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Abstract. An analogue of the Riesz-Sobolev convolution inequality is formulated and
proved for arbitrary compact connected Abelian groups. Maximizers are characterized,
and a quantitative stability theorem is proved, under natural hypotheses. A corresponding
stability theorem for sets whose sumset has nearly minimal measure is also proved, sharp-
ening recent results of other authors. For the special case of the group R/Z, a continuous
deformation of sets is developed, under which a scaled Riesz-Sobolev functional is shown
to be nondecreasing.
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1. Introduction

Let G be a compact connected Abelian topological group, equipped with Haar measure
µ. Throughout this paper, the measure µ is assumed to be complete. We say that µ is
normalized to mean that µ(G) = 1. By a measurable subset of G we will always mean a
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µ–measurable subset. µ∗ denotes the associated inner measure. Let T = R/Z, equipped
with Lebesgue measure m, with m(T) = 1.

1.1. Riesz-Sobolev-type inequality. The Riesz-Sobolev inequality for Rd states that for
any three Lebesgue measurable subsets A,B,C ⊂ Rd,

(1.1)

∫
C

1A ∗ 1B ≤
∫
C?

1A? ∗ 1B? .

Here, the symmetrizations A?, B?, C? are the closed balls centered at 0 ∈ Rd whose Lebesgue
measures are equal to the Lebesgue measures of A,B,C, respectively. Integration is with
respect to Lebesgue measure. 1A denotes the indicator function of A. See for instance [22].

Our first result is one of several formulations of a Riesz-Sobolev–type inequality for
G. Convolution on G is defined by f ∗ g(x) =

∫
G f(x − y)g(y) dµ(y). Assuming µ to be

normalized, to any measurable set A ⊂ G we associate the set A? ⊂ T, which is defined to
be the closed interval centered at 0 satisfying m(A?) = µ(A). In contrast to the Euclidean
case, A? is a subset of T, rather than of G.

Theorem 1.1. Let G be a compact connected Abelian topological group, equipped with
normalized Haar measure. For any measurable subsets A,B,C ⊂ G,

(1.2)

∫
C

1A ∗ 1B dµ ≤
∫
C?

1A? ∗ 1B? dm.

As is the case for Rd, the inequality for indicator functions implies the generalization

(1.3) 〈f ∗ g, h〉G ≤ 〈f? ∗ g?, h?〉T
for arbitrary nonnegative measurable functions defined on G, with the pairing 〈ϕ,ψ〉G =∫
G ϕψ dµ of real-valued functions, and with the natural extension of the definition of sym-

metrization f? from indicator functions to general nonnegative functions. Thus if T is
identified with (−1

2 ,
1
2) up to a null set by identifying each equivalence class in R/Z with

its unique representative in this domain, then f? is even, is nonincreasing on [0, 1
2 ], and is

equimeasurable with f . Theorem 1.5 further extends (1.3).
For G = T, Theorem 1.1 was proved by Baernstein [3],[4], and was stated by Luttinger

[23]. For general compact connected Abelian groups, inequality (1.2) is closely related to
an inequality of Tao [25], of which an equivalent formulation is

(1.4)

∫
G

max(1A ∗ 1B − τ, 0) dµ ≤
∫
T

max(1A? ∗ 1B? − τ, 0) dm

for every parameter τ ∈ [0, min(µ(A), µ(B))]. This inequality is the basis for our proof of
(1.2), and is discussed in §3.

1.2. Characterization of maximizers. The primary subject of this paper is the inverse
problem of quantitatively characterizing triples (A,B,C) that maximize, or nearly max-
imize, the functional

∫
C 1A ∗ 1B dµ among all sets of specified Haar measures. Roughly

speaking, we show that such A,B,C are rank one Bohr sets (or are well approximated by
such). We describe all maximizers in Theorem 1.2 below, after defining the notions relevant
to its statement. Near-maximizers are studied in the next subsection.

Definition 1.1. Two measurable sets A,A′ ⊂ G are equivalent if µ(A∆A′) = 0. Likewise,
two ordered triples E = (E1, E2, E3) and E′ = (E′1, E

′
2, E

′
3) are equivalent if Ej is equivalent

to E′j for each j ∈ {1, 2, 3}.
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Definition 1.2. For x ∈ T = R/Z, ‖x‖T = |y| where y ∈ [−1
2 ,

1
2 ] is congruent to x modulo

1.

Definition 1.3. A rank one Bohr set B ⊂ G is a set of the form

(1.5) B = B(φ, ρ, c) = {x ∈ G : ‖φ(x)− c‖T ≤ ρ},

where φ : G→ T is a continuous homomorphism, c ∈ T, and ρ ∈ [0, 1
2 ].

By a homomorphism φ : G→ T, we will always mean a continuous homomorphism.

Definition 1.4. Two rank one Bohr subsets B1,B2 of G are parallel if they can be rep-
resented as Bj = B(φj , cj , ρj) with φ1 = φ2. An ordered triple (B1,B2,B3) of rank one
Bohr subsets of G is parallel if these three sets are pairwise parallel. An ordered triple
(B1,B2,B3) of Bohr sets Bj = B(φj , cj , ρj) is compatibly centered if c3 = c1 + c2.

Burchard [6] characterized cases of equality in the Riesz-Sobolev inequality for Euclidean
space of arbitrary dimension. As was discussed in [6], if µ(C) > µ(A) + µ(B) then no
characterization of cases of equality is possible for the Riesz-Sobolev inequality (1.1), beyond
the necessary and sufficient condition that 1A ∗ 1B should vanish µ–almost everywhere on
the complement of C. This motivates the following definition.

Definition 1.5. Let (E1, E2, E3) be an ordered triple of measurable subsets of G. (E1, E2, E3)
is admissible if 0 < µ(Ei) < 1 for each i ∈ {1, 2, 3}, µ(E1) + µ(E2) + µ(E3) < 2, and
µ(Ek) ≤ µ(Ei) + µ(Ej) for each permutation (i, j, k) of (1, 2, 3).

Admissibility of a triple of sets is a property only of the associated triple of measures, so
we will often write instead that (µ(E1), µ(E2), µ(E3)) is admissible.

The condition that µ(Ek) ≤ µ(Ei) + µ(Ej) for every permutation (i, j, k) of (1, 2, 3) can
be equivalently formulated as the condition

(1.6) |µ(Ei)− µ(Ej)| ≤ µ(Ek) ≤ µ(Ei) + µ(Ej)

for any single permutation.

Theorem 1.2 (Uniqueness of maximizers up to symmetries). Let G be a compact connected
Abelian topological group equipped with Haar measure µ satisfying µ(G) = 1. Let (A,B,C)
be an admissible triple of measurable subsets of G. Then

∫
C 1A ∗ 1B dµ =

∫
C∗ 1A? ∗ 1B? dm

if and only if (A,B,C) is equivalent to a compatibly centered parallel ordered triple of rank
one Bohr sets.

A stronger result is formulated below in Theorem 1.3.

1.3. Stability in the Riesz-Sobolev inequality for G. Near-maximizers for the Riesz-
Sobolev inequality will be studied for triples of sets that satisfy a strict admissibility con-
dition.

Definition 1.6. Let (E1, E2, E3) be an ordered triple of measurable subsets of G. (E1, E2, E3)
is strictly admissible if it is admissible and µ(Ek) < µ(Ei) + µ(Ej) for every permutation
(i, j, k) of (1, 2, 3).

For any η > 0, (E1, E2, E3) is η–strictly admissible if it is admissible and

(1.7) µ(Ek) ≤ µ(Ei) + µ(Ej)− ηmax(µ(E1), µ(E2), µ(E3))

for every permutation (i, j, k) of (1, 2, 3).
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Strict and η-strict admissibility are each equivalent to conditions analogous to (1.6).
Simple consequences of η–strict admissibility are

µ(Ei) ≥ |µ(Ej)− µ(Ek)|+ ηmax(µ(E1), µ(E2), µ(E3)),(1.8)

µ(Ei) ≥ ηµ(Ej)(1.9)

for every permutation (i, j, k) of (1, 2, 3).

Definition 1.7. The ordered triple (A,B,C) of measurable subsets of G is η–bounded if
it satisfies

µ(A) + µ(B) + µ(C) ≤ (2− η)µ(G),(1.10)

min(µ(A), µ(B), µ(C)) ≥ ηµ(G).(1.11)

If (A,B,C) is η–strictly admissible and satisfies (1.10) then

max(µ(A), µ(B), µ(C)) ≤ 2−η
2+η ≤ 1− η

2 .

Indeed, suppose that µ(C) is largest. Since µ(A) + µ(B) ≥ (1 + η)µ(C), (2 + η)µ(C) ≤
µ(A) + µ(B) + µ(C) ≤ 2− η. �

For every strictly admissible triple (A,B,C), there exists η > 0 for which (A,B,C) is
η-strictly admissible and η-bounded. Therefore, the stability Theorem 1.3 below is a state-
ment regarding every strictly admissible triple, quantitatively involving the corresponding
η.

Theorem 1.3 (Stability). For each η > 0 there exist δ0 > 0 and C <∞ with the following
property. Let G be a compact connected Abelian topological group equipped with Haar mea-
sure µ satisfying µ(G) = 1. Let (A,B,C) be an η–strictly admissible and η-bounded ordered
triple of measurable subsets of G. Let 0 ≤ δ ≤ δ0. If

∫
C 1A ∗ 1B dµ ≥

∫
C? 1A? ∗ 1B? dm− δ

then there exists a compatibly centered parallel ordered triple (BA,BB,BC) of rank one Bohr
sets satisfying

(1.12) µ(A∆BA) ≤ Cδ1/2

and likewise for µ(B∆BB) and µ(C ∆BC).

One part of the definition of η–boundedness is a lower bound (1.11) for the Haar measures
of A,B,C. For the special case G = T = R/Z, Theorem 17.1 establishes a stronger variant
of Theorem 1.3 that is appropriately uniform without any such lower bound hypothesis.

1.4. Sumset inequalities. The Riesz-Sobolev-type inequality (1.2) and the closely related
inequality (1.4) are intimately connected with inequalities for sumsets. In fact, our proofs
of both Theorems 1.2 and 1.3 rely on inverse theory for a sumset inequality.

More precisely, continue to assume that G is compact, connected, and Abelian. Kneser’s
inequality [21] states that for all measurable subsets A,B ⊂ G, the inner measure of the
sumset A+B satisfies

(1.13) µ∗(A+B) ≥ min(µ(A) + µ(B), µ(G)).

A mildly stronger formulation is1

(1.14) µ(A+0 B) ≥ min(µ(A) + µ(B), µ(G))

1(1.14) follows from (1.13) for G = Td by a simple argument involving points of density, since A+ B =
A +0 B if every point of each of A,B is a point of density. For general groups G, (1.14) follows from the
special case of Td by approximating by elements of the algebra generated by Bohr sets. Alternatively, a
stronger form of (1.14) is proved in [25].
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where A+0 B is the open set

A+0 B := {x : 1A ∗ 1B(x) > 0}.

Indeed, µ∗(A + B) ≥ µ∗(A +0 B) = µ(A +0 B). The Riesz-Sobolev-type inequality (1.2)
directly implies the sumset inequality (1.14) by choosing C = A+0 B.

Kneser [21] characterized cases of equality in (1.13). If A,B ⊂ G are measurable sets
that satisfy µ(A) +µ(B) < µ(G) and min(µ(A), µ(B)) > 0, then µ∗(A+B) = µ(A) +µ(B)
if and only if there exists a pair of parallel rank one Bohr sets satisfying A ⊂ BA, B ⊂ BB,
and µ(BA \ A) = µ(BB \ B) = 0. For compact Abelian groups that are not necessarily
connected, matters are more complicated; see for instance [19].

The hypothesis in the inverse Theorem 1.2 for the Riesz-Sobolev inequality is significantly
weaker than that of Kneser’s inverse theorem in one sense. While it is given in the latter
theorem that a + b lies in a set of specified inner measure for all pairs (a, b) ∈ A × B, in
the former theorem this is given only for a set of pairs whose product measure is at least a
specified fraction of the measure of A×B. Moreover, this set of pairs is not specified. The
primary focus of this paper is this type of variant.

Tao [25] and Griesmer [20] have proved associated stability, or quantitative uniqueness,
theorems. Most relevant to our considerations is this result from [20]: For every ε, η > 0
there exists δ > 0 such that if A,B ⊂ G are measurable sets satisfying the auxiliary
hypotheses µ(A) ≥ ηµ(G), µ(B) ≥ ηµ(G), µ(A) + µ(B) ≤ (1 − η)µ(G) and the main
hypothesis µ∗(A+B) ≤ µ(A) + µ(B) + δµ(G), then there exists a pair of parallel rank one
Bohr sets (BA,BB) satisfying A ⊂ BA, B ⊂ BB, and

µ(BA \A) + µ(BB \B) < εµ(G).

Our proofs of uniqueness and stability theorems for the Riesz-Sobolev inequality (1.2) on
G rely directly on this stability theorem for sumsets; our methods do not provide any new
insight into its proof.

Although it is not necessary for our analysis of the Riesz-Sobolev inequality, we prove
the following more quantitative stability theorem for sumsets, as it may be of independent
interest.

