= Im((UT'U)ap Ugp) ((W—qu) F'(Im Uyp)

1 —y2)3 (4.47)

1
12w
+ (y—pql)(lm((RFR)aqub)F’(Im Rap)
(1-y?)2
— Im((UT'U) 4 Uyp) F'(Im Ugp)).
Using I';; = y®;; + (1 — )/2)% ®;; and A,,;(R—U) = 0 again, and recalling from (4.19)
and (4.20) that
1
Oy = Aijla petwa)@.ny  Pij = 12Wi 6, Hel.a).@.0}

we can compute the last line in (4.47) to find the terms with ®;; factors vanish, leaving

(w)( Im((RIR)ap Rgp) F'(Im Ryp) = Im((UTU)ap Ugp) F' (1m Ug))

1

(1-y2)2
= —ytwp, .
where )
V) = Im(UapUygpUyp + UaqUppUyp) F'(Im Uyp) (448)
—Im(RapRypRyp + RagRpp Rgp) F'(Im Ryp). '
In total,
1
t2
Im((RTR),p Ryp) (qu _ y—w;ql)F’(Im Rup)
2}
(I—v )2] (4.49)
Y2 Wpg / 2
= Im((UFU)apUqb) qu - m F (Im Uab) + ytwpqu’
J— y 2

and so we would like to estimate |E g [ytwl%q‘D] |. This will be done through the following
lemma.

Lemma 4.12. There exists a large constant C = C(a, p, &,19) > 0 such that

Ct
[Eg[ytw2, V]| < CN*+@=207243 4 vzt CNC*610. (4.50)
Proof. Since wy, is independent from R and U, and since E[wgq] = %, we have that
Eglytw;, Y] = ytN~'Eg[Y)], and so it suffices to show that

|Ew[Im(UapUqpUqp) F'(Im Ugp) — Im(Rap Rgp Rgp) F'(Im Ryp) ||

< CN48+(a_2)p_18' + % + CNCO+6Q, 4.51)
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and the same estimate if the terms Im(Uy, Up Uyp) and Im(Rgp Ryp Ryp) are replaced by
Im(UaqUppUygp) and Im(Rag Rpp Ry ), respectively. We will only show (4.51), since the
proof of the second statement is entirely analogous.

To that end, recall that (4.1) and the definitions (4.19) and (4.21) yield

R =U-UAU + UAUAR. (4.52)
Furthermore, we find from a Taylor expansion

F®(ImRyp) — F®(ImU,p)

4
| R 1 (4.53)
— i rpUtk) 8+ p(3+1)
_; 7% F (ImUgp) + EEEYh F (K1),
where
Kk =Im(Ryp — Uup) = —Im(UAR)p, (4.54)
by (4.1) and (4.21), and k1 € (Im Ryp, Im Uyp).
Applying (4.52) and (4.53), we find that
Im(Raququb)F’(Im Rab)
LA 9+1
k). K
= _F(]+1) ImU + —F(‘l?-i‘l) K
(;) IT (Im Uap) @ + 1)! (1) (4.55)

x Im((U — UAU + UAUAR),, (U — UAU + UAUAR),,
x (U—UAU + UAUAR) ).

Using (4.54) to express « in terms of A and expanding the right side of (4.55) yields
a sum of monomials, each of which contains a product of A factors. Any such monomial
with u factors of A will be called an order u monomial. Observe that there is only one
order 0 monomial on the right side of (4.55), which is F'(Im U,p)U,pUgpUyp. We would
like to estimate the other, higher-order, monomials on the right side of (4.55).

We first consider the monomials of order 1. Observe that any such monomial is a prod-
uct of A,, with terms of the form FU+V(ImU,p) and U;;. Furthermore, recall from
Remark 4.5 that A is independent from U (conditional on V). Thus, the symmetry of the
entries of H (and therefore the entries of A) implies that

Eg[M] =0 for any monomial M of order 1. (4.56)

Next let us estimate monomials of order # with 2 < u < ¢ on the event 2. Any such
monomial is a product of A7 with a term of the form F (&) (Im U,,) and at most 2u entries
of U or R; Lemma 4.6 implies that the latter terms are all bounded by 2N ® on the event €2.
Thus, if M is a monomial of order 2 < u < ¢, we have for some 1 < k < ¢ that

Eg[lg|M|] < 4“N>***Eg[|F® Im Uyp)|[Apgl*]
= 4 N>**Eg[|F® (Im Ugp)[[Ew[|Apg "]

for some j < 1, where we have used the fact from Remark 4.5 that U and A are indepen-
dent (after conditioning on W).

(4.57)
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Now, recalling from (4.19) that

|Apgl = |Hpq|1|Hpq|<N )

and applying Lemma 4.2, the first estimate in (4.31), (4.57), and the definition (3.15) of §
yields the existence of a constant C = C(p, ¥) > 0,

E\IJ[IQ |M|] < CN48+(2£—p)(u—2)+(a—2)p—13 (458)

for any monomial M of order 2 < u < 9.

The final monomials to estimate on €2 are those of order u, with u > ¥ + 1. Since
Lemma 4.6 implies that 1g|k1| < 2N?, we find from the first estimate of (3.14) that
19|F(k+1)(lq)| < N€0¢ for 0 < k < . Moreover, Lemma 4.6 and the first estimate
of (3.14) imply that 1g|F**+D(Im U,,)| < N0¢ for any 0 < k < ©¥. Combining these
estimates, the fact that any monomial of order u is a product of A}, with one term of the
form F&+D(ImU,) or F*+D (k) and at most 2u entries of U and R, and the fact that
(p —2e)¥ > Coe + 3 implies the existence of a constant C = C(«, p, &, ) > 0 such that

C
Eg[lg|M]|] < N3 for any monomial M of order u > ¢ + 1. (4.59)

Off of the event €2, we apply the estimate
|Ew[Im(UapUqpUqp) F'(Im Ugp) — Im(Rap Rgp Rgp) F'(Im Ryp) ||
<2NCOTSEy[@2 | < 2NC0TS,

where we have used the fact that the entries of R and U are bounded by n~! < N2, and
also the second estimate in (3.14).

Now the lemma follows from applying (4.56), (4.58), and (4.59) on €2, and applying
(4.60) off of . [

(4.60)

We can now establish Proposition (4.11).

Proof of Proposition 4.11. Letus only establish (4.43), since the proof of (4.44) is entirely
analogous.

To that end, observe from (4.49) and Lemma 4.12 that for some C = C(«, v, p, %) >0
we have

1
t2
‘IE\I, [Im((RFR)aqub) (qu — V—w”ql) F'(Im Rab)] ‘
(1-y2)>
yt2wpg
(1-y2)?
Now, since A4, Wpq, and U are mutually independent conditional on ¥,4, and since 4,4
and wp, are symmetric we have from the definition (4.19) of I' that

4.61)
< |Eg [Im((UFU)ap Ugp) (qu

)F (ImUab)]‘ +CE;.

Ey [Im((UFU)ap Ugs) (qu _ (lyﬂ—w)) F'(Im Ua,,)]
- V

= yEw[4}, — tw) JEg[ImUapUqpUgp + UaqUppUgp) F'(Im Ugp ).

(4.62)
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Now there are three cases to consider. If ¥,;, = 0 and p # ¢, then E[wgq] = %, SO

by the definition (3.7) of ¢ we have
t

Ey[4}, —tw},] = E[H Ly, |<n— | |Hij| < N7°] - v =0 (4.63)

in which case the left side of (4.62) is zero.
If Ypq = 1, then Apy = O and E[w}, ] < 250
|Ew[4), — tw) JEw[Im(UapUypUgp + UagUppUgp) F'(Im Ugy )] |

2t
=< N]E\Il[(anpquUqH + |anUppUqb|)|F,(Im Uab)l] (4.64)

4¢
< N(SN“S + N°Q),

where we have used Lemma 4.6 to bound max<;, j<n |U;j| by 2N® on  and (4.2) and
the fact that n > N ~2 to bound it off of Q.
Similarly, if ¥,4, = 0 and p = ¢, then
2
N
and so similar reasoning as applied in (4.63) yields

E[wp,] =

t

Eyldp, —twp,] = N

and so we again deduce that (4.64) holds.
The proposition follows from summing (4.61), (4.62), and either (4.63) if ¥4 = 0
and p # q or (4.64)if Y,y =0o0r p =gq. =

4.8. Outline of the proof of Theorem 3.15 for m > 1

Let us briefly outline the modifications required in the above proof of Theorem 3.15 in
the case m > 1. Then the analog of (4.17) becomes

d
EEW[F(Im GZlbl ,....Im G;’mbm)]
“ ytzw
=Y %m0, (4 - L2
k=11<p.g<N (1-y?)2

X % F(ImG) , ..., InG} )],

ambk

and so we must show for each integer k € [1, m] that

1
yrzw
Z ‘EW[Im(GZkPG;bk)(qu _ 541)8kF(Im Glelbl""’Ich)l/mbk)]‘
1<p,g=<N (I=7%)2

< %(N—”(g + 1) + QgNCE+€0) (4.65)
(1-y?)2

for some constants w = w(e, v, p,m) > 0and C = C(a, v, p,m) > 0.
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Following (4.23), for fixed k € [1, m] we then expand d F (Im G}l’lb1 ,...,Im G}l’m m)
as a degree three polynomial in the {; = Im§,;5,, whose lower (at most second) degree
coefficients are derivatives of F(Im Ry 5,,...,Im R, 5, ). The degree three coefficients
of this polynomial are fourth-order derivatives of F, evaluated at some ({o:1, ..., {o:m)
with §o;; € [Im Ggl’j b Im R, p,]. Inserting this expansion into (4.65), one can show using
Lemma 4.8 that the resulting first- and third-order terms in (4.65) will have expectation
equal to 0. Following the proofs of Lemma 4.9 and Lemma 4.10, the fourth- and higher-

order terms in this expansion can further be estimated by

C(1—y») " 2(N"“(3 + 1) + QoNC+%0)

for some w = w(a, v, p,m) > 0and C = C(a,v, p,m) > 0.
Let us make analogous estimates on the second-order terms by following the content
in Section 4.7.2. In particular, the analog of (4.49) becomes

1
tzw
Im((RFR)akqubk)(qu - ”—”ql) d% F(Im Ry, p,.....Im Ry 5, )
(1-y?)2
1
A (4.66)
= Im((UT'U)g, pUpyp,) (qu - (T—z”)‘ﬂ)ak FUmUyg,p,.....Im Uy, p, )

where

SDk = Im(UakpquUqbk + UaquppUqbk)akF(Im Ua1b1 e Uambm)
— Im(Rakququbk + Raqupqubk)akF(Im Rﬂlbl s, Im Rambm)-

As in Lemma 4.12, |Eg[ytw?,Wi]| can be bounded by CN (3 + 1) + CQoN ¢+,
Following (4.62), the expectation of the first term on the right side of (4.66) is equal to 0
if Y4 = 0 and p # g (by (4.63)), and so the using the proof of (4.64) the total of this
expectation over all (p, ¢) € [1, N]? can be bounded by CN ~?(J + 1) + CQoNC¢+Co,

Thus, the second-order terms in the expansion of the left side (4.65) can also be
bounded by C(N~?(S + 1) + Qo NC*C0), which verifies (4.65) and therefore estab-
lishes Theorem 3.15.

5. Intermediate local law for « € (1, 2)

In this section we establish Theorem 3.4, which provides a local law for X (recall Defini-
tion 3.3) at almost all energies E for o € (1,2). We begin by formulating an alternative
version of this local law in Section 5.1 and showing that it implies Theorem 3.4. Its proof
is deferred until Section 6; the remainder of this section consists of preparatory material.
In Section 5.2 we recall some preliminary identities and estimates. In Section 5.3 we pro-
vide an outline of the previous work and of our proof. Finally, we conclude in Section 5.4
with a statement for an approximate fixed point equation (given by Proposition 5.11),
which will be established in Section 6.2.1.
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In what follows we fix parameters «, b, v > 0 satisfying (3.1) and @ € (1, 2). We recall
the functions ¢y.z, Ya,z, ¥(2), and mq(z) from (2.4) and (2.5); the removal matrix X and
its resolvent R from Definition 3.3; that my(z) = N~! TrR; and the domain Dk w.c
from (3.2). Furthermore, for each s > 0 we denote by Ky C C the set of z € C of the

form re'?, with r € Rx¢ and - <h<Z.

5.1. An alternative intermediate local law

Through an inductive procedure that has been applied several times for Wigner matrices
(see the book [55] and references therein), Theorem 3.4 will follow from the following
result.

Theorem 5.1. Adopt the notation and hypotheses of Theorem 3.4. For each z € Hl, define
the event

)= {lmN(z) ~ma(2)] = L} " {1?,-‘15"]\, IR (z)| < (logN)%}

a (5.1)

n{ max, EG-iRy @)4] - o) = 11

Then, for sufficiently large N, there exist large constants C = C(a, b, v, w, K) > 0 and
B = B(a) > 0 such

log N)?
P[Q(z)¢] < C exp(—%) ifimz = B. (5.2)
Further, suppose zo, z € Ok 5 satisfy Rez = Rezg and Imzg — # <Im:z < Imz.
If P[Q(20)°] < 555, then
(log N)?
Pllgi) < 1oeyl = C eXP(—T (5.3)

for large enough N.

Proof of Theorem 3.4 assuming Theorem 5.1. Let B be asin Theorem 5.1. Let K = [u, v]
and let A= |[N°>(v—u)| and B = [N°(B — N~?)|. For each integer j € [0, A] and
k € [0, B], let

J o, k
Zj,k:u+ﬁ+l(%—ﬁ)

Then, by induction on M € [0, B], there exists a large constant C = C(«, b, v, w, K) > 0
such that

4 (log N)?

IP’[ U U Q(zj,k)‘} <C(M + l)exp(—T). (5.4)
J=0k=0

Now, the theorem follows from (5.4); the deterministic estimate

1 1
IRij(2) = Rij (o)l < 7 and | (2) —mw (o)l <

for zg,z € Dy )68 With |z — 29| < % (due to (4.1), (4.2), and the fact that n > %);
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and the deterministic estimate

ma(2) ~maGo)| <

for z¢ and z subject to the same conditions (which holds since m,, is the Stieltjes transform
of the probability measure iy ). ]

5.2. Identities and estimates

In this subsection we will recall several facts that will be used throughout the proof of
Theorem 5.1. In particular, we recall several resolvent identities and related bounds in
Section 5.2.1, and we recall several additional estimates in Section 5.2.2.

5.2.1. Resolvent identities and estimates. In this subsection we collect several resolvent
identities and estimates that will be used later.

