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ABSTRACT
We provide a simple extension of Bolthausen’s Morita-type proof of the replica symmetric formula [E. Bolthausen, “A Morita type proof of
the replica-symmetric formula for SK,” in Statistical Mechanics of Classical and Disordered Systems, Springer Proceedings in Mathematics and
Statistics (Springer, Cham., 2018), pp. 63–93; arXiv:1809.07972] for the Sherrington–Kirkpatrick model and prove the replica symmetry for
all (β, h) that satisfy β2Esech2(β√qZ + h) ≤ 1, where q = E tanh2(β√qZ + h). Compared to the work of Bolthausen [“A Morita type proof of
the replica-symmetric formula for SK,” in Statistical Mechanics of Classical and Disordered Systems, Springer Proceedings in Mathematics and
Statistics (Springer, Cham., 2018), pp. 63–93; arXiv:1809.07972], the key of the argument is to apply the conditional second moment method
to a suitably reduced partition function.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073807

I. INTRODUCTION
We study systems of N spins σi, i ∈ {1, . . . , N}, with values in {−1, 1} and with the Hamiltonian HN : {−1, 1}N → R defined by

HN(σ) = β√
2
�

1≤i,j≤N
gijσiσj + h

N�
i=1

σi. (1.1)

The interactions {gij} are i.i.d. centered Gaussians of variance 1�N for i ≠ j, and we set gii ≡ 0. β ≥ 0 denotes the inverse temperature, and
h > 0 denotes the external field strength.

Equation (1.1) corresponds to the Sherrington–Kirkpatrick (SK) spin glass model,1 and we are interested in its free energy fN at high
temperature, where

fN = 1
N

log ZN , ZN = �
σ∈{−1,1}N

eHN(σ). (1.2)

The mathematical understanding of the SK model has required substantial efforts until the famous Parisi formula2,3 was rigorously established
by Guerra4 and Talagrand.5 Later, Panchenko6,7 gave another proof based on the ultrametricity of generic models. For a thorough introduction
to the topic, we refer to Refs. 8–11.

Despite the validity of the Parisi formula, it is an interesting question to prove the replica symmetry of the SK model at high temperature,
as predicted by de Almeida and Thouless.12 Replica symmetry is expected for all (β, h) that satisfy

β2 E sech4(β√qZ + h) < 1, (1.3)
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where q denotes the unique solution of the self-consistent equation,

q = E tanh2(β√qZ + h). (1.4)

In both cases, Z ∼ N(0, 1) denotes a standard Gaussian and E denotes the expectation over Z.
In the special case that the external field in the direction of σi is a centered Gaussian random variable, hi = hgi, for i.i.d. gi ∼ N(0, 1)

(independent of gij), replica symmetry has recently been shown in Ref. 13 for all (β, h) that satisfy (1.3) [in which case h in (1.3) and (1.4)
is replaced by hZ′ for some Z′ ∼ N(0, 1) independent of Z]; see also Ref. 14 for previous results in this case. For Hamiltonians HN as in
(1.1) (or, more generally, Hamiltonians with a non-centered random external field), however, replica symmetry is to date only known above
the AT line up to a bounded region in the (β, h)-phase diagram. This was analyzed in Ref. 15. Like Ref. 13, this analysis is based on the
Parisi variational problem and we refer to Ref. 15 for the details. For previously obtained results based on the Parisi formula, see also Ref. 11,
Chap. 13.

In this article, instead of analyzing the high temperature regime in view of the Parisi variational problem, we give a simple extension of
Bolthausen’s argument16 and prove the replica symmetric formula for all (β, h) that satisfy

β2 E sech2(β√qZ + h) ≤ 1. (1.5)

Although (1.5) is clearly stronger than condition (1.3), it already covers a fairly large region of the high temperature regime; see Fig. 1 for a
schematic. It improves upon the inverse temperature range from Ref. 16, where β was assumed to be sufficiently small.

Theorem 1.1. Assume that (β, h) satisfies (1.5). Then,

lim
N→∞E 1

N
log ZN = log 2 + E log cosh(β√qZ + h) + β2

4
(1 − q)2. (1.6)

Remarks.

(1) From Ref. 17, it is well-known that limN→∞ E 1
N log ZN exists and that almost surely limN→∞ 1

N log ZN = limN→∞ E 1
N log ZN .

(2) It follows from the results of Ref. 4 that the right-hand side of (1.6) provides an upper bound to the free energy limN→∞ E 1
N log ZN for

all inverse temperatures and external fields (β, h). To establish Theorem 1.1, it is, therefore, sufficient to prove that the right-hand side
of (1.6) provides a lower bound to limN→∞ E 1

N log ZN .

