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Abstract—Owing to the natural interpretation and vari-
ous desirable mathematical properties, centroidal Voronoi
tessellations (CVTs) have found a wide range of appli-
cations and correspondingly a vast development in their
literature. However, the computation of CVTs in higher
dimensional spaces remains difficult. In this letter, we
exploit the non-uniqueness of CVTs in higher dimensional
spaces for their computation. We construct such high
dimensional tessellations by decomposing into CVTs in
one-dimensional spaces. We then prove that such a tes-
sellation is centroidal under the condition of independence
among densities over the 1-D spaces. Various numerical
evaluations backup the theoretical result through the low
energy of the grid-like tessellations, and are obtained with
minimal computation time. We also compare the proposed
decomposition method with the popular MacQueen’s prob-
abilistic method.

Index Terms—Centroidal voronoi tessellations, computa-
tional methods, high-dimensional spaces.

I. INTRODUCTION

VORONOI diagram is a partition of a set into subsets
containing elements that are close to each other accord-

ing to a certain metric. Even though they date centuries,
Voronoi tessellations (VTs) have been immensely helpful in
various applications ranging from health to computer graphics
to natural sciences. The first documented application of VTs
appeared in [1] on the 1854 cholera epidemic in London in
which it is demonstrated that proximity to a particular well
was strongly correlated to deaths due to the disease [2]. In
more recent decades, VTs have almost become a common
basis tool for path planning algorithms by multi-robot systems
in the field of coverage control [3] to such an extent that the
VT-based coverage control has been generalized using optimal
transport-based control [4]. An adaptive coverage controller is
proposed in [5] where the leader in the leader-follower strategy
therein distributes the followers within its obstacle-free sensing
range, and the optimized distribution is obtained through CVT.

Manuscript received 21 March 2022; revised 26 May 2022; accepted
6 June 2022. Date of publication 21 June 2022; date of current ver-
sion 30 June 2022. This work was supported in part by the National
Science Foundation under Grant NSF-CMMI-2024111. Recommended
by Senior Editor M. Arcak. (Corresponding author: Bhagyashri Telsang.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of Tennessee, Knoxville, TN 37996 USA
(e-mail: btelsang@utk.edu; mdjouadi@utk.edu).

Digital Object Identifier 10.1109/LCSYS.2022.3185032

In their study on optimality of multi-robot coverage control,
the authors in [6] draw a relationship between CVT configu-
rations and the sufficient condition for optimality through the
spatial derivative of the density.

In line with the popularity of CVTs, remarkable amount of
contributions have been made to further their development.
Reference [7] refines the notion of Constrained CVTs and
derives various properties like their characterization as energy
minimizers. Focusing on 1-D Voronoi diagrams, [8] devel-
ops an optimal algorithm for computing collinear weighted
Voronoi diagrams that is conceptually simple and attractive
for practical implementations. Reference [9] studies the inverse
Voronoi problem in-depth.

Despite the wide applicability and vast development in the
literature pertaining to CVTs, there remain challenges and
open questions, especially in high dimensional spaces. For
dimensions greater than one, rigorously verifying that a given
CVT is a local minimum can prove difficult, for example [10]
uses variational techniques to give a full characterization of the
second variation of a CVT and provides sufficient conditions for
a CVT to be a local minimum. Moreover, in high dimensional
spaces, the number of CVTs under certain conditions and their
quality is elusive, and their computation remains difficult.

In this letter, we employ CVTs in 1-D spaces to construct a
tessellation in a higher dimensional space. Then we prove that
such a tessellation is a CVT in the higher dimensional space
under certain conditions. Such a construction is a simple and
yet a powerful technique that is guaranteed to render at least
one of the many non-unique CVTs in high dimensions in a fast
and efficient way with minimal computational requirements.

The desired number of centroids in the higher dimensional
space is a product of the number of centroids in the 1-D
spaces, and we consider dimensions in the orders of ten.
Accordingly, if the dimension is too large, one can limit
the number of centroids in 1-D spaces in order to keep the
total number of centroids meaningful. Doing so also has the
advantages of further reduction in computational time.

