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Abstract. We establish eigenvector delocalization and bulk universality for Lévy matrices, which
are real, symmetric, N ⇥N random matrices H whose upper triangular entries are independent,
identically distributed ˛-stable laws. First, if ˛ 2 .1; 2/ and E 2 R is bounded away from 0, we
show that every eigenvector of H corresponding to an eigenvalue near E is completely delocalized
and that the local spectral statistics of H around E converge to those of the Gaussian Orthogonal
Ensemble as N tends to 1. Second, we show for almost all ˛ 2 .0; 2/, there exists a constant
c.˛/ > 0 such that the same statements hold if jEj < c.˛/.
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1. Introduction

The spectral analysis of random matrices has been a topic of intense study since Wigner’s
pioneering investigations [86] in the 1950s. Wigner’s central thesis asserts that the spec-
tral statistics of random matrices are universal models for highly correlated systems.
A concrete realization of his vision, the Wigner–Dyson–Mehta conjecture, states that
the bulk local spectral statistics of an N ⇥N real symmetric (or complex Hermitian)
Wigner matrix should become independent of the laws of its entries as N tends to 1; see
[74, Conjectures 1.2.1 and 1.2.2]. This phenomenon is known as bulk universality.

Over the past decade, a framework based on resolvent estimates and Dyson Brownian
motion has been developed to establish this conjecture and extend its conclusion to a wide
class of matrix models. These include Wigner matrices [33, 48, 52, 53, 55, 56, 61–63, 69,
82,83], correlated random matrices [8,40], random graph models [16,45,46,60,61], gen-
eral Wigner-type matrices [9, 10], certain families of band matrices [32, 34, 36, 37, 87],
and various other models. All these models require that the variance of each matrix entry
is finite, an assumption already present in the original universality conjectures [74]. The
moment assumption required for the bulk universality of Wigner matrices has been pro-
gressively improved, and universality is now known to hold for matrix entries with finite
.2C "/-th moments [4, 45].

While finite variance might seem to be the natural assumption for the Wigner–Dyson–
Mehta conjecture, in 1994 Cizeau and Bouchaud [42] asked to what extent local eigen-
value statistics and related phenomena remain universal once the finite variance constraint
is removed. Their work was motivated by heavy-tailed phenomena in physics [28, 78],
including the study of spin glass models with power-law interactions [41], and applica-
tions to finance [29–31, 38, 58, 65, 66]. Recent work has also shown the appearance of
heavy-tailed spectral statistics in neural networks [71–73].
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The authors of [42] proposed a family of symmetric random matrix models, called
Lévy matrices, whose entries are random variables in the domain of attraction of an
˛-stable law.1 Based on numerical simulations, they predicted that bulk universality should
still hold in certain regimes when ˛ < 2. In particular, for ˛ < 1 they proposed that the
local statistics of Lévy matrices should exhibit a sharp phase transition from GOE at small
energies to Poisson at large energies.

Such a transition is called a mobility edge (also known as an Anderson transition
or Mott transition, depending on the physical context) and is a principal concept in the
pathbreaking work of the physicists Anderson and Mott on metal–insulator transitions
in condensed matter physics [3, 12, 13, 76, 77]. It is widely believed to exist in the con-
text of random Schrödinger operators, particularly in the Anderson tight-binding model
[1, 2, 6, 7, 15], but rigorously establishing this statement has remained a fundamental
open problem in mathematical physics for decades. While localization and Poisson statis-
tics at large energies in the Anderson model have been known since the 1980s, even the
existence of a delocalized phase with GOE local statistics has not been rigorously verified
for any model exhibiting a conjectural mobility edge [5,43,57,59,70,75,80]. As explained
below, Lévy matrices provide one of the few examples of a random matrix ensemble for
which such a transition is also believed to appear. Consequently, the predictions of [42]
have attracted significant attention among mathematicians and physicists over the past 25
years [14, 18–20, 20, 23–27, 39, 79, 85].

The work [42] further analyzed the large N limiting profile for the empirical spectral
distribution of a Lévy matrix H, defined by �H D N�1PN

jD1 ı�j
, where �1;�2; : : : ;�N

denote the eigenvalues of H. They predicted that �H should converge to a determinis-
tic, explicit measure �˛ as N tends to 1, which was later proven by Ben Arous and
Guionnet [19]. This measure �˛ is absolutely continuous with respect to the Lebesgue
measure on R and therefore admits a density %˛ , which is symmetric and behaves as
%˛.x/ ⇠

˛

2x˛C1 as x tends to 1 (see [18, 19, 25]). In particular, %˛ is supported on all
of R and has an ˛-heavy tail. This is in contrast with the limiting spectral density for
Wigner matrices, given by the semicircle law,

%sc.x/ D .2⇡/�11jxj<2
p

4 � x2; (1.1)

which is compactly supported on Œ�2; 2ç.
Two other phenomena of interest are eigenvector delocalization and local spectral

statistics. Associated with any eigenvalue �k of a given Lévy matrix H is an eigenvec-
tor uk D .u1k ; u2k ; : : : ; uNk/ 2 R

N , normalized such that kukk
2

2
D

P
N

iD1 u
2

ik
D 1. If

H D GOEN is instead taken from the Gaussian Orthogonal Ensemble2 (GOE), then the
law of uk is uniform on the .N � 1/-sphere, and so max1iN juikj  N ı� 1

2 holds with

1When ˛ < 2, we recall that the densities of such laws decay asymptotically like x�˛�1 dx.
In particular, they have infinite second moment.

2This is defined to be the N ⇥N real symmetric random matrix GOEN D πgij º, whose upper
triangular entries gij are mutually independent Gaussian random variables with variances 2N�1
if i D j and N�1 otherwise.
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Fig. 1. Phase diagram. The thick line indicates the location of the conjectural mobility edge, which
separates the localized phase from the delocalized phase. The gray area indicates the scope of our
results.

high probability for any ı > 0. This bound is referred to as complete eigenvector delo-
calization. The local spectral statistics of H concern the behavior of its neighboring
eigenvalues close to a fixed energy level E 2 R.

The main predictions of [42] were certain transitions in the eigenvector behavior and
local spectral statistics of Lévy matrices. Their predictions are not fully consistent with
the recent work [85] by Tarquini, Biroli, and Tarzia, based on the supersymmetric method.
The latter predictions can be summarized as follows.

Prediction A (1  ˛ < 2). All eigenvectors of H corresponding to finite eigenvalues are
completely delocalized. Further, for any E 2 R, the local statistics of H near E converge
to those of the GOE as N tends to 1.

Prediction B (0 < ˛ < 1). There exists a mobility edge E˛ such that
(i) if jEj < E˛ , then the local statistics of H near E converge to those of the GOE and

all eigenvectors in this region are completely delocalized,
(ii) if jEj > E˛ , then the local statistics of H near E converge to those of a Poisson point

process and all eigenvectors in this region are localized.

The earlier predictions of [42] are different. Prediction A’ (1  ˛ < 2): There are two
regions:
(i) for sufficiently small energies, the eigenvectors are completely delocalized and the

local statistics are GOE,
(ii) for sufficiently large energies, the eigenvectors are weakly localized according to

a power law decay, and the local statistics are given by certain non-universal laws that
converge to Poisson statistics in the infinite energy limit.



GOE statistics for Lévy matrices 3711

Prediction B’ (0 < ˛ < 1): essentially the same as Prediction B above except that in the
delocalized region the eigenvectors were predicted to only be partially delocalized, in that
a positive proportion of the mass is completely delocalized and a positive proportion of
the mass is completely localized. In addition, [42] proposes an equation for the mobility
edge E˛; a much simpler (but equivalent) version of this equation was predicted in [85].

The problem of rigorously establishing this mobility edge remains open. In fact, there
have been no previous mathematical results on local statistics for Lévy matrices in any
regime. However, partial results on eigenvector (de)localization were established by Bor-
denave and Guionnet in [26, 27]. If 1 < ˛ < 2, they showed that almost all eigenvectors
uk satisfy

max
1iN

juikj < N ı�⇢

for any ı > 0 with high probability, where

⇢ D

˛ � 1

maxπ2˛; 8 � 3˛º

I

see [26]. For almost all ˛ 2 .0; 2/, they also proved the existence of some c D c.˛/ such
if uk is an eigenvector of H corresponding to an eigenvalue �k 2 Œ�c; cç, then

max
1iN

juikj < N ı� ˛
4C2˛

for any ı > 0 with high probability [27]. These estimates remain far from the complete
delocalization bounds that have been established in the Wigner case. Furthermore, if
0 < ˛ < 2

3
and G.z/ D πGij .z/º D .H � z/�1, then they showed that

E
⇥
.ImG11.z//

˛
2 ç D O.⌘

˛
2 �ı/

for any ı > 0 if Re z is sufficiently large and ⌘ D Im z � N� 2C˛
4˛C12 , which implies eigen-

vector localization in a certain weak sense at large energy [26].
In this paper, we establish complete delocalization and bulk universality for Lévy

matrices for all energies in any fixed compact interval away from E D 0 if 1 < ˛ < 2.
In addition, for 0 < ˛ < 2 outside a (deterministic) countable set, we prove that there
exists ÅE˛ such that complete delocalization and bulk universality hold for all energies
in Œ�ÅE˛; ÅE˛ç. These results establish Prediction A of [85] essentially completely for
1 < ˛ < 2 and also the existence of the GOE regime for 0 < ˛ < 1, with completely
delocalized eigenvectors. Before describing these results in more detail, we recall the
three-step strategy for establishing bulk universality of Wigner matrices developed in the
works [49, 51–53, 55, 82] (see [21, 44] or the book [55] for a survey).

The first step is to establish a local law for H, meaning that the spectral density of H
asymptotically follows that of its deterministic limit on small scales of order nearly N�1,
the typical inter-eigenvalue distance. The second step is to consider a Gaussian perturba-
tion H C t

1
2 GOEN of H, for some small t , and then use the local law to show that the

local statistics of the perturbed matrix are universal. The third step is to compare the local
statistics of H and its perturbed variant H C t

1
2 GOEN , and show that they are asymp-

totically the same. The comparison of the local statistics can be most efficiently obtained
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by comparing the entries of the resolvents of the ensembles; this is often referred to as
a Green’s function (resolvent) comparison theorem [56].

There are two issues with adapting this framework to the heavy-tailed setting. First,
we do not know of a direct way to establish a local law for the ˛-stable matrix H on the
optimal scale of roughlyN�1. Second, justifying the removal of the Gaussian perturbation
in the third step has intrinsic problems since the entries of H have divergent variances (and
possibly divergent expectations).

To explain the first problem, we introduce some notation. We recall the Stieltjes
transform of the empirical spectral distribution �H is defined by the function

mN .z/ D mN;H.z/ D

1

N

NX

jD1

1

�j � z
D

1

N
Tr.H � z/�1; (1.2)

for any z 2 H. Since �H converges weakly to �˛ as N tends to 1, one expects mN .z/
to converge to

m˛.z/ D

Z

R
.x � z/�1%˛.x/ dx:

The imaginary part of the Stieltjes transform represents the convolution of the empirical
spectral distribution with an approximate identity, the Poisson kernel, at scale ⌘ D Im z.
Hence, control of the Stieltjes transform at scale ⌘ can be thought of as control over the
eigenvalues averaged over windows of size approximately ⌘.

A local law for the matrix H is an estimate on jmN .z/ �m˛.z/j when ⌘ D Im z scales
likeN�1C". The typical procedure [46,47,50,51,56,69] for establishing a local law relies
on a detailed understanding of the resolvent of H, defined to be the N ⇥N matrix

G.z/ D .H � z/�1 D πGij .z/º:

Indeed, since mN .z/ D N�1 Tr G.z/, it suffices to estimate the diagonal entries of G.
In many of the known finite variance cases, (almost) all of the entries Gij converge to
a deterministic quantity in the large N limit.

This is no longer true in the heavy-tailed setting, where the limiting resolvent entries
are instead random away from the real axis [25]. While the idea that the resolvent entries
should satisfy a self-consistent equation (which has been a central concept in proving local
laws for Wigner matrices [50]) is still applicable to the current setting [18, 19, 26, 27],
the random nature of these resolvent entries poses many difficulties in analyzing the
resulting self-consistent equation. This presents serious difficulties in applying previously
developed methods to establish a local law for ˛-stable matrices on the optimal scale.
While local laws on intermediate scales ⌘ � N� 1

2 were established for such matrices
in [26, 27] if ˛ is sufficiently close to two, the value of ⌘ allowed in these estimates
deteriorates to 1 as ˛ decreases to zero.

For the second problem, all existing methods of comparing two matrix ensembles H
and ÅH (see [4, 33, 45, 46, 61, 69, 82–84]) involve Taylor expanding the matrix entries of
their resolvents to order at least three and then matching the expectations of the first- and
second-order terms of this expansion, which correspond to the first and second moments
of the matrix entries. If the entries of H and ÅH are heavy-tailed, then all second and higher
moments of these matrix entries diverge, and this expansion is meaningless.
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These two difficulties are in fact intricately related, and our solution to them consists
of the following steps.

Step 1. We first rewrite the matrix as H D X C A, where A consists of the “small terms”
of H that are bounded by N�⌫ in magnitude for some constant 0 < ⌫ < 1

˛
, and X con-

sists of the remaining terms. We prove a comparison theorem for the resolvent entries of
H D X C A and those of

Vt D X C t
1
2 GOEN ;

where GOEN is independent from X. The parameter t ⇠ N ⌫.˛�2/ will be chosen so that
the variances of matrix entries of t

1
2 GOEN and A match. By construction, A and X

are symmetric, so the first and third moments of the matrix entries vanish. Hence in the
comparison argument, the problem is reduced to considering the second- and fourth-order
terms.

Notice that A and X are dependent, so the previous heuristic cannot be applied directly.
To remove their correlation, we expand upon a procedure introduced in [4] to produce
a three-level decomposition of H. By conditioning on the decomposition into large and
small field regions, A and X are independent and a version of the comparison theorem
can be proven.

Step 2. From the work of [68], the GOE component in Vt improves the regularity of
the initial data V0, which is a manifestation of the parabolic regularization of the Dyson
Brownian motion flow. Roughly speaking, if the spectral density of V0 is bounded above
and below at a scale ⌘  N�ı t , then the following three properties for Vt hold:
(i) universality of local statistics,
(ii) complete eigenvector delocalization,
(iii) a local law at all scales up to ⌘ � N ı�1 for any ı > 0;
see [35, 54, 67, 68].

The fundamental input for this method is an intermediate local law for X on a scale
⌘ ⌧ N ⌫.˛�2/

⇠ t . The existing intermediate local laws for heavy tailed matrices estab-
lished in [26,27] are unfortunately only valid on scales larger than this critical scale when
˛ is close to one. Our second main result is to improve these laws to scales belowN ⌫.˛�2/.
Our method uses self-consistent equations for the resolvent entries and special tools devel-
oped in [26] for Lévy matrices. Note that the resolvent entries of X are random and
self-consistent equations for them are difficult to work with. Still, we are able to derive
effective upper bounds on the diagonal resolvent entries of X, which enable us to improve
the intermediate local laws to scales below N ⌫.˛�2/.

Step 3. Combining Steps 1 and 2, we are able to transport the three properties for Vt to
our original matrix H. Recall that in the standard comparison theorem, resolvent bounds
on the optimal scale are required on both ensembles. Since our initial estimates on the
resolvent of the original matrix H are far from on the optimal scale, a different approach is
required. In particular, it is known that one can induct on the scale ⌘ to transfer resolvent
estimates from one ensemble to another using the comparison method [64]. Although
technical estimates must be supplied, the upshot of this step is that all three properties
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for Vt hold for the original matrix H. The eigenvector delocalization and universality of
local statistics constitute our main results. For the sake of brevity, we will not pursue the
local law on the optimal scale of approximately N�1, since it will not be needed to prove
our main results.

Remainder of this article. In Section 2 we explain our results in more detail. In Section 3
we state the comparison between H and Vt , as well as the intermediate local laws for X
in the ˛ 2 .1; 2/ case and the small energy ˛ 2 .0; 2/ case. Then, assuming these esti-
mates, we establish our results (given by Theorem 2.4, and Theorem 2.5). In Section 4 we
establish the comparison between H and Vt . In Section 5 and Section 6 we establish the
intermediate local law on X at all energies away from 0 when ˛ 2 .1; 2/. In Section 7 and
Section 8 we show a similar intermediate local law on X, but at sufficiently small energies
and for almost all ˛ 2 .0; 2/.

2. Results

We fix parameters ˛ 2 .0; 2/ and � > 0. A random variable Z is a .0; �/ ˛-stable law if

EŒeitZ ç D exp.��˛jt j˛/ for all t 2 R: (2.1)

While many previous works have considered only matrices whose entries are dis-
tributed as ˛-stable laws, the methods of this work apply to a fairly broad range of
symmetric power-law distributions. We now define the entry distributions we consider
in this paper; the end of this section discusses an extension to more general ones. For sim-
plicity, the reader may consider the concrete case of an ˛-stable distribution. The proof
for this case contains all essential features of the general one.

Definition 2.1. Let Z be a .0; �/ ˛-stable law with

� D

✓
⇡

2 sin.⇡˛
2
/Ä.˛/

◆ 1
˛

> 0: (2.2)

Let J be a symmetric3 random variable (not necessarily independent from Z) such that
EŒJ 2ç < 1, Z C J is symmetric, and

C1

.jt j C 1/˛
 P ŒjZ C J j � t ç 

C2

.jt j C 1/˛
(2.3)

for each t � 0 and some constants C1; C2 > 0. Denoting z D Z C J , the symmetry of J
and the condition EŒJ 2ç < 1 are equivalent to imposing a coupling between z and Z
such that z �Z is symmetric and has finite variance, respectively.

For each positive integer N , let πHij º1ijN be mutually independent random
variables that each have the same law as

N� 1
˛ .Z C J / D N� 1

˛ z:

3By symmetric, we mean that J has the same distribution as �J .
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Set Hij D Hj i for each i; j , and define the N ⇥N random matrix

H D HN D πHij º D πH
.N/

i;j
º;

which we call an ˛-Lévy matrix.

The N� 1
˛ scaling in the Hij is different from the more standard N� 1

2 scaling that
occurs in the entries of Wigner matrices. This is done in order to make the typical row
sum of H of order one. Furthermore, the explicit constant � (2.2) was chosen to make our
notation consistent with that of previous works, such as [19,26,27], but can be altered by
rescaling H.

It was shown as [19, Theorem 1.1] that, as N tends to 1, the empirical spectral
distribution of H converges to a deterministic measure �˛ . This is the (unique) probability
distribution � on R whose Stieltjes transform

R
R.x � z/�1 d�.x/ is equal to the function

m˛.z/, which can be explicitly described as follows. Denote the upper half plane by

H D πz 2 C W Im z > 0º

and its image under multiplication by �i by

K D πz 2 C W Re z > 0º:

For any z 2 H, define the functions ' D '˛;z W K ! C and  D  ˛;z W K ! C by

'˛;z.x/ D

1

Ä.˛
2
/

Z 1

0

t
˛
2 �1eitze�Ä.1� ˛

2 /t
˛
2 x dt;

 ˛;z.x/ D

Z 1

0

eitze�Ä.1� ˛
2 /t

˛
2 x dt

(2.4)

for any x 2 K. For each z 2 H there exists a unique solution y.z/ 2 K to the equation
y.z/ D '˛;z.y.z//, so let us define

m˛.z/ D i ˛;z.y.z//: (2.5)

The probability density function of the measure �˛ is given by %˛ , which is defined by
setting

%˛.E/ D

1

⇡
lim
⌘!0

Imm˛.E C i⌘/ for each E 2 R.

The term bulk universality refers to the phenomenon that, in the bulk of the spectrum,
the correlation functions of an N ⇥N random matrix should converge to those of an
N ⇥N GOE matrix in the large N limit.4 This is explained more precisely through the
following definitions.

4Since the latter ensemble of matrices is exactly solvable through the framework of orthogonal
polynomials and Pfaffian point processes, its correlation functions can be evaluated explicitly in
the large N limit. We will not state these results here, but they can be found in [74, Chapter 6]
or [11, Chapter 3.9].
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Definition 2.2. LetN be a positive integer and let H be anN ⇥N real symmetric random
matrix. Denote by p.N/H .�1;�2; : : : ;�N / the density of the symmetrized joint eigenvalue
distribution of H.5 For each integer k 2 Œ1; N ç, define the k-th correlation function of H
by

p
.k/

H .x1; x2; : : : ; xk/ D

Z

RN �k

p
.N/

H .x1; x2; : : : ; xk ; ykC1; ykC2; : : : ; yN /
NY

jDkC1
dyj :

Definition 2.3. Let πH D HN ºN2Z�1
be a set of matrices, let π% D %N ºN2Z�1

be a set
of a probability density functions, and let E 2 R be a fixed real number. We say that the
correlation functions of H are universal at energy level E with respect to % if, for any
positive integer k and compactly supported smooth function F 2 C

1
0
.Rk/, we have

lim
N!1

ˇ̌
ˇ̌
Z

Rk

F.a/
✓
p
.k/

HN

✓
E C

a
N%N .E/

◆
� p

.k/

GOEN

✓
a

N%sc.0/

◆◆
da
ˇ̌
ˇ̌

D 0; (2.6)

where da denotes the Lebesgue measure on R
k and we recall that %sc was defined by (1.1).

Now we can state our main results. In what follows, we set kvk1 D maxj2Œ1;d ç jvj j

for any v D .v1; v2; : : : ; vd / 2 R
d .

Theorem 2.4. Let H denote anN ⇥N ˛-stable matrix, as in Definition 2.1. Suppose that
˛ 2 .1; 2/, and fix some compact interval K ⇢ R n π0º.
(1) For any ı > 0 and D > 0, there exists a constant C D C.˛; ı;D;K/ > 0 such that

P
⇥
maxπkuk1 W Hu D �u; kuk2 D 1; � 2 Kº > N ı� 1

2
⇤
< CN�D :

(2) Fix some E 2 K. Then the correlation functions of H are universal at energy level E
with respect to %˛ , as in Definition 2.3.

Theorem 2.5. Let H denote an ˛-stable matrix, as in Definition 2.1. There exists a count-
able set A ⇢ .0; 2/ with no accumulation points in .0; 2/ such that for any ˛ 2 .0; 2/ n A,
there exists a constant c D c.˛/ > 0 such that the following holds.
(1) For any ı > 0 and D > 0, there exists a constant C D C.˛; ı;D/ > 0 such that

P
⇥
maxπkuk1 W Hu D �u; kuk2 D 1; � 2 Œ�c; cçº > N ı� 1

2
⇤
< CN�D :

(2) Fix E 2 Œ�c; cç. Then the correlation functions of H are universal at energy level E
with respect to %˛ , as in Definition 2.3.

The above two theorems comprise the first complete eigenvector delocalization and
bulk universality results for a random matrix model whose entries have infinite vari-
ance. For ˛ 2 .1; 2/, Theorem 2.4 completely settles the bulk universality and complete

5In particular, with respect to the symmetrized density, �1;�2; : : : ;�N are exchangeable ran-
dom variables. Such a density exists because each entry distribution of the random matrix has
a density.
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eigenvector delocalization for all energies (except if ˛ 2 A and E D 0), consistent with
Prediction A in Section 1. When ˛ < 1, Theorem 2.5 can be viewed as establishing
a lower bound on the mobility edge in Prediction B.

Let us make four additional comments about the results above. First, although they
are only stated for real symmetric matrices, they also apply to complex Hermitian random
matrices. In order to simplify notation later in the paper, we only pursue the real case here.

Second, the exceptional set A of ˛ to which Theorem 2.5 does not apply should
be empty. Its presence is due to the fact that we use results of [27] stating that certain
deterministic, ˛-dependent fixed point equations can be inverted when ˛ … A.

Third, our conditions in Definition 2.1 allow for the entries of H to be not exactly
˛-stable, but they are not optimal. Although our methods currently seem to require the
symmetry of J andZ C J , they can likely be extended to establish our main results under
weaker moment constraints on J . In particular, they should apply assuming only this
symmetry, (2.3), and that EŒjJ j

ˇ ç < 1, for some fixed ˇ > ˛. Pursuing this improvement
would require altering the statements and proofs of (6.13), Lemma 6.8, and Lemma B.1
below (with the primary effort being in the former).6 However, for the sake of clarity and
brevity, we do not develop this further here.

Fourth, local statistics of a random matrix H are also quantified through gap statistics.
For some fixed (possibly N -dependent) integer i and uniformly bounded integer m � 0,
these statistics provide the joint distribution of the gaps between the (nearly) neighboring
eigenvalues πN.�j � �k/ºjj�i j;jk�i jm. Our methods can be extended to establish univer-
sality of gap statistics of Lévy matrices, by replacing the use of Proposition 3.11 below
with [68, Theorem 2.5], but we do not pursue this here.

3. Proofs of delocalization and bulk universality

In this section we establish the theorems stated in Section 2 assuming some results that
will be proven in later parts of this paper. For the remainder of this paper, all matrices
under consideration will be real and symmetric.

Throughout this section, we fix a compact interval K ⇢ R and positive parameters
˛; b; ⌫; ⇢ satisfying

˛ 2 .0; 2/; ⌫ D

1

˛
� b > 0; 0 < ⇢ < ⌫ <

1

2
;

1

4 � ˛
< ⌫ <

1

4 � 2˛
; ˛⇢ < .2 � ˛/⌫:

(3.1)

Viewing ˛ 2 .0; 2/ as fixed, one can verify that it is possible to select the remaining
parameters b; ⌫; ⇢ > 0 such that conditions (3.1) all hold. The reason for these constraints
will be explained in Section 4.2. The proofs of Theorem 2.4 and Theorem 2.5 will proceed
through the following three steps.

6For the improvement of Theorem 2.5, which considers ˛ 2 .0; 2/ n A and small energies,
it suffices to modify only the statements and proofs of Lemma 6.8, and Lemma B.1.
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(1) First we define a matrix X obtained by setting all entries of H less than N�⌫ to zero,
and we establish an intermediate local law for X on a certain scale ⌘ D N�$ with
$ > ⌫.2 � ˛/.

(2) Next we study V D Vt D X C t
1
2 W, for a GOE matrix W and t ⇠ N ⌫.˛�2/. The

results of [35, 67] imply that if the Stieltjes transform and diagonal resolvent entries
of X are bounded on some scale ⌘0 ⌧ t , then all resolvent entries of V are bounded
by N ı on the scale ⌘ ⇠ N ı�1 for any ı > 0, and bulk universality holds for V. In
particular, this does not require that the resolvent entries of X approximate a deter-
ministic quantity. Thus, the previously mentioned local law for X (which takes place
on scale N�$ , which is less than t ⇠ N .˛�2/⌫) implies that the resolvent entries of
the matrix V are bounded by N ı when ⌘ D N ı�1, and that the local statistics of V
are universal.

(3) Then we establish a comparison theorem between the resolvent entries of H and V.
Combining this with the estimates on the resolvent entries of V from the previous step,
this allows us to conclude that the resolvent entries of H are bounded by N ı on the
scale ⌘ D N ı�1, implying complete eigenvector delocalization for H. Further com-
bining this comparison with bulk universality for V will also imply bulk universality
for H.

We will implement the first, second, and third steps outline above in Section 3.1, Sec-
tion 3.2, and Section 3.3, respectively.

Remark 3.1. In the above outline we use [67] to prove the strongest form of convergence
of local statistics, which is given by (2.6). However, if one is content to establish this
convergence after averaging the eigenvalues over a small interval of size N ı�1 (known as
averaged energy universality), then one can instead use [68, Theorem 2.4]. Moreover, if
one is only interested in proving complete delocalization for the eigenvectors of H, then
it suffices to instead use [35, Theorem 2.1 and Proposition 2.2].

3.1. The intermediate local laws

In this subsection we introduce a removal variant, denoted by X, of our ˛-stable matrix H,
given by Definition 3.2 and Definition 3.3 below. Then we state two intermediate local
laws for X, depending on whether ˛ 2 .1; 2/ or ˛ 2 .0; 2/. These are given by Theo-
rem 3.4 and Theorem 3.5, respectively.

Definition 3.2. Fix constants ˛ and b satisfying (3.1), and let Z, J , and z D Z C J be
as in Definition 2.1. Let Y D z1jzjNb , and let X D z � Y . We call X the b-removal of
a deformed .0; �/ ˛-stable law.

Definition 3.3. Let πXij º1ijN be mutually independent random variables with the
property that each have the same law as N� 1

˛X , where X is given by Definition 3.2. Set
Xij D Xj i for each 1  j < i  N , and define the N ⇥N matrix X D πXij º. We call X
a b-removed ˛-Lévy matrix. For any complex number z 2 H, define the resolvent

R D R.z/ D πRij º1i;jN D .X � z/�1:
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Further denote m D mN D mN .z/ D N�1 Tr R, and also set z D E C i⌘ with E; ⌘ 2 R

and ⌘ > 0.
Let πZij º1ijN and πJij º1ijN be mutually independent random variables with

the property that each have the same laws as N� 1
˛Z and N� 1

˛ J , respectively, where Z
and J are as in Definition 2.1. Let πHij º1ijN be mutually independent random
variables such that Hij D Zij C Jij . Couple each Hij with Xij so that

Xij D Hij �Hij 1
N

1
˛ jHij jNb

:

Set Hij D Hj i for each 1  j < i  N , and define the N ⇥N matrix H D πHij º. The
matrix H is an ˛-Lévy matrix that is coupled with X, and we refer to this coupling as the
removal coupling. For any z 2 H, let G.z/ D πGij .z/º D .H � z/�1.

