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ABSTRACT

We provide a simple extension of Bolthausen’s Morita-type proof of the replica symmetric formula [E. Bolthausen, “A Morita type proof of
the replica-symmetric formula for SK,” in Statistical Mechanics of Classical and Disordered Systems, Springer Proceedings in Mathematics and
Statistics (Springer, Cham., 2018), pp. 63-93; arXiv:1809.07972] for the Sherrington-Kirkpatrick model and prove the replica symmetry for
all (B, h) that satisfy f°Esech’(B,/4Z + h) < 1, where q = Etanh®(B./qZ + h). Compared to the work of Bolthausen [“A Morita type proof of
the replica-symmetric formula for SK,” in Statistical Mechanics of Classical and Disordered Systems, Springer Proceedings in Mathematics and
Statistics (Springer, Cham., 2018), pp. 63-93; arXiv:1809.07972], the key of the argument is to apply the conditional second moment method

to a suitably reduced partition function.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073807

I. INTRODUCTION
We study systems of N spins i, i € {1,..., N}, with values in {~1,1} and with the Hamiltonian Hy : {~1,1}" — R defined by

ﬁ N
Hy(o) = == i0:0; + h)Y 0. (1.1)
(0) \/Els%;Ng] j 1;

The interactions { g,-j} are i.i.d. centered Gaussians of variance 1/N for i # j, and we set g;; = 0. § > 0 denotes the inverse temperature, and
h > 0 denotes the external field strength.

Equation (1.1) corresponds to the Sherrington-Kirkpatrick (SK) spin glass model,' and we are interested in its free energy fy at high
temperature, where

1
fN = — lOgZN, ZN = Z EHN(U). (1.2)
N ge{-1,1}N

The mathematical understanding of the SK model has required substantial efforts until the famous Parisi formula™ was rigorously established
by Guerra* and Talagrand.® Later, Panchenko”’ gave another proof based on the ultrametricity of generic models. For a thorough introduction
to the topic, we refer to Refs. 8-11.

Despite the validity of the Parisi formula, it is an interesting question to prove the replica symmetry of the SK model at high temperature,
as predicted by de Almeida and Thouless.'? Replica symmetry is expected for all (8, ) that satisfy

B Esech*(B\/qZ +h) <1, (1.3)
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where g denotes the unique solution of the self-consistent equation,

q = Etanh®(8./qZ + h). (1.4)

In both cases, Z ~ N(0,1) denotes a standard Gaussian and E denotes the expectation over Z.

In the special case that the external field in the direction of 0; is a centered Gaussian random variable, h; = hg;, for iid. gi ~ N(0,1)
(independent of gj;), replica symmetry has recently been shown in Ref. 13 for all (5, /) that satisfy (1.3) [in which case h in (1.3) and (1.4)
is replaced by hZ' for some Z' ~ N(0,1) independent of Z]; see also Ref. 14 for previous results in this case. For Hamiltonians Hy as in
(1.1) (or, more generally, Hamiltonians with a non-centered random external field), however, replica symmetry is to date only known above
the AT line up to a bounded region in the (3, h)-phase diagram. This was analyzed in Ref. 15. Like Ref. 13, this analysis is based on the
Parisi variational problem and we refer to Ref. 15 for the details. For previously obtained results based on the Parisi formula, see also Ref. 11,
Chap. 13.

In this article, instead of analyzing the high temperature regime in view of the Parisi variational problem, we give a simple extension of
Bolthausen’s argument'® and prove the replica symmetric formula for all (B, h) that satisfy

B Esech’(B\/qZ + h) < 1. (1.5)

Although (1.5) is clearly stronger than condition (1.3), it already covers a fairly large region of the high temperature regime; see Fig. 1 for a
schematic. It improves upon the inverse temperature range from Ref. 16, where 3 was assumed to be sufficiently small.

Theorem 1.1. Assume that (8, h) satisfies (1.5). Then,

2
Nlim E% log Zy =log 2 + E log cosh(B\/9Z + h) + ﬁz(l -q)% (1.6)

Remarks.

(1) From Ref. 17, it is well-known that limy— co IEI% log Zy exists and that almost surely limy_. oo % log Zn = limy—eo IE% log Zy.