This letter is structured as follows. In Section II we formally
define CVTs, discuss their uniqueness properties, and existing
methods to compute them. In Section III we construct a tessel-
lation in a higher dimensional space and prove that it is also
a CVT. In Section IV we provide numerical results of CVTs
under different conditions, and compare with MacQueen’s
probabilistic method. Finally, we present some conclusions
and remark on future work in Section V.
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Fig. 1. CVT is not necessarily unique in R
2. Voronoi regions are shown

in different colors while their centroids are marked as black dots.

II. PRELIMINARIES

Consider a region � ⊂ R
n, n ≥ 1. Let N ∈ N, Vi ⊂

�, ∀i ∈ IN , and denote index set as IN = {1, 2, . . . , N}. Let
ρ(.) denote a measure of information or the probability density
over �.

1 Tessellation: {Vi}i∈IN is a tessellation of � if Vi ∩ Vj = ∅
for i 	= j, and ∪i∈IVi = �.

2 Voronoi region and generators: The Voronoi region Vzi of
the Voronoi generator zi is Vzi = {x ∈ � : ‖x − zi‖ <

‖x − zj‖, i 	= j and i, j ∈ IN}.
3 Voronoi tessellation: The set of Voronoi regions Vz =

{Vzi}i∈IN of {zi}i∈IN is called a VT: {z, Vz}.
The mass centroid of a region Vi ⊂ � under the probability

density function ρ(.) is defined as:

zc
Vi,ρ

=
∫

Vi
xρ(x)dx

∫
Vi

ρ(x)dx
(1)

A VT in which the generators are the mass centroids of
their respective Voronoi regions is called a Centroidal Voronoi
Tessellation (CVT), [11].

A. Uniqueness of CVT

Given a region � ⊂ R
n, a positive integer N, and a density

function ρ(x) on �, the minimizer of the following functional
is a CVT, [11]:

K((zi), i ∈ IN) =
∑

i∈IN

∫

x∈Vzi

ρ(x)‖x − zi‖2dx (2)

Also referred to as the energy of the tessellation, K is con-
tinuous, it possesses a global minimum, and may have local
minimizers, [11]. It is showed in [12] that the solution of (2)
is unique in 1-D regions with a logarithmically concave con-
tinuous probability density function of finite second moment.
As reiterated in [10], for n = 1, the logarithmic concavity
condition implies that any CVT is a local minimum, and fur-
ther, that there is a unique CVT that is both a local and
a global minimum of K(z), where z = {zi}i∈IN . While the
conditions for uniqueness of vector quantizers without any
assumptions on the region, density or the number of quantizers
N, remains an open area of research, it is proved in [10] that
for N = 2, there does not exist a unique CVT for any density
for n > 1.

For a graphic illustration on non-uniqueness of CVTs, con-
sider a rectangle in R

2 with six generator points under Uniform
distribution. As shown in Fig. 1, there are multiple CVTs: all
the four VTs shown are centroidal, and additional CVTs can
be obtained through rotations.

B. Computation of CVT in 1-D Regions

Given a region � ⊂ R, a number of generators N, and a
density function ρ(x) over �, there are various algorithms
to compute a CVT in �; the deterministic Lloyd’s algo-
rithm being the most popular. Introduced in [13] to find the
optimal quantization in pulse-code modulation, at the core of
it, Lloyd’s algorithm is an iteration between constructing VTs
and their centroids.

Another method to obtain a CVT in 1-D is through the
system of nonlinear equations (SNLE). The core idea is to
parameterize the Voronoi regions in terms of their centroids:
Vi = [ zi−1+zi

2 ,
zi+zi+1

2 ],∀i ∈ IN . The mass centroids from (1),
with zc

Vi,ρ
denoted as zc

i for ease of notation, can then be
written in terms of the parameterized regions:

zc
i =

∫ zc
i +zc

i+1
2

zc
i−1+zc

i
2

xρ(x)dx

∫ zc
i +zc

i+1
2

zc
i−1+zc

i
2

ρ(x)dx

(3)

Writing (3) for all the centroids results in N equations and N
number of unknowns: zc

i ’s. This is the SNLE, whose solution
is the set of centroids of the CVT. In 1-D regions, the cen-
troids are directly used to define the corresponding Voronoi
partitions.