We conclude the Introduction with a quick heuristic outline of the main argument. To this end, consider first the case h = 0 where the
critical temperature corresponds to β = 1. In this case, it is straightforward (see, e.g., Ref. 18, Chap. 1, Sec. 3) to see that

FIG. 1. Schematic of the (T , h) phase diagram, where T = 1
β denotes the temperature. In the blue region, whose boundary corresponds to the AT line (1.3), the SK model

is known to be replica symmetry breaking. The boundary of the green region corresponds to condition (1.5). Theorem 1.1 proves the replica symmetry in the green region.
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lim
N→∞

1
N

log EZN = log 2 + β2

4
, lim

N→∞
1
N

log EZ2
N = 2 log 2 + β2

2

for all β < 1. The replica symmetric formula, thus, follows from the second moment method using the Gaussian concentration of the free
energy. In fact, for h = 0, the fluctuations of ZN�EZN have also been known for a long time.19

Clearly, it would be desirable to extend this simple argument to the case h > 0, but a direct application of the second moment method
does not work here. However, as suggested in Ref. 16, one may hope to obtain a model similar to the case h = 0 by centering the spins around
suitable magnetizations and viewing ZN , up to normalization, as an average over the corresponding coin-tossing measure. To center the spins
correctly, recall that at high temperature, one expects the TAP equations20 to hold, that is,

mi ≈ tanh
�
�h + β�

j≠i
ḡijmj − β2(1 − q)mi

�
�(for i = 1, . . . , N), (1.7)

where ḡij = (gij + gji)�√2 and mi = Z−1
N ∑σ σi eHN(σ). The validity of (1.7) is known for sufficiently small β (see Refs. 10 and 21 and, more

recently, Ref. 22; see also Ref. 23 on the TAP equations for generic models, valid at all temperatures) and expected to be true under (1.3). In
Refs. 16 and 24, Bolthausen provided an iterative construction (m(s))s∈N of the solution to (1.7) that converges (in a suitable sense) in the full
high temperature regime (1.3). The main result of Ref. 16 is a novel proof of (1.6) for β small enough based on a conditional second moment
argument, given the approximate solutions (m(s))s∈N. It has remained an open question, however, if the approach can be extended to the
region (1.3).

In this article, while we are not able to resolve this question for all (β, h) satisfying (1.3), we improve the range of (β, h) to (1.5) as
follows: The author of Refs. 16 and 24 showed, roughly speaking, that m(k+1) ≈ ∑k

s=1 γsϕ(s) for certain orthonormal vectors ϕ(s) ∈ RN and
deterministic numbers γs ( ≈ �m(k+1), ϕ(s)�with high probability), where �x, y� = N−1∑N

i=1 xiyi for x, y ∈ RN . One also has g = g(k+1) +∑k
s=1 ρ(s)

for the interaction g = (gij)1≤i,j≤N , where ρ(s) ∈ RN×N are measurable with respect to (m(s))s≤k+1 and where the modified interaction g(k+1) is
Gaussian, conditionally on (m(s))s≤k+1, with the property that g(k+1)∑k

s=1γsϕ(s) = 0. Up to negligible errors, one obtains with σ̂ = σ −m(k+1)
that

1
N

log ZN ≈ log 2 + E log cosh(β√qZ + h)
+ 1

N
log �

σ∈{−1,1}N

pfree(σ) exp �Nβ√
2
�σ̂, g(k)σ̂� +NO�max

s
�γs − �σ, ϕ(s)����, (1.8)

where pfree denotes the product measure for which ∑σ pfree(σ)σ =m(k+1). A simple observation is now that we can ignore the error
NO(maxs �γs − �σ, ϕ(s)��) in (1.8) by restricting the modified partition function to those σ with maxs �γs − �σ, ϕ(s)�� ≈ 0. Note that the probabil-
ity of the complement of this set is small under pfree because γs ≈ �m(k+1), ϕ(s)�. This yields a simple lower bound on 1

N log ZN , and we can apply
the conditional second moment argument to the restricted partition function. We show that its first conditional moment equals β2(1 − q)2�4
(up to negligible errors) in the full high temperature regime (1.3). To dominate its second moment by the square of the first, on the other
hand, we need to impose the stronger condition (1.5).