Now let us state intermediate local laws for the removal matrix X at all energies away
from 0 when ˛ 2 .1; 2/ (given by Theorem 3.4 below) and at sufficiently small energies
for almost all ˛ 2 .0; 2/ (given by Theorem 3.5 below). The scale at which the former
local law will be stated is ⌘ D N�$ for some $ 2 ..2 � ˛/⌫; ⌫/, and the scale at which
the latter will be is ⌘ D N ı� 1

2 for any ı > 0. These should not be optimal and do not
match that at which local laws were proven in finite variance cases, which is ⌘ D N ı�1

(see [4,8,10,17,40,44,46,47,50,51,55,56,60]), but they will suffice for our purposes. In
fact, one can establish a local law on this optimal scale by combining Theorem 3.15 and
Theorem 3.16 with Theorem 3.4 and Theorem 3.5, but we will not pursue this here.

The below result will be established in Section 5.1.

Theorem 3.4. Fix ˛; b; ⌫ > 0 satisfying (3.1). Assume that ˛ 2 .1; 2/ and K ⇢ R n π0º.
Let $ be such that

.2 � ˛/⌫ < $ < ⌫;

and define the domain

DK;$;C D πz D E C i⌘ 2 H W E 2 K; N�$
 ⌘  C º; (3.2)

There exist a small constant ~ D ~.˛; b; ⌫;$;K/ > 0 and large constants B D B.˛/ > 0
and C D C.˛; b; ⌫;$;K/ > 0 such that

P


sup

z2DK;$;B

jmN .z/ �m˛.z/j >
C

N ~

�
 C exp

✓
�

.logN/2

C

◆
;

P


sup

z2DK;$;B

max
1jN

jRjj .z/j > C.logN/
30

˛�1

�
 C exp

✓
�

.logN/2

C

◆
:

(3.3)

Theorem 3.4 is similar to [26, Theorem 3.5], but there are several differences. For
appropriate choices of constants satisfying constraints (3.1), we control the Stieltjes trans-
form for ⌘ � N� 1

2 , which essentially equals the scale achieved for ˛ 2 .8
5
; 2/ in [26] and

improves the scale ⌘ � N� ˛
8�3˛ achieved for ˛ 2 .1; 8

5
/ in [26]. The latter improvement

is important for our work because it permits us to access the critical scale t ⇠ N .˛�2/⌫ for
all ˛ 2 .1; 2/. This would not have been possible for ˛ near 1 using the scales achieved
in [26]. Theorem 3.4 also asserts estimates on the diagonal resolvent entries Rjj .z/,
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which are crucial for our main results but were not estimated in[26] for any ˛. Finally,
in [26, Theorem 3.5], a finite, non-explicit set of energies must be excluded, while we
need only exclude the energy 0.

Next let us state the intermediate local law for X at sufficiently small energies when
˛ 2 .0; 2/ n A, which is a consequence of Theorem 7.6 (and Remark 7.7), stated in Sec-
tion 7.1.3 below.

Theorem 3.5. There exists a countable set A ⇢ .0; 2/, with no accumulation points in
the interval .0; 2/, that satisfies the following property. Fix ˛ and b satisfying (3.1), set

✓ D

.b �
1

˛
/.2 � ˛/

20
;

and let ı 2 .0; ✓/. Define the domain

DC;ı D

≤
z D E C i⌘ 2 H W E 

1

C
; N ı� 1

2  ⌘ 

1

C

≥
: (3.4)

Then there exists a large constant C D C.˛; b; ı/ > 0 such that

P


sup

z2DC;ı

jmN .z/ �m˛.z/j >
1

N
˛ı
8

�
< C exp

✓
�

.logN/2

C

◆
(3.5)

and

P


sup

z2DC;ı

max
1jN

jRjj .z/j > .logN/C
�
< C exp

✓
�

.logN/2

C

◆
: (3.6)

Theorem 3.5 is similar to [27, Proposition 3.2], except that it also bounds the diag-
onal resolvent entries Rjj .z/. Furthermore, Theorem 3.5 estimates the Stieltjes trans-
form mN .z/ for smaller values of ⌘ D Im z � N� 1

2 than in [27, Proposition 3.2], which
requires ⌘ � N� ˛

2C˛ . This improvement is again important for us to access the critical
scale t ⇠ N .˛�2/⌫ for all ˛ 2 .0; 2/.

3.2. Estimates for V

In this subsection we implement the second step of our outline, in which we define
a matrix

V D X C t
1
2 W;

establish that its resolvent entries are bounded by N ı on scale N ı�1, and show that its
local statistics are universal.

Recall that ˛; b; ⌫; ⇢ > 0 are parameters satisfying (3.1), and define t D t .⇢; ⌫/ by the
conditional expectation

t D NE
⇥
H 2

11
1jH11j<N�⌫ jjH11j < N

�⇢⇤
D

NEŒH 2

11
1jH11j<N�⌫ ç

P ŒjH11j < N�⇢ç
: (3.7)

We require the following lemma that provides large N asymptotics for t ; with the
definitions of (3.1), it in particular implies t D o.1/. Its proof will be given in Section 4.1
below.
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Lemma 3.6. There exist a small constant c D c.˛; ⌫; ⇢/ > 0 and a large constant C D

C.˛; ⌫; ⇢/ > 0 such that
cN .˛�2/⌫

 t  CN .˛�2/⌫ : (3.8)
Now let us define a matrix V that we will compare to H.

Definition 3.7. Define the N ⇥N random matrix V D πvij º D X C t
1
2 W, where t is

given by (3.7); X is the removal matrix from Definition 3.3; and W D πwij º is an N ⇥N
GOE matrix independent from X. For any z 2 H, let T D T.z/ D πTij .z/º D .V � z/�1.

Now we would like to bound the entries of T and show that bulk universality holds
for V. To do this, we first require the following definition from [68], which defines a class
of initial data on which Dyson Brownian motion is well-behaved.

Definition 3.8 ([68, Definition 2.1]). Let N be a positive integer, let H0 be an N ⇥N
matrix, and setm0.z/ D N�1 Tr.H0 � z/�1. Fix E0 2 R, ı 2 .0; 1/, and � > 0 indepen-
dently of N . Let ⌘0 and r be two (N -dependent) parameters satisfying N ı�1

 ⌘0 and
N 2ı⌘0 < r  1. Define

D.E0; r; ⌘0; �/ D πz D E C i⌘ 2 H W E 2 ŒE0 � r; E0 C r ç; ⌘ 2 Œ⌘0; �çº: (3.9)

Although D.E0; r; ⌘0; �/ in the above definition depends on ı through the choice of ⌘0,
we omit this from the notation.

We say that H0 is .⌘0; �; r/-regular with respect to E0 if there exists a constant A > 1
(independent of N ) such that

kH0k  NA;
1

A
< sup
z2D.E0;r;⌘0;�/

Imm0.z/  A: (3.10)

Now let N be a positive integer and let H0 denote an N ⇥N matrix. Recall that
W D πwij º is an N ⇥N GOE matrix (which we assume to be independent from H0),
and define Hs D H0 C s

1
2 W for each s > 0. For each z 2 H, let

Gs D Gs.z/ D πGij .s; z/º D .Hs � z/�1:

If H0 is .⌘0; �; r/-regular and s is between ⌘0 and r , then the following proposition
estimates the entries of Gs.E C i⌘/, when ⌘ can be nearly of order N�1, in terms of
estimates on the diagonal entries of G0.E C i⌘0/. Its proof will appear in Appendix A
and is based on results of [35, 68].

Proposition 3.9. Adopt the notation of Definition 3.8. LetB 2 .1; 1
⌘0
/ be anN -dependent

parameter. Assume that H0 is .⌘0; �; r/-regular with respect to E0 and that

max
1jN

jGjj .0; z/j  B

for all z 2 D.E0; r; ⌘0; �/. Let s 2 .N ı⌘0; N
�ır/. Then, for any D > 1 there exists

a large constant C D C.ı;D/ > 0 such that

P

h
sup
z2D

max
1i;jN

jGij .s; z/j > N
ıB
i

 CN�D;

where we have abbreviated D D D.E0;
r

2
; N ı�1; � �

r

2
/.
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Now we can bound the entries of T.

Corollary 3.10. Let ˛; b; ⌫; ⇢ > 0 satisfy (3.1). For given E0 2 R and ı; �; r > 0, we
abbreviate D D D.E0;

r

2
; N ı�1; � �

r

2
/ (as in (3.9)).

(1) If ˛ 2 .1; 2/ and K ⇢ R n π0º is a compact interval, we let � denote the constant
B D B.˛/ from Theorem 3.4. Let E0 2 K and ı; r > 0 be constants (independent
of N ) such that ŒE0 � r; E0 C r ç ⇢ K and r < � . Then, for any D > 0 there exists
a large constant C D C.˛; ⌫; ⇢; ı;D;K/ > 0 such that

P

h
sup
z2D

max
1i;jN

jTij .z/j > N
ı

i
 CN�D : (3.11)

(2) If A ⇢ .0; 2/ is as in Theorem 3.5 and ˛ 2 .0; 2/ n A, then let � D
1

2C
, where the

constant C is from Theorem 3.5. Further let E0 2 R and r 2 .0; �/ be constants
(independent of N ) such that ŒE0 � r; E0 C r ç ⇢ Œ�2�; 2�ç. Then, for any ı;D > 0,
there exists a large constant C D C.˛; ⌫; ⇢; ı;D/ > 0 such that (3.11) holds.

Proof. We assume ˛ 2 .1; 2/, since the case ˛ 2 .0; 2/ n A is entirely analogous. By The-
orem 3.4, there exist large constants B D B.˛/ > 0 and C D C.˛; b;$; ı;D;K/ > 0
such that

P

h
sup

z2DK;$;B

max
1jN

jRjj .z/j > N
ı
4

i
< C exp

✓
�

.logN/2

C

◆
(3.12)

for any .2 � ˛/⌫ < $ < ⌫, where we recall the definition of DK;$;B from (3.2). Further-
more, observe (after increasing C if necessary) that

P

h
kXk > N

2DC3
˛

i
 CN�2D;

since ˛ < 2 and the probability that the magnitude of a given entry of H is larger than
N

2DC1
˛ is at most CN�2D�2.

Therefore, we may apply Proposition 3.9 with that H0 equal to our X; that ⌘0 equal
to our N�$ ; that t equal to our t , which is defined by (3.7) and satisfies t ⇠ N .˛�2/⌫ by
Lemma 3.6; that ı to be sufficiently small, so that it is less than our ı

4
and 1

4
.$ � .2�˛/⌫/

(if ˛ were in .0; 2/, we would require that ı be less than 1

4
.1
2

� .2 � ˛/⌫/ instead); that
E0 equal to the E0 here; that � equal to our B; that r equal to the minπr; B

4
º here; and

that A sufficiently large. Under this choice of parameters, Gt D T, so Proposition 3.9
implies (3.11).

We will next show that the local statistics of V are universal, which will follow from
the results of [54,67,68] together with the intermediate local laws Theorem 3.4 and Theo-
rem 3.5. Specifically, the results of [54,67,68] state that, if we start with a .⌘0; �; r/-regular
matrix (recall Definition 3.8) and then add an independent small Gaussian component of
order greater than ⌘0 but less than r , then the local statistics of the result will asymptoti-
cally coincide with those of the GOE. To state this more precisely, we must introduce the
free convolution [22] of a probability distribution with the semicircle law.

Fix N 2 Z>0 and an N ⇥N matrix A. For each s � 0, define

A.s/ D A C s
1
2 W;
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where W is an N ⇥N GOE matrix. For any z 2 H, also define

m.s/.z/ D N�1 Tr.A.s/ � z/�1

to be the Stieltjes transform of the (N -dependent) empirical spectral density of A.s/,
which we denote by ⇢.s/.x/ D ⇡�1 lim⌘!0 Imm.s/.E C i⌘/.

The following proposition establishes the universality of correlation functions of the
random matrix M.s/, assuming that M is regular in the sense of Definition 3.8.

Proposition 3.11 ([67, Theorem 2.2]). Fix some ı 2 .0; 1/ and � > 0, letN be a positive
integer, and let r 2 .0;N�ı/ and ⌘0 2 .N ı�1; 1/ be N -dependent parameters satisfying
⌘0 < N

�2ır . Let M be an N ⇥N matrix, and assume that M is .⌘0; �; r/-regular with
respect to some fixed E 2 K. Then, for any s 2 .N ı⌘0; N

�ır/, the correlation functions
of M.s/ are universal at energy level E with respect to ⇢.s/, as in Definition 2.3.

Using Proposition 3.11, one can deduce the following result. In what follows, we
recall the matrices X and V D X.t/ from Definition 3.3 and Definition 3.7, respectively
(where t was given by (3.7)).

Proposition 3.12. Assume ˛ 2 .1; 2/ andK ⇢ R n π0º, and letE 2 K. Then the correla-
tion functions of V are universal at energy levelE with respect to %˛ , as in Definition 2.3.
Moreover, the same statement holds if A and C are as in Theorem 3.5, ˛ 2 .0; 2/ n A,
and E ⇢ Œ� 1

2C
; 1

2C
ç.

To establish this proposition, one conditions on X and uses its intermediate local law
(Theorem 3.4 or Theorem 3.5) and Lemma 3.6 to verify the assumptions of Proposi-
tion 3.11. The latter proposition implies that the correlation functions of V are universal
at E with respect to ⇢.s/. The remaining difference between universality with respect to
⇢.s/.E/ and the desired result is in the scaling in (2.6). Specifically, one must approximate
the factors of ⇢.s/.E/ by %˛.E/ in Definition 2.3. This approximation can be justified
using the intermediate local law (Theorem 3.4 or Theorem 3.5) for X through a very simi-
lar way to what was explained in [61, Lemmas 3.3 and 3.4]. Thus, we omit further details.

3.3. Proofs of Theorem 2.4 and Theorem 2.5

In this subsection we establish Theorem 2.4 and Theorem 2.5. This will proceed through
a comparison between the resolvent entries of H and V (from Definition 3.7). In Sec-
tion 3.3.1, we state this comparison; we will provide a heuristic for its proof in Section 4.2,
and the result will be established in detail in Section 4. We will then in Section 3.3.2 use
the comparison to deduce eigenvector delocalization and bulk universality for H from the
corresponding results for V established in Section 3.2.

3.3.1. The comparison theorem. To formulate our specific comparison statement, we
require a certain way of decomposing the matrix H so that the elements of this decompo-
sition remain largely independent. A less general version of this procedure was described
in [4] under different notation to establish bulk universality for Wigner matrices whose
entries have finite .2C "/-th moment. This is done through the following two definitions.
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Definition 3.13. Let  and � be independent Bernoulli 0-1 random variables defined by

P Œ D 1ç D P ŒjHij j � N�⇢ç; P Œ� D 1ç D

P ŒjHij j 2 ŒN�⌫ ; N�⇢/ç
P ŒjHij j < N�⇢ç

:

In particular,  has the same law as the indicator of the event that jHij j � N�⇢. Simi-
larly, � has the same law as the indicator of the event that jHij j � N�⌫ , conditional on
jHij j < N�⇢.

Additionally, let a, b, and c be random variables such that

P .aij 2 I / D

P ŒHij 2 .�N�⌫ ; N�⌫/ \ I ç

P ŒjHij j < N�⌫/ç
;

P Œcij 2 I ç D

P ŒHij 2 ..�1;�N�⇢ç [ ŒN�⇢;1// \ I ç

P ŒjHij j � N�⇢ç
;

P .bij 2 I / D

P ŒHij 2 ..�N�⇢;�N�⌫ ç [ ŒN�⌫ ; N�⇢// \ I ç

P ŒjHij j 2 ŒN�⌫ ; N�⇢/ç

for any interval I ⇢ R. Again, a has the same law as Hij conditional on jHij j < N�⌫ ;
similar statements hold for b and c.

Observe that if a, b, c,  , � are mutually independent, then Hij has the same law as
.1� /.1��/aC .1� /�b C  c andXij has the same law as .1� /�b C  c. Thus,
although the random variables Hij 1jHij j�N�⇢ , Hij 1N�⌫jHij j<N�⇢ , and Hij 1jHij j<N�⌫

are correlated, this decomposition expresses their dependence through the Bernoulli ran-
dom variables  and �.

Definition 3.14. For each 1  i  j  N , let aij , bij , cij ,  ij , and �ij be mutually
independent random variables whose laws are given by those of a, b, c,  , and � from
Definition 3.13, respectively. For each 1  j < i  N , define aij D aj i by symmetry,
and similarly for each bij , cij ,  ij , and �ij . Let P and E denote the probability measure
and expectation with respect to the joint law of these random variables, respectively.

Now for each 1  i; j  N , set

Aij D .1 �  ij /.1 � �ij /aij ; Bij D .1 �  ij /�ij bij ; Cij D  ij cij ; (3.13)

and define the four N ⇥N matrices A D πAij º, B D πBij º, C D πCij º, and ‰ D π ij º.
Sample H and X by setting H D A C B C C and X D B C C. We will commonly

refer to ‰ as the label of H (or of X). Defining H and X in this way ensures that they
have the same laws as in Definition 2.1 and Definition 3.3, respectively. Furthermore,
this sampling induces a coupling between H and X, which coincides with the removal
coupling of Definition 3.3.

To state our comparison results, we require some additional notation. Define A, B,
C, H, and X as in Definition 3.14, and let W D πwij º be an independent N ⇥N GOE
matrix. Recalling the parameter t from (3.7), define for each � 2 Œ0; 1ç theN ⇥N random
matrices

H�
D πH

�

ij
º D �A C X C .1 � �2/

1
2 t

1
2 W; G�

D πG
�

ij
º D .H�

� z/�1:
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Observe in particular that H0
D V, G0

D T, H1
D H, and G1

D G, where we recall the
matrices V and T from Definition 3.7. Our comparison result will approximate the entries
of G� by those of G0 for any � 2 Œ0; 1ç, after conditioning on ‰ and assuming it to be in
an event with high probability with respect to P .

So, it will be useful to consider the laws of H and X conditional on their label ‰.
This amounts to conditioning on which entries of H are at least N�⇢. For any N ⇥N
symmetric 0-1 matrix ‰, let P‰ and E‰ denote the probability measure and expectation
with respect to the joint law of the random variables πaij ; bij ; cij ;  ij ;�ij º from Defi-
nition 3.14 conditional on the event that π ij º is equal to ‰. This induces a probability
measure and expectation on the H� and G� , denoted by P‰ and E‰ , respectively.

It will also useful for us to further condition on a single �ij . Thus, for any � 2 π0; 1º
and 1  p; q  N , let

P‰Œ � j�pqç D P‰Œ � j�pq D �ç

be the probability measure P‰ after additionally conditioning on the event that �pq D �,
and let

E‰Œ � j�pqç D E‰Œ � j�pq D �ç

denote the associated expectation. Observe in particular that

E
�ŒE‰Œ � j�pqçç D E‰Œ � ç;

where E
� denotes the expectation with respect to the Bernoulli 0-1 random variable �

from Definition 3.13.
The following theorem, which will be a consequence of Proposition 4.4 stated in Sec-

tion 4.4 below, provides a way to compare conditional expectations of G0 to those of G�

for any � 2 Œ0; 1ç. After conditioning on the label ‰ to not have too many entries equal
to 1, it roughly states that one compare expectations of smooth functions of these resolvent
entries, assuming a bound on the probability they are large.

Theorem 3.15. Let ˛; b; ⇢; ⌫ satisfy (3.1), and fix a positive integer m. Then there exist
(sufficiently small) constants " D ".˛; ⌫; ⇢; m/ > 0 and ! D !.˛; ⌫; ⇢; m/ > 0 such that
the following holds. Let N be a positive integer. For each integer j 2 Œ1;mç, fix real
numbers Ej 2 R and ⌘j > N�2, and denote zj D Ej C i⌘j for each j 2 Œ1;mç. Fur-
thermore, let F W R

m
! R be a function such that

sup
0j�jd
jxj j2N "

jF .�/.x1; : : : ; xm/j  NC0"; sup
0j�jd
jxj j2N2

jF .�/.x1; : : : ; xm/j  NC0 (3.14)

for some real numbers C0; d > 0. Here � D .�1;�2; : : : ;�m/ is an m-tuple of nonneg-
ative integers, j�j D

P
m

jD1 �j , and

F .�/ D

mY

jD1

✓
@

@xj

◆�j

F :

Assume d > d0.˛; ⌫; ⇢; m; C0/ is sufficiently large. For any symmetric 0-1 matrix ‰ and
complex number z, define the quantities J D J .‰/ and Q0 D Q0."; z1; z2; : : : ; zm; ‰/
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and the event �0 D �0."; z/ by

J D max
0j�jd

sup
1is ;jsN
0�1

E‰ŒjF
.�/.ImG

�

i1j1
; : : : ; ImG

�

imjm
/jç (3.15)

and

�0 D

°
sup

1i;jN
0�1

jG
�

ij
.z/j  N "

±
; Q0 D 1 �

mX

jD1
P‰Œ�0.zj /ç: (3.16)

Now let ‰ be a symmetric 0-1 random matrix with at most N 1C˛⇢C" entries equal to 1.
Then there exists a large constant C D C.˛; ⌫; ⇢; m/ > 0 such that

sup
0�1

jE‰ŒF .ImG
�

a1b1
; : : : ; ImG

�

ambm
/ç � E‰ŒF .ImG0

a1b1
; : : : ; ImG0

ambm
/çj

< CN�!.J C 1/C CQ0N
CCC0

(3.17)

for any indices 1  a1; a2; : : : ; am; b1; b2; : : : ; bm  N . The same estimate (3.17) holds if
some of the ImG0

aj bj
and ImG

�

aj bj
are replaced by ReG0

aj bj
and ReG�

aj bj
, respectively.

Although the conditioning on the label ‰ might notationally obscure the statement of
Theorem 3.15, we will see in Section 4.3 that this particular statement of the result will
be useful for the proof of Proposition 3.17 below. Additionally, we note the constants ",
!, and d0 from Theorem 3.15 are explicit; see (4.24) and (4.25) for their values in the
case m D 1.

3.3.2. Eigenvector delocalization and bulk universality for H. In the present subsection
we establish Theorem 2.4 and Theorem 2.5. We first show that the resolvent entries of H
are bounded by N ı on the nearly optimal scale ⌘ D N ı�1 for arbitrarily small ı > 0.

Theorem 3.16. In both regimes (1) and (2) in Corollary 3.10, we have for sufficiently
large C D C.˛; ⌫; ⇢; ı;D;K/ > 0 that

P

h
sup
0�1

sup
z2D

max
1i;jN

jG
�

ij
.z/j > N ı

i
 CN�D : (3.18)

Theorem 3.16 is a consequence of Corollary 3.10 and the following comparison result,
which allows one to deduce bounds on the entries of G� from bounds on those of T; the
latter result will be established using Theorem 3.15 in Section 4.3 below.

Proposition 3.17. Assume that ˛; b; ⌫; ⇢ > 0 satisfy conditions (3.1); recall that K ⇢ R

is a compact interval. Fix & � 0, and suppose that for each ı > 0 and D > 0 there exists
a constant C D C.˛; ⇢; ⌫; ı;D;K/ such that

P

h
sup

⌘�N&�1

sup
E2K

max
1i;jN

jTij .E C i⌘/j � N ı

i
 CN�D : (3.19)

Then, for each ı > 0 and D > 0 there exists a large constant A D A.˛; ⇢; ⌫; ı;D;K/
such that

P

h
sup
0�1

sup
⌘�N&�1

sup
E2K

max
1i;jN

jG
�

ij
.E C i⌘/j � N ı

i
 AN�D : (3.20)
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Now we can establish Theorem 2.4 and Theorem 2.5.

Proof of Theorem 2.4 and Theorem 2.5. It is known from [56, Corollary 3.2] that com-
plete eigenvector delocalization of the form given by the first parts of Theorem 2.4 and
Theorem 2.5 follows from bounds on the resolvent entries jGij .z/j D jG1

ij
.z/j of the

form (3.18). Thus, the first parts of Theorem 2.4 and Theorem 2.5 follow from Theo-
rem 3.16.

To establish the second parts of these two theorems, fix a positive integer m, and let
z1; z2; : : : ; zm 2 C be such that Im zj �

1

N2 for each j 2 Œ1; N ç. Furthermore, if we are
in the setting of Theorem 2.4, we additionally impose that each Re zj 2 K: if we are in
the setting of Theorem 2.5, we require that each jRe zj j < 1

2C
, where C is from Theo-

rem 3.5. We now apply Theorem 3.15 with F.x1; x2; : : : ; xm/ D

Q
m

iD1 xi .
Then Theorem 3.16 implies that the quantityQ0 from Theorem 3.15 is bounded above

by N�D for any D > 0 if N is sufficiently large. Furthermore, that theorem and the
deterministic bounds jTij j; jGij j  N 2 (due to (4.2) below) imply that for each ı > 0
there exists a constant C D C.ı/ such that the quantity J .‰/ from (3.15) is bounded
by CN ı . Also observe from (2.3) and the Chernoff bound that there exists a large constant
C > 0 such that

P


jπ.i; j / W jHij j 2 ŒN�⇢;1/ºj …


N 1C˛⇢

C
;CN 1C˛⇢

��
< Ce� N

C : (3.21)

Thus, the probability that the matrix ‰ from Theorem 3.15 has more than N 1C˛⇢C"

entries equal to one is bounded by c�1e�cN for some constant c > 0. On this event,
we apply the deterministic bounds jTij j; jGij j  N 2. Off of this event, we apply (3.17)
(averaged over all .a1; a2; : : : ; am/ D .b1; b2; : : : ; bm/ in Œ1; N ç) and then average over‰
conditional on the event that ‰ has at most N 1C˛⇢C" entries equal to one. Combining
these estimates implies

ˇ̌
ˇ̌
ˇE
"
N�m

mY

jD1
Im Tr G.zj / �N�m

mY

jD1
Im Tr T.zj /

#ˇ̌
ˇ̌
ˇ  CN�c ; (3.22)

after increasing C and decreasing c if necessary. It is known from [56, Theorem 6.4] that
a comparison of this form implies that the correlation functions of G and T asymptotically
coincide. Now the universality of the correlation functions for H at energy levelE follows
from the corresponding statement for V, given by Proposition 3.12.

4. Comparison results

In this section we establish Theorem 3.15. After recalling several identities and estimates
in Section 4.1, we provide a heuristic for the proof of Theorem 3.15 in Section 4.2.
Next, assuming Theorem 3.15, we use it to establish Proposition 3.17 in Section 4.3.
We then outline the proof of Theorem 3.15 in Section 4.4 and implement this outline in
the remaining sections: Section 4.5, Section 4.6, and Section 4.7.
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4.1. Estimates and identities

In this subsection we state several identities and estimates that will be used throughout
this article. We first recall that, for any square matrices M and K of the same dimension,
we have the resolvent identity

K�1
� M�1

D K�1.M � K/M�1: (4.1)

Furthermore, for any symmetric matrix M and z D E C i⌘ 2 H with E; ⌘ 2 R, we have
the deterministic estimate (see [55, equation (8.34)])

jKij j 

1

⌘
; where K D πKij º D .M � z/�1. (4.2)

Moreover, observe from (2.3) and the fact that Hij has the same law as N� 1
˛ .Z C J /

that
C1

Nt˛ C 1
 P ŒjHij j � t ç 

C2

Nt˛ C 1
for any t > 0. (4.3)

Using (4.3), we can establish the following lemma, which bounds moments of trun-
cations of Hij . As a consequence, we deduce Lemma 3.6.

Lemma 4.1. Fix R � N� 1
˛ and let sij D Hij 1jHij j<R. For any positive real number

p > ˛, we have
cN�1Rp�˛

 EŒjsij j
pç  CN�1Rp�˛

for a small constant c D c.˛; p; C2/ > 0 and a large constant C D C.˛; p; C1/ > 0.

Proof. From (4.3), we have

EŒjsij j
pç D p

Z
R

0

sp�1
P ŒjHij j � sç ds 

C1p

N

Z
R

0

sp�1�˛ ds D

C1pR
p�˛

N.p � ˛/
;

which establishes the upper bound in the lemma. To establish the lower bound, observe
from (4.3) and the bound R � N� 1

˛ that

EŒjsij j
pç D p

Z
R

0

sp�1
P ŒjHij j � sç ds

�

C1p

N

Z
R

R
2

ds

s˛C1�p
CN�1s1�p

�

C1p

5N

Z
R

R
2

sp�˛�1 ds D

C1p.1 � 2˛�p/Rp�˛

5N.p � ˛/
:

Proof of Lemma 3.6. From Lemma 4.1 applied withR D N�⌫ and p D 2, we deduce the
existence of constants C D C.˛; C1/ > 0 and c D c.˛; C2/ > 0 such that

cN .˛�2/⌫�1
 EŒH 2

11
1jH11j<N�⌫ ç  CN .˛�2/⌫�1:

Combining this with the fact that P ŒjH11j < N
�⇢ç �

1

2
for sufficiently large N (due

to (4.3)), we deduce the lemma.
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We close this subsection with the following lemma, which bounds the conditional
moments of the random variables Aij and Bij from Definition 3.14.

Lemma 4.2. Let p > ˛. There exists a large constant C D C.⌫; ⇢; p/ such that, for any
indices 1  i; j  N , we have that

E‰ŒjAij j
p

j�ij ç  CN ⌫.˛�p/�1; E‰ŒjBij j
pç  CN ⇢.˛�p/�1: (4.4)

Proof. Let us first establish the bound on E‰ŒjBij j
pç. There are two cases to consider,

depending on the entry  2 π0; 1º. If  ij D 1, then Bij D 0 and thus (4.4) holds. If
 ij D 0, then there exists a constant C D C.⇢; p/ > 0 such that

E‰ŒjBij j
pç D

EŒjBij j
pç

P Œ ij D 0ç


EŒjHij j
p1jHij jN�⇢ ç

P ŒjHij j  N�⇢ç
 CN ⇢.˛�p/�1;

where to deduce the last estimate above we used Lemma 4.1 and the fact that

P ŒjHij j > N�⇢ç >
1

2

for sufficiently large N (due to (4.3)). This yields the second estimate in (4.4).
Through a very similar procedure, we deduce after increasing C if necessary that

EŒjaij j
pç  CN ⌫.˛�p/�1, where aij has the same law as the random variable a given

in Definition 3.13. Now the first estimate in (4.4) follows from the deterministic bound
jAij j  jaij j.