While the deterministic Lloyd’s algorithm and analytical
SNLE obtain the CVT in a deterministic way, MacQueen’s
method developed in [14] takes a probabilistic approach.
However, the computation of CVT in higher dimensional
spaces still remains a challenge. Reference [15] considers par-
allel implementations of Lloyd’s, MacQueen’s and a method
developed therein, and presents the CVT results for regions
up to two dimensions while noting that the method can be
extended to higher dimensions. Although [16] results in faster
convergence to a CVT, it does not easily extend to higher
dimensions.

Most CVT computation methods provide the CVT centroids
but not the partitions or the tessellation energy. While in 1-D
spaces, it is straight-forward to obtain the complete tessel-
lations from the centroids, such extension is difficult, if not
impossible, for arbitrary dimensional spaces. The lack of com-
plete information about the tessellation and their qualities, for
example through their energies, limits the existing computa-
tional methods. In the next Section, we present a way to obtain
a higher dimensional CVT by decomposing it into a series of
CVTs in 1-D spaces.

III. COMPUTATION OF CVT IN HIGHER DIMENSIONS

In this Section, we first propose a simple method to obtain
a tessellation in any higher dimensional space from CVTs
in 1-D spaces. Then, we present the proof that a tessellation
constructed in such a way is also a CVT.

Consider a region � ⊂ R
n, n > 1, and � = �1×�2×. . .×

�n. Let ρ(.) be the probability density function over �, and
ρi(.) be the density function over �i,∀i ∈ In = {1, 2, . . . , n}.
That is, ρ(.) is the joint density, and {ρi(.)}i∈In are the marginal
densities.
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Let the number of generators in a CVT of �i under ρi(.)

be Ni, and let the number of generators in a CVT of � under
ρ(.) be N, where N = N1 × . . . × Nn. Denote a CVT in
�i as {z∗

i , Vz∗
i
}. Here, z∗

i = {z∗
i,j}j∈INi

is the set of all the
centroids of the CVT in �i, and Vz∗

i
= {Vz∗i,j}j∈INi

is the set
of their respective Voronoi regions. Similarly, denote a CVT
in � as {z∗, Vz∗}, where z∗ = {z∗

k}k∈IN denotes the centroids,
Vz∗ = {Vz∗k }k∈IN denotes their corresponding Voronoi regions.

The set of centroids in � can be given as a matrix z∗ =
[z∗

1 z∗
2 . . . z∗

N] ∈ R
n×N , where each matrix column {z∗

k}k∈IN ∈
R

n denotes a centroid in R
n. Similarly, the set of centroids in

�i is given as a vector z∗
i = [z∗

i,1 z∗
i,2 . . . z∗

i,Ni
] ∈ R

Ni , where
each element is a centroid in R. Additionally, note that Vz∗k ⊂
R

n while Vz∗i,j ⊂ R.
Let In×N denote the matrix containing all combinations of

vectors INi ,∀i ∈ In. That is, define the kth of the N columns of
In×N as {[j1 j2 . . . jn]Tsuch that ji ∈ INi , i ∈ In} For example,
if n = 2, N1 = 2, N2 = 3, then N = 2 × 3 = 6 and

In×N =
[

1 1 1 2 2 2
1 2 3 1 2 3

]

(4)

With all the notations defined, we now present a straightfor-
ward method of constructing a tessellation in � from CVTs
in �′

is.

Tessellation construction in �

For each dimension i ∈ In, construct a CVT in �i:
{z∗

i , Vz∗
i
}

Obtain the n coordinates of each centroid in � and its
Voronoi region as:

∀k ∈ IN :
∀i ∈ In:

z∗
k(i) = z∗

In×N(i,k)
Vz∗k = Vz∗In×N (i,k)

The set of all the centroids {z∗
k}k∈IN and their Voronoi

regions {Vz∗k }k∈IN make the tessellation in �: {z∗, Vz∗}

Having obtained the tessellation, we show in the following
theorem that {z∗, Vz∗} constructed from {z∗

i , Vz∗
i
}i∈In is a CVT

in �.
Theorem: Let � = �1×�2×. . .×�n ⊂ R

n, n > 1. Let ρ(.)