In what follows, for any index set 4 C {1,2,..., N}, let X@ denote the N x N
matrix formed by setting the i-th row and column of X to zero for each i € 4. Further
denote o

RY — {Rjk } = (X(J) — )L
If 4 = {i}, we abbreviate XU = X0 RAD = RO and Rj(z D — R](lk) Observe that
E[my] = E[R;]
for any j € [1, N], due to the fact that all entries of X are identically distributed.

Lemma 5.2. Let H = {H,;} be an N x N real symmetric matrix, z € H, and n = Im z.
Denote G = {G;;} = (H—z)"L.

(1) We have the Schur complement identity, which states for any i € [1, N| that

1 .
s =Hi-—z— Y Hij G Hy. (5.5)
" 1<j.k<N
et

(2) Letd C [1,N]. Forany j € [1, N]\ d, we have the Ward identity

wp MG
> ope-mo
ke[1,N]\d

Estimates (5.5) and (5.6) can be found as (8.8) and (8.3) in the book [55], respectively.
Observe that (4.1), (4.2), and the estimate (which holds for any x, y € C and p € R)

|x? — y2| < |pllx — y[(Ix|?~" + [y[P71), (5.7

(5.6)

implies that

1 1
J J d J
IR @07 = RiP )P | < [plIRE (21) - R§j>(zZ)|( A= (Im21)p_l)

<2|pllz1 —Zz|( (5.8)

1
N.
(Im zg)P+1 + (Imzp)P+1 )
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For each subset 4 C {1,2,...,N}andi ¢ J, define
Sig= Y. XZRYWD

ijohjj
JEJU{i}
Ty =Xii — Uy, (5.9)
20
JEJUL}

where we recall the entries H;; of H are coupled with the entries X;; of X through the
removal coupling of Definition 3.3, which also defined the Z;;, and where

Uia= 3 XiRG Xy (5.10)
JkgEIU{i}
J#k
If 4 is empty, we denote S; = S; 4, ©; = &; 4, T; = T; 4, and U; = U, 4. The Schur
complement identity (5.5) can be restated as

1
Rij=———. 5.11
Tl — (5.11)
Observe that since the matrix ImR@® is positive definite and each X;; is real, we have
that

ImS; gy =20, Im&;y =0, Im(Sjy—Tiy)=Im(S;y+ Ug)=0. (5.12)

5.2.2. Additional estimates. In this subsection we collect several estimates that mostly
appear as (sometimes special cases of) results in [26,27]. The first states that Lipschitz
functions of the resolvent entries concentrate around their expectation and appears as
[26, Lemma C.3] (with the f there replaced by L f here), which was established through
the Azuma—Hoeffding estimate.

Lemma 5.3 ([26, Lemma C.3]). Let N be a positive integer; and let A = {a;; }1<i,j<N be
an N x N real symmetric random matrix with the property that the i -dimensional vectors
A; = (aj1,ai2,...,a;;) are mutually independent for | <i < N. Letz = E +in € H,
and denote B = {B;;} = (A — z)~L. Then, for any Lipschitz function f with Lipschitz

norm L, we have
Nn?t?
P >t <2 — .

Setting f(x) =xor f(x) =Imx, L =1,andt = 4(Nr]2)_% log N in Lemma 5.3,
we obtain

1 Y 1 Y
— ) f(Bjj))——=) E[f(Bj)]

4log N
(Nn2)?

P[|ImmN(z) —E[Immpy(2)]| > 410g1\{ :| < 2exp(—(log N)?).
(Nn?)2

P[wnN(z) _Elmy @) > } < 2exp(~(log N)2).

(5.13)
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The next lemma can be deduced from Lemma 5.3 by choosing f to be a suitably

truncated variant of x 2 . It can be found as [26, Lemma C.4], with their y equal to our %

Lemma 5.4 ([26, Lemma C.4]). Adopt the notation of Lemma 5.3, and fix o € (0,2).
Then there exists a large constant C = C(«) > 0 such that, for any t > 0,

N a (4

1 N(n2t)e
P||— >r|l<2 — .
|: N/=1 - i| - eXP( ¢ )

N
. a 1 . a
Y (=iBj)? - N Y E[(—iB;j)?]
, =
The following, which is a concentration result for linear combinations of Gaussian
random variables, follows from Bernstein’s inequality and (4.2).

Lemma5.5. Let (y1, a2, ..., YN) be a Gaussian random vector whose covariance matrix
is given by Id, and for each 1 < j < N let

fi = mR;;)%|y;|% g = (ImR;)ZE[|y;|*].

Then there exists a large constant C > 0 such that

N
1 C(log N)* (log N)?
P[NZ(/’J-— ——=—— | <Cexp ——c )
j=1 N2p%
where the probability is with respect to (y1, Y. . .., yn) and conditional on X%,

The following two results state that the diagonal resolvent entries of R are close to
those of R®) on average. The first appears in [27, Lemma 5.5] and was established by
inspecting the singular value decomposition of R — RY”) (one could alternatively use the
interlacing of eigenvalues between R®) and R) and then applying Holder’s inequality.
Estimates of this type for r = 1 have appeared previously, for example in [50, (2.7)].

Lemma 5.6 ([27, Lemma 5.5]). For any r € (0, 1], we have the deterministic estimate

—Z|R RO <4 (5.14)
i~ R = oy '

Corollary 5.7. Foranyr € |1, 2], we have the deterministic estimate

~ RO Ni (5.15)
n

||M2

Proof. Estimate (4.2) together with the bound

b|r—1 < |a|r—1 + |b|r—1

B

for any a, b € C yields
R:: — R(l) r R: R(l) R 1 R(l) r=1y - 2 1—r R — R(l) 5.16
|Rjj — R;/|" = [Rj; — R;7N(R 1" + R 1) <2077 [Rj; — R (5.16)

Now combining (5.16) with the r = 1 case of Lemma 5.6 yields (5.15). [
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We recall the following Lipschitz estimate for the functions ¢y, and ¥ ; (see (2.4)),
which appears in [18, Lemma 3.6].

Lemma 5.8 ([26, Lemma 3.4]). There exists a large constant ¢ = c(«) such that the
following holds. For any z € H, the functions ¢,z and Y ; (see (2.4)) are Lipschitz with
constants ¢, = c(a)|z|™* and cy = c(@)|z|~% on K% and K4, respectively.

We conclude this subsection with the following proposition (which is reminiscent of
[26, Lemma 3.2]) that bounds the quantity 7; from (5.9).

Proposition 5.9. Letz € H satisfyImz < N «~2, and recall the definition of T; = T;(z)
from (5.9). There exists a large constant C = C(a) > 0 such that for any t > 1 we have

Ct C
PITi| = T (5.17)
(Np»)z | 12
Proof. First, (4.3) yields the existence of a large constant C () > 0 such that
2\ %
t - C(Nn~)2 - g
(an)% - Nt* T o

Now, from a Markov estimate, we have for any s > 0 that

(5.18)

P|:|Xii| >

N N
Nn? . 2
Plors o< 2| 5 xrOn| [Tige |+ L rini<s
(Nn?)2 L' 1<j#k<N j=1 j=1
- N
Ny? ; (@) C
= Z_ZE Z XijXj/Xk/RJ(.lk)Rj/k/ ! 1_[ 1|Xj|§s:| + -
- 1<j#k=<N j=1
1<j'#k'<N
2Nn? ; C
<=5 > IRRPEIX Py <] + . (5.19)
1<j#k<N

after increasing C if necessary, where we abbreviated X; = X;; foreach j € [1, N], used
(4.3), and recalled the independence and symmetry of the { X }. Then (5.19) implies

p |U| - t - 8C2S4_2a7’]2 Z |R(l)|2 N C - C3g4 20 C
" vpp)rl T @-wPN 1<j#k<N e s s’
- (5.20)

where we used (4.2), (5.6), and
$ 2C 5 _ 2Cs%>™@
]E[|XJ|21|XJ|§S]:2/O MIP)[|XJ| Zu]dUS W\/O ul *du = m

Setting s = t2 in (5.20) yields

T 3

3
]P[|Ul-| < m 2)1] . (5.21)
17 2

Now the lemma follows from the second identity in (5.9), (5.18), and (5.21). [
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Remark 5.10. The proof of Proposition 5.9 does not require Q€ (1,2) or E =Rezis
bounded away from 0. Instead, it only uses that the entries of N « X are symmetric random
variables satisfying (2.3) and that Im z = 5. Thus, we will also use Proposition 5.9 in the
proof of the local law in the case @ € (0, 2) \ +, which appears in Section 7.

5.3. Outline of proof

In preparation for the next section, we briefly outline the method used in [26] to prove
a local law on intermediate scales, and also the way in which we improve on this method.
Recalling the notation of Section 5.2.1, we begin with the identity (5.11).
Approximating 7; ~ [E[T;] = 0 and replacing each X;; with A;;, we find that
R,',' o (—iZ — i@i)_l.
The identity x™* = ['(s)™! [y 1""1e™*! d1 then yields for any s > 0,

. 1 ® . . @)
E[(—iR;;)*] ~ TS) /0 /5 1E|:exp(1tz + it Z RJ.} hlzj)i| dt. (5.22)
J#
To linearize the exponential appearing in the integrand on the right side of (5.22), we
use the fact that, for a standard Gaussian random variable g,

-2
Elexp(izg)] = exp (—7)
Together with the mutual independence of the {/;; }, this yields

1 o0 . .
E[(—iRi)’] ~ W/o ts_le”z1_[IE[exp(i(—2tiR§.}))5hijgj)]dl
J#i

1 [ o2 2t)8 ¥
N —— ts_lei’ZE[exp(—— (—iR--)%|g-|"‘)]dt,
F(S)/O N JX:; JJ J

where we used the explicit formula (2.1) for the characteristic function of an a-stable
random variable and the g = (g1, g2,...,8gn) is an N-dimensional Gaussian random
variable with covariance given by Id.

Approximating |g;|* ~ E[|g;|*], using the identities

o _ L@ od A WA
IE[IgJ'I]—Z%_IF(%), and F(Z)F(l 2)_Sm(%), (5.24)

recalling the definition of ¢, ; and ¥, from (2.4), and applying (5.23) first with s =
and then with s = 1, we deduce

Y(2) % ¢a,:(Y(2), X(2) = Yo, (Y(2)),
where X(z) = E[-iR;;(z)] and Y(z) = E[(—iR}; (2)%].
Since the equation Y(z) = ¢q,z(Y(z)) is known [19] to have a unique fixed point
y(z), we expect from the previous two approximations that there is a global limiting
measure my = iYq ;- (y(2)); this matches with (2.5).

(5.23)

4
2
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To obtain an intermediate local law for this measure, one must additionally quantify
the error incurred from the above approximations. Among the primary sources of error
here is the approximation R;; ~ (—iz —i®;)~!. This not only requires that |T;| be small,
but also that |S; + z| and |S; — T; + z| (which is the denominator of R;;) be bounded
below. By analyzing certain Laplace transforms for quadratic fg)rms in heavy-tailed ran-
dom variables, the work [26] bounded these denominators by nﬁ_l. This bound does not
account for the true behavior of these resolvent entries (which should be bounded by N*¢
for any 6 > 0), which causes the loss in scale of the intermediate local law established
in [26] for « closer to one. o

The improvement we seek will be to lower bound these denominators by (log N)~a—T;
see Proposition 6.1 below. This will both yield nearly optimal bounds on the diagonal
resolvent entries R;; and also allow us to establish an intermediate local law on the smaller
scale n = N~ 7. Let us mention that the latter improvement (on the scale) is in fact nec-
essary for us to implement our method. Indeed, if for instance « is near one, the1 results
of [26] establish an intermediate local law for H on scale approximately n > N 5. How-
ever, in order for us to apply the flow results of [35, 54, 67, 68] we requlre n<t, and
to apply our comparison result given by Theorem 3.15, we requlre t <Naod ~N—
Hence in this case we require a local law for X on a scale n << N™ 3 , and this is the scale
accessed by Theorem 3.4.

We do not know of a direct way to improve such a local law to the nearly optimal
scale n = N®~1, which is necessary to establish complete eigenvector delocalization and
bulk universality. However, one can instead access such estimates for H by combining our
current local law for X on scale n~® with the comparison result given by Theorem 3.15
applied to V;, for which the estimates hold on the optimal scale by the regularizing effect
of Dyson Brownian motion.

5.4. Approximate fixed point equations
In light of the outline from Section 5.3, let us define the quantities
X(2) = E[-iR;;(2)].  Y(2) = E[(-iR};(2))3], (5.25)

which are independent of the index j, since the entries of X are identically distributed.
Throughout this subsection and the next, we use the notation of Theorem 3.4 and set
the parameters 6 = 0(«,b,v) > 0and § = §(«, b, v, w) > 0 by

2 — 1 1
¢ = —mm{0 v — w,w—(2—a)v,——w}. (5.26)

6= ,
50 10 2

As mentioned in Section 5.3, let us now define an event on which the denominators
of R;;(z) and (—z — S;(z))~! are bounded below. To that end, for any z € H, we define

A(z) = {1min Im(S; + z) > (log N)_%}
<j<N
N {1n}m Im(@ +z)> (logN) o= 1} (5.27)
ﬂ{ min Im(S; —7; +z) > (logN) ™ a- 1}

1<j<
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Assuming that P[A(z)¢] has very small probability, the following proposition pro-
vides an approximate fixed point equation for Y(z), as explained in Section 5.3. Its proof
will be provided in Section 6.2.1.

Proposition 5.11. Adopt the notation and hypotheses of Theorem 3.4 and recall the
parameters § and 0 defined in equation (5.26). Let z € Dk 4 8 for some compact inter-
val K C R\ {0} and some B > 0. If P[A(2)¢] < ﬁ, then there exists a large constant
C =C(a,b,6,¢e) > 0 such that

100 1 1
¥(2) — gaz (Y] < Cley + C)(log N)cv—l( - 29),
(Np2)E - N (5.28)

100 1 1
|X(Z) - %,z(Y(Z))I < C(Cw + C)(logN)oc—l ((an)% + NZQ)’

where c, = cy(a, z) and cy = cy (o, z) are given by Lemma 5.8.

6. Proof of Theorem 5.1

In this section we establish Theorem 5.1 in Section 6.2 after bounding the probability
P[A(z)¢] in Section 6.1.

6.1. Estimating P[A(z)¢]

In this subsection, we provide a estimate for P[A(z)€¢], given by Proposition 6.1. Due to
the Schur complement formula, this proposition implies optimal bounds on the resolvent
entries that were not present in the previous work [26]. These bounds will in turn allow
us to establish the local law on an improved scale.

In Section 6.1 we prove Proposition 6.1, assuming Proposition 6.2 and Proposition 6.3
below. These propositions are then established in Section 6.1.3 and Section 6.1.4, respec-
tively.