Note that imposing similar orthogonality restrictions on the partition function has been proved useful before for obtaining lower bounds
on the free energy, such as in the TAP analysis of the spherical SK model.25

Although (1.5) already covers a comparably large region of the high temperature phase, as schematically shown in Fig. 1, it remains an
open question whether the second moment argument can be extended to the full high temperature regime (1.3); see also the related comments
in Ref. 16, Sec. 6.

This paper is structured as follows. In Secs. III and IV, we set up the notation and recall Bolthausen’s iterative construction of
magnetization.16,24 In Sec. IV, we define the reduced partition function and compute its first and second moments. In Sec. V, we apply
the conditional second moment method to prove Theorem 1.1.

II. NOTATION
In this section, we introduce the basic notation and conventions. We closely follow Ref. 16.
We usually denote vectors in RN by boldface or greek letters. If x ∈ RN and g : R→ R, we define g(x) in the component-wise sense. By�⋅, ⋅� : RN ×RN → R, we denote the normalized inner product

�x, y� = 1
N

N�
i=1

xiyi,
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and by � ⋅ � =��⋅, ⋅�, we denote the induced norm. We also normalize the tensor product x⊗ y : RN → RN of two vectors x, y ∈ RN so that for
all z ∈ RN , (x⊗ y)(z) = �y, z� x.

Given a matrix A ∈ RN×N , AT ∈ RN×N denotes its transpose and Ā ∈ RN×N denotes its symmetrization,

Ā = A +AT√
2

.

We mostly use the letters Z, Z′, Z1, Z2, etc. to denote standard Gaussian random variables independent of the disorder {gij} and inde-
pendent of one another. When we average over such Gaussians, we denote the corresponding expectation by E to distinguish it from the
expectation E with respect to the disorder {gij}. Unless specified otherwise, we consider all Gaussians to be centered.

Finally, given two sequences of random variables (XN)N≥1, (YN)N≥1 that may depend on parameters such as β and h, we say that

XN � YN

if and only if there exist positive constants c, C > 0, which may depend on the parameters, but which are independent of N, such that for every
t > 0, we have

P(�XN − YN � > t) ≤ Ce−ct2N.

III. BOLTHAUSEN’S CONSTRUCTION OF THE LOCAL MAGNETIZATIONS
In this section, we recall Bolthausen’s iterative construction of the solution to the TAP equations16,24 and list the properties that we will

need for the Proof of Theorem 1.1. We follow here the conventions of Ref. 16, and we refer to Ref. 16, Secs. 2, 4, and 5 for the proofs of the
following statements.

First of all, we define three sequences (αk)k∈N, (γk)k∈N, and (Γk)k∈N. Set

α1 =√qγ1, γ1 = E tanh(β√qZ + h), Γ2
1 = γ2

1,

where here and in the following, q denotes the unique solution of (1.4). Then, we define ψ : [0, q]→ [0, q] by

ψ(t) = E tanh(β√tZ + β
�

q − tZ′ + h) tanh(β√tZ + β
�

q − tZ′′ + h),
and set recursively

αk = ψ(αk−1), γk = αk − Γ2
k−1�

q − Γ2
k−1

, Γ2
k = k�

j=1
γ2

k.

The following lemma collects important properties of (αk)k∈N, (γk)k∈N, and (Γk)k∈N.

Lemma 3.1. (Ref. 24, Lemma 2.2, Corollary 2.3, Lemma 2.4 and Ref. 16, Lemma 2)

(1) ψ is strictly increasing and convex in [0, q] with 0 < ψ(0) < ψ(q) = q. If (1.3) is satisfied, then q is the unique fixed point of ψ in [0, q].
(2) The sequence (αk)k∈N is increasing and αk > 0 for every k ∈ N. If (1.3) is satisfied, then limk→∞αk = q, and if (1.3) is satisfied with a strict

inequality, the convergence is exponentially fast.
(3) For all k ≥ 2, we have that 0 < Γ2

k−1 < αk < q and that 0 < γk <�q − Γ2
k−1. If (1.3) is true, then limk→∞Γ2

k = q and, as a consequence,
limk→∞γk = 0.

Next, we recall Bolthausen’s modified interaction matrix. We define

g(1) = g, ϕ(1) = 1 ∈ RN , m(1) =√q1 ∈ RN.