(2) TItfollows from the results of Ref. 4 that the right-hand side of (1.6) provides an upper bound to the free energy limy— oo IE% log Zy for
all inverse temperatures and external fields (3, k). To establish Theorem 1.1, it is, therefore, sufficient to prove that the right-hand side
of (1.6) provides a lower bound to limy— oo IE% log Zn.

We conclude the Introduction with a quick heuristic outline of the main argument. To this end, consider first the case & = 0 where the
critical temperature corresponds to 3 = 1. In this case, it is straightforward (see, e.g., Ref. 18, Chap. 1, Sec. 3) to see that

T

FIG. 1. Schematic of the (T, h) phase diagram, where T = ;} denotes the temperature. In the blue region, whose boundary corresponds to the AT line (1.3), the SK model
is known to be replica symmetry breaking. The boundary of the green region corresponds to condition (1.5). Theorem 1.1 proves the replica symmetry in the green region.
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limilo EZy =lo 2+[iz limllo EZy =2 1o 2+[iz
NN g Lin = log 2’ NN g LiN = g 2

for all § < 1. The replica symmetric formula, thus, follows from the second moment method using the Gaussian concentration of the free
energy. In fact, for h = 0, the fluctuations of Zy/ EZy have also been known for a long time."”

Clearly, it would be desirable to extend this simple argument to the case h > 0, but a direct application of the second moment method
does not work here. However, as suggested in Ref. 16, one may hope to obtain a model similar to the case h = 0 by centering the spins around
suitable magnetizations and viewing Zy, up to normalization, as an average over the corresponding coin-tossing measure. To center the spins
correctly, recall that at high temperature, one expects the TAP equations™ to hold, that is,

mj ~ tanh(h + B> giim; -p (- q)mi)(for i=1,...,N), (1.7)

J#i

where g;i = (gij + gi)/V/2 and m; = Zy' S, 01 ¢™(?). The validity of (1.7) is known for sufficiently small 8 (see Refs. 10 and 21 and, more
recently, Ref. 22; see also Ref. 23 on the TAP equations for generic models, valid at all temperatures) and expected to be true under (1.3). In
Refs. 16 and 24, Bolthausen provided an iterative construction (m(s) )sen of the solution to (1.7) that converges (in a suitable sense) in the full
high temperature regime (1.3). The main result of Ref. 16 is a novel proof of (1.6) for  small enough based on a conditional second moment
argument, given the approximate solutions (m(s)) sen. It has remained an open question, however, if the approach can be extended to the
region (1.3).

’ In this article, while we are not able to resolve this question for all (3, h) satisfying (1.3), we improve the range of (8,h) to (1.5) as
(D) 5 % 9.6 for certain orthonormal vectors ¢ ¢ RY and
deterministic numbers y; (~ (m**", ¢} with high probability), where (x,y) = N"'3N, x;y; forx,y ¢ R". One also has g = g**) + ¥¢  p©®
(k+1) 4

(k+1)

follows: The author of Refs. 16 and 24 showed, roughly speaking, that m

for the interaction g = (g;)1<ij<n> where p) e RN*N are measurable with respect to (m)),.,; and where the modified interaction g

Gaussian, conditionally on (m® )s<k+1> With the property that g(k+1) Zleysgb(s) = 0. Up to negligible errors, one obtains with@ = 0 — m
that

%logZN ~log 2 + E log cosh(B+/9Z + h)

P08 Y pra(o)ew [ﬁ(a §) + NO(max|y. - <o,¢“>>|)],

oe{-L,1}N

where pge. denotes the product measure for which ¥, prec(0)o = m**. A simple observation is now that we can ignore the error
NO(max; |ys — (0,¢¢)]) in (1.8) by restricting the modified partition function to those o with max; |ys — (0, ¢*')| ~ 0. Note that the probabil-
ity of the complement of this set is small under pg.. because y; ~ (m**1, ¢} This yields a simple lower bound on % log Zn, and we can apply
the conditional second moment argument to the restricted partition function. We show that its first conditional moment equals (1 - q)*/4
(up to negligible errors) in the full high temperature regime (1.3). To dominate its second moment by the square of the first, on the other
hand, we need to impose the stronger condition (1.5).

Note that imposing similar orthogonality restrictions on the partition function has been proved useful before for obtaining lower bounds
on the free energy, such as in the TAP analysis of the spherical SK model.””