Proposition 6.1. Assume that z € D . for some B > 0 and ¢ < E[lmmy (z)] < L

8’
for some & > 0. Then there exists a large constant C = C(a, b, §, €) > 0 such that

2
P[A(z)’] < C exp(—@).
6.1.1. A heuristic for the proof. We now briefly outline our argument for the lower bound
on Im(S; + z). The Schur complement formula reads R;; = (T; —z — S;)~!. For the
purposes of this outline, let us assume that R;; =~ (—z — § i)_l, so that a lower bound on
Im S; implies an upper bound on |R;;|.

Letting A denote the diagonal (N — 1) x (N — 1) matrix whose entries are given by
Im Ryj) with j # i, we find that Im S; = (X, AX), where we defined the (N — 1)-dimen-
sional vector X = (X;;);;. Thus we obtain from (2.1) that, if ¥ = (y1,y2,..., YN=1)
denotes an (N — 1)-dimensional Gaussian random variable whose covariance is given
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by Id, then for any ¢ > 0,

E[exp(—g(AX, X))} = Efexp(it (AZX, Y))] ~ E[exp(_w)}

. 1 . .
for some constant ¢ > 0. Assuming that ||[A2Y ||§ concentrates around its expectation, we
obtain after replacing ¢ by 7+/2 and altering ¢ that

C |[ |a i, o
Elexp(—1>Im 5)] = E[exp(—1*(AX. X))] < exp(—T > ImRy| ) ©.1)
J#i
If ¢ is chosen such that e
t i), o
N R = dog NY.
J

then the right side of (6.1) is very small. Hence (6.1) implies, using Markov’s inequality,
that

1
PlImS; <t 2] =P[’ImS; <1] = P[exp(—tzlm S;) > —]
e

< C exp(—c(log N)?).
Therefore, using the definition of ¢ and ignoring logarithmic factors, we have with high
probability that
1 AN
ImS; > (N > im R z)
J#i
o

5 < 1, we have

Since

1 i) < | j 27
¥ 2 m R[S = mm) (max m R 6.2)
J#i
where mg\i,) = N~! TrRY. Proceeding using (6.2) yields
. . a_q1. 2 1-2
ImS; > (Imm(’)(maxIImR(-l-)I)2 )a A |ImmN|%( max |R-'|) YL63)
t N\ j#i I 1<j<n 7 ' ’
Since |R;;| < (ImS;)™!, this suggests that
_2 2_4
|Rii| < Immy[~« max |Rj;|e"",
1<j=<N
with high probability. Assuming that Im m y is bounded below and taking maximum over
i €[1, N], this yields
21

max |R;; <C< max R--)E_
max|Ry;| < € (| max |Ry|

for some constant C > 0. Thus, since % — 1 < 1 (this is where we use & > 1), this implies
an upper bound on each |R;; | with high probability.
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6.1.2. Proof of Proposition 6.1. An issue with the outline from Section 6.1.1 is in (6.3),

where we claimed that max;; |R | ~ max; |R;;|. So, to implement this outline more
carefully, we will instead proceed by showing that if one can bound the entries of R® for
each |d| = k (recall Section 5.2. 1) by some large ¥ > 0, then we can bound the entries
of R@ for each |g| = k — 1 by 94! (log N)2°. In particular, if & > 1, then 2 —1 <1,

so we can repeat this procedure approximately (log log N )? times to obtain nearly optimal
estimates on the entries of R.

To that end, we will define generalized versions of the event A. Fix the integer *

M = [(loglog N)*].

and for each 0 < k < M, define the positive real numbers ¢g, ¢1, ..., Sy by

2_
cv=n  and  or =7, (logN)™® foreachO<k <M—1. (64
Since o € (1,2), we have that k = % —1€(0,1), and so
Go = gl (logN)™1% = N (log N) =&,
where we have used the fact that ¢py = n > N 1. It therefore follows that
g0 = (log N)~a1
for sufficiently large N, since a € (1,2) and M = |(loglog N)?].
Now, for each subset 4 C {1,2,..., N} with || = k < M, define the three events
As,ia(2) = {Im(S;g(2) + 2) = gk},
Ae,ig(z) = {Im(G;4(2) + 2) = i}, (6.5)
Arig(z) = {Im(S; 4(2) — Tj,4(2) + 2) = gi}-

Furthermore, for each 0 < u < M, define the event

M
A= [ [Asia@) N Aeia(z) N AL(2).
k=udc{1,2,..N}i¢d
|d|=k
The following propositions estimate the probabilities of the events Ag; g, Ag,i g, AT,i 4.
We will establish Proposition 6.2 in Section 6.1.3 and Proposition 6.3 in Section 6.1.4.

Proposition 6.2. Assume that z € Dk . 5 for some B > 0 and ¢ < E[llmmpy (z)] < %
for some € > 0. Then there exists a large constant C = C(«, b, §, &) > 1 such that the fol-
lowing holds. For any integer u € [0, M — 1], any subset 4 C {1,2,..., N} with|d| = u,

and any i ¢ J, we have

C

(log N)?
)

P[Asia(z)] < PIA“TD ()] + C exP(_M),

(6.6)
]P)[AG,i,J (Z)c] =< P[A(u+l)(2)c] +C exp(_
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Proposition 6.3. Adopt the notation and hypotheses of Proposition 6.2. Then there exists
a large constant C = C(a, b, 8,¢) > 1 such that the following holds. For any integer
u e [0,M — 1], any subset 4 C {1,2,..., N} with|d| = u, and any i ¢ J, we have
(log N)? )

C ©6.7)

Assuming Proposition 6.2 and Proposition 6.3, we can establish Proposition 6.1.

P{A74()] < PIAWTD(2)] + € exp(—

Proof of Proposition 6.1 assuming Proposition 6.2 and Proposition 6.3. To begin, apply
a union bound over all 4 C {1,2,...,n} with |d| =u and i ¢ 4 in (6.6) and (6.7) to
obtain (with C as in those estimates)

log N)?
PIA® ()] < 3N*HP[A®HD (2)°] 4 3C N H! exp(——( = ) ) (6.8)
Estimate (4.2) implies that AM) (z) holds deterministically, so (6.8) and induction on u
yields
log N)?

P[A®(2)] < BCN)M+DM—utD) exp(——( = ) ) (6.9)
for each 0 < u < M. Since M = |(loglog N)?2|, it follows from (6.9) (after increasing
C if necessary) that P[A® (2)¢] < C exp(—C ' (log N)?), from which the proposition
follows since A©@(z) € A(z). =

6.1.3. Proof of Proposition 6.2. In this subsection we establish Proposition 6.2. Before
doing so, we require the following estimate on the Laplace transform for quadratic forms
of removals of stable laws, which is an extension of Lemma B.1 of [26] to removals of
stable laws; this lemma will be established in Appendix B.

Lemma 6.4. LeL a € (0,2),letoc > 0bereal, letO < b < é be reals, and let N be a posi-
tive integer. Let X be a b-removal of a deformed (0, o) a-stable law (recall Definition 3.2),
and let X = (X1, X, r XnN) be mutually independent random variables, each having
the same law as N~ « X. Let A = {a;;} be an N x N nonnegative definite, symmetric
matrix, letB = {B;;} = AZ andletY = (y1,¥2,...,YN) be an N -dimensional centered
Gaussian random variable (independent from X ) with covariance matrix given by 1d.
Then

)
E[exp(—E(AX,X))}

“|s|*|BY |2
=E[exp(—0 1] IIQ)} exp(O(ZzN(z_a)(b—é)—l(logN)TrA))

N
_ (og N)?
+ Ne 7,
where, for any vector w = (w1, wa, ..., wy) € CN and r > 0, we define

Jwll, = (imv);.

J=1
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Now we can prove Proposition 6.2.

Proof of Proposition 6.2. Since the proofs of the two estimates in (6.6) are very similar,
we only establish the first one (on Im S; 4). For notational convenience we assume that
i=Nadd ={N —-u,N—u+1,...,N—1}.Denote § =4 U{N}, and set

Ag(z) = [V(As,;5(2) N A j7(2) N AT;9(2)) € ATV (z). (6.10)
JEd
In what follows, let § denote the event on which
N—-u—1

1 4u+1)  4logN
= Im RP (z) — Ellmmy (2)]| > gx
j=1

(N —u—1)p Nn? ©.1D)

Observe that (5.14) (applied with r = 1) and the second estimate in (5.13) imply that
P[9] < 2exp(—(log N)?).

Now let us apply Lemma 6.4 with X = (Xy;)1<j<n—u—1 and A = {4;;} given by the
(N —u —1) x (N —u — 1) diagonal matrix whose (j, j)-entry equals A;; = Im R}%".
Then Im Sy 4 = (X, AX), so taking

D=

r = Qlog2)%s,
in Lemma 6.4 yields from a Markov estimate that for sufficiently large N,

PlIm Sy,4 < sul pa+n ()]

’ 2
<2E exp(—E(AX, X))1Ag(z)1g] + 2P[8]

~ 2
=2E E[exp(—E(AX,X)) {Xjk}j,k¢$]lAg(z)1§:| +2P[9]

- 1

ZNAZY Y (6.12)

oE exp(_ oAty | )

L 2N —u — g,

X exp(O(gu_lN(z_"‘)(l’_é)_1 TrA))lAg(z)lg]

log N)?
_I_ 6N exp(_M),
4
where Y = (y1,¥2,..., YN—u—1) isan (N — u — 1)-dimensional Gaussian vector whose

covariance is given by Id. On the right side of the equality in (6.12), the inner expectation
is over the {Xi} with either i € § or j € ¢, conditional on the remaining {X}; the
outer expectation is over these remaining {X ¢ } (with j, k ¢ ).
To estimate the terms on the right side of (6.12), first observe from the definition (6.11)
of the event § that
1gN~'TrA < E[lmmy(z)] + N7
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for sufficiently large N. Applying this, our assumption E[Imm y (z)] < -, and the fact
that ¢y > car—1 > na—'(log N)~2° yields for sufficiently large N

lggu_lN(z_a)(b—a)—l TrA < 28—1;71—5N(2—a)(b—§)(10g N)ZO
< 28—1N(2—a)(b—é+%)(10g N)20 (6.13)
< NSB@2) <

where we have recalled that n > N ™% and used (3.1) and (5.26). Inserting (6.13) into
(6.12) yields the existence of a large constant C = C(«, b, §, ¢) > 0 such that

PlIm Sy.g < sulay )]
Az2Y|¢ log N)? 6.14
§CE[exp( u)lAg Z)]+Cexp( (log N) ) ©.19)
CNg¢; ¢

Therefore it suffices to lower bound N~ 1||A% Y ||%. To that end, we apply Lemma 5.5 to
deduce (after increasing C if necessary) that

N—u—1 N—-u—1
C(log N)*
Z (Im RP)% ;| - Z (Im R IRy, ]| > Clog M)
7;77
< Coxpf (o N)*
X D B
= P C
from which we find (again, after increasing C if necessary) that
1 N—-u—1
A2Y||% 1 _ C(logN 4 log N)?
[ 1adyig Z (m @8 - COENT| o p(L 10BN 615
N TCN Nzp% C

Now, observe that by (5.5) and the definition (6.10) of the event A g n ¢(z) that

Lo RP @) = 1a,0)] 85 = Ta(2) + 217" < ity
for each j ¢ ¢. Therefore,

1 Ne—u—1 . 1- 1 N—-u—1
Ag(Z) Z (Iij(.;Z))f >§u+1 Ag(2) Z ImRJ(?). (6.16)

Furthermore, we have by (5.14) (applied with r = 1) that

I "N 4+ 1) )

(&)
E ImR >1 m
N = @z Ag(z)( N () (N —u—1)p

(6.17)

It then follows from the second estimate in (5.13), the assumption E[Immy (z)] > ¢, and
0<u <M = |(loglog N)?| that

1 N—u—1
[ Ag(2) Z Im RJ(.‘;()( ) < AT"(Z):| < 2exp(—(log N)?) (6.13)
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for sufficiently large N. Inserting (6.16) and (6.18) into estimate (6.15) (upon observing
that ¢! 7% > pl=e/2 > ___1___yyield
ac, 1 =7 1/2—8na/2)yle S

=N
] 1-%
IAZY 18 &Syt a0 (log N)?
P 2 < —_ .1
[ N < c < Cexp C (6.19)

for sufficiently large N, again after increasing C if necessary. Therefore, inserting (6.19)
into (6.14) yields

1-4 2
e log N
P[ImSy,g < culay )] < CE[exp(_ S-u+0(1.)i| +2C Cxp(_( Ogc ) .),
Cqi

from which the proposition follows since

o 1-¢ _
S =G,y (log N)~1%
(due to (6.4)), and we may increase C so that the bound holds for all . [

6.1.4. Proof of Proposition 6.3. In this subsection we establish Proposition 6.3. We first
require the following lemma that will be established in Section 6.1.5.

Lemma 6.5. Let N be a positive integer and let 0 <r <2 < a < 4 be positive real
numbers. Denote by w = (w1, W3, ..., WxN) a centered N -dimensional Gaussian random
variable with covariance U;; = E[w;w;] for each 1 <1i,j < N. Define V; = E[w}]for
eachl < j < N, and define

! , . Elwl3 1 L
U=y 2 Ujp V=—gm =gl X=g 2V
1<i,j<N J= J=
_a-r _a-r
P=u"2 1= 5,

If V> 100(log N)IOU%, then there exists a large constant C = C(a,r) > 0 such that
r Ve log N)?
e[t . ] = con(-LoE0),
N (X og N)® e 2
Observe that Lemma 6.5 is a certain type of Holder estimate for correlated Gaus-

sian random variables. The exponents p and ¢ in that lemma come from such a bound
(see (6.29)). With this lemma, we can now establish Proposition 6.3.

Proof of Proposition 6.3. For notational convenience we assume that i = N and u =0
(in which case 4 is empty); in what follows, we abbreviate the event
N-1
AN = () (Asjuny(2) N Agjqny(2) N AT iy (2)). (6.20)
j=1
Now let us apply Lemma 6.4 with X = (Xn;)1<j<ny—1 and the (N —1) x (N —1)
matrix A = {4;; }, where we define

Aij:Ile.(jN) forl <i,j <N -1
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(the superscript refers to the removal of the Nth row.) Then Im(Sy 4 — 77 4) = (X, AX).
Therefore, taking

_1
t = (2log2)3g,

in Lemma 6.4 yields by following the beginning of the proof of Proposition 6.2 until
(6.14) the existence of a large constant C = C(«, b, 8, ) > 0 such that

PIm(Sy — Tn) < golpay(y)]

AZY | log N)? 6.21
SCE[eX ( I || )IAN(Z)}+C6XP( (log N) ) (6.21)
CNS‘o c
where Y = (y1,y2,...,YnN—1) is an (N — 1)-dimensional centered Gaussian random

variable whose covariance is given by Id. 1
Now let us apply Lemma 6.5 with w; = (A2Y);, r = o, and a = 4 — «. Then we
find that

p=2=¢q, V;=Im R(N)(z), Ujr = Im Rj(.iv)(z) foreachl < j,k <N — 1.