4.2. A heuristic for the comparison

Here we provide a heuristic for the estimate (3.17) if a D i D b for some i 2 Œ1; N ç.
Conditioning on ‰ (and abbreviating E‰ as E here for brevity), we obtain

@�EŒG
�

i i
ç D

X

1j;kN
E


G
�

ij

✓
Ajk �

� t
1
2

.1 � �2/
1
2

wjk

◆
G
�

ki

�
;

where we used (4.1) to compute the derivative on the left side.
Now let us consider two cases. The first is the “large field case,” meaning that jk D 1

(which implies that Ajk D 0 D Bjk and jHjkj � N�⇢). Recall the formula for Gaussian
integration by parts (see, for example, [81, Appendix A.4]): for a differentiable function
F W R ! R subject to a mild growth condition, and a centered Gaussian g,

EŒgF.g/ç D EŒg2çEŒF 0.g/ç:

We integrate by parts with respect to the Gaussian random variable x D N
1
2wjk , which

is centered and has variance one. This yields

�

.1 � �2/
1
2

✓
t

N

◆ 1
2

EŒG
�

ij
xG

�

ki
ç D

� t

N
EŒG

�

ij
G
�

kk
G
�

ki
C � � � ç;

where the additional terms are degree three monomials in theG�
ij

(and we again used (4.1)
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to compute the derivatives of the resolvent entries). Assuming that each jG
�

ij
j is bounded,

and using Lemma 3.6 and the fact that the number of pairs .j; k/ for which  jk D 1 is
essentially bounded by N ˛⇢C1, we can bound the total contribution of these terms by
a multiple of

tN�1N ˛⇢C1
⇠ N ⌫.˛�2/C˛⇢:

The second is the “small field case,” meaning that  jk D 0 (so jHjkj < N�⇢). Recall
that Ajk D ajk.1 � �jk/ and Bjk D bjk�jk , and abbreviate ajk D a, bjk D b, �jk D �,
and wjk D w. Letting U� D πU

�

jk
º denote the resolvent of H whose .j; k/ and .k; j /

entries are set to zero, we can expand G� around U� using (4.1) to obtain

E


G
�

ik

✓
.1 � �/a �

� t
1
2w

.1 � �2/
1
2

◆
G
�

j i

�

D E

✓
.1 � �/aC

� t
1
2w

.1 � �2/
1
2

◆�
�.1 � �/aC �b C .1 � �2/

1
2 t

1
2w
�

⇥ .U
�

ij
U
�

kk
U
�

j i
C � � � /

�

C E

✓
.1 � �/aC

� t
1
2w

.1 � �2/
1
2

◆�
�.1 � �/aC �b C .1 � �2/

1
2 t

1
2w

◆3

⇥ .U � � � �U � C � � � /
⇤

D �E
⇥
.1 � �/a2 � tw2

⇤
E
⇥
U
�

ij
U
�

kk
U
�

j i
C � � �

⇤

C �E
⇥
�2.1 � �/a4 C 3�2.1 � �/tw2a2 C 3�tw2b2 C .1 � �2/t2w4

⇤

⇥ E
⇥
U � � � �U � C � � �

⇤
;

where the additional terms refer to polynomials in the entries of U. To deduce the first
equality, we used the fact that terms not involving a factor of

�.1 � �/aC �b C .1 � �2/
1
2 t

1
2w

(first-order terms) and those involving .�a.1 � �/C b�C .1 � �2/
1
2 t

1
2w/2 (third-order

terms) vanish because a, b, and w are symmetric and U, a, b, w, and � are mutually
independent.

From the choice of t , we have

�EŒ.1 � �/a2 � tw2ç D 0:

Hence the second-order terms vanish if  jk D 0. Assuming that the entries of U� are
bounded, we can also estimate the sum of all fourth-order terms by a multiple of

N 2
E
⇥
.1 � �/a4 C .1 � �/tw2a2 C �tw2b2 C t2w4

⇤

 N ⌫.˛�4/C1
CN .⇢C⌫/.˛�2/

CN 2⌫.˛�2/

 N ⌫.˛�4/C1
CN�r
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for some r > 0. Here, we used (2.3), Lemma 3.6, and the facts that

.1 � �/a D Hij 1jHij j<N�⌫ and �b D Hij 1N�⌫jHij j<N�⇢

to deduce that

EŒ.1 � �/a4ç ⇠ N ⌫.˛�4/�1; EŒ.1 � �/a2ç ⇠ N .˛�2/⌫�1; EŒ�b2ç ⇠ N ⇢.˛�2/�1;

as shown in Lemma 4.2.
Hence the total contribution from the second- and fourth-order terms is bounded by

a multiple of
N ⌫.˛�2/C˛⇢

CN ⌫.˛�4/C1
CN�r :

For this to tend to 0, we require

⌫ >
1

4 � ˛
; ˛⇢ < .2 � ˛/⌫; 0 < ⇢ < ⌫;

where the last restriction is by definition. This recovers a number of the constraints
imposed by (3.1). To motivate the others, recall that the local law for X was proved
for any scale N�$ with .2 � ˛/⌫ < $ < ⌫ < 1

2
for ˛ 2 .1; 2/ (Theorem 3.4) and at the

scaleN ı� 1
2 for almost all ˛ 2 .0; 2/ in the small energy regime (Theorem 3.5). In order to

apply the results on Dyson Brownian motion from Section 3.2, we need the scale of these
local laws to be smaller than t ⇠ N ⌫.˛�2/. For ˛ 2 .1; 2/, this condition is guaranteed.
For ˛  1, this requires ⌫ < 1

4�2˛ , which is the remaining condition in (3.1).

4.3. Improving the scale

In this subsection we establish Proposition 3.17, assuming Theorem 3.15 holds, using an
induction on the scale ⌘.

To that end, recall the definitions of the matrices G� .z/ for any � 2 Œ0; 1ç, and define

P.ı; ⌘/ D P

h
max

1i;jN
0�1

jG
�

ij
.E C i⌘/j > N ı

i

for anyE 2 R, ⌘ � N &�1, and ı > 0. Moreover, fix " and! as in Theorem 3.15, choosing
k D 1 in that theorem, and let � D

"

4
. We omit the dependence of ˛; b; ⇢; ⌫; "; !; and k

in the notation for the constants appearing in the following lemma and view them as fixed
parameters.

We begin with the following lemma.

Lemma 4.3. Adopt the notation and assumptions of Proposition 3.17. For any ı > 0 and
integer D > 0, there exists a large constant C D C.ı;D/ such that

P.ı; ⌘/  CNCP

✓
"

2
;N �⌘

◆
C CN�D

for all ⌘ � N &�1.

Proof. Let p D d
DC30
ı

e, and define Fp.x/ D jxj
2p

C 1. Observe that there exists a con-
stant Cp , only dependent on p (and therefore only dependent on ı and D) such that

jF .a/
p
.x/j  CpFp.x/ for all x 2 R and a 2 Z�0. (4.5)
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Now we apply Theorem 3.15 with F.x/ D Fp.x/. Observe that the C0 from that
theorem can be taken to be 4p and that d can also be taken to be bounded by constant
multiple of p (where the implicit constants depend ⌫, ⇢, and ", although in the future we
will not mention the dependence on these parameters, since they are already fixed). In
view of (3.17) and (4.5), there exists a large constant Bp (only dependent p) such that

E‰

⇥
Fp.ImG

�

ab
.z//

⇤
 E‰

⇥
Fp.ImTab.z//

⇤

C Bp
�
N�!Jp.‰/CQ0."; ‰/N

Bp
C 1

�
;

(4.6)

for any 0-1 symmetric N ⇥N matrix ‰ with at most N 1C˛⇢C" entries equal to 1, where

Jp.‰/ D sup
1i;jN
0�1

E‰ŒFp.ImG
�

ij
/ç; Q0."; z;‰/ D P‰

h
max

1i;jN
0�1

jG
�

ij
.z/j > N "

i
:

Now observe that taking the supremum over all 1  a; b  N and 0  �  1 on the
left side of (4.6) yields Jp.‰/. Therefore,

.1�BpN
�!/Jp.‰/ max

1a;bN
E‰

⇥
Fp.ImTab.z//

⇤
CBp

�
Q0.";z;‰/N

Bp
C 1

�
: (4.7)

We now take the expectation of (4.7) over ‰. On the event when there are at most
N 1C˛⇢C" entries equal to C in ‰, we apply (4.7). The complementary event has prob-
ability bounded by c�1e�cN , for some constant c > 0, due to (3.21); on this event, we
apply the deterministic bounds

Fp.ImG
�

ab
/  N 5p and Fp.ImTab/  N 5p:

Combining these estimates and fact that BpN�! < 1

2
for sufficiently large N yields that

Jp  N 2 max
1a;bN

EŒFp.ImTab.z//çC Bp.N
Bp P."; ⌘/C 1/C BpN

Bpe�cN ; (4.8)

where
Jp D max

1i;jN
0�1

EŒFp.ImG
�

ij
/ç:

Here we increased Bp and used J  EŒJp.‰/ç and

E

h
max

1a;bN
E‰

⇥
Fp.ImTab.z//

⇤i
 N 2 max

1a;bN
E
⇥
Fp.ImTab.z//

⇤
:

After increasing Bp again if necessary, we find from (3.19) and the trivial bound (4.2) that
EŒFp.ImTab.z//ç  BpN for any 1  a; b  N . Inserting this into (4.8) yields

Jp  BpN
3

C BpN
Bp P."; ⌘/  BpN

3
C BpN

Bp P." � �; N �⌘/; (4.9)

where in the second estimate above we have used the fact that P."; ⌘/  P." � �; N �⌘/,
which follows from the bound

max
°

max
1i;jN

jG
�

ij
.E C i⌘/j; 1

±
 Rmax

°
max

1i;jN
jG
�

ij
.E C iR⌘/j; 1

±
(4.10)
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for anyR > 0, given as [17, Lemma 2.1]. Applying (4.9), a Markov estimate, the fact that
� D

"

4
, and the fact that pı � D C 30, we see for any i; j that

sup
�2Œ0;1ç

P

h
max

1i;jN
jImG

�

ij
.z/j > N

ı
2

i

 N 2 max
1i;jN
0�1

P
⇥
jImG

�

ij
.z/j > N

ı
2
⇤

 N 2 max
1i;jN
0�1

EŒFp.ImG
�

ij
/ç

Fp.N
ı
2 /

<
Jp

N pı�2 < BpN
�D�25

C BpN
Bp P

✓
"

2
;N �⌘

◆
:

(4.11)

Applying a union bound over the i; j and the same reasoning with ImG
�

ab
replaced

by ReG�
ab

, we deduce the estimate

sup
�2Œ0;1ç

P

h
max

1i;jN
jG
�

ij
.z/j > N

ı
2

i
< BpN

�D�20
C BpN

BpC2P
✓
"

2
;N �⌘

◆
: (4.12)

Now the proposition follows from applying a union bound in inequality (4.12) over all
� 2 Œ0; 1ç \N�20

Z, then extending these range of � to all of Œ0; 1ç through the determin-
istic estimate

jG
�

ij
.z/ �G

�
0
ij
.z/j  2j� � � 0

j

1
2N 6

⇣
1C max

1i;jN
jwij j

⌘
;

due to (4.1), (4.2), the fact that ⌘ � N�2, and the bound P Œjwij j > 2ç < e�N .

We can now establish Proposition 3.17.

Proof of Proposition 3.17. Set  D d
1�&
�

e. We first claim that, for any integers D > 0
and k 2 Œ�1; ç, there exists a constant C D C.D; k/ > 0 such that

P

✓
"

2
;N�k�

◆
< CN�D :

To establish this, we proceed by induction on k. Because  is constant, only finitely
many inductive steps are required. Therefore, we may permit the constants C.D; k/ to
increase at each step.

The base case k D �1 is trivial, because inequality (4.2) implies that P. "
2
; ⌘/ D 0 for

any ⌘ 2 .1;N � ç. For the induction step, suppose the claim holds for k D m 2 Œ�1;  � 1ç.
Fix some integerD > 0. We must show that there exists a constant C D C.D;mC1/ > 0
such that P. "

2
; N�.mC1/� /  CN�D .

To that end, applying Lemma 4.3 yields an integer C1 D C1.D;m/ > 0 such that

P

✓
"

2
;N�.mC1/�

◆
 C1N

C1P

✓
"

2
;N�m�

◆
C C1N

�D : (4.13)
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Next, recall by the induction hypothesis for k D m that, for any integer D0 > 0, there
exists a constant C D C.D0; m/ > 0 such that

P

✓
"

2
;N�m�

◆
< CN�D0

:

In particular, takingD0
D C1 CD, there exists a constant C2 D C2.D;m/ > 0, given by

the C.C1 CD;m/ from the induction hypothesis, such that

P

✓
"

2
;N�m�

◆
< C2N

�C1�D :

Inserting this into (4.13) yields P. "
2
; N�.mC1/� /  .C1C2 C C1/N

�D , which completes
the induction after setting C.D;mC 1/ D C1C2 C C1.

Now fix ı;D > 0. For any ⌘ � N &�1, applying Lemma 4.3 shows there exist con-
stants B D B.ı;D/ > 0 and C D C.ı;D/ > 0 such that

P.ı; ⌘/  CNCP

✓
"

2
;N �⌘

◆
C CN�D

 BN�D; (4.14)

where we used the fact that N �⌘ � N�� , the bound P. "
2
; N�� / < CN�C�D , and the

monotonicity of P.ı; ⌘/ in ⌘ (which follows from (4.10)).
Let D denote the set of z 2 H of the form E C i⌘, where E 2 K and N &�1

 ⌘  1
are both of the form k

N10 for some integer k. Then a union bound applied to (4.14) shows
that

P

h
sup
z2D

sup
�2Œ0;1ç

max
1i;jN

jG
�

ij
.z/j � N ı

i


Bı;DC25
ND

: (4.15)

From (4.15) and the deterministic estimate jGij .z/ �Gij .z
0/j  N 6

jz � z0
j we deduce

that
P

h
sup

⌘�N&�1

sup
�2Œ0;1ç

max
1i;jN

jG
�

ij
.z/j � 2N ı

i


Bı;DC25
ND

: (4.16)

Here, we used the fact that bound holds trivially in the region where ⌘ � 1 by (4.2). Thus
(3.20) follows by setting � D 0 in (4.16).

4.4. Outline of the proof of Theorem 3.15

For the remainder of Section 4, we assume that m D 1 in Theorem 3.15, and we abbre-
viate z1 D z, a1 D a, and b1 D b. Since the proof of Theorem 3.15 for m > 1 is entirely
analogous, it is omitted. However, in Section 4.8 we briefly outline how to modify the
proof in this case.

Observe that
@

@�
E‰

⇥
F.ImG

�

ab
/
⇤

D

X

1p;qN
E‰


Im.G�

ap
G
�

qb
/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImG

�

ab
/

�
;

(4.17)

and so it suffices to establish the following proposition. We recall that J D Jp.‰/ and
Q0 were defined in Theorem 3.15.
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Proposition 4.4. Adopt the notation of Theorem 3.15. Then there exists a large constant
C D C.˛; ⌫; ⇢/ > 0 such that, for sufficiently large N ,

X

1p;qN

ˇ̌
ˇ̌E‰


Im.G�

ap
G
�

qb
/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImG

�

ab
/

�ˇ̌
ˇ̌



C

.1 � �2/
1
2

.N�!.J C 1/CQ0N
CCC0/:

(4.18)

To establish Proposition 4.4, we estimate each summand on the right side of (4.17).
Thus, in what follows, let us fix some integer pair .p; q/ 2 Œ1; N ç ⇥ Œ1; N ç.

If G� were independent from Apq and wpq , then each expectation on the left side
of (4.18) would be equal to zero, from which the proposition would follow. Since this
independence does not hold, we will approximate G� with a matrix that is indepen-
dent from Apq and wpq (after conditioning on ‰, as we will do throughout the proof
of Proposition 4.4) and estimate the error incurred by this replacement.

In fact, it will be useful to introduce two matrices. The first will be independent from
wpq but not quite independent from Apq (although it will be independent from Apq after
additionally conditioning on �pq); the second will be independent from bothwpq andApq

More specifically, we define the N ⇥N matrices D D D�;p;q D πDij º D πD
�;p;q

ij
º

and E D E�;p;q D πEij º D πE
�;p;q

ij
º by setting

Dij D H
�

ij
D Eij if .i; j / … π.p; q/; .q; p/º

and
Dpq D Dqp D Xpq D Bpq C Cpq; Epq D Eqp D Cpq :

We also define the N ⇥N matrices Ä D Ä�;p;q D πÄij º D πÄ
�;p;q

ij
º D H�

� D and
ƒ D ƒ�;p;q D πƒij º D πƒ

�;p;q

ij
º D D � E, so that

Äij D �‚ij C .1 � �2/
1
2ˆij ; ƒij D Bpq1.i;j /2π.p;q/;.q;p/º; (4.19)

where
‚ij D Aij 1.i;j /2π.p;q/;.q;p/º; ˆij D t

1
2wij 1.i;j /2π.p;q/;.q;p/º: (4.20)

In addition, we define the resolvent matrices

R D R�;p;q D πRij º D πR
�;p;q

ij
º D .D � z/�1;

U D U�;p;q D πUij º D πU
�;p;q

ij
º D .E � z/�1:

(4.21)

Remark 4.5. Observe that, after conditioning on ‰, the matrices Ä and ƒ are both inde-
pendent from U. After further conditioning on �pq , the matrices ‚ D π‚ij º, ˆ D πˆij º,
and R become mutually independent.

We would first like to replace the entries G�
ij

in the .p; q/ summand on the left side of
(4.18) with the entries Rij D R

�;p;q

ij
. To that end, we set

⇠ij D ⇠ij .�/D .G�
� R/ij D .�RÄR C .RÄ/2R � .RÄ/3G� /ij ; ⇣ij D Im ⇠ij ; (4.22)

for any 1  i; j  N , where the third equality in (4.22) follows from the resolvent iden-
tity (4.1). We abbreviate ⇣ D ⇣ab .



A. Aggarwal, P. Lopatto, H.-T. Yau 3736

By a Taylor expansion, there exists some ⇣0 2 ŒImG
�

ab
; ImRabç such that

F 0.ImG
�

ab
/ D F 0.ImRab C ⇣/

D F .1/.ImRab/C ⇣F .2/.ImRab/

C

⇣2

2
F .3/.ImRab/C

⇣3

6
F .4/.⇣0/;

(4.23)

where

F .i/.x/ D

@iF

@xi
.x/ for any i 2 Z�0 and x 2 R.

Using (4.20), (4.22) and (4.23), we deduce that the .p; q/-summand on the left side of
(4.18) can be expanded as a finite sum of (consisting of less than 222) monomials in ‚pq
and p̂q , whose coefficients depend on the entries of G� and R. We call such a monomial
of degree k (or a k-th-order term) if it is of total degree k in ‚pq and p̂q . We will
estimate the .p; q/-summand on the left side of (4.18) by bounding the expectation of
each such monomial, which will be done in the following sections.

Before proceeding, let us fix an integer pair .p; q/ 2 Œ1; N ç ⇥ Œ1; N ç throughout this
the remainder of section. It will also be useful for us to define some additional parameters
that will be fixed throughout this section. In what follows, we define the positive real
numbers ! > " > 0 through

" D

˛

100
min

≤
.4 � ˛/⌫ � 1; .2 � ˛/⌫ � ˛⇢; ⌫ � ⇢;

⇢

2
; 1

≥
;

! D min
®
.˛ � 2"/⇢ � 15"; .2 � ˛/⌫ � ˛⇢ � 15";

.4 � ˛/⌫ � 1 � 10"; .4 � 2˛/⌫ � 15"
¯
:

(4.24)

Moreover, let us fix integers #; d > 0 such that

#.⇢ � 2"/ > C0"C 3; d > 3# C 5: (4.25)

The remainder of this section is organized as follows. We will estimate the contri-
bution to the left side of (4.18) resulting from the first, third, and higher degree terms
in Section 4.6, and we will estimate the contribution from the second degree terms in
Section 4.7. However, we first require estimates on the entries of R and U (from (4.21)),
which will be provided in Section 4.5. We then outline the modifications necessary in the
proof of Theorem 3.15 in Section 4.8.

4.5. Estimating the entries of R and U

Recall that the event �0 from (3.16) bounds the entries of G� . In this subsection we will
provide similar estimates on the entries of R and U on an event slightly smaller than �0.
More specifically, define

�1 D �1.⇢/ D

°
max

1i;jN
jwij j  N�⇢

±
;

� D �.⇢; "; z/ D �0 \�1;

Q D 1 � P‰Œ�.⇢; "; z/ç D P‰Œ�
c ç;
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where �c denotes the complement of �. Since ⇢ < 1

2
and wij is a Gaussian random

variable with variance at most 2

N
, there exists small constant c D c.⇢/ > 0 such that

1 � P Œ�1ç < e
�cN c

: (4.26)

Thus, it suffices to establish (4.18) withQ0 there replaced byQ. The following lemma
estimates jRij j and jUij j on the event �.

Lemma 4.6. For N sufficiently large, we have

1� sup
1i;jN

jRij j  2N "; 1� sup
1i;jN

jUij .z/j  2N ": (4.27)

Proof. We only establish the second estimate (on jUij j) in (4.27), since the proof of the
first is entirely analogous. Let us also restrict to the event �, since the lemma holds off
of �.

Recall from the resolvent identity (4.1) and the definitions (4.19), (4.20), and (4.21)
that

U � G�
D

sX

jD1
.G� .Ä Cƒ//jG�

C .G� .Ä Cƒ//sC1U (4.28)

for any integer s > 0.
Now, set s D d

2

⇢�2"e, which is positive by (4.24). Observe that

1� max
1i;jN

jG
�

ij
j  N "

and that the only nonzero entries of 1�.Ä Cƒ/ are 1�.Ä Cƒ/pq and 1�.Ä Cƒ/qp ,
which satisfy

1�.Ä Cƒ/pq D 1�.Ä Cƒ/qp  N�⇢
C t

1
2 jwpqj1�1

 2N�⇢: (4.29)

Thus, (4.28) yields

1�jUij �G
�

ij
j 

sX

jD1
.4N 2"�⇢/j C .4N "�⇢/.sC1/ max

1i 0;j 0N
jUi 0j 0 j  1; (4.30)

if N is sufficiently large, where we have also used the deterministic estimate

jUi 0j 0 j  ⌘�1
 N 2:

Now estimate (4.27) on jUij j follows from inequality (4.30), the choice of s, and the fact
that 1�jG

�

ij
j  N ".

We also require the following lemma, which states that we can approximate quantities
near jF .k/.ImRab/j and jF .k/.ImUab/j in terms of derivatives of F .k/.ImG

�

ab
/.

Lemma 4.7. Let ' 2 R satisfy either ' 2 ŒImG
�

ab
; ImUabç or ' 2 ŒImG

�

ab
; ImRabç.

Then there exists a large constant C DC.#/ > 0 such that, for any integer k � 0, we have

1�jF .k/.'/j  C1�
#X

jD0
N .2"�⇢/j

jF .kCj /.ImG
�

ab
/j C

C

N 3
: (4.31)
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Moreover, if ' 2 ŒImG
�

ab
; ImRabç, then

1�jF .k/.'/j  C1�
#X

jD0
N .2"�⇢/j

jF .kCj /.ImRab/j C

C

N 3
: (4.32)

Proof. The proof of this lemma will be similar to that of Lemma 4.6. We only estab-
lish (4.31) when ' 2 ŒImG

�

ab
; ImUabç, since the proofs of (4.32) and of (4.31) when

' 2 ŒImG
�

ab
; ImRabç are entirely analogous.

Through a Taylor expansion, we have

F .k/.'/ � F .k/.ImG
�

ab
/ D

#X

jD1

‡j

j ä
F .jCk/.ImG

�

ab
/C

‡#C1

.# C 1/ä
F .#Ck/.‡1/; (4.33)

where ‡1 2 ŒImG
�

ab
; 'ç, and ‡ D ' � ImG

�

ab
, which satisfies

j‡ j  jImUab � ImG
�

ab
j D jIm.U.Ä Cƒ/G� /abj; (4.34)

where in (4.34) we used the resolvent identity (4.1) and the definition (4.19) of Ä and ƒ.
Recalling that Ä Cƒ has only two nonzero entries, both of which are at most 2N�⇢

on � (due to (4.29)), and further recalling that the entries of G� and U are bounded
by 2N " on � (due to Lemma 4.6), we deduce that

1�j‡ j  16N 2"�⇢1�:

Inserting this and the first estimate of (3.14) into (4.33), we deduce the existence of a
constant C D C.#/ > 0 such that

1�jF .k/.ImUab/ � F .k/.ImG
�

ab
/j

 C1�
#X

jD1
N .2"�⇢/j

jF .jCk/.ImG
�

ab
/j C CN .#C1/.2"�⇢/CC0":

(4.35)

Now the second estimate in (4.31) follows from inequality (4.35) and the fact (4.25) that
.⇢ � 2"/# > C0"C 3.

4.6. The first-, third-, and higher-order terms

In this subsection we show that the expectations of the first- and third-order terms in
the expansion of (4.18) are equal to 0 through Lemma 4.8, and we also estimate the
higher-order terms through Lemma 4.9 and Lemma 4.10.

Observe that any degree one or degree three term appearing in the expansion of the
.p; q/-summand on the left side of (4.18) (using (4.22) and (4.23)) contains either zero or
two factors of Ä . The following lemma indicates that the expectation of any such term is
equal to 0.

Lemma 4.8. For any integers 1  i; j  N and k 2 π0; 1; 2º, define

⇠
.k/

ij
D ..�RÄ/kR/ij :



GOE statistics for Lévy matrices 3739

Let M be a (possibly empty) product of s � 0 of the ⇠.k/
ij

, so that

M D

sY

rD1
⇠
.kr /

irjr

for some 1  ir ; jr  N and kr 2 π0; 1; 2º. If
P
s

rD1 kr is even (in particular, if it is either
0 or 2) and m 2 π1; 2; 3º, then

E‰


F .m/.ImRab/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
M

�
D 0: (4.36)

The same estimate (4.36) holds if some of the ⇠.kr /

irjr
are replaced by Re ⇠.kr /

irjr
or Im ⇠

.kr /

irjr
in

the definition of M .

Proof. First observe from the symmetry of the random variables Hij that

E‰ŒA
m

pq
j�pqç D 0 D E‰Œw

m

pq
j�pqç

for any odd integer m > 0. Now, recall from Remark 4.5 that Apq , wpq , and R are
mutually independent after conditioning on �pq and ‰. Therefore,

E‰


F .k/.ImRab/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
M

�

D E
�


E‰


F .k/.ImRab/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
M

ˇ̌
ˇ̌ �pq

��
D 0;

(4.37)

where we have used the fact that the term inside the first expectation in the middle of
equation (4.37) is a linear combination of products of expressions that each either contain
a term of the form EŒAm

pq
j�pqç or EŒwm

pq
j�pqç for some odd integer m > 0 (by (4.19),

(4.20), and the fact that the sum
P
s

rD1 kr is even), and each of these expectations is equal
to 0. This establishes (4.36).

Now let us consider the fourth- and higher-order terms that can occur in (4.18) through
the expansions (4.22) and (4.23). Two types of such terms can appear. The first is when
the final term in (4.23) appears, giving rise to a factor of ⇣3F .4/.⇣0/. The second is when
⇣3F .4/.⇣0/ does not appear and instead the term is a product of F .m/.ImRab/ (for some
1  m  3) with at most four expressions of the form .�RÄ/kR or .�RÄ/kG� (and their
real or imaginary parts).

The following lemma addresses terms of the first type.

Lemma 4.9. There exists a large constant C D C.˛; ⌫; ⇢; #/ > 0 such that

E‰

ˇ̌
ˇ̌ Im.G�

ap
G
�

qb
/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
⇣3F .4/.⇣0/

ˇ̌
ˇ̌
�



CN 10"

.1 � �2/
1
2

✓
N .˛�4/⌫�1J C

t2J

N 2
CQNC0C10

C

1

N 3

◆
:

(4.38)
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Proof. We first establish an estimate that holds off of the event �. In this case, to bound
the left side of (4.38), we use the deterministic facts that jG

�

ij
j; jRij j; ⇣  ⌘�1

 N 2 and
jAij j < 1, which implies from (3.14) that jF.ImRij /j  NC0 . This yields for sufficiently
large N ,

E‰

ˇ̌
ˇ̌ Im.G�

ap
G
�

qb
/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
⇣3F .4/.⇣0/1�c

ˇ̌
ˇ̌
�

 NC0C10
E‰


1�c C

�EŒjwpqj1�c ç

.1 � �2/
1
2

�


4NC0C10Q

.1 � �2/
1
2

:

(4.39)

Next we first work on the event �. To that end, observe from (4.1), (4.22), and
Lemma 4.6 that

j⇣j1�  j.G�ÄR/abj1�
D

�
jG�
ap
ÄpqRqbj C jG�

aq
ÄqpRpbj

�
1�  8N 2"

jÄpqj1�:

Furthermore, since ⇣0 2 ŒImG
�

ab
; ImRabç, (4.32) yields that

E‰

ˇ̌
ˇ̌ Im.G�

ai
G
�

jb
/

✓
Apq �

�wij

.1 � �2/
1
2

◆
⇣3F .4/.⇣0/1�

ˇ̌
ˇ̌
�



512N 10"

.1 � �2/
1
2

E‰

⇥
jÄpqj

3.jApqj C t
1
2 jwij j/jF .4/.⇣0/j1�

⇤



CN 10"

.1 � �2/
1
2

2#X

jD0
N .2"�⇢/j

E‰

⇥
jF .jC4/.ImRab/j.jApqj C t

1
2 jwpqj/

4
⇤

C

C

N 3

(4.40)

for some constant C D C.#/ > 0. To estimate the right side of (4.40), we condition
on �pq , and apply Remark 4.5 to deduce that

E‰

⇥
jF .jC4/.ImRab/j.jApqj C t

1
2 jwpqj/

4
⇤

 8E�
⇥
E‰

⇥
jF .jC4/.ImRab/j.jApqj

4
C t2jwpqj

4/
ˇ̌
�pq

⇤⇤

D 8E�
h
E‰

⇥
jF .jC4/.ImRab/j

ˇ̌
�pq

⇤
E‰

⇥
.jApqj

4
C t2jwpqj

4/
ˇ̌
�pq

⇤i
:

Then Lemma 4.1 (with p D 4) and the fact that EŒjwpqj
4ç 

60

N2 yields after enlarging
C D C.˛; ⌫; ⇢; #/ that

E‰

⇥
jF .jC4/.ImRab/j.jApqj

4
C t2jwpqj

4/
⇤

 C

✓
N .˛�4/⌫�1

C

t2

N 2

◆
E
�
⇥
E‰

⇥
jF .jC4/.ImRab/j

ˇ̌
�pq

⇤⇤

 C

✓
N .˛�4/⌫�1

C

t2

N 2

◆
J C

C

N 3
;

(4.41)

where we used (4.31) to deduce the last estimate.
Now (4.38) follows from applying (4.39) off of � and (4.40) and (4.41) on �.