Although (1.5) already covers a comparably large region of the high temperature phase, as schematically shown in Fig. 1, it remains an
open question whether the second moment argument can be extended to the full high temperature regime (1.3); see also the related comments
in Ref. 16, Sec. 6.

This paper is structured as follows. In Secs. III and IV, we set up the notation and recall Bolthausen’s iterative construction of
magnetization.'*** In Sec. IV, we define the reduced partition function and compute its first and second moments. In Sec. V, we apply
the conditional second moment method to prove Theorem 1.1.

Il. NOTATION

In this section, we introduce the basic notation and conventions. We closely follow Ref. 16.
We usually denote vectors in RN by boldface or greek letters. If x € RY and g : R — R, we define g(x) in the component-wise sense. By
() : RY x RN - R, we denote the normalized inner product

1 N
(x,y) = N ; XiYis
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and by | - | = \/(-), we denote the induced norm. We also normalize the tensor product x ® y : RY — RN of two vectors x,y € RV so that for
allz e RY,

(x®y)(z) = {y.2)x

Given a matrix A € RMN, AT ¢ RVN denotes its transpose and A € RNV denotes its symmetrization,

A+AT

V2

We mostly use the letters Z, 7' 71,75, etc. to denote standard Gaussian random variables independent of the disorder { gij} and inde-
pendent of one another. When we average over such Gaussians, we denote the corresponding expectation by E to distinguish it from the
expectation [E with respect to the disorder {g;;}. Unless specified otherwise, we consider all Gaussians to be centered.

Finally, given two sequences of random variables (Xy)ns1, (Yn)n»1 that may depend on parameters such as 8 and h, we say that

A=

XN~ YN

if and only if there exist positive constants ¢, C > 0, which may depend on the parameters, but which are independent of N, such that for every
t > 0, we have

P(|Xy - Yn| > t) < Ce N,

I1l. BOLTHAUSEN’'S CONSTRUCTION OF THE LOCAL MAGCNETIZATIONS

In this section, we recall Bolthausen’s iterative construction of the solution to the TAP equations'®** and list the properties that we will
need for the Proof of Theorem 1.1. We follow here the conventions of Ref. 16, and we refer to Ref. 16, Secs. 2, 4, and 5 for the proofs of the
following statements.

First of all, we define three sequences (o )ken> (Vk )ken> and (T'k)ken- Set

@ =+/qy, 1 =Etanh(B/qZ +h), Ti=9i,

where here and in the following, q denotes the unique solution of (1.4). Then, we define y : [0,g] — [0,9] by

w(t)=E tanh(ﬁ\/;Z +B\/q-tZ' +h) tanh(ﬂ\/ZZ + ﬁ\/q_—tz” +h),

16,2

and set recursively
2
X — T k—1

2 2
ap =y(ag_1), Y= —F——m, Ii= Z)/k-
Va- Tt =1
The following lemma collects important properties of (ot )ken» (Vi )ken» and (Tx ) gen-
Lemma 3.1. (Ref. 24, Lemma 2.2, Corollary 2.3, Lemma 2.4 and Ref. 16, Lemma 2)

(1)  wis strictly increasing and convex in [0, q] with 0 < y(0) < w(q) = q. If (1.3) is satisfied, then q is the unique fixed point of v in [0, q].
(2) The sequence (o )en is increasing and oy > 0 for every k € N. If (1.3) is satisfied, then limy_, o o = q, and if (1.3) is satisfied with a strict
inequality, the convergence is exponentially fast.

(3) For all k> 2, we have that 0 < T;_, < ax < q and that 0 <y, <+/q - 7 . If (1.3) is true, then limy_, oo I% = q and, as a consequence,
limkﬁwyk =0.

Next, we recall Bolthausen’s modified interaction matrix. We define
g(l) -g ¢(1) —1eRY, m®= VAl € RN
Assuming that g(s), gb(s), m® are defined for 1 < s < k, we set
{© = g(5)¢(5)

and we define the g-algebra Gy through
Gi = a(g(s)(b(s), (g ¢ i 1<5< k).