Theorem 1.4. For each η, η′ > 0 there exist δ0 > 0 and C <∞ with the following property.
Let G be any compact connected Abelian topological group equipped with normalized Haar
measure µ. Let A,B ⊂ G be a pair of measurable sets satisfying min(µ(A), µ(B)) ≥ η′ and
µ(A) + µ(B) ≤ 1 − η. If µ(A +0 B) ≤ µ(A) + µ(B) + δmin(µ(A), µ(B)) and δ ≤ δ0, then
there exists a pair of parallel rank one Bohr sets (BA,BB) such that A ⊂ BA, B ⊂ BB, and

(1.15) µ(BA \A) + µ(BB \B) ≤ Cδmin(µ(A), µ(B)).

This differs from statements in earlier results of this type for general compact Abelian
groups in that the right-hand side of (1.15) is proportional to δ, rather than being oδ(1).
For G = T, Candela and de Roton [9] have proved a theorem of this type in which the
relationship between m(BA \ A) and m∗(A + B) − m(A) − m(B) is made quite precise,
for an interesting range of parameters. We believe that their theorem extends to arbitrary
compact connected Abelian groups, with the same type of relationship between parameters
as in [9].

1.5. Relaxation. The next two theorems generalize Theorems 1.1 and 1.3 from indicator
functions of sets to functions taking values in [0, 1]. Theorem 1.5 is used in the proof of
Theorem 1.3.



6 MICHAEL CHRIST AND MARINA ILIOPOULOU

Theorem 1.5. Let G be a compact connected Abelian topological group equipped with Haar
measure µ satisfying µ(G) = 1. For any measurable functions f, g, h : G→ [0, 1],

(1.16) 〈f ∗ g, h〉G ≤ 〈1A? ∗ 1B? ,1C?〉T

where A?, B?, C? ⊂ T are intervals centered at 0 satisfying(
m(A?),m(B?),m(C?)

)
=
(∫
G f dµ,

∫
G g dµ,

∫
G h dµ

)
.

Inequality (1.16) is known for Rd. See for instance [14] for an application of such a relaxed
symmetrization inequality and associated inverse inequality in the Euclidean context.

Theorem 1.6. For each η > 0 there exists C < ∞ with the following property. Let G
be a compact connected Abelian topological group equipped with Haar measure µ satisfying
µ(G) = 1. Let f, g, h : G→ [0, 1] be measurable. Let (A?, B?, C?) ⊂ T be intervals centered
at 0 with Lebesgue measures (

∫
f dµ,

∫
g dµ,

∫
h dµ). Let

(1.17) D = 〈1A? ∗ 1B? ,1C?〉T − 〈f ∗ g, h〉G.

Suppose that (A?, B?, C?) is η–strictly admissible and η–bounded. If D is sufficiently small
as a function of η alone then there exists a compatibly centered parallel triple (Bf ,Bg,Bh)
of rank one Bohr subsets of G satisfying

(1.18) ‖f − 1Bf ‖L1(G,µ) ≤ CD1/2

and likewise for (g,1Bg) and (h,1Bh).

All results in this paper are concerned with Abelian groups. Significant progress concern-
ing sumset inequalities for nonabelian groups, and concerning associated inverse theorems,
has been made by Jing and Tran [16] and by Jing, Tran, and Zhang [15].

1.6. Organization of the paper. In §2 we state an alternative formulation of our Riesz-
Sobolev inequality within the admissible regime.

In §3 we review an inequality of Tao [25], stating several equivalent reformulations and
establishing a refinement. This refinement is used in §4 to prove the Riesz-Sobolev–type
inequality of Theorem 1.1. The defect D(A,B,C) = 〈1A? ∗ 1B? ,1C?〉 − 〈1A ∗ 1B,1C〉, and
a related defect D′(A,B, τ), in terms of which much of our analysis is naturally phrased,
are introduced in §4.

In §5 we discuss two key principles, submodularity and complementation. At the heart
of our analysis of stability for the Riesz-Sobolev-type inequality (1.2) is a connection, de-
veloped in [11] for G = R, between (near) equality in the Riesz-Sobolev equality and (near)
equality in the sumset inequality for certain associated sets. This connection only applies
directly in the case in which two of the three sets A,B,C have equal measures. §6 reviews
this connection and adapts it to general connected compact Abelian groups. §7 begins a
reduction of the general case to the special case of two sets of equal measures. This reduc-
tion proceeds in a different way than the corresponding reduction in [11] for the Euclidean
case.

§9 establishes the conclusion of Theorem 1.3 in its quantitative form, for the perturbative
regime in which (A,B,C) is assumed to be within a certain threshold distance of a compat-
ibly centered parallel triple of rank one Bohr sets. §10 digresses to establish Theorem 1.4,
concerning quantitative stability for Kneser’s inequality. The main step in its proof deals
with the perturbative regime, in which A,B are assumed to be moderately close to a pair of
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parallel rank one Bohr sets, and the relationship between smallness of the defect and close-
ness to such a Bohr pair is made more precise, without hypotheses of strict admissibility
and without any lower bounds on the measures of A,B.

Theorem 1.5 and Theorem 1.6, concerning relaxed variants of the Riesz-Sobolev-type in-
equality and its companion inverse stability theorem, are proved in §8 and §15, respectively.

§11 and §12 analyze the special case in which the defect D(A,B,C) is small and one
of the three sets is well approximated by a rank one Bohr set. §11 treats the sub-subcase
in which G = T and C is an interval. In §12, we reduce matters from general groups G
to T. The situation that arises on T in this way belongs to the more general framework
of Theorems 1.5 and 1.6. That framework comes into play at this juncture. The proof of
Theorem 1.3 is completed in §13.

In §14 we use Theorem 1.3 to prove Theorem 1.2.
Another thread is taken up in §16 and §17, which are concerned with the important

group G = T. This thread is founded on the monotonicity of a normalized version of
the functional

∫
C 1A ∗ 1B dm under a certain continuous deformation of A,B,C. This

deformation is developed in §16. As an application, in §17 we establish Theorem 17.1,
a refinement for G = T of Theorem 1.3 which in an appropriate sense eliminates the
dependence of the conclusion on a lower bound for min(µ(A), µ(B), µ(C)).

One could alternatively bypass the analysis in §11 of the situation in which G = T and
C is an interval, by invoking the theory for T established in §17.

1.7. Notation. For the sake of economy, we will often refer to (1.2) as the Riesz-Sobolev
inequality, or the Riesz-Sobolev inequality for G. Throughout the remainder of the paper,
G denotes a compact connected Abelian topological group equipped with a complete Haar
measure µ that is normalized in the sense that µ(G) = 1. This is a hypothesis of all lemmas
and propositions, though it is not included in their statements. It is implicitly asserted that
all constants in upper and lower bounds in theorems, propositions, lemmas, and inequalities
are independent of G, except when the special case G = T is explicitly indicated.
m denotes Lebesgue measure for T = R/Z. m(E) is alternatively denoted by |E| in some

parts of the discussion. C with no subscript is used to denote a subset of G, rather than a
constant. c, c′, and C denote unspecified positive finite constants, whose values may change
freely from one occurrence to the next.

It will be convenient in the analysis of the functional 〈1E1 ∗1E2 ,1E3〉 to be able to freely
interchange the sets Ej . For that purpose, we work with a more symmetric variant. For
measurable functions fj : G→ [0,∞),

(1.19) TG(f1, f2, f3) =

∫∫
x+y+z=0

f1(x)f2(y)f3(z) dλ(x, y, z)

where λ is the measure on {(x, y, z) ∈ G3 : x + y + z = 0} defined by pulling back the
measure µ×µ on G×G via the mapping (x, y, z) 7→ (x, y). This definition of λ is invariant
with respect to permutation of the three coordinates. Equivalently,

TG(f) = TG(f1, f2, f3) =

∫∫
G2

f1(x)f2(y)f3(−x− y) dµ(x) dµ(y).

For a three-tuple E = (Ej : j ∈ {1, 2, 3}) of sets, we write TG(E) = TG(f) with fj = 1Ej .
We sometimes work simultaneously on a general group G and on T, and write TG and/or

TT to distinguish between the functionals associated to the two groups. Defining

D(A,B,C) := TT(A?, B?, C?)− TG(A,B,C),
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one has D(A,B,C) = D(A,B,−C).

The authors are grateful to Rupert Frank, who kindly called their attention to a slip in
the proof of Theorem 1.6 in a preliminary draft.

2. Alternative formulation of (1.2)

In the parameter range of primary interest, (1.2) can be restated with an alternative
expression for the right-hand side. This expression will become relevant to our analysis in
Lemma 4.1.

Theorem 2.1. For any compact connected Abelian topological group G and any measurable
subsets A,B,C ⊂ G satisfying

(2.1)

{
|µ(A)− µ(B)| ≤ µ(C) ≤ µ(A) + µ(B),

µ(A) + µ(B) + µ(C) ≤ 2,

one has

(2.2)

∫
C

1A ∗ 1B dµ ≤ 1
2(ab+ bc+ ca)− 1

4(a2 + b2 + c2) = ab− 1
4(a+ b− c)2

where (a, b, c) = (µ(A), µ(B), µ(C)).

The conclusion (2.2) can also be stated

(2.3)

∫
C

1A ∗ 1B dµ ≤ µ(A)µ(B)− 1
4(µ(A) + µ(B)− µ(C))2

where τ is defined by µ(C) = µ(A) + µ(B)− 2τ .
Both hypotheses (2.1) are invariant under permutations of (A,B,C). Likewise, the

modified form
∫
−C 1A ∗ 1B dµ, where −C = {−x : x ∈ C}, is invariant under permutations

of (A,B,C).
Equality holds in (2.2), under the indicated hypotheses on (µ(A), µ(B), µ(C)), when

G = T and (A,B,C) = (A?, B?, C?). Thus (2.2) is a direct restatement of (1.2) in this
parameter regime.

If the hypothesis (2.1) is violated, then (1.2) is easily verified directly, using the trivial
upper bound

(2.4)

∫
C

1A ∗ 1B dµ ≤ min(µ(A)µ(B), µ(B)µ(C), µ(C)µ(A))

which follows from
∫
C 1A ∗1B dµ ≤

∫
G 1A ∗1B dµ = µ(A)µ(B) and permutation invariance.

In this paper we will focus primarily on the regime in which the hypotheses (2.1) hold.

3. Refinement of a related inequality

In this section we review an inequality of Tao [25], discuss multiple equivalent reformula-
tions, and formulate and prove a sharper inequality, from which the Riesz-Sobolev inequality
(1.2) for G will subsequently be derived. In its original formulation, the inequality of Tao
was stated in the following terms:

Theorem 3.1 (Tao [25]). For any compact connected Abelian topological group G with
normalized Haar measure µ, for any measurable A,B ⊂ G,

(3.1)

∫
G

min(1A ∗ 1B, τ) dµ ≥ τ min(µ(A) + µ(B)− τ, 1) ∀ 0 ≤ τ ≤ max(µ(A), µ(B)).
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In [25] the inequality (3.1) is stated for 0 ≤ τ ≤ min(µ(A), µ(B)). However, it also
holds trivially in the range min(µ(A), µ(B)) ≤ τ ≤ max(µ(A), µ(B)), in the sense that
for arbitrary A,B equality holds when τ is equal to the minimum or maximum, while for
τ in the open interval

(
min(µ(A), µ(B)), max(µ(A), µ(B))

)
, the left-hand side is equal to

µ(A) · µ(B) and (3.1) holds with strict inequality. (3.1) also holds with equality whenever
µ(A) + µ(B) ≥ 1 + τ , for in that case,

1A ∗ 1B(x) = µ(A ∩ (x−B)) ≥ µ(A) + µ(B)− 1 ≥ τ
for every x ∈ G, so both the left– and right–hand sides are equal to τ . (3.1) never holds
when τ > max(µ(A), µ(B)).

If G = T and A,B ⊂ T are intervals centered at 0 then equality holds in (3.1) whenever
τ ≤ min(µ(A), µ(B)). Therefore this inequality can be equivalently restated as

(3.2)

∫
G

min(1A ∗ 1B, τ) dµ ≥
∫
T

min(1A? ∗ 1B? , τ) dm ∀ 0 ≤ τ ≤ min(µ(A), µ(B)).

By virtue of the identities

(3.3)

∫
G

1A ∗ 1B dµ = µ(A) · µ(B)

and max(f, g) + min(f, g) = f + g, (3.2) can in turn be equivalently reformulated as

(3.4)

∫
G

max(1A ∗ 1B − τ, 0) dµ ≤ (µ(A)− τ)(µ(B)− τ)

∀ τ ∈ [µ(A) + µ(B)− 1, min(µ(A), µ(B))]

with
∫
G max(1A ∗ 1B − τ, 0) dµ = µ(A)µ(B)− τ for all τ ∈ [0, µ(A) + µ(B)− 1].

This can be rephrased as follows.

Theorem 3.2 (Tao [25]). Let G be an Abelian connected compact topological group, equipped
with Haar probability measure µ. For all measurable subsets A,B ⊂ G and for every
0 ≤ τ ≤ min(µ(A), µ(B)),

(3.5)

∫
G

max(1A ∗ 1B − τ, 0) dµ ≤
∫
T

max(1A? ∗ 1B? − τ, 0) dm.