Assuming that g(s), ϕ(s), m(s) are defined for 1 ≤ s ≤ k, we set

ζ(s) = ḡ (s)ϕ(s)

and we define the σ-algebra Gk through
Gk = σ�g(s)ϕ(s), (g(s))Tϕ(s) : 1 ≤ s ≤ k�.
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Expectations with respect to Gk are denoted by Ek. Furthermore, we set

h(k+1) = h1 + β
k−1�
s=1

γsζ(s) + β
�

q − Γ2
k−1ζ(k), m(k+1) = tanh(h(k+1)),

ϕ(k+1) = m(k+1) −∑k
s=1�m(k+1), ϕ(s)�ϕ(s)

�m(k+1) −∑k
s=1�m(k+1), ϕ(s)�ϕ(s)� ,

(3.1)

and we note that ϕ(k+1) is P − a.s well-defined for all k if k < N (Ref. 16, Lemma 5). Finally, the modified interaction matrix g(k+1) is defined by

g(k+1) = g(k) − ρ(k),
where

ρ(k) = g(k)ϕ(k) ⊗ ϕ(k) + ϕ(k) ⊗ (g(k))Tϕ(k) − �g(k)ϕ(s), ϕ(k)� ϕ(k) ⊗ ϕ(k).
In particular, this means that ḡ (k+1) is equal to

ḡ (k+1) = ḡ (k) − ρ̄ (k), ρ̄ (k) = ζ(k) ⊗ ϕ(k) + ϕ(k) ⊗ ζ(k) − �ζ(k), ϕ(k)� ϕ(k) ⊗ ϕ(k).
It is clear that (ϕ(s))k

s=1 forms an orthonormal sequence of vectors in RN , and we denote by P(k) and Q(k) the corresponding orthogonal
projections in RN , that is,

P(k) = k�
s=1

ϕ(s) ⊗ ϕ(s) = (P(k)ij )1≤i,j≤N , Q(k) = 1 − P(k) = (Q(k)ij )1≤i,j≤N.

By Ref. 16, Lemma 3, m(k) and ϕ(k) are Gk−1-measurable for all k ∈ N, and we also have that

g(k)ϕ(s) = (g(k))Tϕ(s) = ḡ (k)ϕ(s) = 0, ∀ s < k.

Proposition 3.2. (Ref. 16, Proposition 4)

(1) Conditionally on Gk−2, g(k) and g(k−1) are Gaussian with conditional covariance, given Gk−2, equal to

Ek−2 g(k)ij g(k)st = 1
N

Q(k−1)
is Q(k−1)

jt .

(2) Conditionally on Gk−2, g(k) is independent of Gk−1. In particular, conditionally on Gk−1, g(k) is Gaussian with the same covariance
as in (1).

(3) Conditionally on Gk−1, the random variables ζ(k) are Gaussian with

Ek−1ζ(k)i ζ(k)j = Q(k−1)
ij + 1

N
ϕ(k)i ϕ(k)j .

The main result of Ref. 24 is summarized in the following proposition.

Proposition 3.3. (Ref. 24, Proposition 2.5 and Ref. 16, Proposition 6) For every k ∈ N and s < k, one has

�m(k), ϕ(s)� � γs, �m(k), m(s)� � αs, �m(k), m(k)� � q.

The next lemma collects a few auxiliary results that are helpful in the sequel.

Lemma 3.4. [Ref. 16, Lemmas 11, 14, and 15(b)]

(1) For every k ∈ N, �ϕ(k), ζ(k)� =√2 �ϕ(k), g(k)ϕ(k)� is unconditionally Gaussian with variance 2�N.
(2) For every Lipschitz continuous f : R→ R with � f (x)� ≤ C(1 + �x�) for some C > 0, one has for all k ≥ 2,

lim
N→∞E� 1

N

N�
i=1

f (h(k+1)
i ) − E f (β√qZ + h)� = 0.

(3) For every k ∈ N and t > 0, it holds true that
lim

N→∞P���ζ(k)� ≥ 1 + t�� = 0.
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IV. CONDITIONAL MOMENTS OF REDUCED PARTITION FUNCTION
Using Bolthausen’s magnetizations, we compute in this section the first two conditional moments of a suitably reduced partition function

onto a subset S ⊂ {−1, 1}N defined below. This will suffice to establish Theorem 1.1, as explained in Sec. V.
Let ε > 0 and k ∈ N be fixed. We define the set Sε,k ⊂ {−1, 1}N through

Sε,k = �σ ∈ {−1, 1}N : ��σ −m(k+1), ϕ(s)�� ≤ ε�k, ∀ 1 ≤ s ≤ k� (4.1)

with ϕ(s), γs from Sec. III. We define the reduced partition function Z(k+1)
N (Sε,k) by

Z(k+1)
N (Sε,k) = �

σ∈Sε,k

pfree(σ) exp�Nβ√
2
�σ, g(k+1)σ��

= �
σ∈Sε,k

pfree(σ) exp�Nβ
2
�σ, ḡ (k+1)σ��,

(4.2)

where pfree : {−1, 1}N → (0, 1) denotes the coin-tossing measure,

pfree(σ) = N�
i=1

1
2

exp�h(k+1)
i σi�

cosh�h(k+1)
i � . (4.3)

The following lemma records that pfree(Sc
ε,k) is exponentially small in N.