J. Math. Phys. 63, 073302 (2022); doi: 10.1063/5.0073807 63, 073302-4
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Expectations with respect to Gy are denoted by Ej. Furthermore, we set

k-1
WD = p1 B> ys((s) +B\/q- Fifl((k), m* = tanh(h(kﬂ)),
! (3.1)

¢(k+1) ) mD _ Zf:] (m(k+1))¢(5)>¢(5)
Hm(k+1) — Zf:1<m(k+1)>¢(s)>¢(s)

>

and we note that ¢! is P — a.s well-defined for all k if k < N (Ref. 16, Lemma 5). Finally, the modified interaction matrix g**! is defined by

(ko)) _ o) _ ()

g g p

where
p(k) _ g(k)¢(k) ® ¢(k) i ¢(k) ® (g(k))T¢(k) _ <g(k)¢(5),¢(k)) ¢(k) ® ¢(k).

(k+1)

In particular, this means that g is equal to

g(kH) - g(k) —[)(k), P(k) - ((k) ® ¢(k) 4 ¢(k) ® ((k) _ <((k),¢(k)> ¢(k) ® ¢(k)'

It is clear that (¢))X, forms an orthonormal sequence of vectors in R", and we denote by P® and Q¥ the corresponding orthogonal
projections in RY, that is,

k
P - Zﬁb(s) ® ¢(S) = (P,-(jk))1si,jsN, QW =1-p® = (Q,-(jk))lsi,jsN-

s=1
By Ref. 16, Lemma 3, m® and ¢(k) are G,_;-measurable for all k € N, and we also have that

k) (s k s & (k) (s
g @ = (g T® —g®g) _ o v s<k

Proposition 3.2. (Ref. 16, Proposition 4)

(k—1)

(1) Conditionally on Gy_,, g(k) and g are Gaussian with conditional covariance, given Gy_,, equal to

1 (ke1) (e
Eeagy el = 5 Q.

k) (

(2) Conditionally on Gy_,, g( Y is Gaussian with the same covariance
asin (1).

(3) Conditionally on Gy_,, the random variables C(k) are Gaussian with

is independent of Gy_,. In particular, conditionally on Gy_;, g

k) #(k k- L k), (k
Ei (! )Cj( )= Q,S» Dy N(pi( )¢j( ),
The main result of Ref. 24 is summarized in the following proposition.
Proposition 3.3. (Ref. 24, Proposition 2.5 and Ref. 16, Proposition 6) For every k € N and s < k, one has
(m(k),¢(5)) =y, (m(k),m(s)) ~a;, (m(k),m(k)) ~ g,
The next lemma collects a few auxiliary results that are helpful in the sequel.

Lemma 3.4. [Ref. 16, Lemmas 11, 14, and 15(b)]

(1) ForeverykeN, (¥, (W) = /2 (¢®, g® MY is unconditionally Gaussian with variance 2/N.
(2) For every Lipschitz continuous f : R — R with [f(x)| < C(1 + |x|) for some C > 0, one has for all k > 2,

Jim, E‘;éf(hfk“)) -~ Ef(B\/aZ+ h)‘ = 0.

(3) Foreveryk e Nandt >0, it holds true that
; (k) -
NIEEOP({”( H21+t})—0.
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IV. CONDITIONAL MOMENTS OF REDUCED PARTITION FUNCTION

Using Bolthausen’s magnetizations, we compute in this section the first two conditional moments of a suitably reduced partition function
onto a subset S c {~1,1}" defined below. This will suffice to establish Theorem 1.1, as explained in Sec. V.
Let e > 0 and k € N be fixed. We define the set S;; c {~1,1}" through

Sek={oe (=11 s [fo - m*D 6O <ok v 1 <5<k} (4.1)

with ¢, y; from Sec. 111. We define the reduced partition function ZI(\,k“) (Sex) by

N,
Z](\]kﬂ)(sg,k) - ZPfree(U) exp(i(a, g(k+1)0>)
€Sk \/z
NB (4.2)
= ZS: pfreE(U) exp(7<a’g(k+l)a>)’
o€ 3

where prree : {=1,1}" — (0,1) denotes the coin-tossing measure,

N 1 eXp(hi(kH)O‘i)

ree\0) = P S AR L (43)
Prrec(0) gz Cosh(hi(kﬂ))

The following lemma records that pge.(S; ) is exponentially small in N.