Thus, inequalities (3.1) through (3.5) are equivalent in the sense that any one of them
follows from any other by simple manipulations augmented by the above discussion of the
cases in which min(µ(A), µ(B)) ≤ τ ≤ max(µ(A), µ(B)) or τ ≤ µ(A) + µ(B)− 1.

The inequalities (3.1) through (3.5) can be further reformulated in terms of superlevel
sets and associated distribution functions, and these reformulations will be essential to our
analysis. The following notation (3.6) will be used throughout the paper.

Definition 3.1. For measurable sets A,B ⊂ G and for t ≥ 0, the associated superlevel set
is

(3.6) SA,B(t) = {x ∈ G : 1A ∗ 1B(x) > t}.

Superlevel sets appear in fundamental formulae for the functionals of interest here:∫
SA,B(τ)

1A ∗ 1B dµ = τµ(SA,B(τ)) +

∫ ∞
τ

µ(SA,B(t)) dt,(3.7) ∫
G

max(1A ∗ 1B − τ, 0) dµ =

∫ ∞
τ

µ(SA,B(t)) dt.(3.8)
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By (3.8), Tao’s inequality (3.4) can be equivalently written as

(3.9)

∫ ∞
τ

µ(SA,B(t)) dt ≤ (µ(A)− τ)(µ(B)− τ)

∀ τ ∈ [µ(A) + µ(B)− 1, min(µ(A), µ(B))].

This final reformulation of Tao’s inequality implies a sharpening of itself, which we
formulate as Theorem 3.3. This refinement will be the basis of our proof of Theorem 1.1.

Theorem 3.3. Let G be a compact connected Abelian topological group, equipped with
normalized Haar measure µ. Suppose that

(3.10) 0 ≤ τ ≤ min(µ(A), µ(B))

and that

(3.11) µ(A) + µ(B) + µ(SA,B(τ)) ≤ 2.

Let σ = 1
2(µ(A) + µ(B)− µ(SA,B(τ))). Define

(3.12) h =

{
(σ − τ)2 if σ ≤ min(µ(A), µ(B))

(min(µ(A), µ(B))− τ)2 if σ > min(µ(A), µ(B)).

Then

(3.13)

∫ ∞
τ

µ(SA,B(t)) dt ≤ (µ(A)− τ)(µ(B)− τ)− h,

In particular, if µ(A) + µ(B) ≤ 1 + τ then

(3.14)

∫
G

max(1A ∗ 1B − τ, 0) dµ ≤
∫
T

max(1A? ∗ 1B? − τ, 0) dm− h.

The conclusion (3.14) can be equivalently written as

(3.15)

∫ ∞
τ

µ(SA,B(t)) dt ≤
∫ ∞
τ

m(SA?,B?(t)) dt− h,

where 0 ≤ h = h(µ(A), µ(B), τ, µ(SA,B(τ)). The improvement relative to Theorem 3.2 lies
in the presence of the nonpositive term −h on the right-hand side. This term depends on
the sets A,B, rather than only on their Haar measures, through its dependence on the
measure of the superlevel set SA,B(τ). On the other hand, Theorem 3.3 has the extra
hypothesis (3.11), which has no direct counterpart in Theorem 3.2.

The form of the right-hand side of (3.13) is unnatural when µ(A) +µ(B) > 1 + τ , in the
sense that

∫∞
τ m(SA?,B?(t)) dt = µ(A)µ(B)−τ is strictly smaller than (µ(A)−τ)(µ(B)−τ)

for such values of τ .
A corresponding refinement of Theorem 1.1 is formulated below as Theorem 4.3.

Proof of Theorem 3.3. Write S(t) = SA,B(t) to simplify notation. We seek to apply (3.9)
to
∫∞
σ µ(S(t)) dt. This inequality is applicable if µ(A) + µ(B)− 1 ≤ σ ≤ min(µ(A), µ(B)).

The first of these two inequalities is µ(A) + µ(B)− 1 ≤ 1
2(µ(A) + µ(B)− µ(S(τ))), which

is equivalent to µ(A) + µ(B) + µ(S(τ)) ≤ 2, which is indeed a hypothesis of Theorem 3.3.
However, the second inequality, σ ≤ min(µ(A), µ(B)), need not hold under the hypotheses
of Theorem 3.3, in general. The proof is consequently organized into cases.
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If σ ≤ τ then indeed σ ≤ min(µ(A), µ(B)), so (3.9) may be applied to obtain∫ ∞
τ

µ(S(t)) dt =

∫ ∞
σ

µ(S(t)) dt−
∫ τ

σ
µ(S(t)) dt

≤ (µ(A)− σ)(µ(B)− σ)− (τ − σ)µ(S(τ))

= (µ(A)− τ)(µ(B)− τ)− (σ − τ)2

as follows by expanding τ = σ− (τ − σ) in the product (µ(A)− τ)(µ(B)− τ) and invoking
the relation µ(A) + µ(B) = 2σ + µ(S(τ)).

If τ ≤ σ and if σ does satisfy σ ≤ min(µ(A), µ(B)), then again by (3.9),∫ ∞
τ

µ(S(t)) dt =

∫ ∞
σ

µ(S(t)) dt+

∫ σ

τ
µ(S(t)) dt

≤ (µ(A)− σ)(µ(B)− σ) + (σ − τ)µ(S(τ))

which we have already stated to be equal to (µ(A)− τ)(µ(B)− τ)− (σ − τ)2.
If on the other hand σ ≥ min(µ(A), µ(B)) then by permutation invariance, we may

assume without loss of generality that µ(A) ≤ µ(B). Thus 1
2(µ(A) + µ(B) − µ(S(τ))) =

σ ≥ µ(A), so µ(S(τ)) ≤ µ(B)− µ(A). Since 1A ∗ 1B ≤ µ(A),∫ ∞
τ

µ(S(t)) dt =

∫ µ(A)

τ
µ(S(t)) dt ≤ (µ(A)− τ)µ(S(τ))

since the integrand is a nonincreasing function of t. The right-hand side is

≤ (µ(A)− τ)(µ(B)− µ(A)) = (µ(A)− τ)(µ(B)− τ)− (µ(A)− τ)2,

as required. �

Corollary 3.4. Let G be a compact connected Abelian topological group, equipped with Haar
measure µ satisfying µ(G) = 1. Let A,B ⊂ G be measurable sets. Suppose that

(3.16) µ(A) + µ(B)− 1 < t < min(µ(A), µ(B)).

If (A,B, t) achieves equality in (3.1) (equivalently in any or all of (3.2), (3.4), (3.5)), then

(3.17) µ(SA,B(t)) = µ(A) + µ(B)− 2t.

We remark that µ(A) +µ(B)− 2τ is not an extremal value for µ(SA,B(τ)) for any single
value of τ ; µ(SA,B(τ)) can in general be either larger, or smaller.

Proof. If µ(A) + µ(B) + µ(SA,B(t)) ≤ 2 then all hypotheses of Theorem 3.3 are satisfied,
and (3.17) follows from its conclusion since t is strictly less than min(µ(A), µ(B)).

We claim that µ(SA,B(t)) ≤ 1− t, whence µ(A) + µ(B) + µ(SA,B(t)) ≤ 1 + t+ 1− t = 2,
completing the proof of the corollary. Suppose to the contrary that µ(SA,B(t)) > 1 − t.
Define τ ∈ (0, t) by µ(A) + µ(B) = 1 + τ .

For every x ∈ G, 1A ∗ 1B(x) = µ
(
A ∩ (x−B)

)
≥ µ(A) + µ(B)− 1 = τ . Thus, for every

r ∈ [0, τ), SA,B(r) = G, so

(3.18) µ(SA,B(r)) = 1 for every r ∈ [0, τ).

For any r ∈ [τ, t], SA,B(r) ⊃ SA,B(t), so

(3.19) µ(SA,B(r)) ≥ µ(SA,B(t)) > 1− t for every r ∈ [τ, t].

The assumption that (A,B, t) satisfies equality in (3.4) means that∫
G

min(1A ∗ 1B, t) dµ = t(µ(A) + µ(B)− t) = t(1 + τ − t).
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Substituting ∫
G

min(1A ∗ 1B, t) dµ =

∫ t

0
µ(SA,B(r)) dr

in the left-hand side and invoking (3.18) and (3.19) gives

t(1 + τ − t) =

∫ t

0
µ(SA,B(r)) dr =

∫ τ

0
µ(SA,B(r)) dr +

∫ t

τ
µ(SA,B(r)) dr

>

∫ τ

0
1 +

∫ t

τ
(1− t) dr = τ + (t− τ)(1− t) = t(1 + τ − t),

which is a contradiction. Therefore µ(SA,B(t)) ≤ 1 − t, and the proof of the corollary is
complete. �

4. On the Riesz-Sobolev inequality for G

In this section we derive the Riesz-Sobolev inequality (1.2) for G from Theorem 3.3.
The sharpened form (3.13) of (3.4) for σ ≤ min(µ(A), µ(B)) is exactly what is needed
in this derivation. We introduce defects D(A,B,C) and D′(A,B, τ) for the functionals∫
C 1A ∗1B dµ and

∫
G max(1A ∗1B− τ, 0) dµ, respectively. We discuss approximation of the

set C in the functional
∫
C 1A ∗1B dµ by superlevel sets SA,B(t), under the assumption that

D(A,B,C) is small. We also discuss majorization of D(A,B,C) by D′(A,B, τ) and vice
versa, under appropriate hypotheses linking µ(C) to τ .

The defects D(A,B,C) and D′(A,B, τ) are defined as follows.

Definition 4.1.

D(A,B,C) =

∫
C?

1A? ∗ 1B? dm−
∫
C

1A ∗ 1B dµ.(4.1)

D′(A,B, τ) =

∫
T

max(1A? ∗ 1B? − τ, 0) dm−
∫
G

max(1A ∗ 1B − τ, 0) dµ.(4.2)

Theorem 1.1 states that D(A,B,C) ≥ 0 for any ordered triple, while inequality (3.5)
states that D′(A,B, τ) ≥ 0 for all τ ∈ [0,min(µ(A), µ(B))]. These defects can usefully be
expressed in terms of distribution functions µ(SA,B(t)), as discussed in §3.

The following quantity arises throughout our analysis.

Definition 4.2. To sets A,B,C ⊂ G satisfying µ(C) ≤ µ(A) + µ(B) is associated

(4.3) τC = 1
2(µ(A) + µ(B)− µ(C)).

This quantity satisfies m(SA?,B?(τC)) = m(C?) = µ(C); it represents the parameter
τ for which C? equals the superlevel set SA?,B?(τ), provided that (µ(A), µ(B), µ(C)) is
admissible.

Lemma 4.1. Suppose that A,B ⊂ G and τ ∈ [0, 1] satisfy

0 ≤ τ ≤ min(µ(A), µ(B)),

µ(A) + µ(B) + µ(SA,B(τ)) ≤ 2.

Then

(4.4) τµ(SA,B(τ)) +

∫ ∞
τ

µ(SA,B(α)) dα ≤ µ(A)µ(B)− 1
4(µ(A)− µ(B)− µ(SA,B(τ)))2.

That is, (A,B,C) = (A,B, SA,B(τ)) satisfies (2.3) (and thus (1.2), under some additional
hypotheses).
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Proof. Define σ = 1
2(µ(A)+µ(B)−µ(SA,B(τ))). Equivalently, µ(SA,B(τ)) = µ(A)+µ(B)−

2σ. Calculate

(µ(A)− τ)(µ(B)− τ)−
(
µ(A)µ(B)− σ2

)
= −τ(µ(A) + µ(B)) + τ2 + σ2

= −τ(µ(A) + µ(B)− 2σ) + (σ − τ)2

= −τµ(S(τ)) + (σ − τ)2.

Thus

(4.5) τµ(SA,B(τ)) = −(µ(A)− τ)(µ(B)− τ) +
(
µ(A)µ(B)− σ2

)
+ (σ − τ)2.

Note that (A,B, τ) satisfies the hypotheses of Theorem 3.3. Applying Theorem 3.3 to the
second term on the left-hand side of (4.4) and then invoking (4.5) gives the desired upper
bound

τµ(SA,B(τ)) + (µ(A)− τ)(µ(B)− τ)− (σ − τ)2 = µ(A)µ(B)− σ2.

�

Proof of Theorem 1.1. Let A,B,C ⊂ G. Consider first the case in which µ(A) + µ(B) +
µ(C) ≥ 2. Define t by µ(A) +µ(B) = 1 + t; note that t ≥ 0. Then 1A ∗1B(x) ≥ t for every
x ∈ G. Indeed,

1A ∗ 1B(x) = µ(A ∩ (x−B)) ≥ µ(A) + µ(x−B)− µ(G) = µ(A) + µ(B)− 1 = t.

Therefore∫
C

1A ∗ 1B dµ ≤
∫
G

1A ∗ 1B dµ− tµ(G \ C) = µ(A)µ(B)− t(1− µ(C)).

On the other hand, 1A? ∗ 1B? ≡ t on T \ C?, and so the same calculation gives∫
C?

1A? ∗ 1B? dm = m(A?)m(B?)− t(1−m(C?)) = µ(A)µ(B)− t(1− µ(C)).