be the joint density function over �, and ρi(.) be the density
function over �i, ∀i ∈ In. If ρ(x1, . . . , xn) = ∏

i∈In
ρi(xi), then

∀i ∈ In, ∀k ∈ IN and ki = In×N(i, k), we have:

z∗
k = (z∗

1,k1
, z∗

2,k2
, . . . , z∗

n,kn
) (5)

Vz∗k = Vz∗1,k1
× Vz∗2,k2

× . . . × Vz∗n,kn
. (6)

Proof: Consider x ∈ Vz∗1,k1
× . . .×Vz∗n,kn

, ∀i ∈ In, and denote
x = (x1, . . . , xn). Because Vz∗i,ki

is the Voronoi region of z∗
i,ki

,
∀i ∈ In, we have for any ji ∈ INi :

‖xi − z∗
i,ki

‖2 ≤ ‖xi − z∗
i,ji‖2

=⇒ (xi − z∗
i,ki

)2 ≤ (xi − z∗
i,ji)

2 (7)

Summing (7) ∀i ∈ In,

(x1 − z∗
1,k1

)2 + . . . + (xn − z∗
n,kn

)2

≤ (x1 − z∗
1,j1)

2 + . . . + (xn − z∗
n,jn)

2

=⇒ √
((x1 − z∗

1,k1
)2 + . . . + (xn − z∗

n,kn
)2)

≤ √
((x1 − z∗

1,j1)
2 + . . . + (xn − z∗

n,jn)
2)

Let ẑ∗
k = (z∗

1,k1
, z∗

2,k2
, . . . , z∗

n,kn
), then:

‖x − ẑ∗
k‖2 ≤ ‖x − z∗

j ‖
=⇒ Vẑ∗k = Vz∗1,k1

× . . . × Vz∗n,kn
(8)

That is, Vz∗1,k1
× . . . × Vz∗n,k1

is the Voronoi region of ẑ∗
k .

Consider the ith coordinate of ẑ∗
k . Since z∗

i,ki
is the centroid

of Vz∗i,ki
, by definition of centroid, we have:

z∗
i,ki

=
∫

Vz∗i,ki

xiρ1(xi)dxi

∫
Vz∗i,ki

ρn(xi)dxi

=
∫

Vz∗1,k1

ρ1(x1)dx1

∫
Vz∗1,k1

ρ1(x1)dx1
× . . . ×

∫
Vz∗i,ki

xiρi(xi)dxi

∫
Vz∗i,ki

ρi(xi)dxi

× . . .

∫
Vz∗n,kn

ρn(xn)dxn

∫
Vz∗n,kn

ρn(xn)dxn
(9)

Because the events in �i are independent of those in �j,
∀i 	= j, i, j ∈ In, we have ρ(x1, . . . , xn) = ρ1(x1)×. . .×ρn(xn).
Substituting this relation in (9) implies:

z∗
i,ki

=
∫

Vz∗1,k1

. . .
∫

Vz∗n,kn

xiρ(x1, . . . , xn)dx1 . . . dxn

∫
Vz∗1,k1

. . .
∫

Vz∗n,k

ρ(x1, . . . , xn)dx1 . . . dxn

which, by (1), is the ith coordinate of the kth of the N cen-
troids – z∗

k – in � with density ρ(.). That is, z∗
k(i) = z∗

i,ki
.

Since this holds for all i ∈ In coordinates, we have z∗
k = ẑ∗

k =
(z∗

1,k1
, z∗

2,k2
, . . . , z∗

n,kn
), and hence proving (5). On the other

hand, since Vz∗1,k1
× . . . × Vz∗n,k1

is the Voronoi region of ẑ∗
k

from (8), and z∗
k = ẑ∗

k , we have Vz∗1,k1
× . . . × Vz∗n,k1

is the
Voronoi region of z∗

k , hence proving (5). Since this holds for
all N centroids in �, we have that Vz∗ = {Vz∗k }k∈IN is the
Voronoi partition of z∗ = {z∗