GOE statistics for Lévy matrices 3741

The following lemma addresses the higher-order terms of the second type. Its proof is
very similar to that of Lemma 4.9 and is therefore omitted.

Lemma 4.10. Recall the definitions of the ⇠.k/
ij

for k 2 π0; 1; 2º from Lemma 4.8, and
further define

⇠
.3/

ij
D ..�RÄ/3G� /ij for each 1  i; j  N .

There exists a large constant C D C.˛; ⌫; ⇢; #/ > 0 such that the following holds. LetM
be a product of s 2 π1; 2; 3; 4º of the ⇠.k/

ij
, so that

M D

sY

rD1
⇠
.kr /

irjr

for some 1  ir ; jr  N and kr 2 π1; 2; 3º. If
P
s

rD1 kr � 3 and m 2 π1; 2; 3º, then

E‰


jM j

ˇ̌
ˇ̌
✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F .m/.ImRab/

ˇ̌
ˇ̌
�



CN 16"

.1 � �2/
1
2

✓
N ⌫.˛�4/�1J C

t2J

N 2
C

1

N 3

◆
:

(4.42)

The same estimate holds if some of the ⇠.0/
irjr

are replaced by G�
ij

.

4.7. Terms of degree 2

In this subsection we estimate the contribution of terms of degree two to the .p; q/-sum-
mand of the left side of (4.18). In Section 4.7.1 we will state this bound use it to establish
Proposition 4.4; we will then establish this estimate in Section 4.7.2.

4.7.1. Estimates on the degree two terms. Here we bound the contribution of the second-
order terms to the .p; q/-summand left side of (4.18). There are two types of terms to
consider. The first corresponds to when the factor of ⇣F 00.ImRab/ appears in the expan-
sion (4.23) for F 0.ImG

�

ab
/, and the second corresponds to when either Im.�RÄR/ap or

Im.�RÄR/qb appears in the expansion (4.22) for ImG
�

ij
. Both such terms are estimated

through the following proposition.

Proposition 4.11. Define

E1 D N 4"C.˛�2/⇢�2tJ CNC0C6tQC

t

N 2
;

E2 D N ˛⇢C3"�1tJ :

Then there exists a large constant C D C.˛; ⌫; ⇢; #/ > 0 such that

E‰


Im..RÄR/apRqb/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImRab/

�

 C.E1 C E2. pq C 1pDq//;

(4.43)
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and similarly if .RÄR/apRqb is replaced by .RÄR/qbRap . Moreover,

E‰


Im.RapRqb/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
Im.RÄR/abF 00.ImRab/

�

 C.E1 C E2. pq C 1pDq//:

(4.44)

We can now establish Theorem 3.15 assuming Proposition 4.11.

Proof of Proposition 4.4 assuming Proposition 4.11. As mentioned previously, through
(4.22) and (4.23), the right side of (4.18) expands into a sum of expectations of degrees
one, two, three, four, and higher. By Lemma 4.8, we deduce that the expectation of
each term of degree one or three in this expansion is equal to 0. Furthermore, summing
Lemma 4.9 and Lemma 4.10 over all N 2 possibilities for .p; q/ yields the existence of
a constant C D C.˛; ⌫; ⇢/ > 0 such that the sum of the fourth- and higher-order terms is
bounded by

C

.1 � �2/
1
2

N 16"

✓
N ⌫.˛�4/C1J C t2J CQNC0C10

C

1

N

◆

<
C

.1 � �2/
1
2N!

.J C 1CQNC0C11/;
(4.45)

where we used the definition (4.24) of ! and recalled that t ⇠ N .˛�2/⌫ from Lemma 3.6.
Next, summing Proposition 4.11 over allN 2 possibilities for .p; q/ and using the fact that
‰ has at most N 1C˛⇢C" entries equal to 1, we estimate the second-order terms by

CN 4"

✓
N .˛�2/⇢tJ CN ˛⇢tJ C t CNC0C6QC

1

N

◆

< CN�!.J C 1CNC0C7Q/;
(4.46)

after increasing C if necessary. We have again used the definition (4.24) of ! and recalled
that t ⇠ N .˛�2/⌫ .

Now the proposition follows from summing the contributions from (4.45) and (4.46)
and using (4.26) to replace Q with Q0 (up to an additive error that decays exponentially
in N ).

4.7.2. Proof of Proposition 4.11. In this subsection we establish Proposition 4.11. In fact,
we will only establish the first estimate (4.43) of that proposition, since the proof of the
second estimate (4.44) is entirely analogous.

To that end, we will first through Lemma 4.12 estimate the error incurred be replacing
all entries of R on the left side of (4.43) with those of U. Then, using the mutual indepen-
dence of U, Apq , and wpq conditional on ‰ (recall Remark 4.5) and the definition (3.7)
of t , we will deduce Proposition 4.11.

In order to implement the replacement, first observe that, since Apq.R � U/ D 0
by (4.21),

Im..RÄR/apRqb/ApqF 0.ImRab/ D Im..UÄU/apUqb/ApqF 0.ImUab/:
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Now write

Im..RÄR/apRqb/
✓
� t

1
2wpq

.1 � �2/
1
2

◆
F 0.ImRab/

D Im..UÄU/apUqb/
✓
� t

1
2wpq

.1 � �2/
1
2

◆
F 0.ImUab/

C

✓
� t

1
2wpq

.1 � �2/
1
2

◆�
Im..RÄR/apRqb/F 0.ImRab/

� Im..UÄU/apUqb/F 0.ImUab/
�
:

(4.47)

Using Äij D �‚ij C .1��2/
1
2ˆij and Apq.R � U/ D 0 again, and recalling from (4.19)

and (4.20) that

‚ij D Aij 1.i;j /2π.p;q/;.q;p/º; ˆij D t
1
2wij 1.i;j /2π.p;q/;.q;p/º;

we can compute the last line in (4.47) to find the terms with ‚ij factors vanish, leaving
✓
� t

1
2wpq

.1 � �2/
1
2

◆�
Im..RÄR/apRqb/F 0.ImRab/ � Im..UÄU/apUqb/F 0.ImUab/

�

D �� tw2
pq

Y;

where
Y D Im.UapUqpUqb C UaqUppUqb/F

0.ImUab/

� Im.RapRqpRqb CRaqRppRqb/F
0.ImRab/:

(4.48)

In total,

Im
�
.RÄR/apRqb

�✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImRab/

D Im
�
.UÄU/apUqb

�✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImUab/C � tw2

pq
Y;

(4.49)

and so we would like to estimate jE‰Œ� tw
2

pq
Yçj. This will be done through the following

lemma.

Lemma 4.12. There exists a large constant C D C.˛; ⇢; "; #/ > 0 such that

jE‰Œ� tw
2

pq
Yçj  CN 4"C.˛�2/⇢�2tJ C

Ct

N 2
C CNC0C6tQ: (4.50)

Proof. Since wpq is independent from R and U, and since EŒw2
pq
ç D

1

N
, we have that

E‰Œ� tw
2

pq
Yç D � tN�1

E‰ŒYç, and so it suffices to show that
ˇ̌
E‰

⇥
Im.UapUqpUqb/F 0.ImUab/ � Im.RapRqpRqb/F 0.ImRab/

⇤ˇ̌

< CN 4"C.˛�2/⇢�1J C

C

N
C CNC0C6Q;

(4.51)
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and the same estimate if the terms Im.UapUqpUqb/ and Im.RapRqpRqb/ are replaced by
Im.UaqUppUqb/ and Im.RaqRppRqb/, respectively. We will only show (4.51), since the
proof of the second statement is entirely analogous.

To that end, recall that (4.1) and the definitions (4.19) and (4.21) yield

R D U � UƒU C UƒUƒR: (4.52)

Furthermore, we find from a Taylor expansion

F .k/.ImRab/ � F .k/.ImUab/

D

#X

jD1

1

j ä
jF .jCk/.ImUab/C

1

.# C 1/ä
#C1F .#C1/.1/;

(4.53)

where
 D Im.Rab � Uab/ D � Im.UƒR/ab; (4.54)

by (4.1) and (4.21), and 1 2 .ImRab; ImUab/.
Applying (4.52) and (4.53), we find that

Im.RapRqpRqb/F 0.ImRab/

D

 
#X

jD0

j

j ä
F .jC1/.ImUab/C

#C1

.# C 1/ä
F .#C1/.1/

!

⇥ Im..U � UƒU C UƒUƒR/ap.U � UƒU C UƒUƒR/qp
⇥ .U � UƒU C UƒUƒR/qb/:

(4.55)

Using (4.54) to express  in terms of ƒ and expanding the right side of (4.55) yields
a sum of monomials, each of which contains a product of ƒ factors. Any such monomial
with u factors of ƒ will be called an order u monomial. Observe that there is only one
order 0monomial on the right side of (4.55), which is F 0.ImUab/UapUqpUqb . We would
like to estimate the other, higher-order, monomials on the right side of (4.55).

We first consider the monomials of order 1. Observe that any such monomial is a prod-
uct of ƒpq with terms of the form F .jC1/.ImUab/ and Uij . Furthermore, recall from
Remark 4.5 that ƒ is independent from U (conditional on ‰). Thus, the symmetry of the
entries of H (and therefore the entries of ƒ) implies that

E‰ŒM ç D 0 for any monomial M of order 1: (4.56)

Next let us estimate monomials of order u with 2  u  # on the event �. Any such
monomial is a product ofƒu

pq
with a term of the formF .k/.ImUab/ and at most 2u entries

of U or R; Lemma 4.6 implies that the latter terms are all bounded by 2N " on the event�.
Thus, if M is a monomial of order 2  u  # , we have for some 1  k  # that

E‰

⇥
1�jM j

⇤
 4uN 2"u

E‰

⇥
jF .k/.ImUab/jjƒpqj

u
⇤

D 4uN 2"u
E‰

⇥
jF .k/.ImUab/j

⇤
E‰Œjƒpqj

uç
(4.57)

for some j  # , where we have used the fact from Remark 4.5 that U andƒ are indepen-
dent (after conditioning on ‰).



GOE statistics for Lévy matrices 3745

Now, recalling from (4.19) that

jƒpqj D Bpq  jHpqj1jHpq jN�⇢ ;

and applying Lemma 4.2, the first estimate in (4.31), (4.57), and the definition (3.15) of J
yields the existence of a constant C D C.⇢; #/ > 0,

E‰Œ1�jM jç  CN 4"C.2"�⇢/.u�2/C.˛�2/⇢�1J (4.58)

for any monomial M of order 2  u  # .
The final monomials to estimate on � are those of order u, with u � # C 1. Since

Lemma 4.6 implies that 1�j1j  2N ", we find from the first estimate of (3.14) that
1�jF .kC1/.1/j  NC0" for 0  k  # . Moreover, Lemma 4.6 and the first estimate
of (3.14) imply that 1�jF .kC1/.ImUab/j  NC0" for any 0  k  # . Combining these
estimates, the fact that any monomial of order u is a product of ƒu

pq
with one term of the

form F .kC1/.ImUab/ or F .kC1/.1/ and at most 2u entries of U and R, and the fact that
.⇢ � 2"/# � C0"C 3 implies the existence of a constant C D C.˛; ⇢; "; #/ > 0 such that

E‰Œ1�jM jç 

C

N 3
for any monomial M of order u � # C 1: (4.59)

Off of the event �, we apply the estimate
ˇ̌
E‰

⇥
Im.UapUqpUqb/F 0.ImUab/ � Im.RapRqpRqb/F 0.ImRab/

⇤ˇ̌

 2NC0C6
E‰Œˆ

2

pq
ç  2NC0C6;

(4.60)

where we have used the fact that the entries of R and U are bounded by ⌘�1
 N 2, and

also the second estimate in (3.14).
Now the lemma follows from applying (4.56), (4.58), and (4.59) on �, and applying

(4.60) off of �.

We can now establish Proposition (4.11).

Proof of Proposition 4.11. Let us only establish (4.43), since the proof of (4.44) is entirely
analogous.

To that end, observe from (4.49) and Lemma 4.12 that for some C DC.˛; ⌫; ⇢; #/ > 0
we have

ˇ̌
ˇ̌E‰


Im
✓
.RÄR/apRqb/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImRab/

�ˇ̌
ˇ̌



ˇ̌
ˇ̌E‰


Im..UÄU/apUqb/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImUab/

�ˇ̌
ˇ̌
C CE1:

(4.61)

Now, since Apq , wpq , and U are mutually independent conditional on  pq , and since Apq
and wpq are symmetric we have from the definition (4.19) of Ä that

E‰


Im..UÄU/apUqb/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
F 0.ImUab/

�

D �E‰ŒA
2

pq
� tw2

pq
çE‰ŒIm.UapUqpUqb C UaqUppUqb/F

0.ImUab/ç:

(4.62)
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Now there are three cases to consider. If  pq D 0 and p ¤ q, then EŒw2
pq
ç D

1

N
, so

by the definition (3.7) of t we have

E‰ŒA
2

pq
� tw2

pq
ç D EŒH 2

ij
1jHij j<N�⌫ j jHij j < N�⇢ç �

t

N
D 0; (4.63)

in which case the left side of (4.62) is zero.
If  pq D 1, then Apq D 0 and EŒw2

pq
ç 

2

N
, so

ˇ̌
E‰ŒA

2

pq
� tw2

pq
çE‰ŒIm.UapUqpUqb C UaqUppUqb/F

0.ImUab/ç
ˇ̌



2t

N
E‰

⇥
.jUapUqpUqbj C jUaqUppUqbj/jF

0.ImUab/j
⇤



4t

N
.8N 3"J CN 6Q/;

(4.64)

where we have used Lemma 4.6 to bound max1i;jN jUij j by 2N " on � and (4.2) and
the fact that ⌘ � N�2 to bound it off of �.

Similarly, if  pq D 0 and p D q, then

EŒw2
pq
ç D

2

N
and so similar reasoning as applied in (4.63) yields

E‰ŒA
2

pq
� tw2

pq
ç D �

t

N
;

and so we again deduce that (4.64) holds.
The proposition follows from summing (4.61), (4.62), and either (4.63) if  pq D 0

and p ¤ q or (4.64) if  pq D 0 or p D q.

4.8. Outline of the proof of Theorem 3.15 for m > 1

Let us briefly outline the modifications required in the above proof of Theorem 3.15 in
the case m > 1. Then the analog of (4.17) becomes

@

@�
E‰

⇥
F.ImG

�

a1b1
; : : : ; ImG

�

ambm
/
⇤

D

mX

kD1

X

1p;qN
E‰


Im.G�

akp
G
�

qbk
/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆

⇥ @kF.ImG
�

a1b1
; : : : ; ImG

�

ambk
/

�
;

and so we must show for each integer k 2 Œ1;mç that

X

1p;qN

ˇ̌
ˇ̌E‰


Im.G�

akp
G
�

qbk
/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
@kF.ImG

�

a1b1
; : : : ; ImG

�

ambk
/

�ˇ̌
ˇ̌

<
C

.1 � �2/
1
2

.N�!.J C 1/CQ0N
CCC0/ (4.65)

for some constants ! D !.˛; ⌫; ⇢; m/ > 0 and C D C.˛; ⌫; ⇢; m/ > 0.
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Following (4.23), for fixed k 2 Œ1;mçwe then expand @kF.ImG�
a1b1

; : : : ; ImG�
ambm

/
as a degree three polynomial in the ⇣j D Im ⇠aj bj

, whose lower (at most second) degree
coefficients are derivatives of F.ImRa1b1

; : : : ; ImRambm
/. The degree three coefficients

of this polynomial are fourth-order derivatives of F , evaluated at some .⇣0I1; : : : ; ⇣0Im/
with ⇣0Ij 2 ŒImG�

aj bj
; ImRaj bj

ç. Inserting this expansion into (4.65), one can show using
Lemma 4.8 that the resulting first- and third-order terms in (4.65) will have expectation
equal to 0. Following the proofs of Lemma 4.9 and Lemma 4.10, the fourth- and higher-
order terms in this expansion can further be estimated by

C.1 � �2/�
1
2 .N�!.J C 1/CQ0N

CCC0/

for some ! D !.˛; ⌫; ⇢; m/ > 0 and C D C.˛; ⌫; ⇢; m/ > 0.
Let us make analogous estimates on the second-order terms by following the content

in Section 4.7.2. In particular, the analog of (4.49) becomes

Im..RÄR/akp
Rqbk

/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
@kF.ImRa1b1

; : : : ; ImRambm
/

D Im..UÄU/akp
Uqbk

/

✓
Apq �

� t
1
2wpq

.1 � �2/
1
2

◆
@kF.ImUa1b1

; : : : ; ImUambm
/

C � tw2
pq

Yk ;

(4.66)

where

Yk D Im.Uakp
UqpUqbk

C Uakq
UppUqbk

/@kF.ImUa1b1
; : : : ; Uambm

/

� Im.Rakp
RqpRqbk

CRakq
RppRqbk

/@kF.ImRa1b1
; : : : ; ImRambm

/:

As in Lemma 4.12, jE‰Œ� tw
2

pq
Yk çj can be bounded by CN�!.J C 1/C CQ0N

CCC0 .
Following (4.62), the expectation of the first term on the right side of (4.66) is equal to 0
if  pq D 0 and p ¤ q (by (4.63)), and so the using the proof of (4.64) the total of this
expectation over all .p; q/ 2 Œ1; N ç2 can be bounded by CN�!.J C 1/C CQ0N

CCC0 .
Thus, the second-order terms in the expansion of the left side (4.65) can also be

bounded by C.N�!.J C 1/CQ0N
CCC0/, which verifies (4.65) and therefore estab-

lishes Theorem 3.15.

5. Intermediate local law for ˛ 2 .1; 2/

In this section we establish Theorem 3.4, which provides a local law for X (recall Defini-
tion 3.3) at almost all energies E for ˛ 2 .1; 2/. We begin by formulating an alternative
version of this local law in Section 5.1 and showing that it implies Theorem 3.4. Its proof
is deferred until Section 6; the remainder of this section consists of preparatory material.
In Section 5.2 we recall some preliminary identities and estimates. In Section 5.3 we pro-
vide an outline of the previous work and of our proof. Finally, we conclude in Section 5.4
with a statement for an approximate fixed point equation (given by Proposition 5.11),
which will be established in Section 6.2.1.
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In what follows we fix parameters ˛; b; ⌫ > 0 satisfying (3.1) and ˛ 2 .1; 2/. We recall
the functions '˛;z ,  ˛;z , y.z/, and m˛.z/ from (2.4) and (2.5); the removal matrix X and
its resolvent R from Definition 3.3; that mN .z/ D N�1 Tr R; and the domain DK;$;C

from (3.2). Furthermore, for each s > 0 we denote by Ks ⇢ C the set of z 2 C of the
form rei✓ , with r 2 R�0 and �

⇡s

2
 ✓ 

⇡s

2
.

5.1. An alternative intermediate local law

Through an inductive procedure that has been applied several times for Wigner matrices
(see the book [55] and references therein), Theorem 3.4 will follow from the following
result.

Theorem 5.1. Adopt the notation and hypotheses of Theorem 3.4. For each z 2 H, define
the event

�.z/ D

≤
jmN .z/ �m˛.z/j 

1

N ~

≥
\

°
max
1jN

jRjj .z/j  .logN/
30

˛�1

±

\

≤
max
1jN

jEŒ.�iRjj .z//
˛
2 ç � y.z/j 

1

N ~

≥
:

(5.1)

Then, for sufficiently large N , there exist large constants C D C.˛; b; ⌫;$;K/ > 0 and
B D B.˛/ > 0 such

P Œ�.z/c ç  C exp
✓

�

.logN/2

C

◆
if Im z D B. (5.2)

Further, suppose z0; z 2 DK;$;B satisfy Re z D Re z0 and Im z0 �
1

N5  Im z  Im z0.
If P Œ�.z0/

c ç 
1

N20 , then

P Œ1�.z/ < 1�.z0/
ç  C exp

✓
�

.logN/2

C

◆
(5.3)

for large enough N .

Proof of Theorem 3.4 assuming Theorem 5.1. Let B be as in Theorem 5.1. LetK D Œu; vç
and let A D bN 5.v � u/c and B D bN 5.B �N�$ /c. For each integer j 2 Œ0; Aç and
k 2 Œ0; Bç, let

zj;k D uC

j

N 5
C i
✓

B �

k

N 5

◆
:

Then, by induction onM 2 Œ0; Bç, there exists a large constantC D C.˛; b; ⌫;$;K/ > 0
such that

P

"
A[

jD0

M[

kD0
�.zj;k/

c

#
 C.M C 1/ exp

✓
�

.logN/2

C

◆
: (5.4)

Now, the theorem follows from (5.4); the deterministic estimate

jRij .z/ �Rij .z0/j <
1

N
and jmN .z/ �mN .z0/j <

1

N

for z0; z 2 DŒu;vç;ı;B with jz � z0j <
1

N5 (due to (4.1), (4.2), and the fact that ⌘ �
1

N
);
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and the deterministic estimate

jm˛.z/ �m˛.z0/j 

1

N

for z0 and z subject to the same conditions (which holds sincem˛ is the Stieltjes transform
of the probability measure �˛).

5.2. Identities and estimates

In this subsection we will recall several facts that will be used throughout the proof of
Theorem 5.1. In particular, we recall several resolvent identities and related bounds in
Section 5.2.1, and we recall several additional estimates in Section 5.2.2.

5.2.1. Resolvent identities and estimates. In this subsection we collect several resolvent
identities and estimates that will be used later.

In what follows, for any index set I ⇢ π1; 2; : : : ; N º, let X.I/ denote the N ⇥N
matrix formed by setting the i -th row and column of X to zero for each i 2 I. Further
denote

R.I/ D πR
.I/
jk

º D .X.I/ � z/�1:

If I D πiº, we abbreviate X.πiº/ D X.i/, R.πiº/ D R.i/, and R.πiº/
jk

D R
.i/

jk
. Observe that

EŒmN ç D EŒRjj ç

for any j 2 Œ1; N ç, due to the fact that all entries of X are identically distributed.

Lemma 5.2. Let H D πHij º be an N ⇥N real symmetric matrix, z 2 H, and ⌘ D Im z.
Denote G D πGij º D .H � z/�1.
(1) We have the Schur complement identity, which states for any i 2 Œ1; N ç that

1

Gi i
D Hi i � z �

X

1j;kN
j;k¤i

HijG
.i/

jk
Hki : (5.5)

(2) Let I ⇢ Œ1; N ç. For any j 2 Œ1; N ç n I, we have the Ward identity

X

k2Œ1;N çnI

jG
.I/
jk

j
2

D

ImG
.I/
jj

⌘
: (5.6)

Estimates (5.5) and (5.6) can be found as (8.8) and (8.3) in the book [55], respectively.
Observe that (4.1), (4.2), and the estimate (which holds for any x; y 2 C and p 2 R)

jxp � ypj  jpjjx � yj.jxj
p�1

C jyj
p�1/; (5.7)

implies that

jR
.I/
ij
.z1/

p
�R

.I/
ij
.z2/

p
j  jpjjR

.I/
ij
.z1/ �R

.I/
ij
.z2/j

✓
1

.Im z0/p�1 C

1

.Im z1/p�1

◆

 2jpjjz1 � z2j

✓
1

.Im z0/pC1 C

1

.Im z1/pC1

◆
N: (5.8)
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For each subset I ⇢ π1; 2; : : : ; N º and i … I, define

Si;I D

X

j…I[πiº
X2
ij
R
.I[πiº/
jj

;

Ti;I D Xi i � Ui;I;

Si;I D

X

j…I[πiº
Z2
ij
R
.I[πiº/
jj

;

(5.9)

where we recall the entries Hij of H are coupled with the entries Xij of X through the
removal coupling of Definition 3.3, which also defined the Zij , and where

Ui;I D

X

j;k…I[πiº
j¤k

XijR
.I[πiº/
jk

Xki : (5.10)

If I is empty, we denote Si D Si;I , Si D Si;I , Ti D Ti;I , and Ui D Ui;I . The Schur
complement identity (5.5) can be restated as

Ri i D

1

Ti � z � Si
: (5.11)

Observe that since the matrix Im R.I/ is positive definite and each Xi i is real, we have
that

ImSi;I � 0; Im Si;I � 0; Im.Si;I � Ti;I/ D Im.Si;I C Ui;I/ � 0: (5.12)

5.2.2. Additional estimates. In this subsection we collect several estimates that mostly
appear as (sometimes special cases of) results in [26, 27]. The first states that Lipschitz
functions of the resolvent entries concentrate around their expectation and appears as
[26, Lemma C.3] (with the f there replaced by Lf here), which was established through
the Azuma–Hoeffding estimate.

Lemma 5.3 ([26, Lemma C.3]). LetN be a positive integer, and let A D πaij º1i;jN be
anN ⇥N real symmetric random matrix with the property that the i -dimensional vectors
Ai D .ai1; ai2; : : : ; ai i / are mutually independent for 1  i  N . Let z D E C i⌘ 2 H,
and denote B D πBij º D .A � z/�1. Then, for any Lipschitz function f with Lipschitz
norm L, we have

P

"ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
f .Bjj / �

1

N

NX

jD1
EŒf .Bjj /ç

ˇ̌
ˇ̌
ˇ � t

#
 2 exp

✓
�

N⌘2t2

8L2

◆
:

Setting f .x/ D x or f .x/ D Im x, L D 1, and t D 4.N⌘2/�
1
2 logN in Lemma 5.3,

we obtain

P


jmN .z/ � EŒmN .z/çj >

4 logN

.N⌘2/
1
2

�
 2 exp.�.logN/2/;

P


jImmN .z/ � EŒImmN .z/çj >

4 logN

.N⌘2/
1
2

�
 2 exp.�.logN/2/:

(5.13)
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The next lemma can be deduced from Lemma 5.3 by choosing f to be a suitably
truncated variant of x

˛
2 . It can be found as [26, Lemma C.4], with their � equal to our ˛

2
.

Lemma 5.4 ([26, Lemma C.4]). Adopt the notation of Lemma 5.3, and fix ˛ 2 .0; 2/.
Then there exists a large constant C D C.˛/ > 0 such that, for any t > 0,

P

"ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
.�iBjj /

˛
2 �

1

N

NX

jD1
EŒ.�iBjj /

˛
2 ç

ˇ̌
ˇ̌
ˇ � t

#
 2 exp

✓
�

N.⌘
˛
2 t /

4
˛

C

◆
:

The following, which is a concentration result for linear combinations of Gaussian
random variables, follows from Bernstein’s inequality and (4.2).

Lemma 5.5. Let .y1; y2; : : : ; yN / be a Gaussian random vector whose covariance matrix
is given by Id, and for each 1  j  N let

fj D .ImRjj /
˛
2 jyj j

˛; gj D .ImRjj /
˛
2 EŒjyj j

˛ç:

Then there exists a large constant C > 0 such that

P

"ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
.fj � gj /

ˇ̌
ˇ̌
ˇ >

C.logN/4

N
1
2 ⌘

˛
2

#
< C exp

✓
�

.logN/2

C

◆
;

where the probability is with respect to .y1; y2; : : : ; yN / and conditional on X.i/.

The following two results state that the diagonal resolvent entries of R are close to
those of R.i/ on average. The first appears in [27, Lemma 5.5] and was established by
inspecting the singular value decomposition of R � R.i/ (one could alternatively use the
interlacing of eigenvalues between R.i/ and R) and then applying Hölder’s inequality.
Estimates of this type for r D 1 have appeared previously, for example in [50, (2.7)].

Lemma 5.6 ([27, Lemma 5.5]). For any r 2 .0; 1ç, we have the deterministic estimate

1

N

NX

jD1
jRjj �R

.i/

jj
j
r



4

.N⌘/r
: (5.14)

Corollary 5.7. For any r 2 Œ1; 2ç, we have the deterministic estimate

1

N

NX

jD1
jRjj �R

.i/

jj
j
r



8

N⌘r
: (5.15)

Proof. Estimate (4.2) together with the bound

ja � bj
r�1

 jaj
r�1

C jbj
r�1

for any a; b 2 C yields

jRjj �R
.i/

jj
j
r

 jRjj �R
.i/

jj
j.jRjj j

r�1
C jR

.i/

jj
j
r�1/  2⌘1�r

jRjj �R
.i/

jj
j: (5.16)

Now combining (5.16) with the r D 1 case of Lemma 5.6 yields (5.15).
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We recall the following Lipschitz estimate for the functions '˛;z and  ˛;z (see (2.4)),
which appears in [18, Lemma 3.6].