Thus the stated conclusion holds in this case.
If µ(C) ≤ |µ(A)− µ(B)| then, while 1A ∗ 1B ≤ min(µ(A), µ(B)) on C, it also holds that

1A? ∗1B? ≡ min(m(A?),m(B?)) on C?. Therefore (1.2) holds. If µ(C) ≥ µ(A) +µ(B) then
either µ(A) ≤ |µ(B) − µ(C)| or µ(B) ≤ |µ(A) − µ(C)|. (1.2) thus follows by permutation
invariance from the case in which µ(C) ≤ |µ(A)− µ(B)|.

Assume henceforth that µ(A) + µ(B) + µ(C) < 2, and that |µ(A) − µ(B)| < µ(C) <
µ(A) + µ(B).

If there exists t ∈ [0, 1] for which the superlevel set S = SA,B(t) satisfies µ(S) = µ(C),
then the desired inequality (1.2) holds for (A,B,C). More precisely,

∫
C 1A∗1B ≤

∫
S 1A∗1B.

The parameter t satisfies t ≤ min(µ(A), µ(B)), since ‖1A ∗ 1B‖C0 ≤ min(µ(A), µ(B)) and
µ(C) > 0. It also satisfies µ(A) + µ(B) ≤ 1 + t. Indeed, if µ(A) + µ(B) > 1 + t then
1A ∗ 1B(x) > t for every x ∈ G as noted above, so S = SA,B(t) = G, so µ(C) = µ(S) = 1,
forcing µ(A) + µ(B) + µ(C) = µ(A) + µ(B) + 1 > 2 + t ≥ 2 and thereby contradicting the
assumption that µ(A) + µ(B) + µ(C) < 2.

Thus the hypotheses of Lemma 4.1 are satisfied by A,B, t and SA,B(t). Applying that
lemma to SA,B(t) gives the desired upper bound for

∫
SA,B(t) 1A ∗ 1B, hence for

∫
C 1A ∗ 1B.

It remains to reduce the general case to that in which there exists t ∈ [0, 1] satisfying
µ(SA,B(t)) = µ(C), under the hypotheses µ(A) + µ(B) + µ(C) < 2 and |µ(A) − µ(B)| <
µ(C) < µ(A) + µ(B). We may also assume the auxiliary condition

(4.6) µ({x : 1A ∗ 1B(x) > 0}) ≥ µ(C).
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Indeed, if this fails, set C̃ = C∩{x : 1A∗1B(x) > 0}. The value of the integral
∫
C 1A∗1B dµ

is unchanged when C is replaced by C̃. If µ(C̃) < |µ(A) − µ(B)| then we have already
observed that ∫

C̃
1A ∗ 1B dµ ≤

∫
C̃?

1A? ∗ 1B? dm

(that is, (A,B, C̃) satisfies (1.2)). Since µ(C̃) ≤ µ(C), the right-hand side is in turn

majorized by
∫
C? 1A? ∗ 1B? dm, so (1.2) holds for (A,B,C). If µ(C̃) ≥ |µ(A)− µ(B)| then

it suffices to prove that (A,B, C̃) satisfies (1.2). Thus matters are reduced to the case in
which (A,B,C) satisfies (4.6).

Given (4.6), a sufficient condition for the existence of t satisfying µ(C) = µ(SA,B(t)) is
that all level sets of 1A ∗1B should be null sets, that is, for every r > 0, µ({x : 1A ∗1B(x) =
r}) = 0. Moreover, because (A,B,C) 7→

∫
C 1A ∗ 1B dµ is continuous in the sense that∫

Cn

1An ∗ 1Bn dµ→
∫
C

1A ∗ 1B dµ if µ(An ∆A) + µ(Bn ∆B) + µ(Cn ∆C)→ 0,

it would suffice to construct (An, Bn, Cn), converging to (A,B,C) in this sense, such that
all level sets of 1An ∗ 1Bn are µ–null.

Such a construction does not necessarily exist in G, but it does in the auxiliary group
G̃ = G × T with normalized Haar measure µ̃. Consider a sequence of triples (αn, βn, γn)
of Lebesgue measurable subsets of T satisfying µ(αn) → 1 as n → ∞ and likewise for
µ(βn), µ(γn), such that all level sets of 1αn ∗1βn on T are Lebesgue null sets. The existence
of such sequences can be proved in various ways.

Consider (Ã, B̃, C̃) = (A× αn, B × βn, C × γn). Then 1Ãn ∗ 1B̃n is the product function

G× T 3 (x, y) 7→ (1A ∗ 1B(x)) · (1αn ∗ 1βn(y)), so∫
C̃n

1Ãn ∗ 1B̃n dµ̃ =
(∫

Cn

1A ∗ 1B dµ
)
·
(∫

γn

1αn ∗ 1βn dm
)

converges to
∫
C 1A ∗ 1B dµ as n → ∞. Moreover, all level sets of 1Ãn ∗ 1B̃n are null

sets; this is a simple consequence of Fubini’s theorem and the corresponding property of
1αn ∗ 1βn . Therefore the conclusion of Theorem 1.1, or equivalently that of Theorem 2.1

(whose hypotheses are satisfied by (Ãn, B̃n, C̃n) for large n), holds for (Ãn, B̃n, C̃n) for all

sufficiently large n. Since µ̃(An) = µ(A)m(αn) → µ(A) and likewise for B̃n, C̃n, it follows
from passage to the limit that the conclusion also holds for (A,B,C). �

We next formulate several results, Lemma 4.2 through Corollary 4.6, whose proofs are
direct adaptations of proofs of corresponding results in [11]. Those proofs are therefore
omitted.

The next lemma states that if (A,B,C) nearly maximizes the Riesz-Sobolev functional∫
C 1A ∗ 1B dµ, then C nearly coincides with a superlevel set SA,B(τ) (as long as (A,B,C)

is appropriately admissible).

Lemma 4.2. [11] Let A,B,C ⊂ G be measurable sets with µ(A), µ(B), µ(C) > 0. Suppose
that ∣∣µ(A)− µ(B)

∣∣+ 2D(A,B,C)1/2 < µ(C) < µ(A) + µ(B)− 2D(A,B,C)1/2(4.7)

µ(A) + µ(B) + µ(C) < 2− 2D(A,B,C)1/2.(4.8)
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Define τ by µ(C) = µ(A) + µ(B)− 2τ . Then the superlevel set SA,B(τ) satisfies

µ(SA,B(τ)4 C) ≤ 4D(A,B,C)1/2(4.9) ∣∣µ(SA,B(τ))− µ(C)
∣∣ ≤ 2D(A,B,C)1/2(4.10)

D(A,B, SA,B(τ)) ≤ D(A,B,C).(4.11)

The next result sharpens Theorem 1.1 in the same way that Theorem 3.3 sharpens
Theorem 3.1. It is simply a restatement of the conclusion (4.9) in alternative terms.

Theorem 4.3. Let A,B,C ⊂ G be measurable sets with positive Haar measures. Suppose
that ∣∣µ(A)− µ(B)

∣∣+ 2D(A,B,C)1/2 < µ(C) < µ(A) + µ(B)− 2D(A,B,C)1/2,(4.12)

µ(A) + µ(B) + µ(C) < 2− 2D(A,B,C)1/2.(4.13)

Then

(4.14)

∫
C

1A ∗ 1B dµ ≤
∫
C?

1A? ∗ 1B? dm− 1
16µ
(
C ∆SA,B(τC)

)2
where τC = 1

2(µ(A) + µ(B)− µ(C)).

The next two lemmas relate the two defects D,D′ to one another.

Lemma 4.4. [11] Let A,B be measurable subsets of G of positive Haar measures, and
suppose that τ ∈ [0,min(µ(A), µ(B))] and µ(A) + µ(B) < 1 + τ . Then

D(A,B, SA,B(τ)) ≤ D′(A,B, τ).

Lemma 4.5. [11] Let A,B,C ⊂ G be measurable sets with positive Haar measures. Let
τC = 1

2(µ(A) + µ(B)− µ(C)). If

(4.15)
∣∣µ(A)− µ(B)

∣∣+ 2D(A,B,C)1/2 < µ(C) < µ(A) + µ(B)− 2D(A,B,C)1/2

and µ(A) + µ(B) + µ(C) ≤ 2− 2D(A,B,C)1/2 then

(4.16) D′(A,B, τC) ≤ 2D(A,B,C).

Corollary 4.6. [11] Let G be a compact connected Abelian topological group, equipped with
normalized Haar measure µ. Let A,B ⊂ G be measurable sets with positive Haar measures.
Let τ ∈ [0,min(µ(A), µ(B))], and suppose that µ(A) + µ(B) ≤ 1 + τ and∣∣µ(A)− µ(B)

∣∣ ≤ µ(SA,B(τ)),

µ(A) + µ(B) + µ(SA,B(τ)) ≤ 2.

Then

(4.17)
∣∣µ(SA,B(τ))− (µ(A) + µ(B)− 2τ)

∣∣ ≤ 2D′(A,B, τ)1/2.

Proof. The hypotheses of Theorem 3.3 are satisfied. The hypothesis
∣∣µ(A) − µ(B)

∣∣ ≤
µ(SA,B(τ)) of the corollary is equivalent to σ ≤ min(µ(A), µ(B)), where σ is defined by
µ(SA,B(τ)) = µ(A)+µ(B)−2σ. Thus, (4.17) holds by being a restatement of the conclusion
of Theorem 3.3 for σ in this range. �
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5. Two key principles

In analyzing near-maximizers (A,B,C) of the Riesz-Sobolev functional, we have found
it to be useful to transform (A,B,C) in several different ways. Two of these are based on
the principles of submodularity and complementation, which are developed in this section
as Proposition 5.1 and Lemma 5.5, respectively. A third is the transformation of (A,B,C)
to a triple (A,B, τ), based on the relationship between D(A,B, SA,B(τ)) and D′(A,B, τ)
explored in §4. A fourth is the flow (A,B,C) 7→ (A(t), B(t), C(t)) introduced in §16. A
fifth arises when C ⊂ G is a rank one Bohr set or is well approximated by such a set, and
relates

∫
C 1A ∗ 1B dµ to a relaxed version of this functional for associated data on T. This

connection is developed in §12.

At certain stages of the analysis we will pass from a triple (A,B,C) to a related triple
(A′, B′, C ′) with certain more advantageous properties, or from (A,B, τ) to (A′, B′, τ ′). We
want to do this without sacrificing smallness of D(A,B,C) or of D′(A,B, τ), respectively.
Two principles that make this possible are submodularity and complementation.

Let G be a compact connected Abelian group G, with normalized Haar measure µ.

Proposition 5.1 (Submodularity). (Tao [25]) Let A,B1, B2 be measurable subsets of G,
and let τ ∈ [0,min(µ(A), µ(B1 ∩B2))] with µ(A) + µ(B1 ∪B2)− τ ≤ 1. Then

D′(A,B1 ∩B2, τ) +D′(A,B1 ∪B2, τ) ≤ D′(A,B1, τ) +D′(A,B2, τ)

and the above four quantities D′ are all nonnegative.

Lemma 5.2. Suppose that each of A,B,C has Haar measure strictly > 0 and strictly < 1.
(A,B,C) is admissible and satisfies µ(A)+µ(B)+µ(C) ≤ 2 if and only if (G\A,G\B,C)
is admissible and satisfies µ(G \A) + µ(G \B) + µ(C) ≤ 2.

Proof. The relation µ(C) ≤ µ(G \A) + µ(G \B) is equivalent to µ(A) + µ(B) + µ(C) ≤ 2,
and by symmetry µ(C) ≤ µ(A) + µ(B) is equivalent to µ(G \A) + µ(G \B) + µ(C) ≤ 2.

The relation µ(G \ A) ≤ µ(G \ B) + µ(C) is equivalent to µ(B) ≤ µ(A) + µ(C), and
interchanging A,B in this equivalence yields the equivalence of the remaining two relations.

�

Lemma 5.3. For each η > 0 there exists η′ > 0 with the following property. Suppose
that each of A,B,C has Haar measure strictly > 0 and strictly < 1, and that (A,B,C) is
η–strictly admissible and η-bounded. Then (G \ A,G \ B,C) is η′–strictly admissible and
η′-bounded.

This is proved in the same way as Lemma 5.2. �

Lemma 5.4. Suppose that each of A,B has Haar measure strictly > 0, that µ(A)+µ(B) <
1, and that A+B is measurable. Then

(5.1) µ∗(A+ B̃)− µ(A)− µ(B̃) ≤ µ(A+B)− µ(A)− µ(B)

where B̃ = −
(
G \ (A+B)

)
.

Proof. It holds that (G \ (A + B)) − A ⊂ G \ B. Indeed, let x ∈ A and z /∈ A + B. If
y = z − x belongs to B then x+ y = z, whence z ∈ A+B, a contradiction.

Therefore µ∗
(
A−G \ (A+B)

)
≤ 1− µ(B) and consequently

µ∗
(
A−G \ (A+B)

)
− µ(A)− µ(G \ (A+B))

≤ 1− µ(B)− µ(A)− [1− µ(A+B)]

= µ(A+B)− µ(A)− µ(B).
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�

Lemma 5.5 (Complementation). If (A,B,C) is admissible and µ(A) + µ(B) + µ(C) ≤ 2
then

(5.2) D(A,B,C) = D(G \A, G \B, C).

Proof. Writing 1G\A = 1− 1A and likewise for B, then expanding the integrand, gives∫
C

1G\A ∗ 1G\B dµ =

∫
C

(1− µ(A)− µ(B) + 1A ∗ 1B) dµ

=

∫
C

1A ∗ 1B dµ+ µ(C)(1− µ(A)− µ(B)).