k}k∈IN .
Having shown that Vz∗1,k1

× . . .×Vz∗n,k1
is the Voronoi region

of ẑ∗
k and that ẑ∗

k is its centroid, we now show that {Vz∗k }k∈IN is
a tessellation in �. Because Vz∗

i
is a tessellation in �i, ∀i ∈ In,

we have:
⋃

k∈IN

∏

i∈In

Vz∗i,ki
=

∏

i∈In

⋃

ji∈INi

Vz∗i,ji
=

∏

i∈In

�i = �

∀ k 	= l, Vz∗k

⋂
Vz∗l =

∏

i∈In

Vz∗i,ki

⋂ ∏

i∈In

Vz∗i,li

=
∏

i∈In

(Vz∗i,ki
∩ Vz∗i,li

) = ∅

Hence, {Vz∗k }k∈IN is a tessellation in �.
Since z∗ are the centroids of partitions Vz∗ , Vz∗ = {Vz∗k }k∈IN

are the Voronoi regions of z∗, and {Vz∗k }k∈IN is a tessel-
lation in �, we have that {z∗, Vz∗} is a CVT in � with
density ρ(.).

Consider � = [0, 20] × [0, 10] in R
2 with density ρ(.) ∼

N (μ,�), where μ = (12, 7) and � = [4 0; 0 1]. Denote the
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Fig. 2. CVT in � with density N (μ, �) where μ = [12; 7] and � =
[4 0; 0 1].

CVT as {z∗, Vz∗}, where z∗ = (z∗
1, . . . , z∗

6), and z∗
k ∈ R

2,∀k ∈
I6 = {1, . . . , 6}.

On the other hand, let N1 = 3 and N2 = 2. Consider the
unique CVT in �1 = [0, 20] for ρ1(.) ∼ N (12, 4), which
is denoted {z∗

1, Vz∗
1
}. Note z∗

1 = (z∗
1,1, z∗

1,2, z∗
1,3), and z∗

1,j ∈
R,∀j ∈ I3. Similarly, consider the unique CVT in �2 = [0, 10]
for ρ1(.) ∼ N (7, 1), which is denoted {z∗

2, Vz∗
2
}. Note z∗

2 =
(z∗

2,1, z∗
1,2), and z∗

1,j ∈ R,∀j ∈ I2. These generators are shown
in Fig. 2: the region �1 and the CVT generators in it are
showed in pink, and the region �2 and the CVT generators in
it are showed in blue.

Suppose Ni = N and Nj = 1, ∀j 	= i for some i, j ∈ In,
n > 1. This corresponds to the case where all the centroids
in R

n are “aligned” along the ith dimension, that is, the cen-
troids only differ in their ith coordinate. In such a case, the
decomposition of obtaining the CVT in R

n into n CVTs in R

is equivalent to obtaining a CVT in R with all other dimen-
sions held constant. While the proposed method of obtaining
a CVT in higher dimensions by employing a combination of
CVTs in R does not result in every possible CVT of the higher
dimension under the given conditions, we are guaranteed to
obtain at least one of them in a straightforward manner with
minimal computation.

IV. NUMERICAL RESULTS

In this Section, we present a set of numerical results to demon-
strate the ease of extension in higher dimensions through the
time required to compute the CVT and it’s energy. Additionally,
for 2 and 3 dimensional spaces we also present the tessellations
graphically. To obtain the CVTs in 1-D spaces, one can employ
Lloyd’s algorithm or solve the system of nonlinear equations;
the latter being more desirable when N′

i s are low.
We compare the proposed decomposition method to obtain

a CVT in higher dimensional space with a popular probabilis-
tic method – MacQueen’s which was introduced in [14]. The
elegant MacQueen’s algorithm requires Monte Carlo sampling
for initialization and randomization in every iteration to com-
pute the centroids in a given space under certain density. Its
performance vastly depends on the Monte Carlo samples, and
accordingly on the method employed to generate such samples.
The authors in [15] compare their proposed method to obtain
a CVT with MacQueen’s method for 1-D spaces and employ
rejection sampling to obtain Monte Carlo samples. However,
the rejection method does not readily scale to higher dimen-
sions; its high rejection rate makes it extremely inefficient to
generate Monte Carlo samples according to a desired distri-
bution in a higher dimensional space [17]. Since our focus

Fig. 3. CVT of 256 centroids under ρ1(x1) = ρ2(x2) = e−10x2
.

is CVT in high-dimensional spaces, we employ Metropolis-
Hasting algorithm [17] to obtain the Monte Carlo samples for
MacQueen’s method. The termination criteria we employ for
implementation of MacQueen’s is the change in the norm of
the centroids over each update; if the norm changes less than
10−6 we terminate the MacQueen’s iterations.