Lemma4.1. Lete> 0, k€N, and let S and pgee be defined as in (4.1) and (4.3), respectively. Then, there exist ¢, C > 0, independent of N
and ¢, such that

pfree(se,k) >21- Ce—CN€2~ (4.4)
Proof. By a standard union bound, we have that
o s s &
piee(S5) <k max prs( {7 € (=11} 5 (0,9) - (m*,90) > 21

ik maxkpfree({a e =1,V s (m&D 6O) _ (g, 6Oy > %})
s=1,...,
which implies that

(k1) 3 4()

de 1N cosh(hi +A¢; ) (ks1)

(S5 < k inf ([ o A L9
Piree(Se) < k max inf exp (k N2, 108 Cosh(hi(kﬂ)) +Mm T, ¢)

e 1Y cosh(hi(k“) _M)i(S))
k N& log COSh(h,-(k+l))

+ k max inf exp| -N
s=1,...,k A20

_)L(m(kﬂ))(p(s))) _
Using the pointwise bound log cosh(x + y) < log cosh(x) + y tanh(x) + % for x,y € R, (¢,¢) =1, and the identity tanh(h(k“))
= m(k“), we obtain

c . Nle NA* _N&/(2k)
Prree(Sex) < 2k /l\rzlg exp[—k + 2] = 2ke .

This concludes (4.4) for ¢ = ¢, = 1/(2k*),C = Cy = 2k. ]

We note that the constants ¢, C > 0 in (4.4) are independent of the realization of the disorder {g;;}. Thus, a.s. in the disorder (so that 0%,

(k+1)

s=1,...,k and, hence, g and pree are well-defined), Sqx # ¢ for N large enough.
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The next lemma determines the first conditional moment of the reduced partition function ZI(\,k“) (Sex) and is valid in the full high
temperature regime (1.3).

Lemma4.2. Lete>0,keN,andlet S, ZI(\,kH) (Sex)> and peee be as in (4.1)-(4.3), respectively. Assume that (B, h) satisfy the AT condition
(1.3). Then,

lim 11m11m sup E‘— log Ey Z<k+1)(S£k) ﬁ (1 - (4.5)

e20k—00 Nooo

Proof. By Proposition 3.2, we have that

2
EZS™ (Sek) = Y Preee(0) eXP('B E{o, 8" o) )

€S,k
2N k 2
- prree(o) exp|:ﬁ4( Z (S) ) ]
€S,k s=1
Centering around m**" yields
: )2 (k) ©y2 : ke1) 6y (kD) () % (k+1) ()2
1-) (0,9 =2 AmT )T =25 (o - mTT, ¢t N m T ) = S (o - mT ¢t

s=1 s=1 s=1 s=1

so that

k
<Csup Y |(o- m ()| < e

0€Sek s=1

sup
[

(1 _ Zk: (U,(P(s))Z) 3 (1 3 Zk: <m(k+1))¢(s)>2)

for some C > 0 independent of N and k. This implies with Lemma 4.1 that

2 k 2 2
l;] log EkZ]E,kH)(SS,k) - %(1 -> (m(k“),¢($))2) <CPe+ %| log(1 - Ce™™)].
=1

Moreover, by Proposition 3.3, we have that limy—.eo $5_, (m*™D, ¢())? = IZ in [2(dP) for any p € [1; o0) so that

2
limsupE‘ log IEkZ(kH)(SEk) F (lfl"k)

N—oo

< Cfe.

Finally, since limy_, o, Fi = q under the AT condition (1.3), by Lemma 3.1, we let N — oo, then k — oo, and then & — 0, which implies that

hmhmhmsupIEllogIE Z(kH)(S k) — ﬂ (1—

e>0k—00 Nooo

The following lemma computes the second conditional moment of Zy (k+1) (Sex) under the stronger high temperature condition (1.5).
Lemma 4.3. Lete>0, ke N, and let Sy, ZI(\,k“) (Sex)> and pee be as in (4.1)-(4.3), respectively. Assume that (f, h) satisfy condition (1.5).