Lemma 4.1. Let ε > 0, k ∈ N, and let Sε,k and pfree be defined as in (4.1) and (4.3), respectively. Then, there exist c, C > 0, independent of N
and ε, such that

pfree(Sε,k) ≥ 1 − Ce−cNε2
. (4.4)

Proof. By a standard union bound, we have that

pfree(Sc
ε,k) ≤ k max

s=1,...,k
pfree��σ ∈ {−1, 1}N : �σ, ϕ(s)� − �m(k+1), ϕ(s)� > ε

k
��

+ k max
s=1,...,k

pfree��σ ∈ {−1, 1}N : �m(k+1), ϕ(s)� − �σ, ϕ(s)� > ε
k
��,

which implies that

pfree(Sc
ε,k) ≤ k max

s=1,...,k
inf
λ≥0

exp
�������
−N
���

λε
k
− 1

N

N�
i=1

log
cosh�h(k+1)

i + λϕ(s)i �
cosh�h(k+1)

i � + λ�m(k+1), ϕ(s)����
�������

+ k max
s=1,...,k

inf
λ≥0

exp
�������
−N
���

λε
k
− 1

N

N�
i=1

log
cosh�h(k+1)

i − λϕ(s)i �
cosh�h(k+1)

i � − λ�m(k+1), ϕ(s)����
�������

.

Using the pointwise bound log cosh(x + y) ≤ log cosh(x) + y tanh(x) + y2

2 for x, y ∈ R, �ϕ(s), ϕ(s)� = 1, and the identity tanh�h(k+1)�
=m(k+1), we obtain

pfree(Sc
ε,k) ≤ 2k inf

λ≥0
exp�−Nλε

k
+ Nλ2

2
� = 2ke−Nε2�(2k2).

This concludes (4.4) for c = ck = 1�(2k2), C = Ck = 2k. �
We note that the constants c, C > 0 in (4.4) are independent of the realization of the disorder {gij}. Thus, a.s. in the disorder (so that ϕ(s),

s = 1, . . . , k, and, hence, ḡ (k+1) and pfree are well-defined), Sε,k ≠ Á for N large enough.
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The next lemma determines the first conditional moment of the reduced partition function Z(k+1)
N (Sε,k) and is valid in the full high

temperature regime (1.3).

Lemma 4.2. Let ε > 0, k ∈ N, and let Sε,k, Z(k+1)
N (Sε,k), and pfree be as in (4.1)–(4.3), respectively. Assume that (β, h) satisfy the AT condition

(1.3). Then,

lim
ε→0

lim
k→∞lim sup

N→∞ E� 1
N

log Ek Z(k+1)
N (Sε,k) − β2

4
(1 − q)2� = 0. (4.5)

Proof. By Proposition 3.2, we have that

EkZ(k+1)
N (Sε,k) = �

σ∈Sε,k

pfree(σ) exp�β2N2

4
Ek�σ, g(k+1)σ�2�

= �
σ∈Sε,k

pfree(σ) exp
������

β2N
4
�1 − k�

s=1
�σ, ϕ(s)�2�

2������.

Centering around m(k+1) yields

1 − k�
s=1
�σ, ϕ(s)�2 = 1 − k�

s=1
�m(k+1), ϕ(s)�2 − 2

k�
s=1
�σ −m(k+1), ϕ(s)��m(k+1), ϕ(s)� − k�

s=1
�σ −m(k+1), ϕ(s)�2

so that

sup
σ∈Sε,k

��1 − k�
s=1
�σ, ϕ(s)�2� − �1 − k�

s=1
�m(k+1), ϕ(s)�2�� ≤ C sup

σ∈Sε,k

k�
s=1
��σ −m(k+1), ϕ(s)�� ≤ Cε

for some C > 0 independent of N and k. This implies with Lemma 4.1 that

������������
1
N

log EkZ(k+1)
N (Sε,k) − β2

4
�1 − k�

s=1
�m(k+1), ϕ(s)�2�

2������������
≤ Cβ2ε + C

N
� log(1 − Ce−cNε2)�.