Since
(G \A)? = {1

2 − x : x ∈ T \A?}
and likewise for (G \ B)?, and since A?, B?, C? are symmetric under x 7→ −x, the same
calculation gives∫

C?
1(G\A)? ∗ 1(G\B)? dm =

∫
C?

1A? ∗ 1B? dm+ µ(C)(1− µ(A)− µ(B))

since m(A?) = µ(A) and likewise for B. Subtracting these two relations gives D(A,B,C) =
D(G \A, G \B, C). �

6. A link between Riesz-Sobolev and sumset inequalities

At the heart of our analysis of inverse theorems for the Riesz-Sobolev inequality (1.2) lies
Lemma 6.1. It states that if (A,B,C) is nearly a maximizer for the functional

∫
C 1A∗1B dµ,

then a certain associated superlevel set S = SA,B(β) has small sumset in the sense that
µ(S − S) is nearly equal to 2µ(S). Invoking inverse theorems of Tao [25] and of Griesmer
[20] for sumsets yields the conclusion that S is nearly a rank one Bohr set. The same
conclusion then follows for C since, by Lemma 4.2, C ∆S has small Haar measure.

However, the proof of Lemma 6.1 requires the very restrictive hypothesis that µ(A) =
µ(B). In an analysis of the Riesz-Sobolev equality for R1 in [11], this hypothesis was
removed in a subsequent step, by a method that does not apply to compact groups G. In
the present paper we will accomplish this removal for compact connected Abelian groups
by an unrelated and somewhat lengthy alternative method based in part on ideas of Tao
[25]. This necessitates the reductions carried out in §7.

Lemma 6.1. [11] Let (A,B,C) be an η–strictly admissible ordered triple of measurable
subsets of G with positive Haar measures. Suppose that

µ(A) = µ(B) ≤ 1
2 ,(6.1)

µ(C) ≤ µ(A)− 4D(A,B,C)1/2,(6.2)

D(A,B,C)1/2 < 1
28ηµ(A).(6.3)

Let β = 1
2

(
µ(A) + µ(B)− µ(C)

)
. Then

(6.4) µ
(
SA,B(β)− SA,B(β)

)
≤ 2µ(SA,B(β)) + 12D(A,B,C)1/2.

The proof of this lemma is essentially identical to the proof of the corresponding result
in [11], so it is not included here. �

Under certain hypotheses, it can be concluded that the set SA,B(β) above is nearly a
rank one Bohr set.
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Corollary 6.2. For each ε, η > 0 there exists ρ > 0 with the following property. Let
(A,B,C) be an η–strictly admissible η–bounded ordered triple of measurable subsets of G
satisfying the hypotheses (6.1) and (6.2) of Lemma 6.1. If D(A,B,C) ≤ ρ then there exists
a rank one Bohr set B ⊂ G satisfying

(6.5) µ(C 4B) ≤ ε.

If µ(C) ≤ µ(A) = µ(B) ≤ 1
2 − η and D(A,B,C) = 0, then there exists a rank one Bohr

set B ⊂ G satisfying

(6.6) µ(C 4B) = 0.

Proof. Let ε > 0. By (4.9), µ(SA,B(β) ∆C) ≤ 4D(A,B,C)1/2. Moreover, if D(A,B,C)
is sufficiently small as a function of η, then the conclusion (6.4) of Lemma 6.1 states that
SA,B(β) satisfies a strong form of the hypothesis of the theorems of Tao [25] and Griesmer
[20] discussed in §1. The conclusion of those theorems is the existence of a rank one Bohr
set satisfying µ(B∆SA,B(β)) ≤ ε, where ε→ 0 as D(A,B,C)→ 0 with η fixed. Therefore

µ(B∆C) ≤ µ(B∆SA,B(β)) + µ(SA,B(β) ∆C) ≤ ε+ 4D(A,B,C)1/2.

If ε = 0 and the measures of A,B,C satisfy the indicated hypotheses, then by (4.9)
and Lemma 6.1, S = SA,B(β) satisfies µ(S∆C) = 0 and µ(S − S) ≤ 2µ(S). Therefore

µ(S) = µ(C) ≤ 1
2 − η, and S achieves equality in Kneser’s inequality. Thus, by Kneser’s

inverse theorem, there exists a rank one Bohr set B satisfying µ(B) = µ(S) and µ(B\S) = 0.
Thus µ(B∆C) = 0 also. �

7. Two reductions

This section is devoted to two auxiliary results, whose purpose is to reduce the analysis
of triples that nearly saturate the Riesz-Sobolev inequality to triples that satisfy the hy-
potheses of Corollary 6.2. In particular, we show that if (A,B,C) nearly maximizes the
Riesz-Sobolev functional among triples of sets with specified Haar measures, then there ex-
ists a closely related near maximizing triple (Ã, B̃, C̃) satisfying supplementary properties,
including the hypotheses of Corollary 6.2. Those properties will subsequently be used to
deduce that (Ã, B̃, C̃) is nearly a compatibly centered parallel triple of rank one Bohr sets.
From that we will deduce the same property for (A,B,C). This will be achieved by ulti-
mately applying this reasoning to a short chain of triples (An, Bn, Cn), with (An, Bn, Cn)
constructed recursively from (An−1, Bn−1, Cn−1) beginning with (A0, B0, C0) = (A,B,C),
and with conclusions propagated in reverse from (An, Bn, Cn) to (An−1, Bn−1, Cn−1),

Lemma 7.1. Let (A,B,C) be an η-strictly admissible and η–bounded triple of µ-measurable
subsets of G, satisfying

µ(C) ≤ µ(A) ≤ µ(B),

µ(A) ≤ 1
2 ,

D(A,B,C)1/2 ≤ 1
400η

2µ(B).

Define τ by µ(C) = µ(A) + µ(B)− 2τ . Then there exists a measurable set B′ ⊆ G with
µ(A) = µ(B′) such that

(A,B′, SA,B′(τ)) is η/2–strictly admissible and η2/2–bounded,

D(A,B′, SA,B′(τ)) ≤ 1

η
D(A,B,C).
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Moreover, if µ(C) ≤ (1− η
50)µ(B) then

(7.1) µ(SA,B′(τ)) ≤ µ(A)− 4D(A,B′, SA,B′(τ))1/2.

Proof. The set B′ is constructed via an iterative process, in the course of which B is
recursively replaced by successively smaller sets Bj , finally arriving at a set B′ with the
same Haar measure as A. The quantity D′(A,Bj , τ) is controlled by induction on j, yielding
control of D′(A,B′, τ).

Before starting this process, recall that C is essentially equal to SA,B(τ) in the sense that∣∣µ(SA,B(τ)
)
− µ(C)

∣∣ ≤ 2D(A,B,C)1/2,(7.2)

D(A,B, SA,B(τ)) ≤ D(A,B,C),(7.3)

D′(A,B, τ) ≤ 2D(A,B,C),(7.4)

with these inequalities justified by Lemmas 4.2 and 4.5.
The following lemma will be useful.

Lemma 7.2. Let B be a measurable subset of G. For any t ∈ [µ(B)2, µ(B)], there exists
xt ∈ B satisfying µ

(
B ∩ (xt +B)

)
= t.

This is a direct consequence of the connectivity of G, since x 7→ µ(B ∩ (B + x)) is a
continuous function from G to R. �

Iteratively invoking Lemma 7.2, a nested sequence of subsets of B will be constructed;
the last set in the sequence will be the desired B′. The properties of this sequence are
described in the following Claim, the proof of which is postponed until after the proof of
Lemma 7.1.

Claim 7.1. There exists a nested sequence B =: B0 ⊇ B1 ⊇ B2 ⊇ . . . ⊇ BJ of subsets of
G, with

µ(BJ) = µ(A),

(7.5) D′(A,Bj , τ) ≤ 2D′(A,Bj−1, τ) for each j ≤ J,

2J ≤ 2

η2
.

It follows that

D′
(
A,B′, τ

)
≤ 2J · 2D(A,B,C) ≤ 4

η2
D(A,B,C),

whence

(7.6) D′
(
A,B′, τ

)1/2 ≤ 1
200ηµ(B)

by the hypothesis on D(A,B,C).
We claim that (A,B′, τ) satisfies the hypotheses of Corollary 4.6. Firstly, τ = 1

2(µ(A) +
µ(B)−µ(C)) ≤ min(µ(A), µ(B′)) = µ(A) is equivalent to µ(B) ≤ µ(A)+µ(C), which holds
since (A,B,C) is admissible. Secondly, the superlevel set SA,B′(τ) satisfies |µ(A)−µ(B′)| ≤
µ(SA,B′(τ)), since µ(A) − µ(B′) = 0. Thirdly, µ(A) + µ(B′) ≤ 1 + τ = 1 + 1

2(µ(A) +
µ(B) − µ(C)) is equivalent to µ(A) + µ(C) + (2µ(B′) − µ(B)) ≤ 2, which holds since
µ(A) + µ(B) + µ(C) ≤ 2 and µ(B′) ≤ µ(B). Fourthly, µ(A) + µ(B′) + µ(SA,B′(τ)) ≤ 2, as

µ(A) = µ(B′) ≤ 1
2 .

Invoking Corollary 4.6 for the triple (A,B′, SA,B′(τ)) gives

(7.7) |µ(SA,B′(τ))− (µ(A) + µ(B′)− 2τ)| ≤ 2D′(A,B′, τ)1/2.
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Since µ(A) + µ(B′) − 2τ = µ(A) + µ(C) − µ(B) is ≥ ηµ(B) ≥ ηµ(A) by the η–strict
admissibility hypothesis, while also 2τ ≥ µ(B), it follows from (7.6) that (A,B′, SA,B′(τ))

is η/2-strictly admissible and satisfies the estimates µ(A) + µ(B′) + µ(SA,B′(τ)) ≤ 2 − 1
2η

and min(µ(A), µ(B′), µ(SA,B′(τ))) ≥ η2/2.

Moreover, if µ(C) ≤ µ(B)− 1
50ηµ(B) then

µ(SA,B′(τ)) ≤ µ(A) + µ(B′)− 2τ + 2D′(A,B′, τ)1/2

= µ(A) + µ(C)− µ(B) + 2D′(A,B′, τ)1/2

≤ µ(A)−
(
µ(B)− µ(C)

)
+ 1

100ηµ(B)

≤ µ(A)− 1
50ηµ(B) + 1

100ηµ(B).

Therefore µ(SA,B′(τ)) ≤ µ(A)− 4D(A,B′, τ)1/2, establishing together with Lemma 4.4 the
final assertion of Lemma 7.1. �

Proof of Claim 7.1. The sets Bj will be constructed by an iterative use of Lemma 7.2, in
such a way that Proposition 5.1 can be invoked to control each D′(A,Bj , τ). More precisely,
for each j = 1, . . . , J , define

Bj := Bj−1 ∩ (xj +Bj),

with xj ∈ G chosen to ensure that

(7.8) µ(Bj) = µ(Bj−1)− bj
for appropriate quantities bj ∈ [0, µ(Bj−1)− µ(Bj−1)2] that will be specified later (such xj
exists by Lemma 7.2), where J is defined as the smallest non-negative integer such that
µ(BJ) = µ(A). (The quantities bj will be such that such J will exist.)

Now, the bj ∈ [0, µ(Bj−1)− µ(Bj−1)2] are chosen so that µ(Bj) ≥ µ(A) for all j, i.e.

(7.9) bj ≤ µ(Bj−1)− µ(A),

and so that Proposition 5.1 can be applied for (A,Bj , τ) and
(
A,Bj−1 ∪ (xj +Bj−1), τ

)
, to

deduce (7.5). To that end, for each j the estimate

µ(A) + µ
(
Bj−1 ∪ (xj +Bj−1)

)
≤ 1 + τ

should hold, i.e. µ(A) + µ(Bj−1) + bj ≤ 1 + τ for all j. By (7.8), this is equivalent to{
µ(A) + µ(B) + b1 ≤ 1 + τ (for j = 1),

µ(A) + µ(B)− (b1 + b2 + . . .+ bj−1) + bj ≤ 1 + τ for j ≥ 2,

that is

(7.10)

{
b1 ≤ d,
bj − (b1 + b2 + . . .+ bj−1) ≤ d for j ≥ 2,

where d := 1
2

(
2− µ(A)− µ(B)− µ(C))

)
.

Therefore, it suffices to find bj ∈ [0, µ(Bj−1)−µ(Bj−1)2] that satisfy (7.9), that are small
enough for (7.10) to hold, but also large enough for µ(BJ) = µ(A) to hold for some J with
2J ≤ 2

η2
.

Observe that, if not for the condition bj ∈ [0, µ(Bj−1)−µ(Bj−1)2], the quantities bj = 2jd
for all j = 1, . . . , J − 1 and bJ = µ(BJ−1)− µ(A), where J is the smallest positive integer
with µ(B)− d− 2d− . . .− 2Jd < µ(A), would work as they satisfy (7.9) and (7.10), while
also 2J ≤ 2

η2
.
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In order to achieve the additional condition bj ∈ [0, µ(Bj−1)−µ(Bj−1)2], more care needs
to be taken. For simplicity, once Bj−1 has been defined, denote

mj := min
(
µ(Bj−1)− µ(Bj−1)2, µ(Bj−1)− µ(A)

)
.