We must next estimate the quantities V', X, and U from that lemma.
To that end, observe from (5.6) and (4.2) that

N-1
4 W2 4 ) 4
U< N2 E |ImR (@) = N_277 E ImR (2) < N (6.22)
1<i,j<N-1 Jj=1

Furthermore, since (5.14) (with r = 1) and (4.2) together imply (6.17), we obtain from
the second estimate in (5.13), the assumption E[Im m y (z)] > €, and the fact that

N-1
-1 (N)
V>N E Im Rjj (2)

that
PV = Slav | = 2exp(-tog N ) (623)

for sufficiently large N (depending on ¢), which in particular by (6.22) implies that
P[V < 100(log N)°U 2] < 2 exp(—(log N)?). (6.24)

To upper bound X, first observe from (5.5) and the definition (6.20) of the event A y(2)
that

N _
IRM@)ay e < 67!
Therefore, for sufficiently large N,

N-1
1 21
Xlaye = p2E Y (m R (@)% < —20) Z mRM ). (625
j=1
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Therefore, (6.25), (5.14) (applied with r = 1), the second estimate in (5.13), and the
assumption that E[Immy (z)] < % imply that for sufficiently large N,

4
P[X Ian@ > T%] < 2exp(—(log N)?). (6.26)
Now (6.23), (6.24), (6.26), and Lemma 6.5 yield (after increasing C if necessary) that
1 1-%
Az2Y |« 3 ‘1 log N)?
P ” ”(x < € gl An(2) < C exp _( 0g ) . (627)
N C(log N)8 2

Inserting (6.27) into (6.21), we obtain (again after increasing C if necessary) that

PIm(Sy — Tw) < Sola (2]

3 _1-% 2 2
log N log N
Cgq (log N)B ¢ 2

from which we deduce the proposition since g07 = gll 2 (log N)~19¢ (due to (6.4)) (after
increasing C so the bound holds for all N). ]

6.1.5. Proof of Lemma 6.5. In this subsection we establish Lemma 6.5. Before doing
so, however, we require the following (likely known) estimate for sums of squares of
correlated Gaussian random variables.

Lemma 6.6. Let N be a positive integer, let ¢ = (g1, 82, ..., 8N) denote an N -dimen-
sional centered Gaussian random variable with covariance matrix C = {c;;}, and define
a=(aj,az,...,an) € Rsg by ajz- = ¢j; for each j € [1, N]. Then we have, for suffi-
ciently large N,

1

) ka) 2

P[Mgn% — llal|3| = 50(log N)“’(
1<j,k<N

} < exp(—(log N)?).

Proof. Letw = (wq,w,, ..., wy) be an N-dimensional centered Gaussian random vari-
able with covariance matrix given by Id. Let D and U be diagonal and orthogonal matrices,
respectively, such that C = UDU™!. Then g has the same law as UD%W, which implies
that ||g||3 has the same law as Z]N=1 d; wj2 Moreover,

N N N
2 2 2 2 2
E a; =TrC=TrD = E d;, E cjk:TrC =TrD* = E da:,
j=1 j=1 1<jk<N j=1

so that

1

2

P[|||g||%—||a||§|zsoaogm“’( 2 cfk)}
1<jk<N

:P[

(6.28)
N
Z dj(w; —1)

Jj=1

N 3
> 50(log N)'° ( > d}) }

Jj=1
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Now, since the {w} — 1} are mutually independent, the fact that the right side of equa-
tion (6.28) is bounded by exp(—(log N)?) is standard. For instance, it can be deduced
by truncating each d; (w]? — 1) at 4d;log N and then applying the Azuma—Hoeffding
inequality. |

Proof of Lemma 6.5. First observe that

(1 al AR gy
—lejl’) (—le;l“) > = > lwil (6.29)
N & N N

J=1

We must therefore provide an upper bound on the a-th moments of the w; and a lower
bound on the second moments. To that end, observe that since each w; is a Gaussian
random variable of variance V;, we have that

N N
1
P{ﬁ; Jw;|* = 16xaogN>8} EJ;JP’[ijI

(6.30)
> 2(log N)?V}}] < CN exp(~(log N)?).
Furthermore, by Lemma 6.6, we have
1 |
IP’|: ~ > " lwj > = V| = 50(log N)loUz} < exp(—(log N)?). (6.31)
j=1

Now the lemma follolws from combining (6.29), (6.30), (6.31), and the assumption that
V > 100(log N)!°U 2. [ ]

6.2. Establishing Theorem 5.1

In this subsection we prove Theorem 5.1. We first establish Proposition 5.11 in Sec-
tion 6.2.1. Then we will show that Theorem 5.1 holds when |z| is sufficiently large in
Section 6.2.2; we will establish Theorem 5.1 for more general z in Section 6.2.3.

6.2.1. Proof of Proposition 5.11. In this subsection we establish Proposition 5.11. To that
end, denote

J@) = E[(-iz =87 1) = El(-iz —i8;2)7#],

We begin by showing that Y (z) is approximately equal to /(z) and that X(z) is approxi-
mately equal to J(z) (recall (5.25)), assuming that P[A(z)¢] is small.

Lemma 6.7. Let z € Dk 43 for some compact interval K C R and some 8 > 0. If

P[A(2)€] < ﬁ, then there exists a large constant C = C(a, b, §) > 0 such that

C(log N)a=r
(Nn?)%

C(log N)a=r

Y(z) - I(2)] < .
¥() — 1) = Ty

, | X(@)=J(2)| < (6.32)
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Proof. In this proof, we will abbreviate S; = S1(z), T1 = T1(z), and R;; = Ry1(2). To
bound |Y(z) — I(z)|, we apply (5.11), (5.7) (with x =z + Sy, y =z 4+ S1 — T1, and
p = —%), and (4.2) to obtain for any v > 0 that

|(—iz —i81)7% — (=iR11)?|
S+1

< 3|T1|(‘ : - 2+1)1|T1|<v1,\(z)
2 z+ 8 24+ 81 —-T, =
1|2 1 5
+ ( 15| Trrs o )1|T1|>v1A(Z) (6.33)
5 1 5
(o35 +rmson] Juer

_60_ 30 2
< ow(log N)Oﬁl lA(z) + 2(10g N) a—1 1|T1|>v1A(z) + EIA(Z)C.

Setting v = (N nz)_% in estimate (6.33), taking expectations, using Proposition 5.9 to
bound P[|T}| > v], and applying our assumed estimate P[A(z)¢] < ﬁ yields

70
. ce L . a 6(log N)a-1
E[|(—1z —1i81)72 = (=iR11)>2 ‘ 1A(z)] = (Nr]—z)%’
from which we deduce the first estimate in (6.32). The proof of the second estimate in
(6.32) is entirely analogous and therefore omitted. |

We now estimate the error resulting in replacing the entries of X with those of H.
Lemma 6.8. There exists a large constant C = C(a) > 0 such that
P[|Si — & = N™*] < CN™**(1 + E[|Ru1[]).

Proof. Let g > 0 be a real parameter, which will be chosen later. Fix i, and let 3 denote
the event that for every 1 < j < N with j #1, |H;j| < N? and |Z;;| < N9. By the
hypotheses on the tail behavior of the H;; stated in Definition 2.1 and a union bound,

P[B] > 1— CN % (6.34)

for some constant C = C(«) > 0. We now work on the set 8. Due to the coupling
between X and H (of Definition 3.3),

E[lg]S; — &l < E[L@ Y 1z} - X,%HR,(-?q
J# . (6.35)
< > E[1]Z% - H3| +1g|HZ - X2 E[IRY|I.
J#
In this calculation, we used the independence of H;;, Z;;, and X;; from RJ(;). To estimate
the right side of (6.35), we take expectations in (5.14) applied with r = 1 to obtain

j 10
[EUR N —E0R; 1] = 5
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where we used the exchangeability of the R;; and (4.2). Also, from (2.3) and Defini-
tion 3.3 we compute (after increasing C if necessary)

_2_
ElH — XG = EIHf1, - g] < CNP7amoe.

Similarly, we compute (again after increasing C if necessary)

Ellg|Z} — H ] < E[18(2|Zij[1Jij] + |Jij )]

< ZCN(l—%)(q—é)—l’
where in the second inequality we used
E[1g|Z||J]] < VE[1g|ZP]E[1g]J ].

We therefore deduce from (5.26) and (6.35) that, after gaining a factor of N due to the

sum over j and choosing ¢ = %,

_ 10
Bltals; - &) N1 + B[R,

We conclude from a Markov estimate that
Pllg|S; — G| = N™*] < CN~*(1 + E[|R1:1]]) (6.36)
for sufficiently large N. The claim now follows from (6.34) and (6.36). [

Given Lemma 6.8, the proof of the following corollary is very similar to that of
Lemma 6.7 given Proposition 5.9. Therefore, we omit its proof.

Corollary 6.9. Let p € (0,1] and z € Dk s for some compact interval K C R and
some B > 0. If P[A(2)¢] < ﬁ, there exists a large constant C = C(a,b,8,¢, p) > 0
such that

C(logN)%

E[|(—iz —i$1(2) 7 = (=iz = i@ (2) 1] = =35

We can now establish Proposition 5.11.

Proof of Proposition 5.11. Given what we have done, the proof of this proposition will
be similar to that of [26, Proposition 3.1]. Specifically, defining

y(z) = E[(~iz —i®1)" 2], E(z) = E[(—iz —i&)7'],

we have from [26, Corollary B.2 of (see in particular equation (31)] that
r N
1 (D2 |g;1*
v(@) =E| oz ) (HiR;)2 —=— ] |
I (N; 557" Bllg1]

- v (6.37)
- 1 N lgj|*
o) =E|(Yg:| — —iR:.7)2 ,

(2) _w, (N;( iR} Eng,-mﬂ
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where g = (g2, g3, ..., gn) denotes an (N — 1)-dimensional centered Gaussian random
variable with covariance matrix given by Id that is independent from H, and [E denotes
the expectation with respect to both H and g.

We will only establish the first estimate in (5.28) (on |Y(2) — ¢,z (Y(2))]). The proof
of the second is entirely analogous and is therefore omitted. To that end, set

pj = (—iRJ(-Jl-)(Z))% foreach2 < j < N.

We will show that y(z) ~ ¢q.z (E[p2]) and E[p2] ~ Y, and then use Corollary 6.9 and
Lemma 6.7 to deduce that /(z) & y(z) and Y (z) &~ I(z), respectively. To implement the
first task, observe from (6.37) that

[7(2) = @,z (E[p2])]
ii RS BN Bl
Do,z N - E” |] (-4 P2
al () lg;|*
1 J
<E[C“’ Z E[|gj|a]_E[”2]}
g 1* — ZIO]E['gjl]

< e ( [
o

where to deduce the first estimate we used the fact (from Lemma 5.8) that ¢, is Lipschitz
with constant ¢, and the fact that E[p;] is independent of j € [2, N], and to deduce the
third estimate we used (4.2).

Now recall that by the Cauchy—Schwarz inequality, E[| X |] < E[X 2] 2 for a centered
random variable X, so

N
1
N ,
Jj=2
1( N
< —
=N .
j=2

N
> o PEgi 1?1 =Y 1o PEllg; *T?
Jj=2

N

} ¢oEllpal] (638)

Z(PJ Elp;]) j|) + ;_(/;7,

j=2

N
g% =Y piEllg;1%]
j=2

D=

)

Furthermore, Lemma 5.4 with ¢ replaced by (N72)~%¢(log N)? yields the existence of
a large constant C = C(«) > 0 such that

2 2 2
[ Z(pj ;1) > %} < Cexp(—%) (6.40)
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for each r > 1. Integrating (6.40) yields

| o C(log N)?
E[N;(Pj —E[Pj]):| =< "N (6.41)

after increasing C if necessary. Combining (6.38), (6.39), and (6.41) yields (again upon
increasing C if necessary)
CeoEllpa]2 | CeyllogN)? ¢y
N? NP)E N
- 2Cc,(log N)?
(Np?)%
where in the second estimate we used the fact that |p;|?> < ™% < =2 (due to (4.2)).

To show that E[p>] ~ Y(z), we apply (4.2), (5.14) with r = Z, and the exchangeabil-
ity of the entries of X, and then take expectations to find

IA

ly(z) — Yo,z (E [p2])]
(6.42)

9’

[Elp2] = Y(2)| = @ (6.43)
(Nn)2
From (6.42), (6.43), and the fact that ¢, is Lipschitz with constant ¢,, we deduce that
c,C(log N)?
V(@) ~ Paz(Y(2)| < C2 00 (6.44)

(N?)8
upon increasing C if necessary.

Now, by Corollary 6.9 (with p = %) and Lemma 6.7 we have (again after increasing
C if necessary) that

100
16) v = LR
Clog N)% (6.45)
Y(z)-1@2)| = ———=—
(Nn?)4
Now the first estimate in (5.28) follows from (6.44) and (6.45). [

6.2.2. Proof of Theorem 5.1 for large |z|. In this subsection we establish Theorem 5.1
if |z| is sufficiently large. We begin by addressing the case of large 7, given by the
following lemma.

Lemma 6.10. Adopt the notation of Theorem 3.4. There exist constants C = C(a,b) > 0
and B = B() > 0 such that (5.2) holds for some x > 0.

Proof. From the definition (2.5) of my(z), we deduce that
[E[mn (2)] = ma(2)] = [X(2) = Yo, (Y(2)| + [V, (Y(2) = Vo, (y(2))].  (6.46)

In view of Lemma 5.8, there exists a large constant B8 = B(«) > 1 such that for any
z € H with |z| > B we have that max{cy, ¢y} < %.Thus, let E € Randletz = E + i'B.
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Then
1Y(2) = (@) = 1Y (2) = ¢a.z (Y ()] + 00,2 (Y (2)) = @a.z(y(2))]
< 1Y)~ (V] + LN,
which implies that
1Y (z) = y(2)] = 2[¥(2) = ¢z (Y (2))]. (6.47)

By (5.12), A(z) holds deterministically. Thus we can apply Proposition 5.11 (and (6.47))

to bound the right side of estimate (6.46). This yields the existence of a large constant
C = C(a, b, x) > 0 such that

100 1 1 2C(log N)a-T
¥(2) = y(2)] = Cllog N)? l((an)g b ) = 2R .
100 1 1 2C(log N)ast
|E[mn (2)] — ma(z)] < C(log N)o- ((an)% + Nzo) = N7 :

Now the lemma follows from (6.48), the first estimate in (5.13), and the deterministic

estimate |R;;(z)] < % < 1. [

The following proposition analyzes the case when Re FE is large.