Additionally, [15] compares their results with those from
MacQueen’s through the CVT energy for 1-D spaces and
graphically for two-dimensional spaces. While obtaining the
Voronoi partitions is very straight-forward in 1-D spaces, its
computation in higher dimensions is difficult. The requirement
of the knowledge of Voronoi cell boundary of each centroid
along with the computation of the cell energy, which involves
the computation of “area” of arbitrary high-dimensional poly-
gons, makes the computation of the tessellation energy in high
dimensional spaces very difficult. Therefore, following [15] we
compare our results with those from MacQueen’s visually in
two and three dimensions, and through computation time in
higher dimensional spaces.

Consider � = [−1, 1] × [−1, 1]. Following the cases taken
up in [15], we let the density function over � be e−10x2

. The
CVT with 16 centroids in each dimension, obtained using the
proposed decomposition method and the MacQueen’s method
are shown in Fig. 3. As designed and expected, the tessellation
from the decomposition has a well drawn out grid-like struc-
ture with the intensity of centroids being higher in the center
of �. The resulting tessellation is a CVT with (low) energy
of 2.9 × 10−4 and was obtained in computational time as less
as 13.18 minutes in an ordinary laptop – MacBook Air 2015
with 2.2 GHz Dual-Core Intel Core i7.

Next case of demonstration is in the region � = [0, 20] ×
[0, 20] with density N (μ,�), where μ = (5, 6.5) and � =
[2 0; 0 1]. The resulting CVTs with 3000 centroids, obtained
using the proposed method and the MacQueen’s method are
shown in Fig. 4.

Moving to 3 dimensional spaces, we consider � = [0, 10]×
[0, 10] × [0, 10] with density N (μ,�), where μ = (6, 5, 3.5)

and � = [2 0 0; 0 1 0; 0 0 1]. The resulting well-aligned grid-
like CVT with 16 centroids in each dimension, with energy
0.1616, is shown in Fig. 5. In contrast to the aligned CVT,
the solution tessellation from MacQueen’s under the same
conditions is also shown in Fig. 5.

The convergence of the MacQueen’s iterates to a CVT is
not guaranteed for all conditions, and due to it’s probabilistic
nature, it’s performance vastly depends on the Monte Carlo
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Fig. 4. CVT of 3000 centroids with Gaussian density.

Fig. 5. Scalability and generalizability to any density: CVT of 4096
centroids under Gaussian density.

samples. Since we employ the deterministic Lloyd’s method
to compute the CVTs in one dimensional spaces for which
convergence is proven, the proposed algorithm converges to
a CVT without the performance being vastly tied to the ini-
tial samples. Moreover, our proposed decomposition method
also provides deep insight into the tessellation (and hence the
application in hand that requires the CVT) by allowing eval-
uation of the quality of all the solutions (CVTs) through their
energies. This is because we decompose our high dimensional
spaces into a series of 1-D spaces for which the Voronoi par-
titions, and hence the tessellation energy, are readily obtained.
However, since Lloyd’s computes the mass centroids at each
iteration while in MacQueen’s the only characterization of

TABLE I
PROPOSED METHOD FOR �i = [−1, 1], ∀i ∈ In UNDER e−10x2

. NOTE
THE ABSENCE OF CVT ENERGY FROM MACQUEEN’S

the density function is through the Monte Carlo samples, our
results have higher computation time than MacQueen’s. We
must note here that while we employ Lloyd’s to obtain CVTs
in 1-D spaces, one could employ MacQueen’s or other CVT
computation methods for the decomposed CVT in 1-D.