Lemma 5.8 ([26, Lemma 3.4]). There exists a large constant c D c.˛/ such that the
following holds. For any z 2 H, the functions '˛;z and  ˛;z (see (2.4)) are Lipschitz with
constants c' D c.˛/jzj�˛ and c D c.˛/jzj�

˛
2 on K ˛

2
and K1, respectively.

We conclude this subsection with the following proposition (which is reminiscent of
[26, Lemma 3.2]) that bounds the quantity Ti from (5.9).

Proposition 5.9. Let z 2 H satisfy Im z  N
1
˛ � 1

2 , and recall the definition of Ti D Ti .z/
from (5.9). There exists a large constant C D C.˛/ > 0 such that for any t � 1 we have

P

"
jTi j �

Ct

.N⌘2/
1
2

#


C

t
˛
2

: (5.17)

Proof. First, (4.3) yields the existence of a large constant C.˛/ > 0 such that

P


jXi i j �

t

.N⌘2/
1
2

�


C.N⌘2/
˛
2

Nt˛


C

t˛
: (5.18)

Now, from a Markov estimate, we have for any s > 0 that

P


jUi j 

t

.N⌘2/
1
2

�


N⌘2

t2
E

"ˇ̌
ˇ̌

X

1j¤kN
XjR

.i/

jk
Xk

ˇ̌
ˇ̌
2 NY

jD1
1jXj js

#
C

NX

jD1
P ŒjXj j  sç



N⌘2

t2
E

 X

1j¤kN
1j 0¤k0N

XjXkXj 0Xk0R.i/
jk
Rj 0k0

.i/
NY

jD1
1jXj js

�
C

C

s˛



2N⌘2

t2

X

1j¤kN
jR
.i/

jk
j
2
EŒjXj j

21jXj jsç2 C

C

s˛
; (5.19)

after increasing C if necessary, where we abbreviatedXj D Xij for each j 2 Œ1; N ç, used
(4.3), and recalled the independence and symmetry of the πXj º. Then (5.19) implies

P


jUi j 

t

.N⌘2/
1
2

�


8C 2s4�2˛⌘2

.2 � ˛/2t2N

X

1j¤kN
jR
.i/

jk
j
2

C

C

s˛


C 3s4�2˛

t2
C

C

s˛
;

(5.20)
where we used (4.2), (5.6), and

EŒjXj j
21jXj jsç D 2

Z
s

0

uP ŒjXj j � uç du 

2C

N

Z
s

0

u1�˛ du D

2Cs2�˛

.2 � ˛/N
:

Setting s D t
1
2 in (5.20) yields

P


jUi j 

t

.N⌘2/
1
2

�


C 3

t˛
C

C

t
˛
2

: (5.21)

Now the lemma follows from the second identity in (5.9), (5.18), and (5.21).
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Remark 5.10. The proof of Proposition 5.9 does not require ˛ 2 .1; 2/ or E D Re z is
bounded away from 0. Instead, it only uses that the entries ofN

1
˛ X are symmetric random

variables satisfying (2.3) and that Im z D ⌘. Thus, we will also use Proposition 5.9 in the
proof of the local law in the case ˛ 2 .0; 2/ n A, which appears in Section 7.

5.3. Outline of proof

In preparation for the next section, we briefly outline the method used in [26] to prove
a local law on intermediate scales, and also the way in which we improve on this method.
Recalling the notation of Section 5.2.1, we begin with the identity (5.11).

Approximating Ti ⇡ EŒTi ç D 0 and replacing each Xij with hij , we find that

Ri i ⇡ .�iz � iSi /
�1:

The identity x�s
D Ä.s/�1

R1
0
t s�1e�xt dt then yields for any s > 0,

EŒ.�iRi i /sç ⇡

1

Ä.s/

Z 1

0

t s�1E


exp
✓

itz C it
X

j¤i
R
.i/

jj
h2
ij

◆�
dt: (5.22)

To linearize the exponential appearing in the integrand on the right side of (5.22), we
use the fact that, for a standard Gaussian random variable g,

EŒexp.izg/ç D exp
✓

�

z2

2

◆
:

Together with the mutual independence of the πhij º, this yields

EŒ.�iRi i /sç ⇡

1

Ä.s/

Z 1

0

t s�1eitz
Y

j¤i
E


exp

✓
i.�2t iR.i/

jj
/

1
2 hijgj

◆�
dt

⇡

1

Ä.s/

Z 1

0

t s�1eitz
E


exp

✓
�

�˛.2t/
˛
2

N

NX

jD1
.�iRjj /

˛
2 jgj j

˛

◆�
dt;

(5.23)

where we used the explicit formula (2.1) for the characteristic function of an ˛-stable
random variable and the g D .g1; g2; : : : ; gN / is an N -dimensional Gaussian random
variable with covariance given by Id.

Approximating jgj j
˛

⇡ EŒjgj j
˛ç, using the identities

EŒjgj j
˛ç D

Ä.˛/

2
˛
2 �1Ä.˛

2
/
; and Ä

✓
˛

2

◆
Ä

✓
1 �

˛

2

◆
D

⇡

sin.⇡˛
2
/
; (5.24)

recalling the definition of '˛;z and  ˛;z from (2.4), and applying (5.23) first with s D
˛

2

and then with s D 1, we deduce

Y.z/ ⇡ '˛;z.Y.z//; X.z/ ⇡  ˛;z.Y.z//;

where X.z/ D EŒ�iRjj .z/ç and Y.z/ D EŒ.�iRjj .z//
˛
2 ç.

Since the equation Y.z/ D '˛;z.Y.z// is known [19] to have a unique fixed point
y.z/, we expect from the previous two approximations that there is a global limiting
measure m˛ D i ˛;z.y.z//; this matches with (2.5).
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To obtain an intermediate local law for this measure, one must additionally quantify
the error incurred from the above approximations. Among the primary sources of error
here is the approximation Ri i ⇡ .�iz � iSi /

�1. This not only requires that jTi j be small,
but also that jSi C zj and jSi � Ti C zj (which is the denominator of Ri i ) be bounded
below. By analyzing certain Laplace transforms for quadratic forms in heavy-tailed ran-
dom variables, the work [26] bounded these denominators by ⌘

2
˛ �1. This bound does not

account for the true behavior of these resolvent entries (which should be bounded by N ı

for any ı > 0), which causes the loss in scale of the intermediate local law established
in [26] for ˛ closer to one.

The improvement we seek will be to lower bound these denominators by .logN/�
30

˛�1 ;
see Proposition 6.1 below. This will both yield nearly optimal bounds on the diagonal
resolvent entriesRjj and also allow us to establish an intermediate local law on the smaller
scale ⌘ D N�$ . Let us mention that the latter improvement (on the scale) is in fact nec-
essary for us to implement our method. Indeed, if for instance ˛ is near one, the results
of [26] establish an intermediate local law for H on scale approximately ⌘ � N� 1

5 . How-
ever, in order for us to apply the flow results of [35, 54, 67, 68] we require ⌘ < t , and
to apply our comparison result given by Theorem 3.15, we require t  N

1
˛�4 ⇠ N� 1

3 .
Hence in this case we require a local law for X on a scale ⌘ ⌧ N� 1

3 , and this is the scale
accessed by Theorem 3.4.

We do not know of a direct way to improve such a local law to the nearly optimal
scale ⌘ D N ı�1, which is necessary to establish complete eigenvector delocalization and
bulk universality. However, one can instead access such estimates for H by combining our
current local law for X on scale ⌘�$ with the comparison result given by Theorem 3.15
applied to Vt , for which the estimates hold on the optimal scale by the regularizing effect
of Dyson Brownian motion.

5.4. Approximate fixed point equations

In light of the outline from Section 5.3, let us define the quantities

X.z/ D EŒ�iRjj .z/ç; Y.z/ D EŒ.�iRjj .z//
˛
2 ç; (5.25)

which are independent of the index j , since the entries of X are identically distributed.
Throughout this subsection and the next, we use the notation of Theorem 3.4 and set

the parameters ✓ D ✓.˛; b; ⌫/ > 0 and ı D ı.˛; b; ⌫;$/ > 0 by

✓ D

2 � ˛

50
; ı D

1

10
min

≤
✓; ⌫ �$;$ � .2 � ˛/⌫;

1

2
�$

≥
: (5.26)

As mentioned in Section 5.3, let us now define an event on which the denominators
of Rjj .z/ and .�z � Sj .z//

�1 are bounded below. To that end, for any z 2 H, we define

ƒ.z/ D

°
min

1jN
Im.Sj C z/ � .logN/�

30
˛�1

±

\

°
min

1jN
Im.Sj C z/ � .logN/�

30
˛�1

±

\

°
min

1jN
Im.Sj � Tj C z/ � .logN/�

30
˛�1

±
:

(5.27)
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Assuming that P Œƒ.z/c ç has very small probability, the following proposition pro-
vides an approximate fixed point equation for Y.z/, as explained in Section 5.3. Its proof
will be provided in Section 6.2.1.

Proposition 5.11. Adopt the notation and hypotheses of Theorem 3.4 and recall the
parameters ı and ✓ defined in equation (5.26). Let z 2 DK;$;B for some compact inter-
val K ⇢ R n π0º and some B > 0. If P Œƒ.z/c ç < 1

N10 , then there exists a large constant
C D C.˛; b; ı; "/ > 0 such that

jY.z/ � '˛;z.Y.z//j  C.c' C C/.logN/
100
˛�1

✓
1

.N⌘2/
˛
8

C

1

N 2✓

◆
;

jX.z/ �  ˛;z.Y.z//j  C.c C C/.logN/
100
˛�1

✓
1

.N⌘2/
˛
8

C

1

N 2✓

◆
;

(5.28)

where c' D c'.˛; z/ and c D c .˛; z/ are given by Lemma 5.8.

6. Proof of Theorem 5.1

In this section we establish Theorem 5.1 in Section 6.2 after bounding the probability
P Œƒ.z/c ç in Section 6.1.

6.1. Estimating P Œƒ.z/c ç

In this subsection, we provide a estimate for P Œƒ.z/c ç, given by Proposition 6.1. Due to
the Schur complement formula, this proposition implies optimal bounds on the resolvent
entries that were not present in the previous work [26]. These bounds will in turn allow
us to establish the local law on an improved scale.

In Section 6.1 we prove Proposition 6.1, assuming Proposition 6.2 and Proposition 6.3
below. These propositions are then established in Section 6.1.3 and Section 6.1.4, respec-
tively.

Proposition 6.1. Assume that z 2 DK;$;B for some B > 0 and "  EŒImmN .z/ç 
1

"
,

for some " > 0. Then there exists a large constant C D C.˛; b; ı; "/ > 0 such that

P Œƒ.z/c ç  C exp
✓

�

.logN/2

C

◆
:

6.1.1. A heuristic for the proof. We now briefly outline our argument for the lower bound
on Im.Si C z/. The Schur complement formula reads Ri i D .Ti � z � Si /

�1. For the
purposes of this outline, let us assume that Ri i ⇡ .�z � Si /

�1, so that a lower bound on
ImSi implies an upper bound on jRi i j.

Letting A denote the diagonal .N � 1/ ⇥ .N � 1/ matrix whose entries are given by
ImR.i/

jj
with j ¤ i , we find that ImSi D hX;AXi, where we defined the .N � 1/-dimen-

sional vector X D .Xij /j¤i . Thus we obtain from (2.1) that, if Y D .y1; y2; : : : ; yN�1/
denotes an .N � 1/-dimensional Gaussian random variable whose covariance is given
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by Id, then for any t > 0,

E


exp

✓
�

t2

2
hAX;Xi

◆�
D EŒexp.ithA

1
2X; Y i/ç ⇡ E


exp

✓
�

cjt j˛kA 1
2Y k

˛

˛

N

◆�

for some constant c > 0. Assuming that kA 1
2Y k

˛

˛
concentrates around its expectation, we

obtain after replacing t by t
p

2 and altering c that

EŒexp.�t2 ImSi /ç D EŒexp.�t2hAX;Xi/ç < exp
✓

�

cjt j˛

N

X

j¤i
jImR

.i/

jj
j

˛
2

◆
: (6.1)

If t is chosen such that
jt j˛

N

X

j

jImR
.i/

jj
j

˛
2 D .logN/2;

then the right side of (6.1) is very small. Hence (6.1) implies, using Markov’s inequality,
that

P ŒImSi  t�2ç D P Œt2 ImSi  1ç D P


exp.�t2 ImSi / �

1

e

�

 C exp.�c.logN/2/:

Therefore, using the definition of t and ignoring logarithmic factors, we have with high
probability that

ImSi �

✓
1

N

X

j¤i
jImR

.i/

jj
j

˛
2

◆ 2
˛

:

Since ˛

2
< 1, we have

1

N

X

j¤i
jImR

.i/

jj
j

˛
2 � Imm

.i/

N

⇣
max
j¤i

jImR
.i/

jj
j

⌘˛
2 �1

; (6.2)

where m.i/
N

D N�1 Tr R.i/. Proceeding using (6.2) yields

ImSi �

⇣
Imm

.i/

N

⇣
max
j¤i

jImR
.i/

jj
j

⌘˛
2 �1⌘ 2

˛
⇡ jImmN j

2
˛

⇣
max
1jN

jRjj j

⌘1� 2
˛
: (6.3)

Since jRi i j  .ImSi /
�1, this suggests that

jRi i j  jImmN j
� 2

˛ max
1jN

jRjj j

2
˛ �1;

with high probability. Assuming that ImmN is bounded below and taking maximum over
i 2 Œ1; N ç, this yields

max
1jN

jRjj j  C
⇣

max
1jN

jRjj j

⌘ 2
˛ �1

for some constantC > 0. Thus, since 2

˛
� 1 < 1 (this is where we use ˛ > 1), this implies

an upper bound on each jRjj j with high probability.
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6.1.2. Proof of Proposition 6.1. An issue with the outline from Section 6.1.1 is in (6.3),
where we claimed that maxj¤i jR

.i/

jj
j ⇡ maxj jRjj j. So, to implement this outline more

carefully, we will instead proceed by showing that if one can bound the entries of R.I/ for
each jIj D k (recall Section 5.2.1) by some large # > 0, then we can bound the entries
of R.J/ for each jJj D k � 1 by #

2
˛ �1.logN/20. In particular, if ˛ > 1, then 2

˛
� 1 < 1,

so we can repeat this procedure approximately .log logN/2 times to obtain nearly optimal
estimates on the entries of R.

To that end, we will define generalized versions of the event ƒ. Fix the integer

M D d.log logN/2e;

and for each 0  k  M , define the positive real numbers &0; &1; : : : ; &M by

&M D ⌘; and &k D &
2
˛ �1
kC1 .logN/�20 for each 0  k  M � 1: (6.4)

Since ˛ 2 .1; 2/, we have that  D
2

˛
� 1 2 .0; 1/, and so

&0 � &
M

M
.logN/�

20
1� � N�M

.logN/�
10˛
˛�1 ;

where we have used the fact that &M D ⌘ � N�1. It therefore follows that

&0 � .logN/�
25

˛�1

for sufficiently large N , since ˛ 2 .1; 2/ and M D b.log logN/2c.
Now, for each subset I ⇢ π1; 2; : : : ; N º with jIj D k  M , define the three events

ƒS;i;I.z/ D πIm.Si;I.z/C z/ � &kº;

ƒS;i;I.z/ D πIm.Si;I.z/C z/ � &kº;

ƒT;i;I.z/ D πIm.Si;I.z/ � Ti;I.z/C z/ � &kº:

(6.5)

Furthermore, for each 0  u  M , define the event

ƒ.u/.z/ D

M\

kDu

\

I⇢π1;2;:::;N º
jIjDk

\

i…I

.ƒS;i;I.z/ \ƒS;i;I.z/ \ƒT;i;I.z//:

The following propositions estimate the probabilities of the events ƒS;i;I , ƒS;i;I , ƒT;i;I .
We will establish Proposition 6.2 in Section 6.1.3 and Proposition 6.3 in Section 6.1.4.

Proposition 6.2. Assume that z 2 DK;$;B for some B > 0 and "  EŒImmN .z/ç 
1

"

for some " > 0. Then there exists a large constant C D C.˛; b; ı; "/ > 1 such that the fol-
lowing holds. For any integer u 2 Œ0;M � 1ç, any subset I ⇢ π1; 2; : : : ; N º with jIj D u,
and any i … I, we have

P ŒƒS;i;I.z/
c ç  P Œƒ.uC1/.z/c çC C exp

✓
�

.logN/2

C

◆
;

P ŒƒS;i;I.z/
c ç  P Œƒ.uC1/.z/c çC C exp

✓
�

.logN/2

C

◆
:

(6.6)
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Proposition 6.3. Adopt the notation and hypotheses of Proposition 6.2. Then there exists
a large constant C D C.˛; b; ı; "/ > 1 such that the following holds. For any integer
u 2 Œ0;M � 1ç, any subset I ⇢ π1; 2; : : : ; N º with jIj D u, and any i … I, we have

P ŒƒT;i;I.z/
c ç  P Œƒ.uC1/.z/c çC C exp

✓
�

.logN/2

C

◆
: (6.7)

Assuming Proposition 6.2 and Proposition 6.3, we can establish Proposition 6.1.

Proof of Proposition 6.1 assuming Proposition 6.2 and Proposition 6.3. To begin, apply
a union bound over all I ⇢ π1; 2; : : : ; nº with jIj D u and i … I in (6.6) and (6.7) to
obtain (with C as in those estimates)

P Œƒ.u/.z/c ç  3N uC1
P Œƒ.uC1/.z/c çC 3CN uC1 exp

✓
�

.logN/2

C

◆
: (6.8)

Estimate (4.2) implies that ƒ.M/.z/ holds deterministically, so (6.8) and induction on u
yields

P Œƒ.u/.z/c ç  .3CN/.MC2/.M�uC1/ exp
✓

�

.logN/2

C

◆
(6.9)

for each 0  u  M . Since M D b.log logN/2c, it follows from (6.9) (after increasing
C if necessary) that P Œƒ.0/.z/c ç  C exp.�C�1.logN/2/, from which the proposition
follows since ƒ.0/.z/ ✓ ƒ.z/.

6.1.3. Proof of Proposition 6.2. In this subsection we establish Proposition 6.2. Before
doing so, we require the following estimate on the Laplace transform for quadratic forms
of removals of stable laws, which is an extension of Lemma B.1 of [26] to removals of
stable laws; this lemma will be established in Appendix B.

Lemma 6.4. Let ˛ 2 .0; 2/, let � > 0 be real, let 0 < b < 1

˛
be reals, and letN be a posi-

tive integer. Let ÅX be a b-removal of a deformed .0; �/ ˛-stable law (recall Definition 3.2),
and let X D .X1; X2; : : : ; XN / be mutually independent random variables, each having
the same law as N� 1

˛ ÅX . Let A D πaij º be an N ⇥N nonnegative definite, symmetric
matrix, let B D πBij º D A 1

2 and let Y D .y1; y2; : : : ; yN / be anN -dimensional centered
Gaussian random variable (independent from X ) with covariance matrix given by Id.
Then

E


exp

✓
�

t2

2
hAX;Xi

◆�

D E


exp

✓
�

�˛jt j˛kBY k
˛

˛

N

◆�
exp

⇣
O
�
t2N .2�˛/.b� 1

˛ /�1.logN/Tr A
�⌘

CNe� .log N /2

2 ;

where, for any vector w D .w1; w2; : : : ; wN / 2 C
N and r > 0, we define

kwkr D

 
NX

jD1
jwj j

r

! 1
r

:
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Now we can prove Proposition 6.2.

Proof of Proposition 6.2. Since the proofs of the two estimates in (6.6) are very similar,
we only establish the first one (on ImSi;I). For notational convenience we assume that
i D N and I D πN � u;N � uC 1; : : : ; N � 1º. Denote J D I [ πN º, and set

ƒJ.z/ D

\

j…J

.ƒS;j;J.z/ \ƒS;j;J.z/ \ƒT;j;J.z// ✓ ƒ.uC1/.z/: (6.10)

In what follows, let G denote the event on which
ˇ̌
ˇ̌
ˇ
1

N

N�u�1X

jD1
ImR

.J/
jj
.z/ � EŒImmN .z/ç

ˇ̌
ˇ̌
ˇ >

4.uC 1/

.N � u � 1/⌘
C

4 logN
N⌘2

: (6.11)

Observe that (5.14) (applied with r D 1) and the second estimate in (5.13) imply that

P ŒG ç  2 exp.�.logN/2/:

Now let us apply Lemma 6.4 with X D .XNj /1jN�u�1 and A D πAij º given by the
.N � u � 1/ ⇥ .N � u � 1/ diagonal matrix whose .j; j /-entry equals Ajj D ImR

.J/
jj

.
Then ImSN;I D hX;AXi, so taking

t D .2 log 2/
1
2 &

� 1
2

u

in Lemma 6.4 yields from a Markov estimate that for sufficiently large N ,

P ŒImSN;I  &u1
ƒ.uC1/.z/ç

 2E


exp

✓
�

t2

2
hAX;Xi

◆
1ƒJ.z/

1G

�
C 2P ŒG ç

D 2E


E


exp

✓
�

t2

2
hAX;Xi

◆ ˇ̌
ˇ̌

πXjkºj;k…J

�
1ƒJ.z/

1G

�
C 2P ŒG ç

 2E


exp

✓
�

�˛kA 1
2Y k

˛

˛

2.N � u � 1/&
˛
2
u

◆

⇥ exp
�
O.&�1

u
N .2�˛/.b� 1

˛ /�1 Tr A/
�
1ƒJ.z/

1G

�

C 6N exp
✓

�

.logN/2

4

◆
;

(6.12)

where Y D .y1; y2; : : : ; yN�u�1/ is an .N � u � 1/-dimensional Gaussian vector whose
covariance is given by Id. On the right side of the equality in (6.12), the inner expectation
is over the πXjkº with either i 2 J or j 2 J, conditional on the remaining πXjkº; the
outer expectation is over these remaining πXjkº (with j; k … J).

To estimate the terms on the right side of (6.12), first observe from the definition (6.11)
of the event G that

1GN
�1 Tr A < EŒImmN .z/çCN�ı
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for sufficiently large N . Applying this, our assumption EŒImmN .z/ç 
1

"
, and the fact

that &u � &M�1 � ⌘
2
˛ �1.logN/�20 yields for sufficiently large N

1G&
�1
u
N .2�˛/.b� 1

˛ /�1 Tr A  2"�1⌘1� 2
˛N .2�˛/.b� 1

˛ /.logN/20

 2"�1N .2�˛/.b� 1
˛ C $

˛ /.logN/20

 N 5ı.˛�2/
 1;

(6.13)

where we have recalled that ⌘ � N�$ and used (3.1) and (5.26). Inserting (6.13) into
(6.12) yields the existence of a large constant C D C.˛; b; ı; "/ > 0 such that

P ŒImSN;I < &u1ƒJ.z/
ç

 CE


exp

✓
�

kA 1
2Y k

˛

˛

CN&
˛
2
u

◆
1ƒJ.z/

�
C C exp

✓
�

.logN/2

C

◆
:

(6.14)

Therefore it suffices to lower bound N�1
kA 1

2Y k
˛

˛
. To that end, we apply Lemma 5.5 to

deduce (after increasing C if necessary) that

P

"ˇ̌
ˇ̌
ˇ
1

N

N�u�1X

jD1
.ImR

.J/
jj
/

˛
2 jyj j

˛
�

1

N

N�u�1X

jD1
.ImR

.J/
jj
/

˛
2 EŒjyj j

˛ç

ˇ̌
ˇ̌
ˇ >

C.logN/4

N
1
2 ⌘

˛
2

#

 C exp
✓

�

.logN/2

C

◆
;

from which we find (again, after increasing C if necessary) that

P

"
kA 1

2Y k
˛

˛

N
<

1

CN

N�u�1X

jD1
.ImR.J/

jj
/

˛
2 �

C.logN/4

N
1
2 ⌘

˛
2

#
 C exp

✓
�

.logN/2

C

◆
: (6.15)

Now, observe that by (5.5) and the definition (6.10) of the event ƒS;N;J.z/ that

1ƒJ.z/
jR
.J/
jj
.z/j D 1ƒJ.z/

jSj;J.z/ � Tj;J.z/C zj�1  &�1
uC1

for each j … J. Therefore,

1ƒJ.z/

N

N�u�1X

jD1
.ImR

.J/
jj
/

˛
2 �

&
1� ˛

2
uC1 1ƒJ.z/

N

N�u�1X

jD1
ImR

.J/
jj
: (6.16)

Furthermore, we have by (5.14) (applied with r D 1) that

1ƒJ.z/

N

N�u�1X

jD1
ImR

.J/
jj
.z/ � 1ƒJ.z/

✓
mN .z/ �

4.uC 1/

.N � u � 1/⌘

◆
: (6.17)

It then follows from the second estimate in (5.13), the assumption EŒImmN .z/ç � ", and
0  u  M D b.log logN/2c that

P

"
1ƒJ.z/

N

N�u�1X

jD1
ImR

.J/
jj
.z/ 

"1ƒJ.z/

2

#
 2 exp.�.logN/2/ (6.18)
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for sufficiently large N . Inserting (6.16) and (6.18) into estimate (6.15) (upon observing
that &1�˛=2

uC1 � ⌘1�˛=2
�

1

N1=2�ı⌘˛=2 ) yields

P


kA 1

2Y k
˛

˛

N
<
"&
1� ˛

2
uC1 1ƒJ.z/

C

�
 C exp

✓
�

.logN/2

C

◆
(6.19)

for sufficiently large N , again after increasing C if necessary. Therefore, inserting (6.19)
into (6.14) yields

P ŒImSN;I < &u1ƒJ.z/
ç  CE


exp

✓
�

"&
1� ˛

2
uC1

C&
˛
2
u

◆�
C 2C exp

✓
�

.logN/2

C

◆
;

from which the proposition follows since

&
˛
2
u D &

1� ˛
2

uC1 .logN/�10˛

(due to (6.4)), and we may increase C so that the bound holds for all N .

6.1.4. Proof of Proposition 6.3. In this subsection we establish Proposition 6.3. We first
require the following lemma that will be established in Section 6.1.5.

Lemma 6.5. Let N be a positive integer and let 0 < r < 2 < a  4 be positive real
numbers. Denote by w D .w1; w2; : : : ; wN / a centeredN -dimensional Gaussian random
variable with covariance Uij D EŒwiwj ç for each 1  i; j  N . Define Vj D EŒw2

j
ç for

each 1  j  N , and define

U D

1

N

X

1i;jN
U 2
ij
; V D

EŒkwk
2

2
ç

N
D

1

N

NX

jD1
Vj ; X D

1

N

NX

jD1
V

a
2

j
;

p D

a � r

a � 2
; q D

a � r

2 � r
:

If V > 100.logN/10U
1
2 , then there exists a large constant C D C.a; r/ > 0 such that

P


kwk

r

r

N


V p

C.X.logN/8/
p
q

�
 C exp

✓
�

.logN/2

2

◆
:

Observe that Lemma 6.5 is a certain type of Hölder estimate for correlated Gaus-
sian random variables. The exponents p and q in that lemma come from such a bound
(see (6.29)). With this lemma, we can now establish Proposition 6.3.

Proof of Proposition 6.3. For notational convenience we assume that i D N and u D 0
(in which case I is empty); in what follows, we abbreviate the event

ƒN .z/ D

N�1\

jD1
.ƒS;j;πN º.z/ \ƒS;j;πN º.z/ \ƒT;j;πN º.z//: (6.20)

Now let us apply Lemma 6.4 with X D .XNj /1jN�1 and the .N � 1/ ⇥ .N � 1/
matrix A D πAij º, where we define

Aij D ImR
.N/

ij
for 1  i; j  N � 1
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(the superscript refers to the removal of theN th row.) Then Im.SN;I � Ti;I/ D hX;AXi.
Therefore, taking

t D .2 log 2/
1
2 &

� 1
2

0

in Lemma 6.4 yields by following the beginning of the proof of Proposition 6.2 until
(6.14) the existence of a large constant C D C.˛; b; ı; "/ > 0 such that

P ŒIm.SN � TN / < &01
ƒ.1/.z/ç

 CE


exp

✓
�

kA 1
2Y k

˛

˛

CN&
˛
2
0

◆
1ƒN .z/

�
C C exp

✓
�

.logN/2

C

◆
;

(6.21)

where Y D .y1; y2; : : : ; yN�1/ is an .N � 1/-dimensional centered Gaussian random
variable whose covariance is given by Id.

Now let us apply Lemma 6.5 with wi D .A 1
2Y /i , r D ˛, and a D 4 � ˛. Then we

find that

p D 2 D q; Vj D ImR
.N/

jj
.z/; Ujk D ImR

.N/

jk
.z/ for each 1  j; k  N � 1.