Proposition 6.11. Let B be a constant as in Lemma 6.10. There exists a large constant
Ey = Eo(a) > 0 such that, for any compact interval K = [u, v] disjoint from [—Eq, Ey),
there exists a large constant C = C(«, b,u,v,8) > 0 and absolute constant ¢ > 0 such
that the following holds. Suppose that E € [u,v] and z¢, z € Dy ), w8 satisfy
1
Rezoy = E =Rez and Imzy— N <Imz < Imzy,
and x < c. If P[Q(20)°] < 50, then

2
M) (6.49)

Plloe) < 1oyl < C GXP(— C

for large enough N.

Proof. First, recall that, since mq(z) is the Stieltjes transform of a probability measure fiy
whose density is bounded and whose support is R (see [18, Proposition 1.1]), for any
B > 0 there exists a small constant ¢ = ¢(u, v,B) > 0 such that

1
e < sup Immg(w) < —. (6.50)
WEDy v].25.B €

Now, we claim that
2
P [IQ(ZO) Immp(z) —Immgy(z)| > W] < 2exp(—(log N)?). (6.51)

Indeed, estimate (6.51) follows from the fact that 1) |m N (20) — Immg(zo)| < N7%,
the fact that [my (z) —mpy(z9)| < % since |z — zo| < # (from estimate (5.8)), the fact
that |my(z) — mg(zo)| < % (since my, is the Stieltjes transform of the probability mea-
sure [Ly), and the second estimate in (5.13).
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In particular, (6.50) and (6.51) imply that

1
P|:281$2(zo) =< IQ(ZO) Immpy(z) < 2—:| > 1 —2exp(—(log N)z) (6.52)
&

Next, as in the proof of Lemma 6.10, Lemma 5.8 implies the existence of a large
constant Eg = Eg(c) > 0 such that if z € H satisfies |z| > Ey, then max{c,, ¢y} < %
Recalling X(z) and Y (z) from (5.25) and following the proof of Lemma 6.10, we deduce
that

[E[my (2)] = me(2)| = |X(2) = Yo, : (Y ()| + [V, (Y(2) = Ve, (v (2))].
1Y(2) = y(@)] = 2[Y(2) = @a.: (Y(2))].
Observe that the hypotheses of Proposition 5.11 are satisfied for z; this is because

estimate (6.52) and Proposition 6.1, together with the trivial bound |my (z)| < n~! on the
set 2(zg)¢, imply that

(6.53)

1 1
P[A(2)] < P[S2(z0)] + N2 < N1o
for large enough N. Then we can use Proposition 5.11 to estimate the terms appearing
on the right side of (6.53). Since ¢y < %, this yields the existence of a large constant

C = C(a,b,u,v,x) > 0such that

100 1 1
1oz Y (2) — y(2)| = C(log N)e-T ((an)% + N20)

2C(log N)a>t
=STNe

’

! ! (6.54)
100,
Lo Elmy (2)] — ma(2)] < Cllog N)at (( N E T Nze)
2C(log N)a=t
S
Therefore, the first estimate in (5.13) and the second estimate in (6.54) together imply that
1 log N)?
Pl tacplnn ()~ ma(o)] > 7z | <20 -CE) 659)
Furthermore, observe that (5.11), (6.52), and Proposition 6.1 together yield
log N)?
IP’[IQ(ZO) max_|R;;(z)| > (log N)%] <C exp(—M). (6.56)
1<j<N C
Now (6.49) follows from the first estimate in (6.54), (6.55), and (6.56). [

6.2.3. Bootstrap for small energies. Let Ey and ®B be as in Proposition 6.11; in this
section we establish the analog of that proposition when |E| < Ey + 1. To that end, let
S = 8, denote the set of complex numbers x with Re x € K and Im x € [0, 5] such that
w&’z (x) — 1 = 0. Recall from either [ 19, Lemma 6.2] or [ 18, equation (3.17)] thatif z # 0
there exists an entire function g(x) = gq(x) such that ¢y ,(x) = Cz7*g(x). Therefore,
since K is a compact interval that does not contain 0, S, is finite. Thus the implicit func-
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tion theorem yields the existence of some integer M = M(«, K) > 0 (corresponding to
the order of the largest zero of (p(;’z — 11in §,), a small constant ¢ = c(«, K, B) > 0, and
a large constant C = C(«, K, B) > 0 such that the following holds. If z € H satisfies
Rez € K andImz < B, then for any t > O and w € C,

lw—y(z)| <cand |w— g (W) <t = |w—Yy(2)| < Ctﬁ. (6.57)

Now we can establish the following proposition that establishes estimates (5.3) when
Rez| < Eo + 1.

Proposition 6.12. Let x = x(«, 5, K) = 20LM' For any compact interval K = [u,v] C R

that does not contain 0, there exists a large constant C = C(«, b, u, v, x) > 0 such that
the following holds. Suppose E € [u,v] and zy,z € Oy ), =, satisfy

Rezo = E =Rez and Imzy— % <Imz < Imz.
IfP[Q(20)] < w50, then
(log N)?
)
Proof. Since Rez = Rezg, Imzy — % <Imz < Imz, continuity estimates for Y(z)
and y(z) (see, for instance, [26, equation (39)]) imply that

]P[IQ(Z) < IQ(ZO)] <C exp(—

YE) = Yol +1y() - o)l < 4

Therefore, since |Y(z0) — y(20)|1Qzy) < N %, it follows that
1Y(z) = y(@) 1@y <2N 7"

for N sufficiently large. Thus it follows from (6.57) that there exists a large constant
C = C(a,u,v) > 0 such that

Logo)|Y(2) = y(2)] = CIY(2) = gaz(Y(2)| 7 1a). (6.58)

Following the reasoning used to establish the estimates in (6.53) in the proof of Proposi-
tion 6.11, we obtain

Loig) [Elmy (2)] —ma(2)|
< (I1X(2) = Ve, (Y @) + [Va,: (Y (2) = Vo, (7 (2)]) 1a(z) (6.59)
< (1X(2) = Y, : (Y @) + ey [Y(2) = y (D)) 1ae0)-
Having established (6.58) and (6.59), the remainder of the proof of this proposition is very
similar to that of Proposition 6.11 after (6.53) and is therefore omitted. [

Using the results above, we can now establish Theorem 5.1.

Proof of Theorem 5.1. Estimate (5.2) follows from Lemma 6.10. Furthermore, Proposi-
tion 6.11 establishes the existence of a large constant £y = Eq () such that (5.3) holds
when |Imz| = |Imzg| > E¢ and x < c¢. Then Proposition 6.12 implies estimate (5.3)
when |[Rez| = |Rezg| < Eg + 1 and x = ﬁ. Together these yield Theorem 5.1. [
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7. Intermediate local law for almost all « € (0, 2) at small energies

In this section and in Section 8 we establish Theorem 3.5 (in fact the slightly more general
Theorem 7.6 below), which provides a local law at sufficiently small energies for the
removal matrix X for almost all @ € (0,2). In Section 7.1 we state the local law (given
by Theorem 7.6 below) and an estimate (Theorem 7.8) that implies the local law. We will
then establish Theorem 7.8 in Section 7.2.

However, before doing this, let us recall some notation. In what follows we fix param-
eters € (1,2)and 0 < b < é; we recall the removal matrix X and its resolvent R from
Definition 3.3; we recall my (z) = N ! TrR; and we recall the domain D¢ 5 from (3.4).
Furthermore, we denote by K the set of z € C with Rez > 0, and we set Kt=KNH
to be the closure of the positive quadrant of the complex plane. We also let S! be the unit
circle, consisting of all z € C with |z| = 1, and we define the closure S}r =K+nNnS.

7.1. An estimate for the intermediate local law

In this subsection we state the local law for X on scales N2 (Theorem 7.6 below) and
an estimate (Theorem 7.8) that implies it; this will be done in Section 7.1.3. However, we
will first define a certain inner product and metric in Section 7.1.1 that will be required to
define a family of fixed point equations in Section 7.1.2.

7.1.1. Inner product and metric. In order to establish a convergence result for my(z)
(which is approximately equal to E[R;;]), we in fact must understand the convergence
of more general expectations, including the fractional moments E[(—iR;;)?], the abso-
lute moments E[|R;;|?], and the imaginary moments E[|Im R;;|?]. To facilitate this, we
define for any u, v € C, the inner product

(u|v) =uRev+ulmv
= Reu(Rev + Imv) +ilmu(Rev — Imv).
In particular, for any u, v € C, we have
wu|l)=u, (—iu| enTi) = Imu~/2, [(u | v)] < 2Jul|v|. 7.1
We will attempt to simultaneously understand the quantities
A, (u) = E[((=iR;;)2 |u)] forallu e K+.

Our reason for this (as opposed to only considering the cases u = 1 and u = e@) is that
the absolute moments E[|R;;|?] will be expressed as an integral of a function of A, (u)
over u (see the definitions (7.7) of J, and r, . and also the second estimate in (7.16)
below); this was implemented in [27].

To explain this fixed point equation further, we require a metric space of functions. To
that end, for any w € C, we let #,, denote the space of €! functions g : K* — C such
that g(Au) = A% g(u) foreach A € Rs. Following [27, equation (10)], we define for any
r € [0,1) anorm on J, by

lgllooc = sup |g(u)]
ueS#
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and

gl = lulloo + sup V[ w) 81> + |G| u) d2g ()|,
ueS#

where 01 g(x +1iy) = 0yg(x +iy) and d2g(x +1iy) = dyg(x + iy). Observe in partic-
ular that

sup |g()| < [lgll» foranyr > 0. (7.2)

ueSL

We let #y, » be the completion of #,, with respect to the ||g||, norm. Further define
for any § > 0 the subset Jf,‘f)’, C Jy r consisting of all g € H,, » such that Re g(u) > §
forall u e Si, and define
8
; r = U '}fw,r

>0
Further abbreviate 5 = Jfg),o
The following stability lemma, which appears as [27, Lemma 5.2], will be useful to us.

Lemma 7.1 ([27, Lemma 5.2]). Assume that r € (0,1) and u € S_l‘_. Let x1,x, € KT,
andleta € (0,1) be such that |x1|, |x2| < a™'. Set Fy(u) = (xi |u)" foreachk € {1,2}.
Then there exists a constant C = C(r) > 0 such that for any s € (0, r), we have

| Frlli—r+s < Clxk|" foranyk € {1,2},

| F1 — Falli—r4s < Ca™"(|x1 — x2|" +a’|x1 — x2]%).

(7.3)

If we further assume that Re x1,Re x5 > t for somet > 0, and we set Gy (u) = (x,:1 | u)”
for each k € {1,2}, then there exists a constant C = C(r) > 0 such that

||Gl — G2”1—r+s < Ctr_zazr_llxl — X2|. (7.4)

7.1.2. Equations for m. Following [27, Section 3.2] (or [26, Section 5.1]), define for any
complex numbers u € S}r and i € K, and any function g € #/,, the function

3 o > % (o i % el i
Fi.q (1) :/ (/ (/ (e_rzg(ee)_(rme@) _e—r2g(e9+uy>—(yrh|u)—(rh|e9))
0 0 0

xr3! dr)y—%—l dy)(sinze)%‘—l de.

It was shown in [27, Lemma 4.1] that Fj, ¢ € Hy)5 , if g € J€a 200 and also that it is in
the closure H 0 , forany g € J( 0 o f Reh > 0. Asin [27, equatlon (13)], define the

function

o ~ .
Yr(u) =, r(u) =coFiz, s (), wherec =cq = m andu =iu. (7.5)

Observe that (7, v) = uRev + uImv = (u,v). Now, for any u € C, define
92 (u) = r(1 - %)(—iRjj |u)%

o (7.6)

ye(0 = B9:00] = 1 (1= 5 IR 1)
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for any j € [1, N]; observe that y,(u) does not depend on j due to the fact that the
entries of X are identically distributed. Furthermore, for any p > 0 and f € H#,/», define
Ip. Jp,1p-(f)€Cands,, : K— Cby

Ip = I, (z) = E[(-iR};)”],

Jp = Jp(z) = E[liR;;|7],

1-£ 3 , @

22 /2 /oo yP1e@z1e)—33 1@ (Gn o) 81 gy g0, (17)
ré»2Jo Jo

1 > p—1 —iyz—xy%
Spz(x) = Tp) A yP e dy

rP,z(f) =

for any x € K. The convergence of these integrals can quickly be deduced from the fact
that Re(iz) < 0.

We now state four lemmas that can be found in [27]. The first two provide existence,
stability, and estimates for the solution to a certain fixed point equation, while the latter
two provide bounds and stability estimates for the functions F, sp 7, 7p -, and 1.

Lemma 7.2 ([27, Proposition 3.3], [25, Lemma 4.3]). There exists a countable sub-
set A C (0,2) with no accumulation points on (0,2) such that, for any r € (0, 1] and
a € (0,2) \ A, there exists a constant ¢ = c(«, r) > 0 with the following property. There
exists a unique function Qg € Hy/» such that Qo = Yo q,. Additionally, if Imz > 0 and
|z| < c, then there is a unique function f = Q, € Hyjp , that solves f =Y, r with
| f = Q0ll» < c. Moreover, this function f satisfies Q,(e) > ¢ and, for any p > 0,
there exists a constant C = C(«, p) > 0 such that rp ;(2;) < C.

Lemma 7.3 ([27, Proposition 3.4]). Adopt the notation of Lemma 7.2. After decreasing
¢ if necessary, there exists a constant C > 0 such that the following holds. If Imz > 0,
|z| < ¢, and || f —Q:|lr < c, then

If =Sl <ClILf = zzlr
The following stability properties of Fj and Y will be useful to us later.

Lemma 7.4 ([27, Lemma4.1]). Letr € (0,1) and p > 0. There exists a positive constant
C = C(a, p,r) such that, for any g € %2/2 . and h € K, we have

IFa(2)llr < CReh)™% + C|lgll,(Reh)™2,

rpin(8)] = CRe )™, [spin(g(1)| < CReh)™". 7o

Lemma 7.5 ([27, Lemma 4.3]). For any fixed a,r > 0, there exists a positive constant
C = C(a,a,r) such that for any f, g € J{,’O‘:/z . and z € C, we have
1Ty = Yelr = ClIf —gllr + 1f =gl Ul £l + ligllr)- (7.9)

Furthermore, for any p > 0 there exists a constant C' = C'(«, a, r, p) such that for any
g€ Jfo‘:/z ,andanyz € C and x,y € K withRe x,Re y > a, we have

lrp.z(f) —1p.2(8)] < C/”f —&lloos  15p,z(X) = 5p2(¥)] < C/|x -l (7.10)
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7.1.3. Anintermediate local law for X. The following theorem provides a local law for X.