One of the areas where higher dimensional CVTs
have found an application is in the field of evolution-
ary optimization. Recently introduced, MAP-elites [18]
is an algorithm that illuminates search spaces in evo-
lutionary optimization, allowing researchers to understand
how interesting attributes of solutions combine to affect
performance. To scale up the MAP-elites algorithm, authors
in [19] employ CVTs, and therein, following [15], they employ
MacQueen’s method to obtain the CVTs and show the suffi-
ciency of using 5000 centroids. In line with their result, we
keep the total number of centroids in our results of high-
dimensional CVTs, around the same. Similar to illuminating
search spaces using MAP-elites, CVTs have been useful in
the field of fluid dynamics and control through their role
in finite-element analysis for discretization in space dimen-
sions [20]. While the authors in [20] use CVT-based clustering
for reduced-order modeling under uniform density, one could
employ CVTs to model the underlying space according to
candidate density functions. Specifically in such space dis-
cretization applications, the proposed method allows us a clear
insight into the underlying solution (or search) space by eval-
uating all possible grid-like CVTs under any density function.
For example, by varying the number of centroids per dimen-
sion we can obtain a number of different tessellations, and
although this would not be exhaustive and there will still be
more (non grid-like) CVTs under the same conditions, we can
get a better idea about the solutions at different points in the
underlying space through the energies of all the grid-like CVTs
obtained from the proposed method.

In our last block of presentation of numerical results, we
consider dimensions higher than 3 and vary Ni,∀i ∈ In such
that N = ∏

i Ni is around 5000. The corresponding results
are given in Table I where we see that the computation time
decreases with the increase in dimension n. This is because
with increasing n, we decrease Ni to keep N around 5000.
Hence, the computation of CVT in 1-D spaces with fewer
centroids is faster. The low energy of all the tessellations is
also worth noting. On the other hand, the computation time
required to compute the centroids using MacQueen’s method
are lower but the solutions are opaque since it is difficult to
evaluate their quality through their tessellation energy.

While the proposed method allows us to obtain a number of
CVTs and their energies in a straight-forward fashion, it suffers
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from the curse of dimensionality. Considering 32 dimen-
sions and 2 centroids per dimension, the problem requirement
scales to a total of 232 centroids. While the maximum array
size allocated varies by the program and the software, such
exponential growth in the number of centroids practically lim-
its the proposed method to under 30 dimensions. However,
the applications where the proposed decomposition method
would be most beneficial do not require dimensions in hun-
dreds. For example, the number of features in MAP-elites
are typically less than 10; in [21] the authors consider a
four-dimensional problem. Exploration of the solution space
using finite element analysis is in space dimensions. In such
applications the proposed method provides insightful tessella-
tions at various markers in the solution space even for finer
discretizations.

V. CONCLUSION

In order to fully rank the quality of all the CVTs under a
certain higher dimensional space (read fixed region, number
of centroids, and density), the knowledge of all the CVTs and
their tessellation energy is required. However, the problem in
such a comparison is the difficulty in obtaining CVTs in higher
dimension spaces. Nevertheless, the tessellations constructed
from CVTs in 1-D spaces, that appear to be well drawn out
grid-like structures, are proved to be one of the many CVTs
in such spaces of dimensions greater than 1. Hence, we are
guaranteed to obtain at least one of the many non-unique CVTs
in the higher dimensional space.

Additionally, as seen in the numerical results, the tes-
sellation energy of such CVTs is quantifiably low and
are obtained with minimal computational requirement. The
proposed decomposition method does not make specific
assumptions on the density function, it is scalable to a large
number of centroids, and is flexible in terms of dimen-
sions and discretization over each dimension. Owing to the
same decomposition that makes it straight-forward to compute
Voronoi cells in one-dimension and accordingly the tessella-
tion energy, the proposed method also allows for insight into
the system through the analysis of the quality of solutions
using the tessellations’ energies.

However, the (only) key assumption in the construction of
CVTs in higher dimensional spaces from CVTs in 1-D spaces
is the independence of the densities of the latter spaces. This
limits the applicability of the developed idea in areas where
CVTs are constrained to a surface, say computing CVT on a
sphere, and will be a point of investigation for our future work.
[Source code]
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