We must next estimate the quantities V , X, and U from that lemma.
To that end, observe from (5.6) and (4.2) that

U 

4

N 2

X

1i;jN�1
jImR

.N/

ij
.z/j2 

4

N 2⌘

N�1X

jD1
ImR

.N/

jj
.z/ 

4

N⌘2
: (6.22)

Furthermore, since (5.14) (with r D 1) and (4.2) together imply (6.17), we obtain from
the second estimate in (5.13), the assumption EŒImmN .z/ç � ", and the fact that

V � N�1
N�1X

jD1
ImR

.N/

jj
.z/

that
P


V 

"

2
1ƒN .z/

�
 2 exp.�.logN/2/ (6.23)

for sufficiently large N (depending on "), which in particular by (6.22) implies that

P ŒV  100.logN/10U
1
2 ç  2 exp.�.logN/2/: (6.24)

To upper bound X, first observe from (5.5) and the definition (6.20) of the event ƒN .z/
that

jR
.N/

jj
.z/j1ƒN .z/

 &�1
1
:

Therefore, for sufficiently large N ,

X1ƒN .z/
D

1ƒN .z/

N � 1

N�1X

jD1
.ImR

.N/

jj
.z//2� ˛

2 

21ƒN .z/

N&
1� ˛

2
1

N�1X

jD1
ImR

.N/

jj
.z/: (6.25)
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Therefore, (6.25), (5.14) (applied with r D 1), the second estimate in (5.13), and the
assumption that EŒImmN .z/ç 

1

"
imply that for sufficiently large N ,

P


X1ƒN .z/

>
4

"&
1� ˛

2
1

�
 2 exp.�.logN/2/: (6.26)

Now (6.23), (6.24), (6.26), and Lemma 6.5 yield (after increasing C if necessary) that

P


kA 1

2Y k
˛

˛

N


"3&
1� ˛

2
1

1ƒN .z/

C.logN/8

�
 C exp

✓
�

.logN/2

2

◆
: (6.27)

Inserting (6.27) into (6.21), we obtain (again after increasing C if necessary) that

P ŒIm.SN � TN / < &01ƒN .z/
ç

 C exp
✓

�

"3&
1� ˛

2
1

C&
˛
2
0
.logN/8

◆
C C exp

✓
�

.logN/2

C

◆
C C exp

✓
�

.logN/2

2

◆
;

from which we deduce the proposition since &
˛
2
0

D &
1� ˛

2
1

.logN/�10˛ (due to (6.4)) (after
increasing C so the bound holds for all N ).

6.1.5. Proof of Lemma 6.5. In this subsection we establish Lemma 6.5. Before doing
so, however, we require the following (likely known) estimate for sums of squares of
correlated Gaussian random variables.

Lemma 6.6. Let N be a positive integer, let g D .g1; g2; : : : ; gN / denote an N -dimen-
sional centered Gaussian random variable with covariance matrix C D πcij º, and define
a D .a1; a2; : : : ; aN / 2 R�0 by a2

j
D cjj for each j 2 Œ1; N ç. Then we have, for suffi-

ciently large N ,

P

"
jkgk

2

2
� kak

2

2
j � 50.logN/10

✓ X

1j;kN
c2
jk

◆ 1
2

#
 exp.�.logN/2/:

Proof. Let w D .w1; w2; : : : ; wN / be an N -dimensional centered Gaussian random vari-
able with covariance matrix given by Id. Let D and U be diagonal and orthogonal matrices,
respectively, such that C D UDU�1. Then g has the same law as UD 1

2 w, which implies
that kgk

2

2
has the same law as

P
N

jD1 djw
2

j
. Moreover,

NX

jD1
a2
j

D Tr C D Tr D D

NX

jD1
dj ;

X

1j;kN
c2
jk

D Tr C2 D Tr D2 D

NX

jD1
d2
j
;

so that

P

"
jkgk

2

2
� kak

2

2
j � 50.logN/10

✓ X

1j;kN
c2
jk

◆ 1
2

#

D P

"ˇ̌
ˇ̌
ˇ

NX

jD1
dj .w

2

j
� 1/

ˇ̌
ˇ̌
ˇ � 50.logN/10

 
NX

jD1
d2
j

! 1
2
#
:

(6.28)
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Now, since the πw2
j

� 1º are mutually independent, the fact that the right side of equa-
tion (6.28) is bounded by exp.�.logN/2/ is standard. For instance, it can be deduced
by truncating each dj .w2j � 1/ at 4dj logN and then applying the Azuma–Hoeffding
inequality.

Proof of Lemma 6.5. First observe that
 
1

N

NX

jD1
jwj j

r

! 1
p
 
1

N

NX

jD1
jwj j

a

! 1
q

�

1

N

NX

jD1
jwj j

2: (6.29)

We must therefore provide an upper bound on the a-th moments of the wj and a lower
bound on the second moments. To that end, observe that since each wj is a Gaussian
random variable of variance Vj , we have that

P

"
1

N

NX

jD1
jwj j

a
� 16X.logN/8

#


NX

jD1
P Œjwj j

� 2.logN/2V
1
2

j
ç  CN exp.�.logN/2/:

(6.30)

Furthermore, by Lemma 6.6, we have

P

"ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
jwj j

2
� V

ˇ̌
ˇ̌
ˇ � 50.logN/10U

1
2

#
 exp.�.logN/2/: (6.31)

Now the lemma follows from combining (6.29), (6.30), (6.31), and the assumption that
V > 100.logN/10U

1
2 .

6.2. Establishing Theorem 5.1

In this subsection we prove Theorem 5.1. We first establish Proposition 5.11 in Sec-
tion 6.2.1. Then we will show that Theorem 5.1 holds when jzj is sufficiently large in
Section 6.2.2; we will establish Theorem 5.1 for more general z in Section 6.2.3.

6.2.1. Proof of Proposition 5.11. In this subsection we establish Proposition 5.11. To that
end, denote

J.z/ D EŒ.�iz � iSj .z//�1ç; I.z/ D EŒ.�iz � iSj .z//�
˛
2 ç:

We begin by showing that Y.z/ is approximately equal to I.z/ and that X.z/ is approxi-
mately equal to J.z/ (recall (5.25)), assuming that P Œƒ.z/c ç is small.

Lemma 6.7. Let z 2 DK;$;B for some compact interval K ⇢ R and some B > 0. If
P Œƒ.z/c ç < 1

N10 , then there exists a large constant C D C.˛; b; ı/ > 0 such that

jY.z/ � I.z/j 

C.logN/
70

˛�1

.N⌘2/
˛
8

; jX.z/ � J.z/j 

C.logN/
70

˛�1

.N⌘2/
˛
8

: (6.32)
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Proof. In this proof, we will abbreviate S1 D S1.z/, T1 D T1.z/, and R11 D R11.z/. To
bound jY.z/ � I.z/j, we apply (5.11), (5.7) (with x D z C S1, y D z C S1 � T1, and
p D �

˛

2
), and (4.2) to obtain for any v > 0 that

j.�iz � iS1/�
˛
2 � .�iR11/

˛
2 j



˛

2
jT1j

 ˇ̌
ˇ̌ 1

z C S1

ˇ̌
ˇ̌

˛
2 C1

C

ˇ̌
ˇ̌ 1

z C S1 � T1

ˇ̌
ˇ̌

˛
2 C1!

1jT1jv1ƒ.z/

C

✓ˇ̌
ˇ̌ 1

z C S1

ˇ̌
ˇ̌

˛
2

C

ˇ̌
ˇ̌ 1

z C S1 � T1

ˇ̌
ˇ̌

˛
2
◆

1jT1j>v1ƒ.z/

C

✓ˇ̌
ˇ̌ 1

z C S1

ˇ̌
ˇ̌

˛
2

C

ˇ̌
ˇ̌ 1

z C S1 � T1

ˇ̌
ˇ̌

˛
2
◆

1ƒ.z/c

 ˛v.logN/
60

˛�1 1ƒ.z/ C 2.logN/
30

˛�1 1jT1j>v1ƒ.z/ C

2

⌘
1ƒ.z/c :

(6.33)

Setting v D .N⌘2/�
1
4 in estimate (6.33), taking expectations, using Proposition 5.9 to

bound P ŒjT1j > vç, and applying our assumed estimate P Œƒ.z/c ç < 1

N10 yields

E
⇥
j.�iz � iS1/�

˛
2 � .�iR11/

˛
2

ˇ̌
1ƒ.z/

⇤


6.logN/
70

˛�1

.N⌘2/
˛
8

;

from which we deduce the first estimate in (6.32). The proof of the second estimate in
(6.32) is entirely analogous and therefore omitted.

We now estimate the error resulting in replacing the entries of X with those of H.

Lemma 6.8. There exists a large constant C D C.˛/ > 0 such that

P ŒjSi � Si j � N�4✓ ç < CN�4✓ .1C EŒjR11jç/:

Proof. Let q > 0 be a real parameter, which will be chosen later. Fix i , and let B denote
the event that for every 1  j  N with j ¤ i , jHij j < N q and jZij j < N q . By the
hypotheses on the tail behavior of the Hij stated in Definition 2.1 and a union bound,

P ŒBç � 1 � CN�q˛ (6.34)

for some constant C D C.˛/ > 0. We now work on the set B. Due to the coupling
between X and H (of Definition 3.3),

EŒ1B jSi � Si jç  E


1B

X

j¤i
jZ2
ij

�X2
ij

jjR
.i/

jj
j

�



X

j¤i
E
⇥
1B jZ2

ij
�H 2

ij
j C 1B jH 2

ij
�X2

ij
j

⇤
EŒjR

.i/

jj
jç:

(6.35)

In this calculation, we used the independence ofHij , Zij , and Xij from R
.i/

jj
. To estimate

the right side of (6.35), we take expectations in (5.14) applied with r D 1 to obtain
ˇ̌
EŒjR

.i/

jj
jç � EŒjRjj jç

ˇ̌


10

N⌘
;
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where we used the exchangeability of the Rjj and (4.2). Also, from (2.3) and Defini-
tion 3.3 we compute (after increasing C if necessary)

EŒjH 2

ij
�X2

ij
jç D EŒH 2

ij
1
Hij<N

b� 1
˛
ç  CN 2b� 2

˛ �b˛:

Similarly, we compute (again after increasing C if necessary)

EŒ1B jZ2
ij

�H 2

ij
jç  EŒ1B.2jZij jjJij j C jJij j

2/ç

 C.N q� q˛
2 � 1

2 � 1
˛ CN� 2

˛ /

 2CN .1� ˛
2 /.q� 1

˛ /�1;

where in the second inequality we used

EŒ1B jZjjJ jç 

p
EŒ1B jZj

2çEŒ1B jJ j
2ç:

We therefore deduce from (5.26) and (6.35) that, after gaining a factor of N due to the
sum over j and choosing q D

1

4
,

EŒ1B jSi � Si jç  CN�10✓
✓
10

N⌘
C EŒjR11jç

◆
:

We conclude from a Markov estimate that

P Œ1B jSi � Si j � N�4✓ ç < CN�4✓ .1C EŒjR11jç/ (6.36)

for sufficiently large N . The claim now follows from (6.34) and (6.36).

Given Lemma 6.8, the proof of the following corollary is very similar to that of
Lemma 6.7 given Proposition 5.9. Therefore, we omit its proof.

Corollary 6.9. Let p 2 .0; 1ç and z 2 DK;$;B for some compact interval K ⇢ R and
some B > 0. If P Œƒ.z/c ç < 1

N10 , there exists a large constant C D C.˛; b; ı; "; p/ > 0
such that

E
⇥
j.�iz � iS1.z//�p � .�iz � iS1.z//

�p
j

⇤


C.logN/
100
˛�1

N 2✓
:

We can now establish Proposition 5.11.

Proof of Proposition 5.11. Given what we have done, the proof of this proposition will
be similar to that of [26, Proposition 3.1]. Specifically, defining

�.z/ D EŒ.�iz � iS1/
� ˛

2 ç; „.z/ D EŒ.�iz � iS1/
�1ç;

we have from [26, Corollary B.2 of (see in particular equation (31)] that

�.z/ D E

"
'˛;z

 
1

N

NX

jD2
.�iR.1/

jj
/

˛
2

jgj j
˛

EŒjgj j
˛ç

!#
;

„.z/ D E

"
 ˛;z

 
1

N

NX

jD2
.�iR.1/

jj
/

˛
2

jgj j
˛

EŒjgj j
˛ç

!#
;

(6.37)
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where g D .g2; g3; : : : ; gN / denotes an .N � 1/-dimensional centered Gaussian random
variable with covariance matrix given by Id that is independent from H, and E denotes
the expectation with respect to both H and g.

We will only establish the first estimate in (5.28) (on jY.z/ � '˛;z.Y.z//j). The proof
of the second is entirely analogous and is therefore omitted. To that end, set

⇢j D .�iR.1/
jj
.z//

˛
2 for each 2  j  N .

We will show that �.z/ ⇡ '˛;z.EŒ⇢2ç/ and EŒ⇢2ç ⇡ Y , and then use Corollary 6.9 and
Lemma 6.7 to deduce that I.z/ ⇡ �.z/ and Y.z/ ⇡ I.z/, respectively. To implement the
first task, observe from (6.37) that

j�.z/ � '˛;z.EŒ⇢2ç/j

D

ˇ̌
ˇ̌
ˇE
"
'˛;z

 
1

N

NX

jD2
.�iR.1/

jj
/

˛
2

jgj j
˛

EŒjgj j
˛ç

!#
� '˛;z.EŒ⇢2ç/

ˇ̌
ˇ̌
ˇ

 E

"
c'

ˇ̌
ˇ̌
ˇ
1

N

NX

jD2
.�iR.1/

jj
/

˛
2

jgj j
˛

EŒjgj j
˛ç

� EŒ⇢2ç

ˇ̌
ˇ̌
ˇ

#



c'

EŒjgj j
˛ç

E

"ˇ̌
ˇ̌
ˇ

1

N � 1

NX

jD2
⇢j jgj j

˛
�

1

N � 1
E

"
NX

jD2
⇢j jgj j

˛

#ˇ̌
ˇ̌
ˇ

#
C

c'EŒj⇢2jç

N



2c'

NEŒjgj j
˛ç

 
E

"ˇ̌
ˇ̌
ˇ

NX

jD2
⇢j jgj j

˛
�

NX

jD2
⇢jEŒjgj j

˛ç

ˇ̌
ˇ̌
ˇ

#

C EŒjgj j
˛çE

"ˇ̌
ˇ̌
ˇ

NX

jD2
.⇢j � EŒ⇢j ç/

ˇ̌
ˇ̌
ˇ

#!
C

c'

N⌘
;

(6.38)

where to deduce the first estimate we used the fact (from Lemma 5.8) that '˛;z is Lipschitz
with constant c' and the fact that EŒ⇢j ç is independent of j 2 Œ2; N ç, and to deduce the
third estimate we used (4.2).

Now recall that by the Cauchy–Schwarz inequality, EŒjX jç  EŒX2ç
1
2 for a centered

random variable X , so

1

N

 
E

"ˇ̌
ˇ̌
ˇ

NX

jD2
⇢j jgj j

˛
�

NX

jD2
⇢jEŒjgj j

˛ç

ˇ̌
ˇ̌
ˇ

#!



1

N

 ˇ̌
ˇ̌
ˇ

NX

jD2
j⇢j j

2
EŒjgj j

2˛ç �

NX

jD2
j⇢j j

2
EŒjgj j

˛ç2

ˇ̌
ˇ̌
ˇ

! 1
2

:

(6.39)

Furthermore, Lemma 5.4 with t replaced by .N⌘2/�
˛
4 t .logN/2 yields the existence of

a large constant C D C.˛/ > 0 such that

P

"
1

N

NX

jD2
.⇢j � EŒ⇢j ç/ >

t.logN/2

.N⌘2/
˛
4

#
 C exp

✓
�

t2.logN/2

C

◆
(6.40)
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for each t � 1. Integrating (6.40) yields

E

"
1

N

NX

jD2
.⇢j � EŒ⇢j ç/

#


C.logN/2

.N⌘2/
˛
4

; (6.41)

after increasing C if necessary. Combining (6.38), (6.39), and (6.41) yields (again upon
increasing C if necessary)

j�.z/ � '˛;z.EŒ⇢2ç/j 

Cc'EŒj⇢2j
2ç

1
2

N
1
2

C

Cc'.logN/2

.N⌘2/
˛
4

C

c'

N⌘



2Cc'.logN/2

.N⌘2/
˛
4

;

(6.42)

where in the second estimate we used the fact that j⇢2j
2

 ⌘�˛
 ⌘�2 (due to (4.2)).

To show that EŒ⇢2ç ⇡ Y.z/, we apply (4.2), (5.14) with r D
˛

2
, and the exchangeabil-

ity of the entries of X, and then take expectations to find

jEŒ⇢2ç � Y.z/j 

5

.N⌘/
˛
2

: (6.43)

From (6.42), (6.43), and the fact that '˛;z is Lipschitz with constant c' , we deduce that

j�.z/ � '˛;z.Y.z//j 

c'C.logN/2

.N⌘2/
˛
8

; (6.44)

upon increasing C if necessary.
Now, by Corollary 6.9 (with p D

˛

2
) and Lemma 6.7 we have (again after increasing

C if necessary) that

jI.z/ � �.z/j 

C.logN/
100
˛�1

N 4✓
;

jY.z/ � I.z/j 

C.logN/
70

˛�1

.N⌘2/
˛
4

:

(6.45)

Now the first estimate in (5.28) follows from (6.44) and (6.45).

6.2.2. Proof of Theorem 5.1 for large jzj. In this subsection we establish Theorem 5.1
if jzj is sufficiently large. We begin by addressing the case of large ⌘, given by the
following lemma.

Lemma 6.10. Adopt the notation of Theorem 3.4. There exist constants C D C.˛; b/ > 0
and B D B.˛/ > 0 such that (5.2) holds for some ~ > 0.

Proof. From the definition (2.5) of m˛.z/, we deduce that

jEŒmN .z/ç �m˛.z/j  jX.z/ �  ˛;z.Y.z//j C j ˛;z.Y.z// �  ˛;z.y.z//j: (6.46)

In view of Lemma 5.8, there exists a large constant B D B.˛/ > 1 such that for any
z 2 H with jzj � B we have that maxπc' ; c º < 1

2
. Thus, letE 2 R and let z D E C iB.
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Then
jY.z/ � y.z/j  jY.z/ � '˛;z.Y.z//j C j'˛;z.Y.z// � '˛;z.y.z//j

 jY.z/ � '˛;z.Y.z//j C

jY.z/ � y.z/j

2
;

which implies that
jY.z/ � y.z/j  2jY.z/ � '˛;z.Y.z//j: (6.47)

By (5.12), ƒ.z/ holds deterministically. Thus we can apply Proposition 5.11 (and (6.47))
to bound the right side of estimate (6.46). This yields the existence of a large constant
C D C.˛; b; ~/ > 0 such that

jY.z/ � y.z/j  C.logN/
100
˛�1

✓
1

.N⌘2/
˛
8

C

1

N 2✓

◆


2C.logN/
100
˛�1

N ~
;

jEŒmN .z/ç �m˛.z/j  C.logN/
100
˛�1

✓
1

.N⌘2/
˛
8

C

1

N 2✓

◆


2C.logN/
100
˛�1

N ~
:

(6.48)

Now the lemma follows from (6.48), the first estimate in (5.13), and the deterministic
estimate jRij .z/j 

1

⌘
< 1.

The following proposition analyzes the case when ReE is large.

Proposition 6.11. Let B be a constant as in Lemma 6.10. There exists a large constant
E0 D E0.˛/ > 0 such that, for any compact intervalK D Œu; vç disjoint from Œ�E0; E0ç,
there exists a large constant C D C.˛; b; u; v; ı/ > 0 and absolute constant c > 0 such
that the following holds. Suppose that E 2 Œu; vç and z0; z 2 DŒu;vç;$;B satisfy

Re z0 D E D Re z and Im z0 �

1

N 5
 Im z  Im z0;

and ~ < c. If P Œ�.z0/
c ç < 1

N20 , then

P Œ1�.z/ < 1�.z0/
ç  C exp

✓
�

.logN/2

C

◆
(6.49)

for large enough N .

Proof. First, recall that, sincem˛.z/ is the Stieltjes transform of a probability measure�˛
whose density is bounded and whose support is R (see [18, Proposition 1.1]), for any
B > 0 there exists a small constant " D ".u; v;B/ > 0 such that

" < sup
w2DŒu;vç;$;B

Imm˛.w/ <
1

"
: (6.50)

Now, we claim that

P


1�.z0/

jImmN .z/ � Imm˛.z/j >
2

N ~

�
 2 exp.�.logN/2/: (6.51)

Indeed, estimate (6.51) follows from the fact that 1�.z0/
jmN .z0/ � Imm˛.z0/j < N

�~ ,
the fact that jmN .z/ �mN .z0/j <

2

N
since jz � z0j <

1

N5 (from estimate (5.8)), the fact
that jm˛.z/ �m˛.z0/j 

2

N
(since m˛ is the Stieltjes transform of the probability mea-

sure �˛), and the second estimate in (5.13).
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In particular, (6.50) and (6.51) imply that

P


2"1�.z0/

 1�.z0/
ImmN .z/ <

1

2"

�
� 1 � 2 exp.�.logN/2/: (6.52)

Next, as in the proof of Lemma 6.10, Lemma 5.8 implies the existence of a large
constant E0 D E0.˛/ > 0 such that if z 2 H satisfies jzj > E0, then maxπc' ; c º < 1

2
.

Recalling X.z/ and Y.z/ from (5.25) and following the proof of Lemma 6.10, we deduce
that

jEŒmN .z/ç �m˛.z/j  jX.z/ �  ˛;z.Y.z//j C j ˛;z.Y.z// �  ˛;z.y.z//j;

jY.z/ � y.z/j  2jY.z/ � '˛;z.Y.z//j:
(6.53)

Observe that the hypotheses of Proposition 5.11 are satisfied for z; this is because
estimate (6.52) and Proposition 6.1, together with the trivial bound jmN .z/j  ⌘�1 on the
set �.z0/c , imply that

P Œƒ.z/c ç < P Œ�.z0/çC
1

N 20
<

1

N 10

for large enough N . Then we can use Proposition 5.11 to estimate the terms appearing
on the right side of (6.53). Since c < 1

2
, this yields the existence of a large constant

C D C.˛; b; u; v; ~/ > 0 such that

1�.z0/
jY.z/ � y.z/j  C.logN/

100
˛�1

✓
1

.N⌘2/
˛
8

C

1

N 2✓

◆



2C.logN/
100
˛�1

N ~
;

1�.z0/
jEŒmN .z/ç �m˛.z/j  C.logN/

100
˛�1

✓
1

.N⌘2/
˛
8

C

1

N 2✓

◆



2C.logN/
100
˛�1

N ~
:

(6.54)

Therefore, the first estimate in (5.13) and the second estimate in (6.54) together imply that

P


1�.z0/

jmN .z/ �m˛.z/j >
1

N ~

�
 2 exp

✓
�

.logN/2

8

◆
: (6.55)

Furthermore, observe that (5.11), (6.52), and Proposition 6.1 together yield

P

h
1�.z0/

max
1jN

jRjj .z/j > .logN/
30

˛�1

i
< C exp

✓
�

.logN/2

C

◆
: (6.56)

Now (6.49) follows from the first estimate in (6.54), (6.55), and (6.56).

6.2.3. Bootstrap for small energies. Let E0 and B be as in Proposition 6.11; in this
section we establish the analog of that proposition when jEj  E0 C 1. To that end, let
◆ D ◆˛ denote the set of complex numbers x with Re x 2 K and Im x 2 Œ0;Bç such that
'0
˛;z
.x/ � 1 D 0. Recall from either [19, Lemma 6.2] or [18, equation (3.17)] that if z ¤ 0

there exists an entire function g.x/ D g˛.x/ such that '˛;z.x/ D Cz�˛g.x/. Therefore,
since K is a compact interval that does not contain 0, ◆˛ is finite. Thus the implicit func-
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tion theorem yields the existence of some integer M D M.˛;K/ > 0 (corresponding to
the order of the largest zero of '0

˛;z
� 1 in ◆˛), a small constant c D c.˛;K;B/ > 0, and

a large constant C D C.˛;K;B/ > 0 such that the following holds. If z 2 H satisfies
Re z 2 K and Im z  B, then for any t > 0 and w 2 C,

jw � y.z/j  c and jw � '˛;z.w/j  t H) jw � y.z/j  Ct
1

M : (6.57)

Now we can establish the following proposition that establishes estimates (5.3) when
jRe zj  E0 C 1.

Proposition 6.12. Let ~ D ~.˛; ı;K/ D
ı

20M
. For any compact intervalK D Œu; vç⇢ R

that does not contain 0, there exists a large constant C D C.˛; b; u; v; ~/ > 0 such that
the following holds. Suppose E 2 Œu; vç and z0; z 2 DŒu;vç;$;B satisfy

Re z0 D E D Re z and Im z0 �

1

N 5
 Im z  Im z0:

If P Œ�.z0/ç <
1

N20 , then

P Œ1�.z/ < 1�.z0/
ç < C exp

✓
�

.logN/2

C

◆
:

Proof. Since Re z D Re z0, Im z0 �
1

N5  Im z  Im z0, continuity estimates for Y.z/
and y.z/ (see, for instance, [26, equation (39)]) imply that

jY.z/ � Y.z0/j C jy.z/ � y.z0/j 

1

N
:

Therefore, since jY.z0/ � y.z0/j1�.z0/
 N�~ , it follows that

jY.z/ � y.z/j1�.z0/
 2N�~

for N sufficiently large. Thus it follows from (6.57) that there exists a large constant
C D C.˛; u; v/ > 0 such that

1�.z0/
jY.z/ � y.z/j  C jY.z/ � '˛;z.Y.z//j

1
M 1�.z0/

: (6.58)

Following the reasoning used to establish the estimates in (6.53) in the proof of Proposi-
tion 6.11, we obtain

1�.z0/
jEŒmN .z/ç �m˛.z/j



�
jX.z/ �  ˛;z.Y.z//j C j ˛;z.Y.z// �  ˛;z.y.z//j

�
1�.z0/



�
jX.z/ �  ˛;z.Y.z//j C c jY.z/ � y.z/j

�
1�.z0/

:

(6.59)

Having established (6.58) and (6.59), the remainder of the proof of this proposition is very
similar to that of Proposition 6.11 after (6.53) and is therefore omitted.

Using the results above, we can now establish Theorem 5.1.

Proof of Theorem 5.1. Estimate (5.2) follows from Lemma 6.10. Furthermore, Proposi-
tion 6.11 establishes the existence of a large constant E0 D E0.˛/ such that (5.3) holds
when jIm zj D jIm z0j > E0 and ~ < c. Then Proposition 6.12 implies estimate (5.3)
when jRe zj D jRe z0j  E0 C 1 and ~ D

ı

20M
. Together these yield Theorem 5.1.
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7. Intermediate local law for almost all ˛ 2 .0; 2/ at small energies

In this section and in Section 8 we establish Theorem 3.5 (in fact the slightly more general
Theorem 7.6 below), which provides a local law at sufficiently small energies for the
removal matrix X for almost all ˛ 2 .0; 2/. In Section 7.1 we state the local law (given
by Theorem 7.6 below) and an estimate (Theorem 7.8) that implies the local law. We will
then establish Theorem 7.8 in Section 7.2.

However, before doing this, let us recall some notation. In what follows we fix param-
eters ˛ 2 .1; 2/ and 0 < b < 1

˛
; we recall the removal matrix X and its resolvent R from

Definition 3.3; we recall mN .z/ D N�1 Tr R; and we recall the domain DC;ı from (3.4).
Furthermore, we denote by K the set of z 2 C with Re z > 0, and we set K

C
D K \ H

to be the closure of the positive quadrant of the complex plane. We also let S
1 be the unit

circle, consisting of all z 2 C with jzj D 1, and we define the closure S
1

C D KC
\ S.

7.1. An estimate for the intermediate local law

In this subsection we state the local law for X on scales N ı� 1
2 (Theorem 7.6 below) and

an estimate (Theorem 7.8) that implies it; this will be done in Section 7.1.3. However, we
will first define a certain inner product and metric in Section 7.1.1 that will be required to
define a family of fixed point equations in Section 7.1.2.

7.1.1. Inner product and metric. In order to establish a convergence result for mN .z/
(which is approximately equal to EŒRi i ç), we in fact must understand the convergence
of more general expectations, including the fractional moments EŒ.�iRjj /pç, the abso-
lute moments EŒjRjj j

pç, and the imaginary moments EŒjImRjj j
pç. To facilitate this, we

define for any u; v 2 C, the inner product

.u j v/ D uRe v C u Im v

D Reu.Re v C Im v/C i Imu.Re v � Im v/:

In particular, for any u; v 2 C, we have

.u j 1/ D u; .�iu j e ⇡ i
4 / D Imu

p

2; j.u j v/j  2jujjvj: (7.1)

We will attempt to simultaneously understand the quantities

Az.u/ D EŒ..�iRi i /
˛
2 ju/ç for all u 2 K

C.

Our reason for this (as opposed to only considering the cases u D 1 and u D e
⇡ i
4 ) is that

the absolute moments EŒjRjj j
pç will be expressed as an integral of a function of Az.u/

over u (see the definitions (7.7) of Jp and rp;z and also the second estimate in (7.16)
below); this was implemented in [27].

To explain this fixed point equation further, we require a metric space of functions. To
that end, for any w 2 C, we let Hw denote the space of C

1 functions g W K
C

! C such
that g.�u/ D �wg.u/ for each � 2 R�0. Following [27, equation (10)], we define for any
r 2 Œ0; 1/ a norm on Hr by

kgk1 D sup
u2S1

C

jg.u/j
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and
kgkr D kuk1 C sup

u2S1
C

p
j.i ju/r@1g.u/j2 C j.i ju/r@2g.u/j2;

where @1g.x C iy/ D @xg.x C iy/ and @2g.x C iy/ D @yg.x C iy/. Observe in partic-
ular that

sup
u2S1

C

jg.u/j  kgkr for any r > 0. (7.2)

We let Hw;r be the completion of Hw with respect to the kgkr norm. Further define
for any ı > 0 the subset H

ı

w;r
⇢ Hw;r consisting of all g 2 Hw;r such that Reg.u/ > ı

for all u 2 S
1

C, and define
H
0

w;r
D

[

ı>0

H
ı

w;r
:

Further abbreviate H
ı

w
D H

ı

w;0
.

The following stability lemma, which appears as [27, Lemma 5.2], will be useful to us.