Theorem 7.6. There exists a countable set A C (0, 2), with no accumulation points in
(0,2), such that the following holds. Fix @ € (0,2) \ A and 0 < b < é Denote
(b—3)2—a)

20

and fix some § € (0,0) with § < % Then there exists a constant C = C(«, b, 8, p) > 0
such that

0 =

1 log N)?
]P’[ sup |mp(z) —is1,z(R:(1))| > = ] <C exp(—ﬁ), (7.11)
zeéDcJ; N? C
where we recall the definition of 2, from Lemma 7.2. Furthermore, we have
C C
sup [yz(u) — Q:(u)] < TR |2 —12,2(R22)] < TR (7.12)
ueS}i_ Ns N s
and 5
N
IP’[ sup  max |R;j(z)| > (logN)C] < Cexp( M) (7.13)
ZE@C F] I=j=< C

Remark 7.7. One can show that the fixed point equations (2.5) and Lemma 7.2 defining
mq(z) and 2, respectively, are equivalent when u = 1; this implies that

isl,Z(QZ(l)) = mg(2).

Theorem 7.6 is a consequence of the following theorem (whose proof will be given in
Section 7.2 below), which is similar to [27, Proposition 3.2] but with two main dlfferences
The first is that Theorem 7.8 below establishes estimates on the scalen > N~ 3 , while the
corresponding estimate in [27] was shown with n > N~ 2%a . The second is that we also
establish estimates on each |R;;|, which was not pursued in [27]. In fact, these bounds
on the resolvent entries (which follow as consequences of Proposition 7.9 and Prop031—
tion 7.10 below) are partially what allow us to improve the scale fromn > N~ 27 in [27]
ton> N~ 3 here.

Theorem 7.8. Fix o € (0,2), 0 <b < _, s €(0,5), p >0, £ €(0,1], and a positive
integer N. Define
(b—)2—a)
10 ’
and suppose that z = E + in € H with E,n € R. Assume that

f =

S 1 o
1z NTE zl< - E[(ImRi)?] > e, E[|Ri1)*] <& " (7.14)

Then there exists a constant C = C(w, &, b, s, p) > 0 such that

1 1 1
— Yy |l{—er, < C(log N)C — , 7.15
lyz = Yy lli—g +5 = C(log N) ((an)% tyet Nsn%) (7.15)
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and
Ly — 5p2(y (1))|<c<logN)C( L, ! )
p ~ 9pz\/z — o ’NT) o |
(Ni)§ - N Ny 1.16)
1 1 1 ‘
J— C — —
= rp )] = Cog NI (g 5+ 1 )
Furthermore,
1
inf Imy,;(u) > —, (7.17)
uESEr C
and ( )2
log N
IP’[ Ri|>C( NC} Cexp( -2 ) 7.18
max |R | > CllogN)©] < exp( -5 ) (.18)

Given Lemma 7.2, Lemma 7.3, and Theorem 7.8, the proof of Theorem 7.6 is very
similar to the proof of [27, Theorem 5.11 in Section 5.4] and is therefore omitted. How-
ever, let us briefly explain the idea of the proof, referring to [27] for the remaining details.

To that end, after proving Theorem 7.6 in the case when n = é is of order 1, one first
observes by (5.8) that it suffices to establish Theorem 7.6 for any individual z on a certain
lattice. In particular, for a constant C > 0, let

C
A=AC) = L%J and B = B(C) = L

NC _NC+5—%
|

and define

Jj 1 /1 k
k= Ak = W—E“(E—W)
foreach0 < j < Aand0 <k < B.

If C is sufficiently large, it suffices to verify (7.11) and (7.13) for each z;;. We will
induct on k; the initial estimate states that they are true for k = 0. Solet M € [1, B] be an
integer, assume that the theorem holds for k < M — 1, and let us establish it for k = M.
To that end, we will apply Theorem 7.8 with s = % and ¢ < %.

To apply this theorem, we must verify the estimates in (7.14). The first estimate
there holds since n > N 5_%, and the second holds for sufficiently small ¢ if z € D¢ s.
The third follows from (5.8), the second statement of (7.1), the first estimate in (7.12)
(applied with z = z; ps—1 on the previous scale), and the lower bound on €2 S(e%) pro-
vided by Lemma 7.2. The fourth estimate in (7.14) similarly follows from (5.8), the
second estimate in (7.12) (applied with z = z; s on the previous scale), and the upper
bound on r; ;(£2;) given by Lemma 7.2.

Thus, applying Theorem 7.8 yields that (7.15), (7.16), (7.17), and (7.18) all hold for
z = z;p; the last estimate implies (7.13). Furthermore, (7.15), (7.2), (5.8), estimate (7.11)
(applied with z = z; ps—1 on the previous scale), and Lemma 7.3 together imply the first
estimate in (7.12) for z = zjpr. Now (7.11) for z = z;ps follows from the first estimate
in (7.16) (applied with p = 1), the first estimate in (7.12), the first identity in (7.1), (7.17),
the second estimate in (7.10), and the first estimate in (5.13). The second estimate in (7.12)
for z = z;p follows from the second estimate in (7.16) (applied with p = 2), the first
estimate in (7.12), (7.17), and the first estimate in (7.10).
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7.2. Establishing Theorem 7.8

In this subsection we establish Theorem 7.8 assuming Proposition 7.9, Proposition 7.10,
and Proposition 7.17; the latter results will be proven later, in Section 8.

Define .
5= Y XA,
J#i
Ti = Xii — Ui, where Ui = Z X,’jR](.Qin, (7'19)
JkF#i
J#k

and observe that R;; can be expressed in terms of 7;, z, and S; through (5.11).

We begin in Section 7.2.1 by “removing 7;” from the equations defining R;; by
approximating functions of the R;; by analogous functions of (—z — S;)~!. Next, in Sec-
tion 7.2.2 we analyze the error in replacing all of the removal entries X;; in the expression
defining S; with the original «-stable entries Z;; (recall Definition 3.3). This will be use-
ful for deriving approximate fixed point equations in Section 7.2.3, which we will use to
conclude the proof of Theorem 7.8 in Section 7.2.4.

7.2.1. Removing T;. Denoting
w; () = ((—iz —iS;) 7' |u)2,

. (7.20)
w(u) = E[((—iz —i8) ™" [u) 2],

we would like to show that y, &~ @, and that other similar approximations hold; see
Proposition 7.11 below. Such estimate which would follow from Proposition 5.9 if one
could show that Im(S; — 7;) and Im S; could be bounded from below with overwhelming
probability. The following two propositions, which will be proven in Section 8.2 and
Section 8.3, establish the latter statement.

Proposition 7.9. Adopt the notation of Theorem 7.8. Then there exists a large constant
C =C(a,&,b) > 1 such that

2
M), (7.21)

1
PlImS;, < — C —
[m’<m%mﬁ< exp( C

Proposition 7.10. Adopt the notation of Theorem 7.8. Then there exists a large constant
C =C(a,&,b) > 1 such that

[ 1 (log N)?
In particular, we have
_ 1 N 2
Pl max IRy < C(logN)C] <C exp(—%). (7.23)

The following proposition is a consequence of Proposition 5.9, Proposition 7.9, and
Proposition 7.10; its proof will be similar to that of Lemma 6.7.
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Proposition 7.11. Adopt the notation of Theorem 7.8. Then there exists a large constant
C =C(a,¢&,b,s, p) > 0 such that
_ C(log N)¢
E[||Rii? — (=2 = S)7[] < ==
(Nn?)s
. . o C(log N)¢
E[|(—iR;;)? — (—iz —18;)7?|] < Lg)
(Nn?)s
C(log N)€
vz = @zlli-g4s < TNE (7.25)
where y, and w, are defined in (7.6) and (7.20), respectively.

’

(7.24)

and

Proof. Let us first establish the first estimate in (7.24). The proof of the second is entirely
analogous and is therefore omitted. To that end, observe from (5.5) and (5.7) that, for any
v > 0, we have that

|Rii|? = (=2 — Si)™'?]

1 p+1 1 1
==l —— 17,
= )v(‘lm(Si —Ti +2) + 'Im(z +5) ) |T;|<v (7.26)
p p
o 117 (5.
" ( Im(S; —T; + 2) + ’Im(z +S) ) |T;|=v

We will use Proposition 5.9, Proposition 7.9, and Proposition 7.10 to bound the expec-
tation of the right side of (7.26). Let Cy, C,, and C3 denote the constants C from Propo-
sition 5.9, Proposition 7.9, and Proposition 7.10, respectively. Also let £ denote the
event on which inf;<;<yImS; < C _1(log N )_C2 let £, denote the event on which
infi<j<ny Im(S; — T;) < C5'(log N)=€3, and let E = E; U E.

Now, using the determlmstlc estimate (5.12) and the fact that Imz =n < N~ 2 to
estimate the expectation of the right side of (7.26) on E, and using Proposition 7.9 and
Proposition 7.10 to estimate it off of E, yields

E[||Rii|? — [(—z — S))~|71]
< (p = Du(C " (og N)PFVE 4 Cf ™ log N) P FD)
+ (p — Du(CT T (log N)PHDC2 4 2T (log N)PTDE)P(| Ty | > o]
log N)? log N)?
+ (N% +(p— l)va;rl)(exp(—%) + exp(—%))
2 3

Setting v = (Nn?)~ ¥ in this estlmate together with the estimate on P[|7;| > s] given by
(5.17) (applied with t = (N n2)4) yields (7.24).

The proof of (7.25) is similar, except we now use Lemma 7.1. Recall the functions ¥,
and w; from (7.6) and (7.20), respectively. Furthermore, recall the event E from above,
and let I denote the complement of E. On F, we apply (7.4) with

x1 =1iT; —iz —18;, xp = —iz —15;,

r=- t=a=(Cy+ C3) '(logN) 2
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to obtain that

¥, — wz“l—%+s1F1|Ti|Sv
o o 1 1
<C(C C 3-35 log N (3—35)(C2+C3) — 1 7.27
= (2+ 3) (Og ) Z+Si—Ti Z+Sl‘ F ( )

< C(Cy + C3)° 32 (log N) 3D (C4C)yq

Similarly, applying the first estimate in (7.3) with

x; = ({T; —iz —iS;)7Y,  xp = (—iz —iS;) 7L,
r= % a = (Cy + C3) tlog N)~€27C
yields the existence of a constant C = C(«) > 0 such that
192 = wzll1—g s 1F L7150 < C (|2 + Si — 17+ |z 4+ Si) ™) 1r iz =0

a (7.28)
< 2C(Ca + C3)2 (log N) TS 1p 17 5.

Moreover, again using tlhe first estimate in (7.3) with the same x1, x5, and r as above, but
now witha = n > N™2, we obtain

192 — ozll1—g 451 <2CN%1E. (7.29)

Now (7.25) follows similarly to (7.24) as explained above. Set v = (Nn?)~ 7 and sum
(7.27), (7.28), and (7.29). Then apply (5.17) (with t = (N 772) ), Proposition 7.9, and
Proposition 7.10. Finally, use the facts that w, = E[w;(1)] and y, (1) = E[¥,(u)]. =

7.2.2. Replacing X. To facilitate the proof of Theorem 7.8, it will be useful to replace all
of the X;; with Z;; (which we recall are coupled from Definition 3.3). To that end, we

define 0
2 1
G = Z Zu Ru ’
J#i
W, (u) = F(l - %)((—iz —iG) | u)%, (7.30)

V() = E[W;] = r(l - %)E[((—iz —iG) " wf].

We now have the following lemma that compares S; and &;. It is a quick consequence
of Lemma 6.8 in Section 6.2.1 and our assumption that E[|R;; || < E[|R;;|?] I<gs,

Lemma 7.12. Adopt the notation of Theorem 7.8. Then there exists a large constant
C =C(a,b, &) > 0 such that

P[|G; — Si| > N"*] < CN9. (7.31)

The proof of the following proposition, which lower bounds Im &;, is very similar to
that of Proposition 7.9 and is therefore omitted.
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Proposition 7.13. Adopt the notation of Theorem 7.8. Then there exists a large constant
C = (a, &) > 0 such that

2
M) (7.32)

1
P| Im®&; —— | < C —
[m ’<C(logN)C]— e"p( C

Given Proposition 7.9, Lemma 7.12, and Proposition 7.13, the proof of the following
proposition is similar to that of Proposition 7.11 and is therefore omitted.

Proposition 7.14. Adopt the notation of Theorem 7.8. Then there exists a positive con-

stant C = C(«, &, b, s, p) such that
E[[l(=z = &)7"? = (=2 = S)7!|?|] < Clog N)  N™*¢, 1.33)
E[|(~iz —i®;) 7 — (—iz —i8;)7?|] < Clog N)* N~*, '

and
1Yz — @z 1—g 45 < Clog N)* N~ (7.34)

where w, and , are defined in (7.20) and (7.30), respectively.
7.2.3. Approximate fixed point equations. In this subsection we establish several approx-

imate fixed point equations for 1. To that end, we begin with the following lemma, which
appears in [27, Corollary 5.8].

Lemma 7.15 ([27, Corollary 5.8]). Fix 0 > 0, a € (0,2), p > 0, and a positive inte-
ger N. Let Z be a (0,0) a-stable law, and let hy,h,,...,hy be nlmtually indepen-
dent, identically distributed random variables with laws given by N~ « Z. Suppose that
A1, Aa, ..., An € C are complex numbers with nonnegative real part. Then, denoting

F ) = r(1 - %)E[((éhf@ —iz)_l u)j

N p
S, =E (Zhjz-Aj—iz) ]

j=1
4
9

N
ZthAJ —iz
Fu)=E[Y3], S, =E[sp(Z)] and R, =E[r,.(3)].

Jj=1

we have

where Y is given by (7.5) and

2 N a
22g% o 22 g% o
3=30) =" (A lwiyl" ¥ =30)="7—2 47yl
j=1 j=1
where (y1,Y2,...,YN) is an N-dimensional centered Gaussian random variable whose

covariance matrix is 1d.
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Using Lemma 7.15, we can express a number of quantities of interest in terms of the
function 3 above.