Define

bj := 2jd for all j = 1, . . . , J1 − 1,

where J1 is the smallest non-negative integer j such that 2jd > mj . Observe that the so
far defined bj satisfy the required conditions.

If 2J1d ≤ µ(BJ1−1) − µ(BJ1−1)2, then 2J1d > µ(BJ1−1) − µ(A), so µ(BJ1−1) − µ(A) ∈
[0, µ(BJ1−1) − µ(BJ1−1)2]. In this case, define bJ1 := µ(BJ1−1) − µ(A) and terminate the
process. The bj satisfy all the required conditions.

Otherwise, 2J1d > µ(BJ1−1)− µ(BJ1−1)2. Define

bj := mj for all J = J1 + 1, . . . , J̄2 − 1,

where J̄2 is the smallest integer larger than J1 with 2J1d ≤ mJ̄2 , having terminated the
process at the smallest j along the way for which mj = 0, if such a j exists. Observe that
the so far defined bj satisfy the required conditions.

If the process has not been terminated, define

bj := 2J1+j−J̄2d for all j = J̄2, . . . , J2 − 1,

where J2 is the smallest integer j larger than J̄2 with 2J1+j−J̄2d > mj . The so far defined
bj satisfy the required conditions.

Now, working as above, if 2J1+J2−J̄2d ≤ µ(BJ1−1)− µ(BJ1−1)2 define bJ2 := µ(BJ2−1)−
µ(A) and terminate the process. Otherwise, define

bj := mj for all J = J2 + 1, . . . , J̄3 − 1,

where J̄3 is the smallest integer larger than J2 with 2J1+J2−J̄2d ≤ m2, having terminated the
process at the smallest j along the way for which mj = 0, if such a j exists. Continuing this
way, one definitely finds J ∈ N with µ(BJ) = µ(A); that is when the process terminates.
The bj satisfy (7.9) and (7.10). Therefore, it remains to show that 2J ≤ 2

η2
.

Indeed, b1 + . . .+ bJ = µ(B)− µ(A). Now, let M be the set of j for which bj = mj , and
M′ := {1, . . . , J} \M. On the one hand,∑

j∈M′
bj = d+ 2d+ 22d+ . . .+ 2m

′
d ≥ 2m

′
d,

where m′ = #M′. Therefore, 2m
′
d ≤ µ(B)− µ(A), so

2m
′ ≤ 1

η .

On the other hand, m equals at most the number of consecutive intervals of the form [c2, c]
needed to cover [µ(A), µ(B)] (with the right-most interval being [µ(B)2, µ(B)]). This in

turn equals the smallest positive integer k with µ(B)2k ≤ µ(A). Since µ(B)2k−1 ≥ µ(A), it
follows that

2m ≤ 2
ln
(

1
µ(A)

)
ln
(

1
µ(B)

) ≤ 2
ln
(

1
η

)
ln 2 ≤ 2

η .

So, 2J = 2m+m′ ≤ 2
η2

.

�
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The next lemma will be used to deduce properties of more general triples from properties
of triples that satisfy the hypotheses of Lemma 7.1.

Lemma 7.3. Let (A,B,C) be η-strictly admissible and η–bounded and satisfy

µ(C) ≤ µ(A) ≤ µ(B),

µ(A) ≤ 1
2 ,

D(A,B,C)1/2 ≤ 1
800ηµ(B).

Define τ by µ(B) = µ(A) + µ(C)− 2τ . If µ(C) > (1− η
50)µ(B) then there exist measurable

sets C ′ ⊆ C and A′ ⊆ A that satisfy
(SC′,A(τ), C ′, A) is η/4–strictly admissible and η/4–bounded

D(SC′,A(τ), C ′, A) ≤ 16D(C,B,A)

µ(C ′) = µ(A′) = µ(C)− 1
10ηµ(B),

while 
(SC′,A′(τ), C ′, A′) is η/2–strictly admissible and η/2–bounded

D(SC′,A′(τ), C ′, A′) ≤ 16D(C,B,A)

µ(SA′,C′(τ)) ≤ (1− η/2
50 )µ(C ′).

Proof. Define τ = 1
2(µ(A) + µ(C) − µ(B)). Then τ ≥ 1

2ηµ(B) ≥ 1
2η

2 by the η–strict

admissibility hypothesis, while τ ≤ 1
2µ(C) ≤ 1

4 since µ(B) ≥ µ(A).
Since (A,B,C) is η-strictly admissible and D(A,B,C) is small relative to ηµ(B), Lemma 4.2

gives

(7.11)
∣∣µ(SC,A(τ)

)
− µ(B)

∣∣ ≤ 2D(A,B,C)1/2,

whence (C,A, SC,A(τ)) is 1
2η-strictly admissible. Lemma 4.2 also gives

(7.12) D(C,A, SC,A(τ)) ≤ D(A,B,C).

By Lemma 4.5,

D′(C,A, τ) ≤ 2D(A,B,C).

Now, there exist xC , xA ∈ G such that C ′ := C ∩ (xC +C) and A′ := A∩ (xA+A) satisfy{
µ(C ′) = µ(C)− η

10µ(B) ∈ [µ(C)2, µ(C)]

µ(A′) = µ(C ′) ∈ [µ(A)2, µ(A)].

(Observe that µ(C)− η
10µ(B) ≥ µ(A)2 (≥ µ(C)2) because µ(A) ≤ 1

2 , thus µ(A)2 ≤ 1
2µ(A) ≤

1
2µ(B); combining this with the lower bound assumption on µ(C), one obtains µ(C) −
µ(A)2 ≥ (1− η

50 −
1
2)µ(B) ≥ η

10µ(B).)
It holds that

0 ≤ τ ≤ µ(C ′) = min
{
µ(C ′), µ(A)

}
= min

{
µ(C ′), µ(A′)

}
and

µ(C ′) + µ(A ∪A′)− τ ≤ µ(A) + µ(C ∪ C ′)− τ < 1

(as 2 η
10µ(B) < 2− (µ(A) + µ(B) + µ(C))). Therefore,

0 ≤ D′(C ′, A′, τ) ≤ 2D′(C ′, A, τ) ≤ 4D′(C,A, τ) ≤ 8D(A,B,C)

by the submodularity principle, Proposition 5.1.
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We apply Corollary 4.6 to the triple (A′, C ′, τ). Its hypotheses are satisfied. First,
0 ≤ τ ≤ min(µ(C ′), µ(A′)) = µ(C ′); also, µ(A′) + µ(C ′) < 1 + τ holds, since µ(C ′) =
µ(A′) ≤ µ(A) ≤ 1

2 while τ > 0. Second, µ(SA′,C′(τ)) ≥ 0 = |µ(A′) − µ(C ′)|. Third,

µ(A′)+µ(C ′)+µ(SA′,C′(τ)) ≤ 2 because µ(A′) = µ(C ′) ≤ µ(A) ≤ 1
2 while µ(SA′,C′(τ)) ≤ 1.

Therefore the Corollary may be applied to obtain

|µ(SC′,A′(τ))− (µ(A′) + µ(C ′)− 2τ)| ≤ 2D′(C ′, A′, τ)
1
2 ≤ η

100µ(B).(7.13)

We next show that (SC′,A′(τ), C ′, A′) is η
2 -strictly admissible. Inserting the definition of

τ into (7.13) gives

µ(SC′,A′(τ)) ≤ µ(B)−
(
µ(A)− µ(A′)

)
−
(
µ(C)− µ(C ′)

)
+ η

100µ(B)

≤ µ(C) + η
50µ(B)− 2 · η10µ(B) + η

100µ(B)

≤ µ(C ′)− η
50µ(B)

≤ (1− η
50)µ(C ′).

Note that the last of the three conclusions stated for (A′, C ′, SA′,B′(τ)) has been verified.
On the other hand,

µ(SC′,A′(τ)) ≥ µ(B)−
(
µ(A)− µ(A′)

)
−
(
µ(C)− µ(C ′)

)
− η

100µ(B)

≥ µ(B)−
( η

10µ(B) + η
100µ(B)

)
− η

10µ(B)− η
100µ(B)

≥ µ(B)− η
4µ(B)

≥ µ(C ′)− η
4µ(B)

>
(
1− η

50 −
η
4

)
µ(B)

> η
2µ(B).

(7.14)

Since µ(A′) = µ(C ′) and µ(B) ≥ max(µ(A′), µ(C ′), µ(SA′,C′(τ))), the triple (A′, C ′, SA′,C′(τ))
is η/2–strictly admissible.

We claim next that the intermediate triple (SC′,A(τ), C ′, A) is η
4 -strictly admissible. In-

deed, since A′ ⊆ A and C ′ ⊆ C,

µ(SC′,A′(τ)) ≤ µ(SC′,A(τ)) ≤ µ(SC,A(τ)),

whence, by (7.11) and one of the inequalities in (7.14),

µ(B)− η
4µ(B) ≤ µ(SC′,A(τ)) ≤ µ(B) + 2D(A,B,C)1/2 ≤ µ(B) + η

400µ(B).

Therefore, η4 -strict admissibility follows from the η–strict admissibility of (A,B,C) and the
inequalities |µ(C ′)− µ(C)| ≤ η

10µ(B) and |µ(A)− µ(B)| ≤ η
50µ(B).

Finally, the η/2–boundedness of (A′, C ′, SA′,C′(τ)) and η/4–boundedness of (A,C ′, SA,C′(τ))
follow from estimates shown above. �

8. Relaxation

For function gj : G → [0, 1], define g??j : T → [0,∞) to be the indicator function of

the interval centered at 0 whose Lebesgue measure is equal to
∫
G gj dµ. Define g?? =

(g??1 , g
??
2 , g

??
3 ). Assuming that gj takes values in [0, 1] for each index j, we say that g is

η–strictly admissible if the triple (
∫
G gj dµ : 1 ≤ j ≤ 3) is η–strictly admissible.

With these notations, Theorem 1.5 can be equivalently stated as the inequality

(8.1) TG(g) ≤ TT(g??) for all functions gj : G→ [0, 1].
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Notation 8.1. For any ordered triple E of measurable subsets of G, define

(8.2) D(E) = TG(E?)− TT(E).

More generally, for g : G→ [0, 1], define

(8.3) D(g) = TT(g??)− TG(g),

and for g = (gj : j ∈ {1, 2, 3}), define g?? = (g?j : j ∈ {1, 2, 3}).

Then
D(A,B,C) = D(A,B,−C)

for any ordered triple (A,B,C) of measurable subsets of G. That is,

〈1A? ∗ 1B? ,1C?〉T − 〈1A ∗ 1B,1C〉G = 〈1A? ∗ 1B? ,1(−C)?〉T − 〈1A ∗ 1B,1−C〉G.

Theorem 1.5 can again be restated as D(E) ≥ 0 for every triple E.
The function h : T → [0,∞) is said to be symmetric if h(−x) = h(x) for all x ∈ T. If h

is symmetric, h is said to be nonincreasing if its restriction to [0, 1
2 ] ⊂ T is nonincreasing,

under the usual identification of T with [−1
2 ,

1
2 ].

Lemma 8.1. Let f1, f2, f3 : T → R be symmetric, nonincreasing functions satisfying 0 ≤
f1, f2, f3 ≤ 1. Let I ⊂ T be the interval centered at 0 of length |I| =

∫
T f1 dm. Then

TT(f1, f2, f3) ≤ TT(1I , f2, f3).

Proof. Defining F by f1 = 1I + F , one has

(8.4) F ≤ 0 on I, F ≥ 0 on T \ I and
∫
T F dm = 0.

Since
TT(f1, f2, f3) = 〈f1, f2 ∗ f3〉T = 〈1I , f2 ∗ f3〉T + 〈F, f2 ∗ f3〉T,

it suffices to show that 〈F, f2 ∗ f3〉T ≤ 0. Now, since f2, f3 are symmetric, non-increasing
and non-negative, each can be approximated by a superposition of indicator functions of
intervals centered at 0. Therefore, it suffices to show that 〈F,1J ∗1K〉T ≤ 0 for all intervals
J,K centered at 0. This is in fact trivially true, due to (8.4) and the fact that 1J ∗ 1K is
symmetric, non-increasing and non-negative. Indeed,

〈F,1J ∗ 1K〉T =

∫
I
1J ∗ 1K · F dm+

∫
T\I

1J ∗ 1K · F dm

≤
∫
I

(
inf
I

1J ∗ 1K

)
F dm+

∫
T\I

(
sup
T\I

1J ∗ 1K

)
F dm

= c

∫
I
F dm+ c

∫
T\I

F dm = c

∫
F dm = 0,

where c := 1J ∗ 1K

(
m(I)

2

)
. �

Proof of Theorem 1.5. By expressing each of f, g, h as a superposition of indicator functions
and invoking Theorem 1.1, we deduce that

(8.5) 〈f ∗ g, h〉G ≤ 〈f? ∗ g?, h?〉T.

Express h? as a superposition
∫ 1

0 1D(t) dt where each D(t) ⊂ T is an interval centered at 0.
According to Lemma 8.1,

(8.6) 〈f?, g?,1D〉T ≤ 〈1A? ∗ 1B? ,1D〉T
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for any interval D centered at 0. Integrating with respect to t ∈ [0, 1] yields

(8.7) 〈f? ∗ g?, h?〉T ≤ 〈1A? ∗ 1B? , h
?〉T.