Then,

5 2
lim lim lim sup IE‘ log Ej [(Zﬁ,k“)(sexk)) ] - /i(l R (4.6)
e>0k—>00 N oo 2
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Proof. Proceeding as in the previous proposition, we compute

B (7 60) |- % st on( E1 Bi((0.670) g )

0,T€S: &

k 2 k 2
Z Piree (0) Ptree (T) exp[/34(1 —Z(g ¢(S)) ) ( Z r,¢(s) ) :|

0,T€S: & s=1 s=1

cer]EX{-F000n600)

s=1

Z pfree(o)pfree(T) eXPI:ﬂ (0) Q(k) ) :|

0,T€S, i

2 k 2
X exp ﬁTN(p;(m("“)w))z) +NO(B) |

Arguing as in the previous lemma, we, therefore, see that it is enough to show that

IOg > Pitec(0)Prree(T) exp[ﬁ (o, Q¥+ ) ]

0,T€S: &

vanishes when N — co. To this end, recall that by the definition of S, we have that

sup| [QP ] - (1= (m**, POm* D)) < ce 4.7)
TE€S &
for some C > 0 independent of N and k. For fixed 7 € S, we, then, have

pfree(sek) < Z pfree(g) eXPI:/)) <U Q(k) ) :|

0€S.k
< Pree(Se) + fdtN/}tez “pree({o € (-L1} 1 [(0,Q0) > 1)),

Setting A = t/(1 — q) and using that log cosh(x + y) < log cosh(x) + ytanh(x) + y*/2 for x,y € R, we can estimate the tail probability in the
integral by

pree({o € (1.1} 1 (0. QW) > })

(1) )y L N 2
< exp| -NAt + NA{m ,Q T>+THQ 7|

2
+ epr:—NAt - Nl(m(kﬂ), Q(k)‘r) + % ”Q(k)THZ]

<2 exp

Nt*  N£ HQ(k)THZ Nt k) (k+1
oot asar [P o 1M
1-qg 2 (1-9) 1-

so that

Pfree(ssk) < prree(a) eXP|:/52(U Q(k) ) :|

0€S:k
-2 HQ< ) 112 ) 3 +
(ﬁ (] q) + =) ) 1\7r HQ() (k I)H

< pfree(sgk) + 2/ dtNﬂ tel“ )
In particular, by (4.7) and because

lim (m

N—oo

(k+l),P(k)m<k+1)> _ Fi, th ||Q(k)m(k+l) HZ =q- ri)
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in I? (dP) for p € [1; o00), we obtain under condition (1.5), i.e., *(1 - q) < 1, that

lim limlim sup E

e20k—>00 N_oo

=0,

Nlog Z Diree (0)Ptree(T) epr:ﬁz(a Q(k) ) :|

0,T€S: &

which implies (4.6). O

Remark. The key difficulty in the Proof of Lemma 4.3 is to obtain a strong concentration bound on the overlap (o, 7) ~ (0, 7) under the
product measure pS2, restricted to Sgy x Sex © {~1,1}" x {~1,1}". In our proof; the condition f*(1 - q) < 1 emerges due to the restrictions
on one of the spin variables, say, T € S;x. In principle, one may be able to find the optimal temperature condition by taking into account the
restrictions on the other spin variable and using standard large deviation variational estimates, but an exact solution seems difficult. We hope
to get back to this point in future work.

V. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1 based on Lemmas 4.2 and 4.3. Before we start, let us first re-center the Hamiltonian Hy
appropriately, as outlined in the Introduction.
Using the notation of Sec. I1I, we have that

HNT@)=§(O,QJ>+(}1,0):§< g(k+1)) /53

I\Mw

(UP ')+ (h,0).

(k+1)

In contrast to Ref. 16, instead of centering the spins o around m"" ", we center the spins in (o, p ©)g) around ys¢" in order to produce the right

cavity field h**?). Note that the remaining term (o, g(k“) ) contains automatically centered spins around ¥, ysgb(’) (which approximately

equals m**Y), as g(k“)(p(S) =0 for s < k + 1. We, thus, write

(U,/_)(S)(ﬁ 2ys(o, P( )¢(S)> +{o- Y:(/)(S),[)(s)(o'— ys¢(5))> _ )’52<¢(5),/_)(S)¢(S))
= 2p(0,09) + (59,5 05V) 49,0 ),

which follows from p )¢ = () and where we set 7 = g — y,¢). Hence,

Hf;\(ra) :§<a,g(k*l)a>+<h“‘“) /;Zk: 5O 5050 ﬁzy (6, ((S))+[3()/k—\/q—1")(a,(<k>).