Corollary 7.16. Recalling the definition of Y from (7.5) and YV, from (7.30), we have

that
W (u) = Ey[T3], (7.35)
where ) ]
— 225 (iRW [ f - 7.36
3=3u = ,é( |)E“yj|a] (7.36)

where %)) = (y;)j+i is an (N — 1)-dimensional centered real Gaussian random variable
with covariance matrix given by 1d. In (7.35), the expectation is with respect to *)).
Moreover, denoting Z = 3(1), we have

E[(_iz - i@,)—p] = E‘Q[Sp z(g)] EH —Z—- @' |—p] = E‘I)[rp 2(3)] (7-37)

Proof. The identity (7.35 follows from the first statement of Lemma 7.15, applied with

hj = X;; and A; = —1RJJ , and also the fact that

a 27_1 1—-¢
2ot =T T . I( a) (7.38)

sin(FH) () sin(GH)T(HE[[y;1*]  Elly;[*]
To establish the first identity in (7.38) we used the definition (2.2) of o, and to estab-
lish the second and third we used (5.24). The proof of (7.37) is entirely analogous, as

a consequence of the second and third statements of Lemma 7.15, as well as (7.38). [

The following proposition, which will be proven in Section 8.4, states that 3 is approx-
imately equal to y,. Thus, taking the expectation of both sides of (7.35), using the facts
that ¥, = E[W,] (recall (7.30)) and that y, is approximately equal to v, (recall (7.25)
and (7.34)), (7.35) yields an approximate fixed point equation for ;.

Proposition 7.17. Adopt the notation of Theorem 7.8. Then there exists a positive con-
stant C = C(a, &,5) > 1 such that

C 2
M] < C exp(_w)' (7_39)

P — _a >

13-l > S5 5
7.2.4. Convergence to fixed points. In this subsection we establish Theorem 7.8. To that
end, recall that (7.35) can be viewed as a fixed point equation for 1. In order to analyze
this fixed point equation, we require the following lemma.

Lemma 7.18. Adopt the notation and assumptions of Theorem 7.8. There exists a con-
stant C = C(«a, &,8) > 1 such that
lyzlli-g+s < C,

1
inf Rey,(u) > —
ues!, c' (7.40)

P[uleréf Re 3(u) < é] < Cexp(—(logC—N)z).
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Proof. In view of (7.2) and Proposition 7.17, it suffices to only establish the first two
estimates in (7.40) on y,. Let us first establish the upper bound. To that end, observe that
the first statement of (7.3) implies the existence of a constant C = C(s) such that

I(=iRii 1) [l1—g 45 < C|Ri;|%. (7.41)

Taking expectations in (7.41), using the definition (7.6) of y,, and using the fact that
E[|R;;|?] < &', we deduce that

(02 . a o a
[Vzlh—g+s =T 1= JE[I(—iRi; [u)2 ||l1—¢4s] = CT{1— = JE[|Rii|2]
2 2 2 2

< cr(1 - %)EHR,-Z-P]% < cr(1 _ %)e- |

IR

from which we deduce the first estimate in (7.40).
Now let us verify the lower bound on Re y,. In that direction, observe that for any
u € SL, we have

Re y, (u) = r(1 _ %)E[Re(—iRii [u)5] > F(l _ %)E[(Re(—iRjj 1)) %]

> F(l — %)E[(Im R3] > F(l . %)e

The first identity above follows from the definition (7.6) of y;; the second follows from
the fact that Rea” > (Rea)” for any a € K and r € (0, 1) (see [27, Lemma 5.10]); the
third follows from the fact that Re(a |u) > Rea for any u € SL and a € K*; and the
fourth follows from our assumed lower bound on E[(Im R;;)%]. m

Now we can deduce the following consequence of (7.35).

Corollary 7.19. Adopt the notation of Theorem 7.8. Then there exists a positive constant
C = C(a,¢,s) such that

C 2
M] - Cexp(_w)_ (7.42)

P - 7T _a <

|:||Wz )’z”l 5 +s N%T]% C
Proof. Let us first show that T, is approximately equal to T3 using Lemma 7.5. To
verify the conditions of that lemma, first observe that y,, 3 € # > since the inner product
(x| y) is bilinear. Furthermore, let C; denote the constant C from Proposition 7.17, and
let C5 denote the constant C from Lemma 7.18. Define the events

Ci(log N)©!
E, = - ey (-
= {13 rogan = SR

| | (7.43)
E, ={ inf Re3(u>s—}u{ inf Re)/z(u)i—}U{||Vz||1—g+sZCz}-
ueS}I_ G ueS}I_ G
Denoting E = E{ U E», Proposition 7.17 and Lemma 7.18 together imply that
(log N)?
P[E] < (C, + C —— . 7.44
2= 1+ Copesp( 5 (1.44)
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Therefore, denoting the complement of £ by F and applying (7.9) and (7.2) yields
a constant C > 1 (only dependent on C, and s) such that

1r I3 = T lhogiy < C1rI3 = vlliog s
F1FI3 = 7z loo(I3l1-g 45 + IVzll1-g +5)
CCi(log N)€1 C,C,(log N1
< 1(log N) (1—I—C2+ 1C2(log N) )’

- N 3 n g N 3 )7%
where we have used the fact that 3 and y, are in J€;//2C 21—a /245 OD the event F.

Estimate (7.45) bounds [ Y3 — Yy._ [|1—¢ 45 away from the event £; now let us bound
it on E through a deterministic estimate. Using the first bound in Lemma 7.4 and the def-
inition (7.5) of T in terms of F, we deduce that

1Ty llimg+s < 73 (1 + lyzlli—g o). (7.46)

after enlarging C if necessary. Now, applying the first statement of (7.3) (with x; = R;;,
r = 5,and a = 1) and (4.2), we have

(7.45)

o o (04 _a
bebigrezer(i-2)imyt <er(1-2)rs. aw
Inserting (7.47) into (7.46) yields
_ o
Iy i ges < 2C2 “r(l - 5). (7.48)
Furthermore, applying the definition (7.30) of W,, (4.2), and the first statement of (7.3)
(now with x; = —iz —i©, r = , and a = 1) yields that
o _a
[Wzll1—g4+s =CT| 1 - S ) (7.49)

Combining (7.30), (7.45), (7.48), and (7.49) yields
1z = Yy lli—g+s
< E[W: = Ty ll1-g+sl
<E[Lp W — Ty li-gos] + EMEN: 1og oyl + E[LElyzli_ge,]  (750)
- CC2(Cy +2)(log N)©!
N3p%

+ CF(I . %)n—“(zc + DP[E].
For the first inequality, we used Jensen’s inequality and the fact that all norms, in particular
-l 1-¢ 45, are convex. Now (7.42) follows from (7.44) and (7.50). =

Now we can establish Theorem 7.8.

Proof of Theorem 7.8. The first estimate (7.15) follows from (7.25), (7.34), and (7.42).
Furthermore, the fourth estimate (7.17) follows from the second estimate in (7.40); the
fifth estimate (7.18) follows from (7.23).
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The proofs of the two estimates given in (7.16) are similar, so let us only establish
the latter. To that end, recall the notation from the proof of Corollary 7.19, and define the
events E1 and E, as in (7.43). As in the proof of Corollary 7.19, we let E = Ey U E;
and let F be the complement of E.

Then y, and 1 3 are both in Jf’;//zc e /2450 SO applying the first estimate in (7.10)
and (7.2) yields a constant C’ (only dependent on C, s, and p) such that

LF|rpz(v2) = 1p2(I = C" sup |y: = 3|1F < C'lly; _3“1—%+le
ueS#
- C'Ci(log N)©1
- N%n% ‘

(7.51)

Estimate (7.51) bounds |rp, - (yz) — rp,z(3)| off of E. To bound it on E, we use the deter-
ministic estimate given by the second inequality in (7.8). This yields the existence of
a constant C = C(«, p, s) such that

1g|rpz(vz) = 1pz (N < 1Elrpz(¥2)| + |1p,2(3)] = 2Cn P1g. (7.52)
Combining the second equality in (7.37), (7.51), and (7.52) yields

|rp.z(72) —Ell — 2 = &;|7]]
=< E‘y“rp,z(yz) - rp,z(3)|]
= E‘@[IFVP,Z (Vz) —Fp,z (3)” + E‘Q[IEV[),Z(VZ) - rp,z(3)|] (7.53)

C’'Cy(log N)©1
< CQlog NV oy rpiE).

N 5 nz
The second statement of (7.16) now follows from the first statement of (7.24), the first
statement of (7.33), (7.44), and (7.53). [

8. Estimates for the fixed point quantities

In this section we establish the estimates stated in the proof of Theorem 7.8 in Section 7.2.
To that end, we first require some concentration estimates, which will be given in Sec-
tion 8.1. We will then establish Proposition 7.9, Proposition 7.10, and Proposition 7.17 in
Section 8.2, Section 8.3, and Section 8.4, respectively.

8.1. Concentration results

In this subsection, we collect concentration statements that will be used in the proofs
of the estimates stated in Section 7.2. The first (which is an analog of Lemma 5.4) is
[27, Lemma 5.3], applied with their B equal to our 5 and their § equal to our s.

Lemma 8.1 ([27, Lemma 5.3]). Let N be a positive integer, let r and s be positive real
numbers, and let A = {a;; }1<i,j<n be an N X N symmetric random matrix such that the
i-dimensional vectors A; = (aj1,aia, . ..,a;;) are mutually independent for 1 <i < N.
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Let z = E +in € H, and denote B = {B;;} = (A—z)™'. Fixu € S., a € (0,2), and
s € (0,%). Then if we denote f = f,, : C — C by f(z) = (iz | u) 2, there exists a con-

stant C = C(a) > 0 such that
> t} <C(nzt)~s exp(—T)
1-5+s

]P [

The following (which is analog of Lemma 5.5) is a special case of [27, Lemma 5.4],
applied with their {g;} equal to our {y,}; their {h;} equal to our —iR};; their B equal
to our %; their § equal to our s; and their ¢ equal to CN~3 n_% (log N)5.

N2

1 Y 1 Y
— > f(Bjj))——= ) E[f(Bj))]
N; i N; i

Lemma 8.2 ([27, Lemma 5.4]). Let (y1, Y2, ..., Vn) be a Gaussian random vector whose
covariance matrix is given by 1d, let s € (0, %), and for each 1 < j < N let

fi@) = (=iRD 1)y, [*, g; () = (iR |w)TE[|y;]*].

Then there exists a constant C = C(«) > 0 that

Ky % 2
P[ _ CllogN) } _CONE (_M), o)

Nip2 log N C
where the expectation is with respect to (y1, y2, . . ., YN ) and conditional on X®.

1 N
~ (=)
j=1

1-%+s

8.2. Proof of Proposition 7.9

In this subsection we establish Proposition 7.9. Its proof will be similar to that of Propo-
sition 6.2 in Section 6.1.3.

Proof of Proposition 7.9. Since all entries of R are identically distributed, we may assume
that i = N. In what follows, let & denote the event on which

4log N 8
£ +

ITrImR®Y) — E[Im Ry4]| < -+ —.
(Np»z N7

(8.2)

In view of Lemma 5.6 (applied with r = 1) and the second estimate in (5.13), we deduce
that
P[€°] < 2exp(—(log N)?),

where &€ denotes the complement of €.
We now apply Lemma 6.4 with X = (Xn;);«n and the matrix A = {4;;} equal to
the (N — 1) x (N — 1) diagonal matrix with

Ajj = Im Rj(jv)
Then Im Sy = (AX, X). Inserting

t = (logN)%(ZlogZ)%
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into Lemma 6.4, we find from a Markov estimate that

P[Im Sy < 1g(log N)_g] < 2E|:lg exp(—%(AX,X))]

<2E|1 —
S
X exp (O((logN)gHN_we_lTrA)):|

(log N)?
4

0%(210g2)% (log N>2||A%Y||z)
(8.3)

+2Nexp(— ) + 2P[&°],

where Y = (y1, y2,..., YN—1) is a Gaussian random variable whose covariance matrix
is given by Id, and we recall the definition 6 = %(b — é)(Z — ) from Theorem 7.8.
Now, in view of the definition (8.2) of the event & and our assumption that

E[Im Ry1] < E[|Ry 22 <&73,

we have .
1¢|TrA| < 2¢72

for sufficiently large N. This (and our previous estimate P[£¢] < 2exp(—(log N)?))
guarantees the existence of a constant C = C(«, b, €) > 0 such that

P[Im S; < (log N)—g] < CE[CXP(— (logN)2||A2Y||g)] e exp(— (logN)Z).

CN C

Thus, to provide a lower bound on Im Sy, it suffices to establish a lower bound on

||A2Y||“ g
Zum RIV|5 |y, (8.4)
/—1

To that end, we apply Lemma 5.5 (with A = H) and ¢ = (log N)2 (N5?)%) to obtain
that

N-1
1 N N) 2 C(log N)*
P[ﬁzllmRﬁmzm - ZlImRﬁjMzEnm“] > N
- 8.5)
log N)?
<Cexp(_w),
C

after increasing C if necessary. Next, applying Lemma 5.6 with r = 3 yields the deter-
ministic estimate

N Z |(Im Rj;)% — (Im R(N))2| = (Nj‘?)%' (8.6)

Estimate (7.2) and Lemma 8.1 (applied with A = XV, 5 = S.t= (an)_% (log N)%)
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yield, after increasing C if necessary, that

logN)>2
|: Z'ImRJ|2__ZE[|ImRJ]| (](\)]g4 )2 :|
1 (8.7)
2
< Cexp(—@)

Combining the lower bound E[|Im R jj|%] > ¢ (see the second estimate in (7.14)),
(4.2), (8.4), (8.5), (8.6), (8.7), and the fact that all entries of R are identically distributed
yields (again, after increasing C if necessary)

1
|A2Y || £ (logN)2
Pl—=<—-|<C —-—
[ N - C xp C ’

from which we deduce the lemma upon insertion into (7.31). [

8.3. Proof of Proposition 7.10

In this subsection we establish Proposition 7.10. Its proof will be similar to that of Propo-
sition 6.3 in Section 6.1.4.

Proof of Proposition 7.10. Since all entries of the matrix R are identically distributed, we
may assume thati = N.
As in the proof of Proposition 7.9, we begin by applying Lemma 6.4, now with

A=ImR®™, X = (Xyj)i<j<n—1. and = (logN)«(2log2)?.

Then Im(Sy — Tn) = (AX, X). Following the proof of Proposition 7.9 yields a constant
C = C(a, b, &) > 0 such that

PIm(Sy — Tw) < (log N)~a]

C(log N)2|AZY || log N)? (8.8)
< CE| exp( - (log N)"||[A2Y |3 + Cexp _(logN) ’
N C
where Y = (y1, y2,..., YN—1) is a Gaussian random variable whose covariance is given

by Id. Thus, it again suffices to establish a lower boun]d on N7 lAY||2.
To that end, we apply Lemma 6.5 with w; = (A2Y);, r = «, and a = 2 + ¢. Then
we find that

V, = ImR](.;.v)(z), Ui = ImR](.iv)(z) foreachl < j,k < N — 1.