A repetition of this reasoning gives

(8.8) 〈1A? ∗ 1B? , h
?〉T ≤ 〈1A? ∗ 1B? ,1C?〉T.

�

9. The perturbative Riesz-Sobolev regime

This section is dedicated to the proof of the following strengthening lemma, which will
be used in the proof of our stability theorem for general G, as well as in our independent
treatment of T. Roughly speaking, it states that, if three (appropriately admissible) sets
E1, E2, E3 are approximated moderately well by rank one Bohr sets, then smallness of the
defect D(E) = TT(E?) − TG(E) implies that E1, E2, E3 are more closely approximated by
rank one Bohr sets. The analysis is adapted from [12].

Lemma 9.1. For each η, η′ > 0 there exist δ0 > 0 and C <∞ with the following property.
Let E = (E1, E2, E3) be an η–strictly admissible triple of measurable subsets of G satisfying

(9.1) µ(E1) + µ(E2) + µ(E3) ≤ 2− η′.

Suppose that there exists a compatibly centered parallel ordered triple B = (B1,B2,B3) of
rank one Bohr sets Bj ⊂ G satisfying µ(Bj) = µ(Ej) and

(9.2) max
j
µ(Ej ∆Bj) ≤ δ0 max

k
µ(Ek).

Then there exists y satisfying y1 + y2 = y3 such that

(9.3) max
j
µ(Ej ∆ (Bj + yj)) ≤ CD(E)1/2.

Since 0 < µ(Bj) < 1 = µ(G), the homomorphism φ does not vanish identically.

Definition 9.1. An ordered triple (B1,B2,B3) of rank one Bohr sets is TG-compatibly
centered if (B1,B2,−B3) is compatibly centered.

All of our discussion of the Riesz-Sobolev inequality can be rephrased in terms of TG
since

(9.4) TG(E) = 〈1E1 ∗ 1E2 ,1−E3〉

and µ(−E3) = µ(E3). Theorem 1.1 thus states that

(9.5) TG(E) ≤ TT(E?)

for all triples E of measurable subsets of G. Another equivalent formulation is TG(E) ≤
TG(B) for any TG–compatibly centered ordered triple B of parallel rank one Bohr sets
satisfying µ(Ej) = µ(Bj) for each j ∈ {1, 2, 3}; the right-hand side equals TT(E?) for any
such triple B.

Lemma 9.1 can thus be equivalently formulated as follows.

Lemma 9.2. For each η, η′ > 0 there exist δ0 > 0 and C <∞ with the following property.
Let E = (E1, E2, E3) be an η–strictly admissible triple of measurable subsets of G satisfying

(9.6) µ(E1) + µ(E2) + µ(E3) ≤ 2− η′.
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Suppose that there exists a TG-compatibly centered parallel ordered triple B = (B1,B2,B3)
of rank one Bohr sets Bj ⊂ G satisfying µ(Bj) = µ(Ej) and

(9.7) max
j
µ(Ej ∆Bj) ≤ δ0 max

k
µ(Ek).

Then there exists y satisfying y1 + y2 + y3 = 0 such that

(9.8) max
j
µ(Ej ∆ (Bj + yj)) ≤ CD(E)1/2.

Remark 9.2. Suppose that E,B satisfy the hypotheses, and that D(E) vanishes. Then
the conclusion is not only that E is equivalent to some ordered triple of Bohr sets, but that
it is equivalent to a translate of B. A consequence is that for any η > 0, there exists ε > 0
with this property: If B,B′ are rank one Bohr sets satisfying η ≤ µ(B) = µ(B′) ≤ 1 − η,
and if µ(B∆B′) < ε, then µ(B∆B′) = 0. There is no surprise in this consequence, but its
relationship to the lemma is worthy of note. To deduce it, assume without loss of generality
that B,B′ are centered at 0, that is, B = {x : ‖φ(x)‖T ≤ r} for some homomorphism φ and
2r ∈ [η, 1− η], and likewise for B′ with respect to a homomorphism φ′. Set B = (B,B,B)
and E = (B′, B′, B′). The hypotheses of Lemma 9.1 are satisfied, if ε is sufficiently small.
Moreover, D(E) = 0; any T –compatibly centered parallel family of rank one Bohr sets
saturates the Riesz-Sobolev inequality. The conclusion of the lemma is that B′ differs from
some translate of B by a µ–null set. �

We will prove Lemma 9.2 in the more general relaxed framework, in which indicator
functions of sets are replaced by functions taking values in [0, 1]. In the remainder of §9,
we study triples g = (gj : j ∈ {1, 2, 3}) with gj : G→ [0, 1].

For functions g : G → [0, 1], define g?? : T → [0,∞) to be the indicator function of
the interval centered at 0 ∈ T whose Lebesgue measure is equal to

∫
G g dµ. For triples

g, define g?? = (g??1 , g
??
2 , g

??
3 ). Recall the notation D(g) = TT(g??) − TG(g) introduced in

(8.3). Assuming that gj takes values in [0, 1] for each index j, we say that g is η–strictly
admissible if the triple (

∫
G gj dµ : 1 ≤ j ≤ 3) of positive scalars is η–strictly admissible.

The next lemma generalizes Lemma 9.2 to the relaxed framework. The remainder of this
section will be devoted to its proof.

Lemma 9.3. For each η, η′ > 0 there exist δ0 > 0 and C <∞ with the following property.
Let g be an η–strictly admissible triple of measurable functions gj : G→ [0, 1] satisfying

(9.9)

3∑
j=1

∫
gj dµ ≤ 2− η′.

Suppose that there exists a TG-compatibly centered parallel ordered triple B = (B1,B2,B3)
of rank one Bohr sets Bj ⊂ G satisfying µ(Bj) =

∫
gj dµ and

(9.10) max
j
‖gj − 1Bj‖L1(G) ≤ δ0 max

k

∫
gk dµ.

Then there exists y ∈ G3 satisfying y1 + y2 + y3 = 0 such that

(9.11) max
j
‖gj − 1Bj+yj‖L1(G) ≤ CD(g)1/2.

Define the orbit O(A) of the triple A of subsets of G to be the set of all triples A + y =
(Aj + yj : j ∈ {1, 2, 3}) with y ∈ G3 satisfying y1 + y2 + y3 = 0. For gj : G → [0, 1] and
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B = (Bj : 1 ≤ j ≤ 3) satisfying µ(Bj) =
∫
gj dµ, define

(9.12) distance (g,O(B)) = inf
y

max
j∈{1,2,3}

‖gj − 1Bj+yj‖L1(G),

with the infimum taken over all y ∈ G3 satisfying y1 + y2 + y3 = 0. With these definitions,
Lemma 9.3 states that if B,g satisfy its hypotheses then

(9.13) distance (g,O(B)) ≤ CD(g)1/2.

We use c to denote a strictly positive constant that depends only on η, but whose value
is permitted to change from one occurrence to the next. We write 〈f, g〉 =

∫
G fg dµ for

functions f, g : G→ R.

Proof of Lemma 9.3. Set

(9.14) δ = distance (g,O(B)).

Choose z satisfying z1 + z2 + z3 = 0 so that

(9.15) max
j
‖gj − 1Bj+zj‖L1(G) = δ.

Such a minimizing z must exist, since ‖gj −1Bj+zj‖L1(G) is a continuous function of z with
compact domain. If δ = 0 then the conclusion of the lemma certainly holds, so we may
assume for the remainder of the proof that δ > 0.

The hypotheses and conclusion of the lemma are invariant under translation of each gj by
uj ∈ G, with

∑
j uj = 0. By means of such a transformation, we may assume without loss of

generality that Bj = {x ∈ G : ‖φ(x)‖T ≤ rj}, with φ : G→ T a continuous homomorphism
independent of j, and each zj = 0. Here, 0 < rj = 1

2µ(Bj) ≤ 1
2(1− η̃) with η̃ = η̃(η, η′) > 0.

Define functions fj by

(9.16) gj = 1Bj + fj .

These functions take values in [−1, 1], and satisfy
∫
G fj dµ = 0. Moreover, maxk∈{1,2,3} ‖fk‖L1 =

δ by (9.15), fk ≤ 0 in Bk, and fk ≥ 0 in G \ Bk.
Regard φ as a (discontinuous) mapping from G to (−1

2 ,
1
2 ] by identifying T with (−1

2 ,
1
2 ]

in the usual way. For each k ∈ {1, 2, 3}, write {1, 2, 3} = {i, j, k} and define

Kk(x) = 1Bi ∗ 1Bj (x) for x ∈ G.

Kk is continuous and nonnegative. There exists γk > 0 such that Kk(x) > γk if |φ(x)| <
1
2µ(Bk), Kk(x) < γk if |φ(x)| > 1

2µ(Bk), and Kk(x) = γk when |φ(x)| = 1
2µ(Bk). The

η–strict admissibility hypothesis implies that there exists a small positive constant c > 0,
depending only on η, such that

(9.17)

{
|Kk(x)− γk| =

∣∣ |φ(x)| − 1
2µ(Bk)

∣∣ whenever
∣∣ |φ(x)| − 1

2µ(Bk)
∣∣ ≤ cµ(Bk),

|Kk(x)− γk| ≥ cµ(Bk) otherwise.

Let λ be a large positive constant, to be chosen below. There exist a decomposition

(9.18) fj = f †j + f̃j
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and consequently an expansion gj = 1Bj + f †j + f̃j , with the following properties:∫
f †j dµ =

∫
f̃j dµ = 0(9.19)

f̃j , f
†
j ≥ 0 on G \ Bj(9.20)

f̃j , f
†
j ≤ 0 on Bj(9.21)

If
∣∣ |φ(x)| − 1

2µ(Bj)
∣∣ ≥ λδ then f †j (x) = 0.(9.22)

‖f̃j‖L1 ≤ 2

∫∣∣ |φ(x)|−1
2µ(Bj)

∣∣≥λδ |fj(x)| dµ(x).(9.23)

To achieve this, set f̃j(x) = fj(x) whenever
∣∣ |φ(x)| − 1

2µ(Bj)
∣∣ ≥ λδ. We do not simply

set f̃j(x) ≡ 0 otherwise (even though such an f̃j clearly satisfies the desired condition (9.23)

above), because the vanishing condition
∫
f̃j dµ = 0 will be essential below. Instead, for

x ∈ G satisfying
∣∣ |φ(x)| − 1

2µ(Bj)
∣∣ < λδ, we define f̃j(x) = fj(x)1S(x) with the set S

chosen as follows.
If
∫∣∣ |φ(x)|−1

2µ(Bj)
∣∣≥λδ fj dµ ≥ 0, then S ⊂ Bj , and S is chosen so that

∫
f̃j dµ = 0. Such

a subset exists because
∫
fj dµ = 0, fj ≥ 0 on G \ Bj and ≤ 0 on Bj , and µ is nonatomic.

For our purpose, any such set S suffices.
If
∫∣∣ |φ(x)|−1

2µ(Bj)
∣∣≥λδ fj dµ < 0, then instead choose S ⊂ G\Bj to ensure that

∫
f̃j dµ = 0.

In both cases, define f †j = fj − f̃j . The resulting functions f̃j , f
†
j enjoy all of the required

properties.

Set g†j = 1Bj + f †j . These functions satisfy gj = g†j + f̃j , 0 ≤ g†j ≤ 1, −1 ≤ f̃j , f †j ≤ 1, and

(since
∫
f̃j = 0)

∫
g†j =

∫
gj .

Define

(9.24) δ̃ = max
j
‖f̃j‖L1(G) ≤ δ.

T = TG satisfies

(9.25) |T (h1, h2, h3)| ≤ ‖h1‖L1‖h2‖L1‖h3‖L∞

for arbitrary functions, and is invariant under permutation of (h1, h2, h3). Using the as-
sumption that ‖gj‖L∞ ≤ 1, and for each k writing {1, 2, 3} = {i, j, k} in some arbitrary
manner, it follows that

T (g) = T (g†1 + f̃1, g
†
2 + f̃2, g

†
3 + f̃3)

= T (g†) +
3∑

k=1

T (g†i , g
†
j , f̃k) +O(δ̃2)

= T (g†) +

3∑
k=1

T (1Bi ,1Bj , f̃k) +O(δ̃ · δ)

= T (g†) +
3∑

k=1

〈Kk, f̃k〉+O(δ̃ · δ).

The constant implicit in the O(δ̃ · δ) term is independent of the parameter λ.
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Since
∫
f̃k dµ = 0, 〈Kk, f̃k〉 = 〈Kk − γk, f̃k〉. On the complement of Bk, f̃k ≥ 0 and

Kk − γk ≤ 0; on Bk, both signs are reversed. Therefore

〈Kk, f̃k〉 =

∫
(Kk − γk)f̃k dµ = −

∫
|Kk − γk| · |f̃k| dµ ≤ −cλδ‖f̃k‖L1

according to the properties (9.17) of Kk and the relation λδ ≤ cµ(Bk), which holds, for any
particular choice of large constant λ, by the smallness hypothesis on δ/µ(Bk). Therefore in
all,

T (g) ≤ T (g†)− cλδ · δ̃ +O(δ̃ · δ)
with both c and the implicit constant in the remainder term O(δ2) independent of the

parameter λ, but with δ̃ dependent on λ. Choosing λ sufficiently large gives

(9.26) T (g) ≤ T (g†)− cλδ · δ̃ ≤ min
(
T (g†), TT(g??)− cλδ · δ̃

)
,

with c > 0 independent of λ, and λ independent of g. We have used the bound T (g†) ≤
TT((g†)??) of Theorem 1.5, and the identity (g†)?? = g??.