Lemma 7.1 ([27, Lemma 5.2]). Assume that r 2 .0; 1/ and u 2 S
1

C. Let x1; x2 2 K
C,

and let a 2 .0; 1/ be such that jx1j; jx2j  a�1. Set Fk.u/ D .xk ju/r for each k 2 π1; 2º.
Then there exists a constant C D C.r/ > 0 such that for any s 2 .0; r/, we have

kFkk1�rCs  C jxkj
r for any k 2 π1; 2º;

kF1 � F2k1�rCs  Ca�r .jx1 � x2j
r

C asjx1 � x2j
s/:

(7.3)

If we further assume that Re x1;Re x2 � t for some t > 0, and we setGk.u/ D .x�1
k

ju/r
for each k 2 π1; 2º, then there exists a constant C D C.r/ > 0 such that

kG1 �G2k1�rCs  Ct r�2a2r�1
jx1 � x2j: (7.4)

7.1.2. Equations form. Following [27, Section 3.2] (or [26, Section 5.1]), define for any
complex numbers u 2 S

1

C and h 2 K, and any function g 2 H˛=2, the function

Fh;g.u/ D

Z ⇡
2

0

✓ Z 1

0

✓ Z 1

0

⇣
e�r ˛

2 g.ei✓
/�.rh j ei✓

/
� e�r ˛

2 g.ei✓ Cuy/�.yrh ju/�.rh j ei✓
/

⌘

⇥ r
˛
2 �1 dr

◆
y� ˛

2 �1 dy
◆
.sin 2✓/

˛
2 �1 d✓:

It was shown in [27, Lemma 4.1] that Fh;g 2 H˛=2;r if g 2 H
0

˛=2;r
, and also that it is in

the closure H 0

˛=2;r
for any g 2 H

0

˛=2;r
if Re h > 0. As in [27, equation (13)], define the

function

‡f .u/ D ‡z;f .u/ D c˛F�iz;f .Åu/; where c D c˛ D

˛

2
˛
2 Ä.˛

2
/2

andÅu D iu. (7.5)

Observe that .u; v/ D uRe v C u Im v D .u;Åv/. Now, for any u 2 C, define

#z.u/ D Ä

✓
1 �

˛

2

◆
.�iRjj ju/˛

2 ;

�z.u/ D EŒ#z.u/ç D Ä

✓
1 �

˛

2

◆
EŒ.�iRjj ju/˛

2 ç

(7.6)
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for any j 2 Œ1; N ç; observe that �z.u/ does not depend on j due to the fact that the
entries of X are identically distributed. Furthermore, for any p > 0 and f 2 H˛=2, define
Ip; Jp; rp;z.f / 2 C and sp;z W K ! C by

Ip D Ip.z/ D EŒ.�iRjj /pç;
Jp D Jp.z/ D EŒjiRjj j

pç;

rp;z.f / D

21� p
2

Ä.p
2
/2

Z ⇡
2

0

Z 1

0

yp�1e.iyz j ei✓
/�y ˛

2 f .ei✓
/.sin 2✓/

p
2 �1 dy d✓;

sp;z.x/ D

1

Ä.p/

Z 1

0

yp�1e�iyz�xy ˛
2
dy

(7.7)

for any x 2 K. The convergence of these integrals can quickly be deduced from the fact
that Re.iz/ < 0.

We now state four lemmas that can be found in [27]. The first two provide existence,
stability, and estimates for the solution to a certain fixed point equation, while the latter
two provide bounds and stability estimates for the functions F , sp;z , rp;z , and ‡ .

Lemma 7.2 ([27, Proposition 3.3], [25, Lemma 4.3]). There exists a countable sub-
set A ⇢ .0; 2/ with no accumulation points on .0; 2/ such that, for any r 2 .0; 1ç and
˛ 2 .0; 2/ n A, there exists a constant c D c.˛; r/ > 0 with the following property. There
exists a unique function�0 2 H˛=2 such that�0 D ‡0;�0

. Additionally, if Im z > 0 and
jzj  c, then there is a unique function f D �z 2 H˛=2;r that solves f D ‡z;f with
kf ��0kr  c. Moreover, this function f satisfies �z.e

⇡ i
4 / � c and, for any p > 0,

there exists a constant C D C.˛; p/ > 0 such that rp;z.�z/  C .

Lemma 7.3 ([27, Proposition 3.4]). Adopt the notation of Lemma 7.2. After decreasing
c if necessary, there exists a constant C > 0 such that the following holds. If Im z > 0,
jzj  c, and kf ��zkr  c, then

kf ��zkr  Ckf � ‡zIf kr :

The following stability properties of Fh and ‡ will be useful to us later.

Lemma 7.4 ([27, Lemma 4.1]). Let r 2 .0; 1/ and p > 0. There exists a positive constant
C D C.˛; p; r/ such that, for any g 2 H

0

˛=2;r
and h 2 K, we have

kFh.g/kr  C.Re h/�
˛
2 C Ckgkr .Re h/�

˛
2 ;

jrp;ih.g/j  C.Re h/�p; jsp;ih.g.1/j  C.Re h/�p:
(7.8)

Lemma 7.5 ([27, Lemma 4.3]). For any fixed a; r > 0, there exists a positive constant
C D C.˛; a; r/ such that for any f; g 2 H

a

˛=2;r
and z 2 C, we have

k‡f � ‡gkr  Ckf � gkr C kf � gk1.kf kr C kgkr /: (7.9)

Furthermore, for any p > 0 there exists a constant C 0
D C 0.˛; a; r; p/ such that for any

f; g 2 H
a

˛=2;r
and any z 2 C and x; y 2 K with Re x;Rey � a, we have

jrp;z.f / � rp;z.g/j  C 0
kf � gk1; jsp;z.x/ � sp;z.y/j  C 0

jx � yj: (7.10)



GOE statistics for Lévy matrices 3775

7.1.3. An intermediate local law for X. The following theorem provides a local law for X.

Theorem 7.6. There exists a countable set A ⇢ .0; 2/, with no accumulation points in
.0; 2/, such that the following holds. Fix ˛ 2 .0; 2/ n A and 0 < b < 1

˛
. Denote

✓ D

.b �
1

˛
/.2 � ˛/

20

and fix some ı 2 .0; ✓/ with ı < 1

2
. Then there exists a constant C D C.˛; b; ı; p/ > 0

such that

P


sup

z2DC;ı

jmN .z/ � is1;z.�z.1//j >
1

N
˛ı
8

�
< C exp

✓
�

.logN/2

C

◆
; (7.11)

where we recall the definition of �z from Lemma 7.2. Furthermore, we have

sup
u2S1

C

j�z.u/ ��z.u/j 

C

N
˛ı
8

; jJ2 � r2;z.�z/j 

C

N
˛ı
8

; (7.12)

and

P

h
sup

z2DC;ı

max
1jN

jRjj .z/j > .logN/C
i
< C exp

✓
�

.logN/2

C

◆
: (7.13)

Remark 7.7. One can show that the fixed point equations (2.5) and Lemma 7.2 defining
m˛.z/ and �z , respectively, are equivalent when u D 1; this implies that

is1;z.�z.1// D m˛.z/:

Theorem 7.6 is a consequence of the following theorem (whose proof will be given in
Section 7.2 below), which is similar to [27, Proposition 3.2] but with two main differences.
The first is that Theorem 7.8 below establishes estimates on the scale ⌘ � N� 1

2 , while the
corresponding estimate in [27] was shown with ⌘ � N� ˛

2C˛ . The second is that we also
establish estimates on each jRjj j, which was not pursued in [27]. In fact, these bounds
on the resolvent entries (which follow as consequences of Proposition 7.9 and Proposi-
tion 7.10 below) are partially what allow us to improve the scale from ⌘ � N� ˛

2C˛ in [27]
to ⌘ � N� 1

2 here.

Theorem 7.8. Fix ˛ 2 .0; 2/, 0 < b < 1

˛
, s 2 .0; ˛

2
/, p > 0, " 2 .0; 1ç, and a positive

integer N . Define

✓ D

.b �
1

˛
/.2 � ˛/

10
;

and suppose that z D E C i⌘ 2 H with E; ⌘ 2 R. Assume that

⌘ � N "� s
˛ ; jzj <

1

"
; EŒ.ImR11/

˛
2 ç � "; EŒjR11j

2ç  "�1: (7.14)

Then there exists a constant C D C.˛; "; b; s; p/ > 0 such that

k�z � ‡�z k1� ˛
2 Cs  C.logN/C

✓
1

.N⌘2/
˛
8

C

1

N ✓
C

1

N s⌘
˛
2

◆
; (7.15)
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and
jIp � sp;z.�z.1//j  C.logN/C

✓
1

.N⌘2/
˛
8

C

1

N ✓
C

1

N s⌘
˛
2

◆
;

jJp � rp;z.�z/j  C.logN/C
✓

1

.N⌘2/
˛
8

C

1

N ✓
C

1

N s⌘
˛
2

◆
:

(7.16)

Furthermore,

inf
u2S1

C
Im �z.u/ �

1

C
; (7.17)

and

P

h
max
1jN

jRjj j > C.logN/C
i
< C exp

✓
�

.logN/2

C

◆
: (7.18)

Given Lemma 7.2, Lemma 7.3, and Theorem 7.8, the proof of Theorem 7.6 is very
similar to the proof of [27, Theorem 5.11 in Section 5.4] and is therefore omitted. How-
ever, let us briefly explain the idea of the proof, referring to [27] for the remaining details.

To that end, after proving Theorem 7.6 in the case when ⌘ D
1

C
is of order 1, one first

observes by (5.8) that it suffices to establish Theorem 7.6 for any individual z on a certain
lattice. In particular, for a constant C > 0, let

A D A.C/ D

�
2NC

C

⌫
and B D B.C/ D

�
NC

�NCCı� 1
2

C

⌫
;

and define
zjk D zj;k D

j

NC
�

1

C
C i
✓
1

C
�

k

NC

◆

for each 0  j  A and 0  k  B .
If C is sufficiently large, it suffices to verify (7.11) and (7.13) for each zjk . We will

induct on k; the initial estimate states that they are true for k D 0. So letM 2 Œ1; Bç be an
integer, assume that the theorem holds for k  M � 1, and let us establish it for k D M .
To that end, we will apply Theorem 7.8 with s D

˛�˛ı
2

and " 
ı

2
.

To apply this theorem, we must verify the estimates in (7.14). The first estimate
there holds since ⌘ � N ı� 1

2 , and the second holds for sufficiently small " if z 2 DC;ı .
The third follows from (5.8), the second statement of (7.1), the first estimate in (7.12)
(applied with z D zj;M�1 on the previous scale), and the lower bound on �z.e

⇡ i
4 / pro-

vided by Lemma 7.2. The fourth estimate in (7.14) similarly follows from (5.8), the
second estimate in (7.12) (applied with z D zj;M�1 on the previous scale), and the upper
bound on r2;z.�z/ given by Lemma 7.2.

Thus, applying Theorem 7.8 yields that (7.15), (7.16), (7.17), and (7.18) all hold for
z D zjM ; the last estimate implies (7.13). Furthermore, (7.15), (7.2), (5.8), estimate (7.11)
(applied with z D zj;M�1 on the previous scale), and Lemma 7.3 together imply the first
estimate in (7.12) for z D zjM . Now (7.11) for z D zjM follows from the first estimate
in (7.16) (applied with p D 1), the first estimate in (7.12), the first identity in (7.1), (7.17),
the second estimate in (7.10), and the first estimate in (5.13). The second estimate in (7.12)
for z D zjM follows from the second estimate in (7.16) (applied with p D 2), the first
estimate in (7.12), (7.17), and the first estimate in (7.10).
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7.2. Establishing Theorem 7.8

In this subsection we establish Theorem 7.8 assuming Proposition 7.9, Proposition 7.10,
and Proposition 7.17; the latter results will be proven later, in Section 8.

Define
Si D

X

j¤i
X2
ij
R
.i/

jj
;

Ti D Xi i � Ui ; where Ui D

X

j;k¤i
j¤k

XijR
.i/

jk
Xki ;

(7.19)

and observe that Ri i can be expressed in terms of Ti , z, and Si through (5.11).
We begin in Section 7.2.1 by “removing Ti” from the equations defining Ri i by

approximating functions of the Ri i by analogous functions of .�z � Si /
�1. Next, in Sec-

tion 7.2.2 we analyze the error in replacing all of the removal entriesXij in the expression
defining Si with the original ˛-stable entries Zij (recall Definition 3.3). This will be use-
ful for deriving approximate fixed point equations in Section 7.2.3, which we will use to
conclude the proof of Theorem 7.8 in Section 7.2.4.

7.2.1. Removing Ti . Denoting

!z.u/ D ..�iz � iSi /�1 ju/˛
2 ;

$z.u/ D E
⇥
..�iz � iSi /�1 ju/˛

2
⇤
;

(7.20)

we would like to show that �z ⇡ $z and that other similar approximations hold; see
Proposition 7.11 below. Such estimate which would follow from Proposition 5.9 if one
could show that Im.Si � Ti / and ImSi could be bounded from below with overwhelming
probability. The following two propositions, which will be proven in Section 8.2 and
Section 8.3, establish the latter statement.

Proposition 7.9. Adopt the notation of Theorem 7.8. Then there exists a large constant
C D C.˛; "; b/ > 1 such that

P


ImSi <

1

C.logN/C

�
< C exp

✓
�

.logN/2

C

◆
: (7.21)

Proposition 7.10. Adopt the notation of Theorem 7.8. Then there exists a large constant
C D C.˛; "; b/ > 1 such that

P


Im.Si � Ti / <

1

C.logN/C

�
< C exp

✓
�

.logN/2

C

◆
: (7.22)

In particular, we have

P


max
1jN

jRjj j < C.logN/C
�
< C exp

✓
�

.logN/2

2C

◆
: (7.23)

The following proposition is a consequence of Proposition 5.9, Proposition 7.9, and
Proposition 7.10; its proof will be similar to that of Lemma 6.7.
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Proposition 7.11. Adopt the notation of Theorem 7.8. Then there exists a large constant
C D C.˛; "; b; s; p/ > 0 such that

E
⇥
jjRi i j

p
� j.�z � Si /

�1
j
p

j

⇤


C.logN/C

.N⌘2/
˛
8

;

E
⇥
j.�iRi i /p � .�iz � iSi /�pj

⇤


C.logN/C

.N⌘2/
˛
8

;

(7.24)

and
k�z �$zk1� ˛

2 Cs <
C.logN/C

.N⌘2/
˛
8

; (7.25)

where �z and $z are defined in (7.6) and (7.20), respectively.

Proof. Let us first establish the first estimate in (7.24). The proof of the second is entirely
analogous and is therefore omitted. To that end, observe from (5.5) and (5.7) that, for any
v > 0, we have that

ˇ̌
jRi i j

p
� j.�z � Si /

�1
j
p
ˇ̌

 .p � 1/v

✓ˇ̌
ˇ̌ 1

Im.Si � Ti C z/

ˇ̌
ˇ̌
pC1

C

ˇ̌
ˇ̌ 1

Im.z C Si /

ˇ̌
ˇ̌
pC1◆

1jTi j<v

C

✓ˇ̌
ˇ̌ 1

Im.Si � Ti C z/

ˇ̌
ˇ̌
p

C

ˇ̌
ˇ̌ 1

Im.z C Si /

ˇ̌
ˇ̌
p◆

1jTi j�v:

(7.26)

We will use Proposition 5.9, Proposition 7.9, and Proposition 7.10 to bound the expec-
tation of the right side of (7.26). Let C1, C2, and C3 denote the constants C from Propo-
sition 5.9, Proposition 7.9, and Proposition 7.10, respectively. Also let E1 denote the
event on which inf1iN ImSi < C

�1
2
.logN/�C2 , let E2 denote the event on which

inf1iN Im.Si � Ti / < C
�1
3
.logN/�C3 , and let E D E1 [E2.

Now, using the deterministic estimate (5.12) and the fact that Im z D ⌘  N� 1
2 to

estimate the expectation of the right side of (7.26) on E, and using Proposition 7.9 and
Proposition 7.10 to estimate it off of E, yields

E
⇥
jjRi i j

p
� j.�z � Si /

�1
j
p

j

⇤

 .p � 1/v.CpC1
2

.logN/.pC1/C2
C CpC1

3
.logN/.pC1/C3/

C .p � 1/v.CpC1
2

.logN/.pC1/C2
C CpC1

3
.logN/.pC1/C3/P ŒjTi j � vç

C .N
p
2 C .p � 1/vN

pC1
2 /

✓
exp

✓
�

.logN/2

C2

◆
C exp

✓
�

.logN/2

C3

◆◆
:

Setting v D .N⌘2/�
1
4 in this estimate together with the estimate on P ŒjTi j � sç given by

(5.17) (applied with t D .N⌘2/
1
4 ) yields (7.24).

The proof of (7.25) is similar, except we now use Lemma 7.1. Recall the functions #z
and !z from (7.6) and (7.20), respectively. Furthermore, recall the event E from above,
and let F denote the complement of E. On F , we apply (7.4) with

x1 D iTi � iz � iSi ; x2 D �iz � iSi ;

r D

˛

2
; t D a D .C2 C C3/

�1.logN/�C2�C3
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to obtain that

k#z � !zk1� ˛
2 Cs1F 1jTi jv

 C.C2 C C3/
3�3˛

2 .logN/.3�3˛
2 /.C2CC3/

ˇ̌
ˇ̌ 1

z C Si � Ti
�

1

z C Si

ˇ̌
ˇ̌1F

 C.C2 C C3/
5�3˛

2 .logN/.5�3˛
2 /.C2CC3/v1F :

(7.27)

Similarly, applying the first estimate in (7.3) with

x1 D .iTi � iz � iSi /�1; x2 D .�iz � iSi /�1;

r D

˛

2
; a D .C2 C C3/

�1.logN/�C2�C3

yields the existence of a constant C D C.˛/ > 0 such that

k#z � !zk1� ˛
2 Cs1F 1jTi j>v  C

�
jz C Si � Ti j

�1
C jz C Si j

�1�1F 1jTi j>v

 2C.C2 C C3/
˛
2 .logN/C2CC31F 1jTi j>v:

(7.28)

Moreover, again using the first estimate in (7.3) with the same x1, x2, and r as above, but
now with a D ⌘ � N� 1

2 , we obtain

k#z � !zk1� ˛
2 Cs1E  2CN

˛
4 1E : (7.29)

Now (7.25) follows similarly to (7.24) as explained above. Set v D .N⌘2/�
1
4 and sum

(7.27), (7.28), and (7.29). Then apply (5.17) (with t D .N⌘2/
1
4 ), Proposition 7.9, and

Proposition 7.10. Finally, use the facts that $z D EŒ!z.u/ç and �z.u/ D EŒ#z.u/ç.

7.2.2. Replacing X. To facilitate the proof of Theorem 7.8, it will be useful to replace all
of the Xij with Zij (which we recall are coupled from Definition 3.3). To that end, we
define

Si D

X

j¤i
Z2
ij
R
.i/

jj
;

‰z.u/ D Ä

✓
1 �

˛

2

◆
..�iz � iSi /

�1 ju/˛
2 ;

 z.u/ D EŒ‰z ç D Ä

✓
1 �

˛

2

◆
E
⇥
..�iz � iSi /

�1 ju/˛
2
⇤
:

(7.30)

We now have the following lemma that compares Si and Si . It is a quick consequence
of Lemma 6.8 in Section 6.2.1 and our assumption that EŒjRjj jj  EŒjRjj j

2ç
1
2 < "� 1

2 .

Lemma 7.12. Adopt the notation of Theorem 7.8. Then there exists a large constant
C D C.˛; b; "/ > 0 such that

P ŒjSi � Si j > N
�4✓ ç < CN�4✓ : (7.31)

The proof of the following proposition, which lower bounds Im Si , is very similar to
that of Proposition 7.9 and is therefore omitted.
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Proposition 7.13. Adopt the notation of Theorem 7.8. Then there exists a large constant
C D .˛; "/ > 0 such that

P


Im Si <

1

C.logN/C

�
 C exp

✓
�

.logN/2

C

◆
: (7.32)

Given Proposition 7.9, Lemma 7.12, and Proposition 7.13, the proof of the following
proposition is similar to that of Proposition 7.11 and is therefore omitted.

Proposition 7.14. Adopt the notation of Theorem 7.8. Then there exists a positive con-
stant C D C.˛; "; b; s; p/ such that

E
⇥ˇ̌

j.�z � Si /
�1

j
p

� j.�z � Si /
�1

j
p
ˇ̌⇤

 C.logN/CN�4✓ ;

E
⇥ˇ̌
.�iz � iSi /

�p
� .�iz � iSi /�p

ˇ̌⇤
 C.logN/CN�4✓ ;

(7.33)

and
k z �$zk1� ˛

2 Cs < C.logN/CN�4✓ ; (7.34)
where $z and  z are defined in (7.20) and (7.30), respectively.

7.2.3. Approximate fixed point equations. In this subsection we establish several approx-
imate fixed point equations for z . To that end, we begin with the following lemma, which
appears in [27, Corollary 5.8].

Lemma 7.15 ([27, Corollary 5.8]). Fix � > 0, ˛ 2 .0; 2/, p > 0, and a positive inte-
ger N . Let Z be a .0; �/ ˛-stable law, and let h1; h2; : : : ; hN be mutually indepen-
dent, identically distributed random variables with laws given by N� 1

˛Z. Suppose that
A1; A2; : : : ; AN 2 C are complex numbers with nonnegative real part. Then, denoting

F .u/ D Ä

✓
1 �

˛

2

◆
E

"  
NX

jD1
h2
j
Aj � iz

!�1 ˇ̌
ˇ̌
ˇ u
!˛

2
#
;

Sp D E

" 
NX

jD1
h2
j
Aj � iz

!�p#
;

Rp D E

"ˇ̌
ˇ̌
ˇ

NX

jD1
h2
j
Aj � iz

ˇ̌
ˇ̌
�p#

;

we have

F .u/ D EŒ‡Zç; Sp D EŒsp;z.Z /ç and Rp D EŒrp;z.Z/ç;

where ‡ is given by (7.5) and

Z D Z.u/ D

2
˛
2 �˛

N

NX

jD1
.Aj ju/˛

2 jyj j
˛; Z D Z.1/ D

2
˛
2 �˛

N

NX

jD1
A

˛
2

j
jyj j

˛;

where .y1; y2; : : : ; yN / is an N -dimensional centered Gaussian random variable whose
covariance matrix is Id.
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Using Lemma 7.15, we can express a number of quantities of interest in terms of the
function Z above.

Corollary 7.16. Recalling the definition of ‡ from (7.5) and ‰z from (7.30), we have
that

‰z.u/ D EYŒ‡Zç; (7.35)
where

Z D Z.u/ D

Ä.1 �
˛

2
/

N � 1

X

j¤i
.�iR.i/

jj
ju/˛

2
jyj j

˛

EŒjyj j
˛ç
; (7.36)

where Y D .yj /j¤i is an .N � 1/-dimensional centered real Gaussian random variable
with covariance matrix given by Id. In (7.35), the expectation is with respect to Y.

Moreover, denoting Z D Z.1/, we have

EŒ.�iz � iSi /
�pç D EYŒsp;z.Z /ç; EŒj � z � Si j

�pç D EYŒrp;z.Z/ç: (7.37)

Proof. The identity (7.35) follows from the first statement of Lemma 7.15, applied with
hj D Xij and Aj D �iR.i/

jj
, and also the fact that

2
˛
2 �˛ D

2
˛
2 �1⇡

sin.⇡˛
2
/Ä.˛/

D

⇡

sin.⇡˛
2
/Ä.˛

2
/EŒjyj j

˛ç
D

Ä.1 �
˛

2
/

EŒjyj j
˛ç
: (7.38)

To establish the first identity in (7.38) we used the definition (2.2) of � , and to estab-
lish the second and third we used (5.24). The proof of (7.37) is entirely analogous, as
a consequence of the second and third statements of Lemma 7.15, as well as (7.38).

The following proposition, which will be proven in Section 8.4, states that Z is approx-
imately equal to �z . Thus, taking the expectation of both sides of (7.35), using the facts
that  z D EŒ‰z ç (recall (7.30)) and that �z is approximately equal to  z (recall (7.25)
and (7.34)), (7.35) yields an approximate fixed point equation for  z .

Proposition 7.17. Adopt the notation of Theorem 7.8. Then there exists a positive con-
stant C D C.˛; "; s/ > 1 such that

P


kZ � �zk1� ˛

2 Cs >
C.logN/C

N
s
2 ⌘

˛
2

�
< C exp

✓
�

.logN/2

C

◆
: (7.39)

7.2.4. Convergence to fixed points. In this subsection we establish Theorem 7.8. To that
end, recall that (7.35) can be viewed as a fixed point equation for  z . In order to analyze
this fixed point equation, we require the following lemma.

Lemma 7.18. Adopt the notation and assumptions of Theorem 7.8. There exists a con-
stant C D C.˛; "; s/ > 1 such that

k�zk1� ˛
2 Cs < C;

inf
u2S1

C
Re �z.u/ >

1

C
;

P


inf
u2S1

C
Re Z.u/ <

1

C

�
< C exp

✓
�

.logN/2

C

◆
:

(7.40)
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Proof. In view of (7.2) and Proposition 7.17, it suffices to only establish the first two
estimates in (7.40) on �z . Let us first establish the upper bound. To that end, observe that
the first statement of (7.3) implies the existence of a constant C D C.s/ such that

k.�iRi i ju/˛
2 k1� ˛

2 Cs  C jRi i j
˛
2 : (7.41)

Taking expectations in (7.41), using the definition (7.6) of �z , and using the fact that
EŒjRi i j

2ç < "�1, we deduce that

k�zk1� ˛
2 Cs  Ä

✓
1 �

˛

2

◆
EŒk.�iRi i ju/˛

2 k1� ˛
2 Csç  CÄ

✓
1 �

˛

2

◆
EŒjRi i j

˛
2 ç

 CÄ

✓
1 �

˛

2

◆
EŒjRi i j

2ç
˛
2  CÄ

✓
1 �

˛

2

◆
"� ˛

2 ;

from which we deduce the first estimate in (7.40).
Now let us verify the lower bound on Re �z . In that direction, observe that for any

u 2 S
1

C, we have

Re �z.u/ D Ä

✓
1 �

˛

2

◆
EŒRe.�iRi i ju/˛

2 ç � Ä

✓
1 �

˛

2

◆
EŒ.Re.�iRjj ju//˛

2 ç

� Ä

✓
1 �

˛

2

◆
EŒ.ImRjj /

˛
2 ç � Ä

✓
1 �

˛

2

◆
":

The first identity above follows from the definition (7.6) of �z ; the second follows from
the fact that Re ar � .Re a/r for any a 2 K and r 2 .0; 1/ (see [27, Lemma 5.10]); the
third follows from the fact that Re.a ju/ � Re a for any u 2 S

1

C and a 2 K
C; and the

fourth follows from our assumed lower bound on EŒ.ImRjj /
˛
2 ç.

Now we can deduce the following consequence of (7.35).

Corollary 7.19. Adopt the notation of Theorem 7.8. Then there exists a positive constant
C D C.˛; "; s/ such that

P


k z � ‡�z k1� ˛

2 Cs <
C.logN/C

N
s
2 ⌘

˛
2

�
< C exp

✓
�

.logN/2

C

◆
: (7.42)

Proof. Let us first show that ‡�z is approximately equal to ‡Z using Lemma 7.5. To
verify the conditions of that lemma, first observe that �z ;Z 2 H˛=2 since the inner product
.x jy/ is bilinear. Furthermore, let C1 denote the constant C from Proposition 7.17, and
let C2 denote the constant C from Lemma 7.18. Define the events

E1 D

≤
kZ � �zk1� ˛

2 Cs �

C1.logN/C1

N
s
2 ⌘

˛
2

≥
;

E2 D

≤
inf
u2S1

C
Re Z.u/

1

C2

≥
[

≤
inf
u2S1

C
Re �z.u/

1

C2

≥
[ πk�zk1� ˛

2 Cs �C2º:

(7.43)

Denoting E D E1 [E2, Proposition 7.17 and Lemma 7.18 together imply that

P ŒEç  .C1 C C2/ exp
✓

�

.logN/2

C1 C C2

◆
: (7.44)
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Therefore, denoting the complement of E by F and applying (7.9) and (7.2) yields
a constant C > 1 (only dependent on C2 and s) such that

1F k‡Z � ‡�z k1� ˛
2 Cs  C1F kZ � �zk1� ˛

2 Cs
C 1F kZ � �zk1.kZk1� ˛

2 Cs C k�zk1� ˛
2 Cs/



CC1.logN/C1

N
s
2 ⌘

˛
2

✓
1C C2 C

C1C2.logN/C1

N
s
2 ⌘

˛
2

◆
;

(7.45)

where we have used the fact that Z and �z are in H
1=C2

˛=2;1�˛=2Cs on the event F .
Estimate (7.45) bounds k‡Z � ‡�z k1� ˛

2 Cs away from the event E; now let us bound
it on E through a deterministic estimate. Using the first bound in Lemma 7.4 and the def-
inition (7.5) of ‡ in terms of F , we deduce that

k‡�z k1� ˛
2 Cs  C⌘� ˛

2 .1C k�zk1� ˛
2 Cs/; (7.46)

after enlarging C if necessary. Now, applying the first statement of (7.3) (with x1 D Ri i ,
r D

˛

2
, and a D ⌘) and (4.2), we have

k�zk1� ˛
2 Cs  CÄ

✓
1 �

˛

2

◆
jRjj j

˛
2  CÄ

✓
1 �

˛

2

◆
⌘� ˛

2 : (7.47)

Inserting (7.47) into (7.46) yields

k‡�z k1� ˛
2 Cs  2C 2⌘�˛Ä

✓
1 �

˛

2

◆
: (7.48)

Furthermore, applying the definition (7.30) of ‰z , (4.2), and the first statement of (7.3)
(now with x1 D �iz � iS, r D

˛

2
, and a D ⌘) yields that

k‰zk1� ˛
2 Cs  CÄ

✓
1 �

˛

2

◆
⌘� ˛

2 : (7.49)

Combining (7.30), (7.45), (7.48), and (7.49) yields

k z � ‡�z k1� ˛
2 Cs

 EŒk‰z � ‡�z k1� ˛
2 Csç

 EŒ1F k‰z � ‡�z k1� ˛
2 CsçC EŒ1Ek‰zk1� ˛

2 CsçC EŒ1Ek�zk1� ˛
2 Csç



CC 2
1
.C2 C 2/.logN/C1

N
s
2 ⌘

˛
2

C CÄ

✓
1 �

˛

2

◆
⌘�˛.2C C 1/P ŒEç:

(7.50)

For the first inequality, we used Jensen’s inequality and the fact that all norms, in particular
k � k1� ˛

2 Cs , are convex. Now (7.42) follows from (7.44) and (7.50).

Now we can establish Theorem 7.8.