We must next estimate the quantities V', X, and U from that lemma. These are given by

N—-1
=IN-D7 Y cr. V=WN-DTY W,
1<j,k<N-1 i=1
N-1 .
_ -1 2
=V =17 Y

i=1
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To do this, observe from (5.6) and (4.2) that

4 N—-1N-1
2
Us-50.0
j=1 k=1
4 N—-1N-1
=7 [m RS2 (8.9)
j=1 k=1
N—-1
4 4
< 5 2 ImR < ——
N*n o Nn

To bound V', we apply the first estimate in (5.13) to deduce that

N
1 4log N log N)2
P||< Y ImR; —E[lmR;]| > —=— <26Xp(—(0g—)). (8.10)
N = (N12)2 8

j=1
Therefore, Lemma 5.6 (applied with r = 1), (8.10), and the assumption (7.14) that

2
o

E[lmR;;] > E[Im R;;)%]

2
IP’[|V| < é] < Cexp(—w), 8.11)

=&

together imply that

C

after increasing C if necessary. In particular,
P[|V| < 100(log N)'°U 2] < 2C exp(—C ' (log N)?)

for sufficiently large N.
Now let us estimate X . To that end, observe by (4.2) and Corollary 5.7 (applied with
r =% < 2), we find that

N-—-1
1 . (N—1)X
'N 2 Itm Rl _T‘
/=1 (8.12)

Z ImR;;|% — — Z tm R\ |3

Now let . .,
f(J’) = 1|Imy|<r]*] |Imy|7 + 1|Imy|>17*1 (277)_j
and observe that f is Lipschitz with constant L = an'~ 5. Applying Lemma 5.3 with

t=N" 277 3 log N and using (4.2) yields
log N log N)?
> e N (=17 g3
4 8a?

[ |
]P) _
N

N
> Im Rj;|% —E[|im R;;%)
j=1
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Combining (8 12), (8.13), the fact that n>N&" @ > N¢ 2, and the fact (due to (7.14))
that E[|R;;|5] < E[|R;;|*]% < &% yields that

(8.14)

P[X| > C] < Cexp(—M),

C
after increasing C if necessary. Now Lemma 6.5 with (8.9), (8.11), and (8.14) together

yield that
1
AdY| log N)?
P[w < (log N)_C} <C exp(—%), (8.15)

after increasing the constant C if necessary. Now the lemma follows from combining
(8.8) and (8.15). [

8.4. Proof of Proposition 7.17
In this subsection we establish Proposition 7.17.

Proof of Proposition 7.17. Let us define

r(-¢ C
Z = 20 = B3] = — 2 Y RO 1,

N J#i
D, = D, () = ra-3 > E[(—iRY |u)?],
J#i
F 1 - g o
b= ) = (T» S E[-iRy )4,
J#i

To establish this proposition, we will first show that 3, Z, &, and y, are all approxi-
mately equal. To that end, first observe that Lemma 8.2 implies the existence of a constant
C = C(a) > 0 such that

(log N)* (log N)?
Pl|Z—-3l1_eqs > ——F | =C - . 8.16
1730 = 500 | = om0 .16
Applying Lemma 8.1 with A = X and t = N~35~3 (log N)* yields (after increasing
C if necessary)

(log N)*® (log N)*
IED|:||Z—q)z||1—§+s = N%—U% < Cexp ——c ) (8.17)
Now we apply the second estimate in (7.3) with x1 = Rj;, xo = Rj(;), = %,anda =17

to obtain (again, after increasing C if necessary)
[Rij 1% = (R 1R ], < Cn 3 (1R = R)1% + IRy — RPP). 8.18)

To estimate the right side of (8.18) we apply Lemma 5.6 to deduce that

o 4
Zlej (l) 2 f Z| i~ (l) = (N ) (8.19)
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Summing (8.18) over all j # i, taking expectations, applying (8.19), and (4.2) yields
(after increasing C if necessary) that

d <C ! ! 8.20
” z_ézlll—%—i-s_ N%T]“—}_Nsn% . (8.20)

Furthermore, since the entries of R are identically distributed, we have (after increasing
C if necessary) that

F(l - g) . a C
16 = v2lli-g4s = = [EIR; 1021 g < NE (8.21)

where we have used (4.2) and the first estimate in (7.3).
Now the proposition follows from estimates (8.16), (8.17), (8.20), (8.21), and the fact
that N > n~2. ]

Appendix A. Estimating the entries of G,

In this section we establish Proposition 3.9. To that end, we first require some additional
notation. Recalling the definitions of Hs and G; from the beginning of Section 3.2, let
{4, (s)}jen,n denote the N eigenvalues of Hy, and define

N
mg=mg(z) = N"'TrGy = N> (Ai(s) —2)7".
j=1

Further let my. s(z) € H denote the unique solution in the upper half plane to the
equation

N
1
Mics(2) = mo(z + tme 5(2)) = N E gj(s,z), (A.1D)
j=1

where
1

Aj—z—tmgs(z)

gj(s,z) =

The quantity my. ; denotes the Stieltjes transform of the free convolution (see directly
before Proposition 3.11) of the empirical spectral distribution of Hy with a suitable mul-
tiple of the semicircle law [22].

We require the following two results, which appear in [35, Theorem 2.1 and Proposi-
tion 2.2].

Proposition A.1 ([35, Theorem 2.1]). Adopt the notation of Definition 3.8, and further
assume that Ho is (no. y, r)-regular with respect to Eo. Let U = {u;; } and D = {d;; = d;}
denote orthogonal and diagonal matrices, respectively, so that

Ho = UDU.
Fix s € [0, 1] satisfying N®n <s < N=%y. Then, for any D > 1 and « € (0, 1), there



GOE statistics for Lévy matrices 3791

(4Gs(2).q Zup 2g)(s.2)
j=1

exists a constant C = C(8,k, D, A) > 0 such that
N25 N
(Z u;,q gj(s,z))) > 0i| <CN~P

(A.2)

IP’|: sup (
zeD
(Nn)? —
for any vector q € RYN such that ||q||> = 1. In (A.2), we have abbreviated
D = D(Ey,r, N48_1, 1 —«r,k)
(recall (3.9)).

Proposition A.2 ([35, Proposition 2.2]). Adopt the notation and assumptions of Proposi-
tion A.1. Then there exists a constant C = C(8,k, D, A) > 0 such that

1

Mies ()] < — Z g/(.2)| < ClogN. & <Immp,(2) <C  (A3)

forany z € D.

Now we can establish Proposition 3.9.

Proof of Proposition 3.9. Recall that u;; denotes the j-th entry of the eigenvector corre-
sponding to Ax. Applying (A.2) withq = (91,92, ..., qn) satisfying gx = 1x—; for each

k € [1, N] yields the existence of a constant C = C(8,k, D, A) > 0 such that
Gjj(s.2) — Zu]kgk(s 2)
NS
Im(Zu/kgk(s Z))) :| < CN710D,

k=1

(A4)

P| sup
zED
(Nn)2 k=1

Let us estimate the terms gy (s, z) appearing in (A.4). To that end, we define

o = Ao(Eg) = [Eo — 1o, Eo + 10]

and
Am = Am(Eo) = [Eo —2™no, Eo — 2" 'no] U [Eo + 2" "o, Eo + 2" 0]

for each integer m > 1. Since (A.3) implies the existence of C = C(8,«, Eg, D, A) > 1
such that |my s(z)| < C log N and % < Immyg5(z) < C, the definition (A.1) of the gx
implies that

1

C? 2
,E in)| < A.5
A,{Ié%m 18k (5. Bo +in)] = ((min{2m_1r)o — C2s5log N,0})% + s2) (A-5)

for any integer m > 1.
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Next let us estimate the entries of U, where we recall from Proposition A.l that
Hy = UDU!. The assumed bound on the entries of G¢(z) implies
N 2
Uik

sup P

zeD(Eg,r,n0,7,0)

= sup |Gjj(z)| < B, (A.6)
zeD(Eo,r,n0,,0)

k=1
where we have denoted A; = A;(0) as the eigenvalues of Hy. Thus, setting z = Eqo + ing
in (A.6) yields

2 . .
121,/‘2(N i Z:A Ui < min{2"noB, 1} for any integer m > 0. (A.7)
k €Hm

Now we can bound the terms appearing in (A.4). We define

- [ (2]

= Z Z M]2~k|gk(S,Z)|

m=0 Ay €hm(E)

and write

N
Z ujzkgk(sv Z)
k=1

M [4log N
<Y > whsGol+ Y Y wlgk(s. o)
m=0 Ar€An(E) m=M+1 Ay €Am(E)

+ > Y. gk )l

m=[4logN| A€, (E)

We bound these three sums by combining (A.5), (A.7), and the facts that no > N1,
1 < B < N,ands € (19, N~?%). For the first sum, we apply (A.5) — noting the minimum
in the denominator of the right side takes the value 0 — and the first argument of the
minimum in the left side of (A.7). For the second sum, we apply (A.5), with the minimum
on the right side taking the nonzero value, and (A.7). The third sum is bounded using
(A.5) only.

We deduce for sufficiently large N that

N

D un k(s 2)

C
<Cs '2MpoB 4+ CBlog N + ¥ = CB(log N)3, (A.8)
k=1

after increasing C (in a way that only depends on &, k, D, and A) if necessary.

Therefore, combining (A.4), (A.8), the fact that Nn > N 8 and a union bound over
Jj € [1, N]yields (again after increasing C if necessary, in a way that only depends on &,
K, D,and A)

IP’[ sup max |Gj;(s,z)| > CB(log N)3] <CN—D, (A.9)
ze® 1=j=N



GOE statistics for Lévy matrices 3793

To estimate the remalmng entries of Gy, we apply (A.2) with q = (91,92, ...,9nN) sat-
isfying g = 2~ 2(1k i + 1x—;) for some fixed i, j € [1, N]. Using (A.8), this yields
(after increasing C if necessary, in a way that only depends on &, k, D, and A)

IP’[ SUp 1G5 2) + Gii (5. 2) + 2Giy (5. 2)| > CB(log N)3] <CN~SP. (A.10)
ze

Now the corollary follows from combining (A.9), (A.10), and a union bound over all
i,j €[l,N]. n

Appendix B. Comparing deformed stable laws to their removals
In this section we establish Lemma 6.4. However, we first require the following lemma
that estimates the characteristic functions of removals of stable laws.

Lemma B.1. Fixo > 0, o € (0, 2), a positive integer N, and 0 < b < é Let X denote
the random variable given by the b-removal of a deformed (0,0) a-stable law, as in
Deﬁnitioln 3.2. Let X1, X3, ..., XN be mutually independent random variables, each with
law N™« X, and let c1,ca,...,cn € R be constants. Then, for any t € R, we have

X |2 N
E[exp(lthij)}zexp(— N Z|cj|°‘)
Jj=1 Jj=1
N
X exp(O (tzN(z_"‘)(b_gl)_1 Z |c; |2)),
j=1

where the implicit constant on the right side only depends on a.

Proof. Let Z be a (0,0) «a-stable law and J be a random variable satisfying Defini-
tion2.1.LetY = (Z + J)1|2+J|<Nb sothat X = Z —Y.Let Yy, Y,,..., Yy be mutu-
ally independent random variables with law N-w Y,let Zy,7Z5,...,Zy be mutually
independent random variables w1th law N - Z,andlet Jy, J5, .. J N be mutually mde-
pendent variables with law N ™ @ J. Then the random variables X have laws N« X,
where we assume that the X;, Y;, Z;, and J; are coupled so that X; = Z; + J; — Y, for
eachl <j <N.
Observe that, for any # € R, we have

E[eitX] _ E[eit(Z+J)] + IE[eit(Z-l—J)(e—itY —1)]
_ E[eit(Z-i—J)] — it]E[eit(Z-i-J)Y] + O(E[12Y?])
= E[e" @D —irE[e"“HNZ + I)l 74 j<ne] + OE[PY?])  (B.D)
= E[e"“ D) —itE[(Z + )1z, yj<n»] + OE[:?Y?])
= E["Z )] + 0E[2Y?)),

where the second equality above follows from a Taylor expansion, the third from the
definition of Y, the fourth from another Taylor expansion, and the fifth from the fact that
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Z + J is symmetric. A similar argument shows that
E[e"“*] = E["?] + OE[:*J?)). (B.2)
Replacing ¢ with ¢; N-atin (B.1) and (B.2), we find that

. ) _1 c2t?
E[e/'%/] = B[N “Z] 4 #O(EHZ + I Pz s1zn0] + EL7)

o

o%|c;t|*
= exp(—%) + O(N@ =)= 0412,

where in the second estimate above we used (2.1) and integrated (2.3). Now, let
R=R; = N Yc;t|*".
Then we find that
E[e'"X/] < exp(—0“R) + O(N P R)
< exp(—0®R) exp(O(N @b R&)Y). ©

Indeed, if R < 1, then (B.3) follows from the estimate y < ¢” — 1. Otherwise, if R > 1
and N is sufficiently large, we have that N (2—)b R% > 20%R (since o < 2), from which
we again deduce estimate (B.3) from the estimate y < ¢” — 1. Inserting the definition of
R = N7 c¢;1]* into (B.3) yields

icjtX; o%lc;t]* @-a)(b—1)—1 2
Ele'/'*/] < exp N exp(O(N )7 leir]?)). (B.4)
Now the lemma follows from taking the product of (B.4) over all j € [1, N]. |

Now we can establish Lemma 6.4.

Proof of Lemma 6.4. The proof of this lemma will follow a similar method as the one
used to establish [26, Lemma B.1]. To that end, observe that

oo~ r,20)] = (-S|

= E[exp(—it (BX, Y))]
= E[exp(—it(X,BY))].

Denote W = BY = (wy,w,,,...,wy). In view of Lemma B.1, we have the conditional
expectation estimate

o o N
E[ exp(—it (X, W)) ‘ 4 :exp(—a)\;| Z|wj|°‘)
j=1

N
X exp(O (ZZN(Z_"‘)(I’_&)_1 Z |w; |2))

Jj=1

(B.5)
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. . . . . . N
Now, observe that since each w; is a Gaussian random variable with variance ) ;_, bl.zj,
we have from a union bound that

N N N )
P[Zw‘? > (logN)TrA:| < ZIF’|:w]2 > (logN)be/:| < Ne_(l en , (B.6)
j=1 j=1

i=1

where in the first estimate we used the fact that
TTA=TrB>= )  b.
1<i,j<N
Taking the expectation on both sides of (B.5) over the events where Zj-vzl lw;|? is
at most or at least (log N) Tr A and further using the fact that the exponential inside the
expectation on the left side of (B.5) is bounded by 1, we deduce that

o o N
E[exp(—it (X, W))] = ]E|:exp<—0 ]|\;| Z |wj|a):|
j

—1

_ (og N)2

% exp(O(tzN(z_Q)(b_é)_l(log N) TrA)) + Ne ™~ 2
from which we deduce the lemma. ]
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