Moreover, by Proposition 3.3, we have that limN→∞∑k
s=1�m(k+1), ϕ(s)�2 = Γ2

k in Lp(dP) for any p ∈ [1; ∞) so that

lim sup
N→∞ E� 1

N
log EkZ(k+1)

N (Sε,k) − β2

4
�1 − Γ2

k�2� ≤ Cβ2ε.

Finally, since limk→∞ Γ2
k = q under the AT condition (1.3), by Lemma 3.1, we let N →∞, then k→∞, and then ε→ 0, which implies that

lim
ε→0

lim
k→∞lim sup

N→∞ E� 1
N

log Ek Z(k+1)
N (Sε,k) − β2

4
(1 − q)2� = 0.

�
The following lemma computes the second conditional moment of Z(k+1)

N (Sε,k) under the stronger high temperature condition (1.5).

Lemma 4.3. Let ε > 0, k ∈ N, and let Sε,k, Z(k+1)
N (Sε,k), and pfree be as in (4.1)–(4.3), respectively. Assume that (β, h) satisfy condition (1.5).

Then,

lim
ε→0

lim
k→∞lim sup

N→∞ E� 1
N

log Ek ��Z(k+1)
N (Sε,k)�2� − β2

2
(1 − q)2� = 0. (4.6)
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Proof. Proceeding as in the previous proposition, we compute

Ek ��Z(k+1)
N (Sε,k)�2� = �

σ,τ∈Sε,k

pfree(σ)pfree(τ) exp�β2N2

4
Ek��σ, g(k+1)σ� + �τ, g(k+1)τ��2�

= �
σ,τ∈Sε,k

pfree(σ)pfree(τ) exp
������

β2N
4
�1 − k�

s=1
�σ, ϕ(s)�2�

2

+ β2N
4
�1 − k�

s=1
�τ, ϕ(s)�2�

2������
× exp

������
β2N

2
��σ, τ� − k�

s=1
�σ, ϕ(s)��ϕ(s)τ��

2������
= �

σ,τ∈Sε,k

pfree(σ)pfree(τ) exp�β2N
2
�σ, Q(k)τ�2�

× exp
������

β2N
2
�1 − k�

s=1
�m(k+1), ϕ(s)�2�

2

+NO(β2ε)������.
Arguing as in the previous lemma, we, therefore, see that it is enough to show that

E
�����������

1
N

log �
σ,τ∈Sε,k

pfree(σ)pfree(τ) exp�β2N
2
�σ, Q(k)τ�2������������

vanishes when N →∞. To this end, recall that by the definition of Sε,k, we have that

sup
τ∈Sε,k

� �Q(k)τ�2 − �1 − �m(k+1), P(k)m(k+1)��� ≤ Cε (4.7)

for some C > 0 independent of N and k. For fixed τ ∈ Sε,k, we, then, have

pfree(Sε,k) ≤ �
σ∈Sε,k

pfree(σ) exp�β2N
2
�σ, Q(k)τ�2�

≤ pfree(Sε,k) +� 1

0
dt Nβ2t e

N
2 β2t2

pfree��σ ∈ {−1, 1}N : ��σ, Q(k)τ�� > t��.
Setting λ = t�(1 − q) and using that log cosh(x + y) ≤ log cosh(x) + y tanh(x) + y2�2 for x, y ∈ R, we can estimate the tail probability in the
integral by

pfree��σ ∈ {−1, 1}N : ��σ, Q(k)τ�� > t��
≤ exp�−Nλt +Nλ�m(k+1), Q(k)τ� + Nλ2

2
�Q(k)τ�2�

+ exp�−Nλt −Nλ�m(k+1), Q(k)τ� + Nλ2

2
�Q(k)τ�2�

≤ 2 exp
�������
− Nt2

1 − q
+ Nt2

2
�Q(k)τ�2

(1 − q)2

�������
exp� Nt

1 − q
�Q(k)m(k+1)��

so that

pfree(Sε,k) ≤ �
σ∈Sε,k

pfree(σ) exp�β2N
2
�σ, Q(k)τ�2�

≤ pfree(Sε,k) + 2� 1

0
dt Nβ2t e

Nt2
2(1−q) �β2(1−q)−2+ �Q(k)τ�2

(1−q) �e
Nt

1−q �Q(k)m(k+1)�.