Proof of Theorem 7.8. The first estimate (7.15) follows from (7.25), (7.34), and (7.42).
Furthermore, the fourth estimate (7.17) follows from the second estimate in (7.40); the
fifth estimate (7.18) follows from (7.23).
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The proofs of the two estimates given in (7.16) are similar, so let us only establish
the latter. To that end, recall the notation from the proof of Corollary 7.19, and define the
events E1 and E2 as in (7.43). As in the proof of Corollary 7.19, we let E D E1 [E2
and let F be the complement of E.

Then �z and 1FZ are both in H
1=C2

˛=2;1�˛=2Cs , so applying the first estimate in (7.10)
and (7.2) yields a constant C 0 (only dependent on C2, s, and p) such that

1F jrp;z.�z/ � rp;z.Z/j  C 0 sup
u2S1

C

j�z � Zj1F  C 0
k�z � Zk1� ˛

2 Cs1F



C 0C1.logN/C1

N
s
2 ⌘

˛
2

:

(7.51)

Estimate (7.51) bounds jrp;z.�z/ � rp;z.Z/j off of E. To bound it on E, we use the deter-
ministic estimate given by the second inequality in (7.8). This yields the existence of
a constant C D C.˛; p; s/ such that

1E jrp;z.�z/ � rp;z.Z/j  1E jrp;z.�z/j C jrp;z.Z/j  2C⌘�p1E : (7.52)

Combining the second equality in (7.37), (7.51), and (7.52) yields
ˇ̌
rp;z.�z/ � EŒj � z � Si j

pç
ˇ̌

 EYŒjrp;z.�z/ � rp;z.Z/jç

D EYŒ1F jrp;z.�z/ � rp;z.Z/jçC EYŒ1E jrp;z.�z/ � rp;z.Z/jç



C 0C1.logN/C1

N
s
2 ⌘

˛
2

C 2C⌘�p
P ŒEç:

(7.53)

The second statement of (7.16) now follows from the first statement of (7.24), the first
statement of (7.33), (7.44), and (7.53).

8. Estimates for the fixed point quantities

In this section we establish the estimates stated in the proof of Theorem 7.8 in Section 7.2.
To that end, we first require some concentration estimates, which will be given in Sec-
tion 8.1. We will then establish Proposition 7.9, Proposition 7.10, and Proposition 7.17 in
Section 8.2, Section 8.3, and Section 8.4, respectively.

8.1. Concentration results

In this subsection, we collect concentration statements that will be used in the proofs
of the estimates stated in Section 7.2. The first (which is an analog of Lemma 5.4) is
[27, Lemma 5.3], applied with their ˇ equal to our ˛

2
and their ı equal to our s.

Lemma 8.1 ([27, Lemma 5.3]). Let N be a positive integer, let r and s be positive real
numbers, and let A D πaij º1i;jN be anN ⇥N symmetric random matrix such that the
i -dimensional vectors Ai D .ai1; ai2; : : : ; ai i / are mutually independent for 1  i  N .
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Let z D E C i⌘ 2 H, and denote B D πBij º D .A � z/�1. Fix u 2 S
1

C, ˛ 2 .0; 2/, and
s 2 .0; ˛

2
/. Then if we denote f D fu W C ! C by fu.z/ D .iz ju/˛

2 , there exists a con-
stant C D C.˛/ > 0 such that

P

"�����
1

N

NX

jD1
f .Bjj / �

1

N

NX

jD1
EŒf .Bjj /ç

�����
1� ˛

2 Cs
� t

#
 C.⌘

˛
2 t /�

1
s exp

✓
�

N.⌘
˛
2 t /

2
s

C

◆
:

The following (which is analog of Lemma 5.5) is a special case of [27, Lemma 5.4],
applied with their πgj º equal to our πyj º; their πhj º equal to our �iRjj ; their ˇ equal
to our ˛

2
; their ı equal to our s; and their t equal to CN� s

2 ⌘� ˛
2 .logN/s .

Lemma 8.2 ([27, Lemma 5.4]). Let .y1; y2; : : : ; yN / be a Gaussian random vector whose
covariance matrix is given by Id, let s 2 .0; ˛

2
/, and for each 1  j  N let

fj .u/ D .�iR.i/
jj

ju/˛
2 jyj j

˛; gj .u/ D .�iR.i/
jj

ju/˛
2 EŒjyj j

˛ç:

Then there exists a constant C D C.˛/ > 0 that

P

"�����
1

N

NX

jD1
.fj � gj /

�����
1� ˛

2 Cs
>
C.logN/s

N
s
2 ⌘

˛
2

#
<
CN

1
2

logN
exp

✓
�

.logN/2

C

◆
; (8.1)

where the expectation is with respect to .y1; y2; : : : ; yN / and conditional on X.i/.

8.2. Proof of Proposition 7.9

In this subsection we establish Proposition 7.9. Its proof will be similar to that of Propo-
sition 6.2 in Section 6.1.3.

Proof of Proposition 7.9. Since all entries of R are identically distributed, we may assume
that i D N . In what follows, let E denote the event on which

jTr Im R.N/ � EŒImR11çj 

4 logN

.N⌘2/
1
2

C

8

N⌘
: (8.2)

In view of Lemma 5.6 (applied with r D 1) and the second estimate in (5.13), we deduce
that

P ŒEc ç  2 exp.�.logN/2/;

where E
c denotes the complement of E .

We now apply Lemma 6.4 with X D .XNj /j¤N and the matrix A D πAij º equal to
the .N � 1/ ⇥ .N � 1/ diagonal matrix with

Ajj D ImR
.N/

jj
:

Then ImSN D hAX;Xi. Inserting

t D .logN/
2
˛ .2 log 2/

1
2
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into Lemma 6.4, we find from a Markov estimate that

P ŒImSN < 1E.logN/�
4
˛ ç  2E


1E exp

✓
�

t2

2
hAX;Xi

◆�

 2E


1E exp

✓
�

�˛.2 log 2/
˛
2 .logN/2kA 1

2Y k
˛

˛

N � 1

◆

⇥ exp
✓
O
�
.logN/

4
˛ C1N�10✓�1 Tr A

�◆�

C 2N exp
✓

�

.logN/2

4

◆
C 2P ŒEc ç;

(8.3)

where Y D .y1; y2; : : : ; yN�1/ is a Gaussian random variable whose covariance matrix
is given by Id, and we recall the definition ✓ D

1

10
.b �

1

˛
/.2 � ˛/ from Theorem 7.8.

Now, in view of the definition (8.2) of the event E and our assumption that

EŒImR11ç < EŒjR11j
2ç�

1
2  "� 1

2 ;

we have
1E jTr Aj < 2"� 1

2

for sufficiently large N . This (and our previous estimate P ŒEc ç  2 exp.�.logN/2/)
guarantees the existence of a constant C D C.˛; b; "/ > 0 such that

P ŒImSi < .logN/�
4
˛ ç  CE


exp

✓
�

.logN/2kA 1
2Y k

˛

˛

CN

◆�
C C exp

✓
�

.logN/2

C

◆
:

Thus, to provide a lower bound on ImSN , it suffices to establish a lower bound on

kA 1
2Y k

˛

˛

N
D

1

N

N�1X

jD1
jImR

.N/

jj
j

˛
2 jyj j

˛: (8.4)

To that end, we apply Lemma 5.5 (with A D H.N/ and t D .logN/
˛
2 .N⌘2/

˛
4 ) to obtain

that

P

"ˇ̌
ˇ̌
ˇ
1

N

N�1X

jD1
jImR

.N/

jj
j

˛
2 jyj j

˛
�

1

N

N�1X

jD1
jImR

.N/

jj
j

˛
2 EŒjyj j

˛ç

ˇ̌
ˇ̌
ˇ >

C.logN/4

N
˛
4 ⌘

˛
2

#

< C exp
✓

�

.logN/2

C

◆
;

(8.5)

after increasing C if necessary. Next, applying Lemma 5.6 with r D
˛

2
yields the deter-

ministic estimate

1

N

NX

jD1

ˇ̌
.ImRjj /

˛
2 � .ImR

.N/

jj
/

˛
2

ˇ̌
<

4

.N⌘/
˛
2

: (8.6)

Estimate (7.2) and Lemma 8.1 (applied with A D X.N/, s D
˛

2
, t D .N⌘2/�

˛
4 .logN/

˛
2 )
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yield, after increasing C if necessary, that

P

"ˇ̌
ˇ̌
ˇ
1

N

N�1X

jD1
jImRjj j

˛
2 �

1

N

N�1X

jD1
EŒjImRjj j

˛
2 ç

ˇ̌
ˇ̌
ˇ >

.logN/
˛
2

N
˛
4 ⌘

˛
2

#

< C exp
✓

�

.logN/2

C

◆
:

(8.7)

Combining the lower bound EŒjImRjj j

˛
2 ç � " (see the second estimate in (7.14)),

(4.2), (8.4), (8.5), (8.6), (8.7), and the fact that all entries of R are identically distributed
yields (again, after increasing C if necessary)

P


kA 1

2Y k
˛

˛

N


"

C

�
 C exp

✓
�

.logN/2

C

◆
;

from which we deduce the lemma upon insertion into (7.31).

8.3. Proof of Proposition 7.10

In this subsection we establish Proposition 7.10. Its proof will be similar to that of Propo-
sition 6.3 in Section 6.1.4.

Proof of Proposition 7.10. Since all entries of the matrix R are identically distributed, we
may assume that i D N .

As in the proof of Proposition 7.9, we begin by applying Lemma 6.4, now with

A D Im R.N/; X D .XNj /1jN�1; and t D .logN/
2
˛ .2 log 2/

1
2 :

Then Im.SN � TN / D hAX;Xi. Following the proof of Proposition 7.9 yields a constant
C D C.˛; b; "/ > 0 such that

P ŒIm.SN � TN / < .logN/�
4
˛ ç

 CE


exp

✓
�

C.logN/2kA 1
2Y k

˛

˛

N

◆�
C C exp

✓
�

.logN/2

C

◆
;

(8.8)

where Y D .y1; y2; : : : ; yN�1/ is a Gaussian random variable whose covariance is given
by Id. Thus, it again suffices to establish a lower bound on N�1

kAY k
˛

˛
.

To that end, we apply Lemma 6.5 with wi D .A 1
2Y /i , r D ˛, and a D 2C ". Then

we find that

Vj D ImR
.N/

jj
.z/; Ujk D ImR

.N/

jk
.z/ for each 1  j; k  N � 1.

We must next estimate the quantities V , X, and U from that lemma. These are given by

U D .N � 1/�2
X

1j;kN�1
cjk ; V D .N � 1/�1

N�1X

iD1
Vj ;

X D .N � 1/�1
N�1X

iD1
V

a
2

j
:



A. Aggarwal, P. Lopatto, H.-T. Yau 3788

To do this, observe from (5.6) and (4.2) that

U 

4

N 2

N�1X

jD1

N�1X

kD1
c2
jk

D

4

N 2

N�1X

jD1

N�1X

kD1
jImR

.N/

jk
j
2



4

N 2⌘

N�1X

jD1
ImR

.N/

jj


4

N⌘2
:

(8.9)

To bound V , we apply the first estimate in (5.13) to deduce that

P

"ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
ImRjj � EŒImRjj ç

ˇ̌
ˇ̌
ˇ >

4 logN

.N⌘2/
1
2

#
< 2 exp

✓
�

.logN/2

8

◆
: (8.10)

Therefore, Lemma 5.6 (applied with r D 1), (8.10), and the assumption (7.14) that

EŒImRjj ç � EŒ.ImRjj /
˛
2 ç

2
˛ � "

2
˛

together imply that

P


jV j <

1

C

�
< C exp

✓
�

.logN/2

C

◆
; (8.11)

after increasing C if necessary. In particular,

P ŒjV j  100.logN/10U
1
2 ç < 2C exp.�C�1.logN/2/

for sufficiently large N .
Now let us estimate X. To that end, observe by (4.2) and Corollary 5.7 (applied with

r D
a

2
 2), we find that

ˇ̌
ˇ̌
ˇ
1

N

N�1X

jD1
jImRjj j

a
2 �

.N � 1/X

N

ˇ̌
ˇ̌
ˇ



ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
jImRjj j

a
2 �

1

N

NX

jD1
jImR

.i/

jj
j

a
2

ˇ̌
ˇ̌
ˇC

4

N⌘
a
2



12

N⌘
a
2

:

(8.12)

Now let
f .y/ D 1jImyj⌘�1 jImyj

a
2 C 1jImyj>⌘�1.2⌘/�

a
2 ;

and observe that f is Lipschitz with constant L D a⌘1� a
2 . Applying Lemma 5.3 with

t D N� 1
2 ⌘� a

2 logN and using (4.2) yields

P

"ˇ̌
ˇ̌
ˇ
1

N

NX

jD1
jImRjj j

a
2 � EŒjImRjj j

a
2 ç

ˇ̌
ˇ̌
ˇ �

logN

N
1
2 ⌘

a
2

#
 2 exp

✓
�

.logN/2

8a2

◆
: (8.13)
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Combining (8.12), (8.13), the fact that ⌘ � N "� s
˛ � N "� 1

2 , and the fact (due to (7.14))
that EŒjRjj j

a
2 ç  EŒjRjj j

2ç
a
4  "� a

4 yields that

P ŒjXj > C ç < C exp
✓

�

.logN/2

C

◆
; (8.14)

after increasing C if necessary. Now Lemma 6.5 with (8.9), (8.11), and (8.14) together
yield that

P


kA 1

2Y k
˛

˛

N
< .logN/�C

�
< C exp

✓
�

.logN/2

C

◆
; (8.15)

after increasing the constant C if necessary. Now the lemma follows from combining
(8.8) and (8.15).

8.4. Proof of Proposition 7.17

In this subsection we establish Proposition 7.17.

Proof of Proposition 7.17. Let us define

Z D Z.u/ D EŒZç D

Ä.1 �
˛

2
/

N

X

j¤i
.�iR.i/

jj
ju/˛

2 ;

ˆz D ˆz.u/ D

Ä.1 �
˛

2
/

N

X

j¤i
EŒ.�iR.i/

jj
ju/˛

2 ç;

⇠z D ⇠z.u/ D

Ä.1 �
˛

2
/

N

X

j¤i
EŒ.�iRjj ju/˛

2 ç:

To establish this proposition, we will first show that Z, Z, ⇠z , and �z are all approxi-
mately equal. To that end, first observe that Lemma 8.2 implies the existence of a constant
C D C.˛/ > 0 such that

P


kZ � Zk1� ˛

2 Cs �

.logN/s

N
s
2 ⌘

˛
2

�
 C exp

✓
�

.logN/2

C

◆
: (8.16)

Applying Lemma 8.1 with A D X.i/ and t D N� s
2 ⌘� ˛

2 .logN/s yields (after increasing
C if necessary)

P


kZ �ˆzk1� ˛

2 Cs �

.logN/s

N
s
2 ⌘

˛
2

�
 C exp

✓
�

.logN/2

C

◆
: (8.17)

Now we apply the second estimate in (7.3) with x1 D Rjj , x2 D R
.i/

jj
, r D

˛

2
, and a D ⌘

to obtain (again, after increasing C if necessary)
��.Rjj ju/˛

2 � .R
.i/

jj
ju/˛

2

��
1� ˛

2 Cs  C⌘� ˛
2
�
jRjj �R

.i/

jj
j

˛
2 C ⌘sjRjj �R

.i/

jj
j
s
�
: (8.18)

To estimate the right side of (8.18) we apply Lemma 5.6 to deduce that

1

N

NX

jD1
jRjj �R

.i/

jj
j

˛
2 

4

.N⌘/
˛
2

;
1

N

NX

jD1
jRjj �R

.i/

jj
j
s



4

.N⌘/s
: (8.19)
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Summing (8.18) over all j ¤ i , taking expectations, applying (8.19), and (4.2) yields
(after increasing C if necessary) that

kˆz � ⇠zk1� ˛
2 Cs  C

✓
1

N
˛
2 ⌘˛

C

1

N s⌘
˛
2

◆
: (8.20)

Furthermore, since the entries of R are identically distributed, we have (after increasing
C if necessary) that

k⇠z � �zk1� ˛
2 Cs D

Ä.1 �
˛

2
/

N

��EŒ.�iRjj ju/˛
2 ç
��
1� ˛

2 Cs 

C

N⌘
˛
2

; (8.21)

where we have used (4.2) and the first estimate in (7.3).
Now the proposition follows from estimates (8.16), (8.17), (8.20), (8.21), and the fact

that N > ⌘�2.

Appendix A. Estimating the entries of Gt

In this section we establish Proposition 3.9. To that end, we first require some additional
notation. Recalling the definitions of Hs and Gs from the beginning of Section 3.2, let
π�j .s/ºj2Œ1;N ç denote the N eigenvalues of Hs , and define

ms D ms.z/ D N�1 Tr Gs D N�1
NX

jD1
.�j .s/ � z/�1:

Further let mfc;s.z/ 2 H denote the unique solution in the upper half plane to the
equation

mfc;s.z/ D m0.z C tmfc;s.z// D

1

N

NX

jD1
gj .s; z/; (A.1)

where
gj .s; z/ D

1

�j � z � tmfc;s.z/
:

The quantity mfc;s denotes the Stieltjes transform of the free convolution (see directly
before Proposition 3.11) of the empirical spectral distribution of H0 with a suitable mul-
tiple of the semicircle law [22].

We require the following two results, which appear in [35, Theorem 2.1 and Proposi-
tion 2.2].

Proposition A.1 ([35, Theorem 2.1]). Adopt the notation of Definition 3.8, and further
assume that H0 is .⌘0; �; r/-regular with respect toE0. Let U D πuij º and D D πdjj D dj º

denote orthogonal and diagonal matrices, respectively, so that

H0 D UDU�1:

Fix s 2 Œ0; 1ç satisfying N ı⌘  s  N�ı� . Then, for any D > 1 and  2 .0; 1/, there
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exists a constant C D C.ı; ;D;A/ > 0 such that

P

"
sup
z2D

 ˇ̌
ˇ̌
ˇhqGs.z/;qi �

NX

jD1
huj ;qi

2gj .s; z/

ˇ̌
ˇ̌
ˇ

�

N 2ı

.N⌘/
1
2

Im

 
NX

jD1
huj ;qi

2gj .s; z/

!!
> 0

#
< CN�D

(A.2)

for any vector q 2 R
N such that kqk2 D 1. In (A.2), we have abbreviated

D D D.E0; r; N
4ı�1; 1 � r; /

(recall (3.9)).

Proposition A.2 ([35, Proposition 2.2]). Adopt the notation and assumptions of Proposi-
tion A.1. Then there exists a constant C D C.ı; ;D;A/ > 0 such that

jmfc;s.z/j 

1

N

NX

jD1
jgj .s; z/j  C logN;

1

C
 Immfc;s.z/  C (A.3)

for any z 2 D .

Now we can establish Proposition 3.9.

Proof of Proposition 3.9. Recall that ujk denotes the j -th entry of the eigenvector corre-
sponding to �k . Applying (A.2) with q D .q1; q2; : : : ; qN / satisfying qk D 1kDj for each
k 2 Œ1; N ç yields the existence of a constant C D C.ı; ;D;A/ > 0 such that

P

"
sup
z2D

 ˇ̌
ˇ̌
ˇGjj .s; z/ �

NX

kD1
u2
jk
gk.s; z/

ˇ̌
ˇ̌
ˇ

�

N
ı
2

.N⌘/
1
2

Im

 
NX

kD1
u2
jk
gk.s; z/

!!
> 0

#
< CN�10D :

(A.4)

Let us estimate the terms gk.s; z/ appearing in (A.4). To that end, we define

A0 D A0.E0/ D ŒE0 � ⌘0; E0 C ⌘0ç

and

Am D Am.E0/ D ŒE0 � 2m⌘0; E0 � 2m�1⌘0ç [ ŒE0 C 2m�1⌘0; E0 C 2m⌘0ç

for each integer m � 1. Since (A.3) implies the existence of C D C.ı; ; E0;D;A/ > 1
such that jmfc;s.z/j  C logN and 1

C
 Immfc;s.z/  C , the definition (A.1) of the gk

implies that

max
�k2Am

jgk.s; E0 C i⌘/j 

✓
C 2

.minπ2m�1⌘0 � C 2s logN; 0º/2 C s2

◆ 1
2

(A.5)

for any integer m � 1.
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Next let us estimate the entries of U, where we recall from Proposition A.1 that
H0 D UDU�1. The assumed bound on the entries of G0.z/ implies

sup
z2D.E0;r;⌘0;�;0/

ˇ̌
ˇ̌
ˇ

NX

kD1

u2
jk

z � �k

ˇ̌
ˇ̌
ˇ D sup

z2D.E0;r;⌘0;�;0/

jGjj .z/j  B; (A.6)

where we have denoted �j D �j .0/ as the eigenvalues of H0. Thus, setting z D E0 C i⌘0
in (A.6) yields

max
1jN

X

�k2Am

u2
jk

 minπ2m⌘0B; 1º for any integer m � 0. (A.7)

Now we can bound the terms appearing in (A.4). We define

M D

⇠
log2

✓
s.logN/2

⌘0

◆⇡
;

and write
ˇ̌
ˇ̌
ˇ

NX

kD1
u2
jk
gk.s; z/

ˇ̌
ˇ̌
ˇ 

1X

mD0

X

�k2Am.E/

u2
jk

jgk.s; z/j



MX

mD0

X

�k2Am.E/

u2
jk

jgk.s; z/j C

d4 logN eX

mDMC1

X

�k2Am.E/

u2
jk

jgk.s; z/j

C

1X

mDd4 logN e

X

�k2Am.E/

jgk.s; z/j:

We bound these three sums by combining (A.5), (A.7), and the facts that ⌘0 > N�1,
1 < B < N , and s 2 .⌘0; N

�ı/. For the first sum, we apply (A.5) – noting the minimum
in the denominator of the right side takes the value 0 – and the first argument of the
minimum in the left side of (A.7). For the second sum, we apply (A.5), with the minimum
on the right side taking the nonzero value, and (A.7). The third sum is bounded using
(A.5) only.

We deduce for sufficiently large N that
ˇ̌
ˇ̌
ˇ

NX

kD1
u2
jk
gk.s; z/

ˇ̌
ˇ̌
ˇ  Cs�12M⌘0B C CB logN C

C

N
 CB.logN/3; (A.8)

after increasing C (in a way that only depends on ı, , D, and A) if necessary.
Therefore, combining (A.4), (A.8), the fact that N⌘ � N ı , and a union bound over

j 2 Œ1; N ç yields (again after increasing C if necessary, in a way that only depends on ı,
, D, and A)

P

h
sup
z2D

max
1jN

jGjj .s; z/j > CB.logN/3
i
< CN�5D : (A.9)
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To estimate the remaining entries of Gs , we apply (A.2) with q D .q1; q2; : : : ; qN / sat-
isfying qk D 2� 1

2 .1kDi C 1kDj / for some fixed i; j 2 Œ1; N ç. Using (A.8), this yields
(after increasing C if necessary, in a way that only depends on ı, , D, and A)

P

h
sup
z2D

jGjj .s; z/CGi i .s; z/C 2Gij .s; z/j > CB.logN/3
i
< CN�5D : (A.10)

Now the corollary follows from combining (A.9), (A.10), and a union bound over all
i; j 2 Œ1; N ç.

Appendix B. Comparing deformed stable laws to their removals

In this section we establish Lemma 6.4. However, we first require the following lemma
that estimates the characteristic functions of removals of stable laws.

Lemma B.1. Fix � > 0, ˛ 2 .0; 2/, a positive integer N , and 0 < b < 1

˛
. Let X denote

the random variable given by the b-removal of a deformed .0; �/ ˛-stable law, as in
Definition 3.2. LetX1; X2; : : : ; XN be mutually independent random variables, each with
law N� 1

˛X , and let c1; c2; : : : ; cN 2 R be constants. Then, for any t 2 R, we have

E

"
exp

 
it

NX

jD1
cjXj

!#
D exp

 
�

�˛jt j˛

N

NX

jD1
jcj j

˛

!

⇥ exp

 
O

 
t2N .2�˛/.b� 1

˛ /�1
NX

jD1
jcj j

2

!!
;

where the implicit constant on the right side only depends on ˛.

Proof. Let Z be a .0; �/ ˛-stable law and J be a random variable satisfying Defini-
tion 2.1. Let Y D .Z C J /1jZCJ j<Nb , so that X D Z � Y . Let Y1; Y2; : : : ; YN be mutu-
ally independent random variables with law N� 1

˛ Y , let Z1; Z2; : : : ; ZN be mutually
independent random variables with law N� 1

˛Z, and let J1; J2; : : : ; JN be mutually inde-
pendent variables with law N� 1

˛ J . Then the random variables Xj have laws N� 1
˛X ,

where we assume that the Xj , Yj , Zj , and Jj are coupled so that Xj D Zj C Jj � Yj for
each 1  j  N .

Observe that, for any t 2 R, we have

EŒeitX ç D EŒeit.ZCJ/çC EŒeit.ZCJ/.e�itY
� 1/ç

D EŒeit.ZCJ/ç � itEŒeit.ZCJ/Y çCO.EŒt2Y 2ç/

D EŒeit.ZCJ/ç � itEŒeit.ZCJ/.Z C J /1jZCJ j<Nb çCO.EŒt2Y 2ç/

D EŒeit.ZCJ/ç � itEŒ.Z C J /1jZCJ j<Nb çCO.EŒt2Y 2ç/

D EŒeit.ZCJ/çCO.EŒt2Y 2ç/;

(B.1)

where the second equality above follows from a Taylor expansion, the third from the
definition of Y , the fourth from another Taylor expansion, and the fifth from the fact that
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Z C J is symmetric. A similar argument shows that

EŒeit.ZCJ/ç D EŒeitZ çCO.EŒt2J 2ç/: (B.2)

Replacing t with cjN� 1
˛ t in (B.1) and (B.2), we find that

EŒeicj tXj ç D EŒeicj tN� 1
˛ Z çC

c2
j
t2

N
2
˛

O
�
EŒjZ C J j

21jZCJ jNb çC EŒJ 2ç
�

D exp
✓

�

�˛jcj t j
˛

N

◆
CO.N .2�˛/.b� 1

˛ /�1jcj t j2/;

where in the second estimate above we used (2.1) and integrated (2.3). Now, let

R D Rj D N�1
jcj t j

˛:

Then we find that

EŒeicj tXj ç  exp.��˛R/CO.N .2�˛/bR
2
˛ /

 exp.��˛R/ exp.O.N .2�˛/bR
2
˛ //:

(B.3)

Indeed, if R  1, then (B.3) follows from the estimate y  ey � 1. Otherwise, if R > 1
and N is sufficiently large, we have that N .2�˛/bR

2
˛ > 2�˛R (since ˛ < 2), from which

we again deduce estimate (B.3) from the estimate y  ey � 1. Inserting the definition of
R D N�1

jcj t j
˛ into (B.3) yields

EŒeicj tXj ç  exp
✓

�

�˛jcj t j
˛

N

◆
exp

�
O.N .2�˛/.b� 1

˛ /�1jcj t j2/
�
: (B.4)

Now the lemma follows from taking the product of (B.4) over all j 2 Œ1; N ç.

Now we can establish Lemma 6.4.

Proof of Lemma 6.4. The proof of this lemma will follow a similar method as the one
used to establish [26, Lemma B.1]. To that end, observe that

E


exp

✓
�

t2

2
hAX;Xi

◆�
D E


exp

✓
�

t2

2
hBX;BXi

◆�

D E
⇥

exp.�ithBX; Y i/
⇤

D E
⇥

exp.�ithX;BY i/
⇤
:

DenoteW D BY D .w1; w2; ; : : : ; wN /. In view of Lemma B.1, we have the conditional
expectation estimate

E
⇥

exp.�ithX;W i/
ˇ̌
W
⇤

D exp

 
�

�˛jt j˛

N

NX

jD1
jwj j

˛

!

⇥ exp

 
O

 
t2N .2�˛/.b� 1

˛ /�1
NX

jD1
jwj j

2

!!
:

(B.5)
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Now, observe that since each wj is a Gaussian random variable with variance
P
N

iD1 b
2

ij
,

we have from a union bound that

P

"
NX

jD1
w2
j
> .logN/Tr A

#


NX

jD1
P

"
w2
j
> .logN/

NX

iD1
b2
ij

#
 Ne� .log N /2

2 ; (B.6)

where in the first estimate we used the fact that

Tr A D Tr B2 D

X

1i;jN
b2
ij
:

Taking the expectation on both sides of (B.5) over the events where
P
N

jD1 jwj j
2 is

at most or at least .logN/Tr A and further using the fact that the exponential inside the
expectation on the left side of (B.5) is bounded by 1, we deduce that

E
⇥
exp.�ithX;W i/

⇤
D E

"
exp

 
�

�˛jt j˛

N

NX

jD1
jwj j

˛

!#

⇥ exp
⇣
O
�
t2N .2�˛/.b� 1

˛ /�1.logN/Tr A
�⌘

CNe� .log N /2

2 ;

from which we deduce the lemma.
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