Since an exact evaluation of the free energy seems rather involved, let us note here that for configurations o € S, as defined in (4.1), instead,
we have approximately Hy(0)/N ~ £ (0 g% Vo) + (WD 5). Indeed, we find that

@55 7) = 20 - 790 EN($D0) - ) = (7. E0) (9 0) - )

with y, = (m®*, ). Similarly, recall that (¢, ) ~ AV(0,2/N) for each s and

(n-Va12) s (0.9 < (nr\Ja-12) 1)

oe{~1,1}¥

with limg_, o0 |q — T§| = limj_, oo = 0 under (1.3) by Lemmas 3.1 and 3.4.
Thus, we obtain the simple lower bound

1
—logZy = — log SN
N se{ TN

=log 2 + —Z log cosh(h*V) + — 10g S Phee(0)e™ (™ N(RE.0)
ce{ TN
1Y (k+1) 1 Hy (0)-N(h*D g}
>log 2 + NZ log cosh(h;"") + Nlog > Piec(0)e™ ’
i1

0€Sek
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so that

N
%logZN >log 2 + %Z log cosh(hi(k“)) + %log Zﬁ,kﬂ)(sak)

i=1

8 k s k s N
- BS99m0
s=1 s=1

k
B 269,09 - Byllt® | - prJg- T2,

2521

We have now all necessary preparations for the Proof of Theorem 1.1.

(5.1)

Proof of Theorem 1.1. Up to minor modifications, we follow Ref. 16, Sec. 3 and we also abbreviate RS(3, h) = log 2 + E log cosh(f,/qZ

+h) + B (1-q)* /4.
By the Paley-Zygmund inequality, we have that

2
E (Z(k+1)(s ))
(k+1) (k+1) ( kL &N ek
Pi(Zy 7 (Sek) 2 ErZy 7 (Sen)/2) 2 .
( ) 4Ek|:(zz(\rk+l)(ss,k))2:|

Given 81 > 0, Lemmas 4.2 and 4.3 imply that

N | =

2 1
P(N log Ey Zﬁ,"“)(s&k) > N log 4 Ek(ZIZV(SE,k)) - 81) >
if we choose ¢ > 0 sufficiently small, k sufficiently large, and N > N (¢, k) € N sufficiently large. This also implies that
1 (k+1) 1 (k+1) log 2) ) N) 1
P{Py| —log Z > —log ExZ -— )2 ") >
( k(N 0g Zy (Sak) 2 log ExZy ™ (Sek) - | 2 € 25
On the other hand, applying Lemma 3.4 (3), we note that
lim B( 1321691 > 2) < fim Zk:IP’(H((S) |>2)=0
N—oo ks:l N—><>os:1
and that
. (k+1) _
Jm B([¢*V]>2) =0
Moreover, Lemma 3.4 and the fact that (¢, m**?) ~ y, by Proposition 3.3 imply that
. 1O 6O D B~ 214 ¢
Jim (€Y 1K 1[99, m D) — |+ T390 (D) ) = 0
s=1 s=1
and

1N
lim NZ log cosh(hfk+l)) = E log cosh(B+/qZ + h)
i=1

N—oo

in probability. Now, the lower bound (5.1) implies that

N
P(Pk(% log Zy > log 2 + %Z log cosh(B\/gZ +h) + %log Bz (8.0) - lolfr 2 5&k) > e“w) >
i=1
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where we defined the error & by

Cfe k s k s s k
= LY 1001+ CBY 189497 m ) -
s=1 s=1

k
+ B 269.09) ¢ Bl + g TIEOL

Given 8, > 0, we may choose ¢ > 0 sufficiently small, k € N sufficiently large, and N > N, (k, ¢) € N sufficiently large such that

P(|€Ek|g§, sé)zz
Mg 4 8

N
%Z log cosh(hi(kﬂ)) — E log cosh(f./qZ + h)
iz1
and, by Lemma 4.2, also such that
1 2 s 7
]P’(N log B ZF (Ser) 2 %(1 —q) - Zz) > 5

Combining the above observations, we find that

for all N > max(N (¢, k), N2 (&, k),41og2/8,). This implies that

]P’(%logZN > RS(B,h) - 52) > —e

1
4

By Gaussian concentration of the free energy, i.e.,

P(‘%log 7N — %E log Zn

< 63) >1- e N
we may choose &) < 83/(28) to conclude for large enough N that
1
Eﬁ lOgZN > RS(ﬁ,h) -6 — 0.

Since 62,03 > 0 were arbitrary, this shows that the right-hand side of (1.6) is a lower bound to limy_ e E% log Zx, and by Remark (2), this
proves Theorem 1.1. O
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