In particular, by (4.7) and because

lim
N→∞�m(k+1), P(k)m(k+1)� = Γ2

k, lim
N→∞�Q(k)m(k+1)�2 = q − Γ2

k,
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in Lp(dP) for p ∈ [1; ∞), we obtain under condition (1.5), i.e., β2(1 − q) ≤ 1, that

lim
ε→0

lim
k→∞lim sup

N→∞ E
�����������

1
N

log �
σ,τ∈Sε,k

pfree(σ)pfree(τ) exp�β2N
2
�σ, Q(k)τ�2������������ = 0,

which implies (4.6). �
Remark. The key difficulty in the Proof of Lemma 4.3 is to obtain a strong concentration bound on the overlap (σ, τ)� �σ, τ� under the

product measure p⊗2
free, restricted to Sε,k × Sε,k ⊂ {−1, 1}N × {−1, 1}N . In our proof, the condition β2(1 − q) ≤ 1 emerges due to the restrictions

on one of the spin variables, say, τ ∈ Sε,k. In principle, one may be able to find the optimal temperature condition by taking into account the
restrictions on the other spin variable and using standard large deviation variational estimates, but an exact solution seems difficult. We hope
to get back to this point in future work.

V. PROOF OF THEOREM 1.1
In this section, we prove Theorem 1.1 based on Lemmas 4.2 and 4.3. Before we start, let us first re-center the Hamiltonian HN

appropriately, as outlined in the Introduction.
Using the notation of Sec. III, we have that

HN(σ)
N

= β
2
�σ, ḡσ� + �h, σ� = β

2
�σ, ḡ (k+1)σ� + β

2

k�
s=1
�σ, ρ̄ (s)σ� + �h, σ�.

In contrast to Ref. 16, instead of centering the spins σ around m(k+1), we center the spins in �σ, ρ̄ (s)σ� around γsϕ(s) in order to produce the right
cavity field h(k+1). Note that the remaining term �σ, ḡ (k+1)σ� contains automatically centered spins around∑k

s=1 γsϕ(s) (which approximately
equals m(k+1)), as ḡ (k+1)ϕ(s) = 0 for s < k + 1. We, thus, write

�σ, ρ̄ (s)σ� = 2γs�σ, ρ̄ (s)ϕ(s)� + �σ − γsϕ(s), ρ̄ (s)(σ − γsϕ(s))� − γ2
s �ϕ(s), ρ̄ (s)ϕ(s)�

= 2γs�σ, ζ(s)� + �σ̂ (s), ρ̄ (s)σ̂ (s)� − γ2
s �ϕ(s), ζ(s)�,

which follows from ρ̄ (s)ϕ(s) = ζ(s) and where we set σ̂ (s) = σ − γsϕ(s). Hence,

HN(σ)
N

= β
2
�σ, ḡ (k+1)σ� + �h(k+1), σ� + β

2

k�
s=1
�σ̂ (s), ρ̄ (s)σ̂ (s)� − β

2

k�
s=1

γ2
s �ϕ(s), ζ(s)� + β�γk −�q − Γ2

k−1��σ, ζ(k)�.
Since an exact evaluation of the free energy seems rather involved, let us note here that for configurations σ ∈ Sε,k as defined in (4.1), instead,
we have approximately HN(σ)�N ≈ β

2 �σ, ḡ (k+1)σ� + �h(k+1), σ�. Indeed, we find that

�σ̂ (s), ρ̄ (s)σ̂ (s)� = 2�σ − γsϕ(s), ζ(s)�(�ϕ(s), σ� − γs) − �ϕ(s), ζ(s)�(�ϕ(s), σ� − γs)2

with γs � �m(k+1), ϕ(s)�. Similarly, recall that �ϕ(s), ζ(s)� ∼ N(0, 2�N) for each s and

������������γk −�q − Γ2
k� sup

σ∈{−1,1}N
�σ, ζ(k)������������ ≤ �γk +�q − Γ2

k��ζ(k)�
with limk→∞�q − Γ2

k� = limk→∞γk = 0 under (1.3) by Lemmas 3.1 and 3.4.
Thus, we obtain the simple lower bound

1
N

log ZN = 1
N

log �
σ∈{−1,1}N

eHN(σ)

= log 2 + 1
N

N�
i=1

log cosh(h(k+1)
i ) + 1

N
log �

σ∈{−1,1}N

pfree(σ)eHN(σ)−N�h(k+1) ,σ�

≥ log 2 + 1
N

N�
i=1

log cosh(h(k+1)
i ) + 1

N
log �

σ∈Sε,k

pfree(σ)eHN(σ)−N�h(k+1) ,σ�
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so that

1
N

log ZN ≥ log 2 + 1
N

N�
i=1

log cosh(h(k+1)
i ) + 1

N
log Z(k+1)

N (Sε,k)
− C

βε
k

k�
s=1
�ζ(s)� − Cβ

k�
s=1
�ζ(s)���ϕ(s), m(k+1)� − γs�

− β
2

k�
s=1

γ2
s �ϕ(s), ζ(s)� − βγk�ζ(k)� − β

�
q − Γ2

k�ζ(k)�.
(5.1)

We have now all necessary preparations for the Proof of Theorem 1.1.

Proof of Theorem 1.1. Up to minor modifications, we follow Ref. 16, Sec. 3 and we also abbreviate RS(β, h) = log 2 + E log cosh(β√qZ+ h) + β2(1 − q)2�4.
By the Paley–Zygmund inequality, we have that

Pk�Z(k+1)
N (Sε,k) ≥ EkZ(k+1)

N (Sε,k)�2� ≥ �Ek(Z(k+1)
N (Sε,k)�2

4Ek�(Z(k+1)
N (Sε,k))2� .

Given δ1 > 0, Lemmas 4.2 and 4.3 imply that

P� 2
N

log Ek Z(k+1)
N (Sε,k) ≥ 1

N
log 4 Ek�Z2

N(Sε,k)� − δ1� ≥ 1
2

if we choose ε > 0 sufficiently small, k sufficiently large, and N ≥ N1(ε, k) ∈ N sufficiently large. This also implies that

P�Pk� 1
N

log Z(k+1)
N (Sε,k) ≥ 1

N
log EkZ(k+1)

N (Sε,k) − log 2
N
� ≥ e−δ1N� ≥ 1

2
.

On the other hand, applying Lemma 3.4 (3), we note that

lim
N→∞P�1

k

k�
s=1
�ζ(s)� > 2� ≤ lim

N→∞
k�

s=1
P��ζ(s)� > 2� = 0

and that

lim
N→∞P��ζ(k+1)� > 2� = 0.

Moreover, Lemma 3.4 and the fact that �ϕ(s), m(k+1)� � γs by Proposition 3.3 imply that

lim
N→∞�Cβ

k�
s=1
�ζ(s)���ϕ(s), m(k+1)� − γs� + β

2

k�
s=1

γ2
s �ϕ(s), ζ(s)�� = 0

and

lim
N→∞

1
N

N�
i=1

log cosh�h(k+1)
i � = E log cosh(β√qZ + h)

in probability. Now, the lower bound (5.1) implies that

P�Pk� 1
N

log ZN ≥ log 2 + 1
N

N�
i=1

log cosh(β√qZ + h) + 1
N

log EkZ(k+1)
N (Sε,k) − log 2

N
− Eε,k� ≥ e−δ1N� ≥ 1

2
,
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where we defined the error Eε,k by

Eε,k = Cβε
k

k�
s=1
�ζ(s)� + Cβ

k�
s=1
�ζ(s)���ϕ(s), m(k+1)� − γs�

+ β
2

k�
s=1

γ2
s �ϕ(s), ζ(s)� + βγk�ζ(k)� + β

�
q − Γ2

k�ζ(k)�.
Given δ2 > 0, we may choose ε > 0 sufficiently small, k ∈ N sufficiently large, and N ≥ N2(k, ε) ∈ N sufficiently large such that

P��Eε,k� ≤ δ2

4
, � 1

N

N�
i=1

log cosh(h(k+1)
i ) − E log cosh(β√qZ + h)� ≤ δ2

4
� ≥ 7

8

and, by Lemma 4.2, also such that

P� 1
N

log EkZ(k+1)
N (Sε,k) ≥ β2

4
(1 − q)2 − δ2

4
� ≥ 7

8
.

Combining the above observations, we find that

P�Pk� 1
N

log ZN ≥ RS(β, h) − δ2� ≥ e−δ1N� ≥ 1
4

for all N ≥ max(N1(ε, k), N2(ε, k), 4 log 2�δ2). This implies that

P� 1
N

log ZN ≥ RS(β, h) − δ2� ≥ 1
4

e−δ1N.

By Gaussian concentration of the free energy, i.e.,

P�� 1
N

log ZN − 1
N

E log ZN � ≤ δ3� ≥ 1 − e−Nδ2
3�β2

,

we may choose δ1 < δ2
3�(2β2) to conclude for large enough N that

E 1
N

log ZN ≥ RS(β, h) − δ2 − δ3.

Since δ2, δ3 > 0 were arbitrary, this shows that the right-hand side of (1.6) is a lower bound to limN→∞ E 1
N log ZN , and by Remark (2), this

proves Theorem 1.1. �
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