There are now two cases, depending on the magnitude of δ̃/δ. If δ̃ ≥ 1
2δ then T (g) ≤

TT(g??)− 1
2cδ

2. This is the desired conclusion of Lemma 9.3.

In the second case, δ̃ ≤ 1
2δ. From the triangle inequality in the form

max
j
‖f †j ‖L1 = max

j

(
‖fj‖L1 − ‖f̃j‖L1

)
≥ δ − δ̃ ≥ 1

2δ,

it follows that

max
j
‖g†j − 1Bj‖L1 = max

j
‖f †j ‖L1 ≥ 1

2δ.

In this case, we use the alternative bound T (g) ≤ T (g†) from (9.26). Thus it suffices to
prove that

T (g†) ≤ TT(g??)− cmax
j
‖g†j − 1Bj‖2L1 ,

that is, to establish the conclusion of Lemma 9.3 for g†.
The modified triple g† satisfies all hypotheses of the lemma, and enjoys the supplementary

property that g†j − 1Bj ≡ 0 whenever
∣∣ |φ(x)| − 1

2µ(Bj)
∣∣ ≥ λδ.

Moreover,

(9.27) 1
2 distance (g,O(B)) ≤ distance (g†,O(B)) ≤ 3

2 distance (g,O(B))

by the triangle inequality for L1(G) norms, since δ̃ ≤ 1
2δ. Therefore we have reduced matters

to proving Lemma 9.3 under the supplementary hypothesis that for every j ∈ {1, 2, 3},

(9.28) gj − 1Bj ≡ 0 whenever
∣∣ |φ(x)| − 1

2µ(Bj)
∣∣ ≥ C0δ.

Here C0 is some universal constant that is not at our disposal, but is dictated by our choice
of λ. For the remainder of the proof of Lemma 9.3 we drop the superscripts †, denoting by
g an ordered triple of functions that satisfies the hypotheses of the lemma, as well as (9.28)
for δ and B such that maxj ‖gj − 1Bj‖1 ∼ δ. Redefine fj = gj − 1Bj .

The perturbative term fj satisfies (9.28), that is, is supported where
∣∣ |φ(x)|− 1

2µ(Bj)
∣∣ ≤

C0δ. We claim that if ε0 is a sufficiently small constant multiple of ηmaxk µ(Bk), and if
0 < δ ≤ ε0, then this restriction on the support of fj ensures that

(9.29) T (f1, f2, f3) = 0.
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Indeed, f1∗f2 is supported where φ differs by at most 2C0δ from some quantity (±1
2µ(B1)±

1
2µ(B2)), while f3 is supported where φ differs by at most C0δ from ±1

2µ(B3). The upper
bound on µ(B1) + µ(B2) + µ(B3) and the η–strict admissibility of B ensure that

ηmax
j
µ(Bj) ≤

∣∣± µ(B1)± µ(B2)± µ(B3)
∣∣ ≤ 2− η′

for all eight choices of signs, yielding (9.29) by the triangle inequality since δ ≤ ε0 is assumed
to be small relative to ηmaxk µ(Bk).

For any y = (y1, y2, y3) ∈ T3 satisfying y1+y2+y3 = 0, these constructions can be applied
to the triple gy defined by replacing gj(x) by the translated function g

yj
j (x) = gj(x − yj).

Then T (g) = T (gy), and
∫
g
yj
j dµ =

∫
gj dµ. Assume that |φ(yj)| = O(δ) for all three

indices j. Then

max
j
‖gyjj − 1Bj‖L1 ≤ max

j
‖gyjj − 1B

yj
j
‖L1 + max

j
‖1Byjj − 1Bj‖L1 = O(δ).

On the other hand,

max
j
‖gyjj − 1Bj‖L1 ≥ distance (gy,O(B)) = distance (g,O(B)) ≥ cδ

by y–translation invariance of the orbit and translation invariance of µ. Each translated
function g

yj
j − 1Bj remains supported in {x :

∣∣ |φ(x)| − µ(Ej)/2
∣∣) ≤ O(δ)}.

Each fj = gj−1Bj has a unique additive decomposition fj = f+
j +f−j , with f±j supported

where
∣∣φ(x)∓ 1

2µ(Bj)
∣∣ = O(δ), respectively. It will be advantageous to work instead with

gy, with y chosen so that the summands corresponding to g
yj
j −1Bj satisfy certain vanishing

properties which the summands f±j potentially lack. In particular, define functions f±j,yj by

first setting fj,yj = g
yj
j − 1Bj , and then expressing fj,yj = f+

j,yj
+ f−j,yj , with f±j,yj supported

where |φ(x)∓ 1
2µ(Bj)| = O(δ).

Lemma 9.4. For each index j, there exists yj ∈ G satisfying |φ(yj)| ≤ C0δ and

(9.30)

∫
f+
j,yj

dµ =

∫
f−j,yj dµ = 0.

Proof. f+
j,y is that portion of gyj − 1Bj that is supported where |φ(x) − 1

2µ(Bj)| is small.

Since |φ(y)| ≤ C0δ and gj(x) = 1Bj (x) wherever |φ(x) − 1
2µ(Bj)| > C0δ, f

+
j,y is supported

where |φ(x)− 1
2µ(Bj)| ≤ 2C0δ.

Consider the function that maps z ∈ [−C0δ, C0δ] to∫
f+
j,y(x) dµ(x) =

∫
|φ(x)−1

2µ(Bj)|≤2C0δ

(
gyj − 1Bj

)
(x) dµ(x),

with y = y(z) satisfying φ(y) = z. While y is not uniquely determined by z via this
equation, the integral nonetheless depends only on z. Indeed, the contribution of the term
1Bj to the integral does not involve y. Substituting x = u + y allows us to rewrite the

contribution of gyj (x) = gj(x− y) as∫
|φ(x)−1

2µ(Bj)|≤2C0δ
gj(x− y) dµ(x) =

∫
|φ(u)+z−1

2µ(Bj)|≤2C0δ
gj(u) dµ(u)

which likewise depends on z alone.
This function of z is nonnegative when z = C0δ. Indeed, if φ(x) ∈ [1

2µ(Bj)−2C0δ,
1
2µ(Bj)]

then gj(x − y) = 1, since φj(x − y) = φj(x) − C0δ ≤ 1
2µ(Bj) − C0δ and (by virtue of the
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reduction to the case gj = g†j made above) gj(u) ≡ 1 when 1
2µ(Bj) − O(δ) ≤ φ(u) ≤

1
2µ(Bj)− C0δ. Thus gyj (x)− 1Bj (x) = 1− 1 = 0 for these values of x. On the other hand,

if φ(x) ∈ [1
2µ(Bj), 1

2µ(Bj) + 2C0δ] then 1Bj (x) = 0, so gyj (x)− 1Bj (x) ≥ 0.
The same reasoning shows that this function of z is nonpositive when z = −C0δ. There-

fore we may apply the Intermediate Value Theorem on [−C0δ, C0δ] to conclude that there
exists yj with φ(yj) = z ∈ [−C0δ, C0δ] satisfying

∫
f+
j,yj

dµ = 0.

It follows at once that
∫
f−j,yj dµ =

∫
fj,yj dµ−

∫
f+
j,yj

dµ = 0. �

Choose y1, y2 to ensure (9.30) for j = 1, 2, but then define y3 by y1 + y2 + y3 = 0. With
such a choice of y fixed henceforth, simplify notation by suppressing yj and writing again
gj , fj , f

±
j , continuing to use the notation g for this modified triple. The quantities T (g)

and distance (g,O(B)) are unchanged.
The functions f±3 need not have vanishing integrals. Nonetheless,

(9.31)

∫
f±i ∗ f

±
j dµ = 0 for any distinct indices i 6= j ∈ {1, 2, 3},

for all four possible choices of ± signs, since
∫

(f±i ∗f
±
j ) dµ =

∫
f±i dµ ·

∫
f±j dµ and at least

one of the two indices i, j must belong to {1, 2}.
Expand T (g) = T (1Bj + fj : j ∈ {1, 2, 3}) into eight terms, using the multilinearity

of T . The simplest term is T (f1, f2, f3). Provided that δ is sufficiently small relative to
maxj µ(Bj), with constant of proportionality depending on η, η′, this term vanishes for the
modified triple g, just as it was shown in (9.29) to vanish for the original triple.

The vanishing of T (f1, f2, f3) simplifies the expansion of T (g) to

(9.32) T (g) = T (B) +
3∑

k=1

〈Kk, fk〉+
∑
i<j

〈1Bl , fi ∗ fj〉.

In the final sum, i < j ∈ {1, 2, 3} and l is defined by {1, 2, 3} = {i, j, l}.
We next discuss the terms

(9.33) 〈Kk, fk〉 = −
∫
|fk(x)|

∣∣ |φ(x)| − 1
2µ(Bk)

∣∣ dµ(x) ≤ 0.

There exist an absolute constant c0 > 0 and n ∈ {1, 2, 3} such that ‖fn‖L1 ≥ c0δ. Let
c1 = 1

8c0. Because ‖fn‖L∞ ≤ 1 and

µ({x ∈ G :
∣∣ |φ(x)| − 1

2µ(Bn)
∣∣ ≤ c1δ}) = 4c1δ,

necessarily ∫
| |φ(x)|−1

2µ(Bn) |≥c1δ
|fn| dµ ≥ ‖fn‖L1 − 4c1δ ≥ 1

2c0δ.

Therefore

(9.34) 〈Kn, fn〉 ≤ −
∫
| |φ(x)|−1

2µ(Bn) |≥c1δ
|fn(x)| ·

∣∣ |φ(x)| − 1
2µ(Bn)

∣∣ dµ(x) ≤ −c1δ · 1
2c0δ,

which is comparable to maxj ‖fj‖2L1 and therefore to distance (g,O(B))2. Thus

(9.35)
∑
k

〈Kk, fk〉 ≤ −c′δ2.

To complete the proof, we next show that

(9.36) 〈1Bl , fi ∗ fj〉 = 0 for any three distinct indices i, j, l.
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For any of the four possible choices of ± signs, the support of the convolution f±i ∗ f
±
j

is contained in the sum of the supports of the two factors, hence consists of points x at
which φ(x) = 1

2(±µ(Bi) ± µ(Bj)) + O(δ). On the other hand, Bl is the set of x satisfying

|φ(x)| ≤ 1
2µ(Bl), and the η–strict admissibility hypothesis says that

| ± µ(Bl)± µ(Bi)± µ(Bj)| ≥ cηmax
k

µ(Bk).

A hypothesis of Lemma 9.3 is that δ is small relative to ηmaxk µ(Bk). Therefore for any
choice of ± signs, the support of f±i ∗ f

±
j is either entirely contained in Bl, or entirely

contained in its complement. Therefore in the integral

〈1Bl , f
±
i ∗ f

±
j 〉 =

∫
1Bl · (f

±
i ∗ f

±
j ) dµ,

the factor 1B1 is constant. Since
∫
f±i ∗f

±
j dµ = 0 by (9.31), this integral vanishes. Summing

over all four possible choices of signs gives (9.36).
Inserting these results into the expansion (9.32), we conclude that when the supplemen-

tary hypothesis (9.28) is satisfied, T (g) ≤ T (g??)− cδ2, that is,

(9.37) T (g) ≤ T (g??)− c distance (E,O(B))2,

as was to be shown. �

10. The perturbative regime for sumsets

In this section we digress from the proof of the stability Theorem 1.3 to prove The-
orem 1.4, the quantitative stability result for the inequality µ∗(A + B) ≥ min(µ(A) +
µ(B), µ(G)). The core tool, Proposition 10.2, has flavor similar to that of the perturbative
Lemma 9.1.

We begin with a small lemma needed in the analysis.

Lemma 10.1. Let K be a compact Abelian group with Haar measure ν. Let A,B ⊂ K be
compact. Suppose that B 6= ∅ and that ν(A) > 1

2ν(K). Then

(10.1) ν(A+B) ≥ min(ν(B) + 1
2ν(A), ν(K)).

K is not assumed to be connected. The conclusion is false in general, without the
hypothesis that ν(A) > 1

2µ(K). It fails, for instance, if there exists a subgroup H of K

satisfying ν(H) = 1
2ν(K) and A = B = H.

Proof. According to a theorem of Kneser [21], either ν(A+B) ≥ ν(A)+ν(B) or there exists
a subgroup H of K of positive Haar measure satisfying A+B+H = A+B and ν(A+B) =
ν(A+H) + ν(B +H)− ν(H). In the first case, the conclusion of the lemma holds. In the
second case, if ν(H) = ν(K) then ν(A+H)+ν(B+H)−ν(H) = ν(K)+ν(K)−ν(K) = ν(K)
and again the conclusion holds.

Now, suppose that ν(H) < ν(K). A+H is a union of cosets of H. It cannot be a single
coset, for ν(H) < ν(K) implies ν(H) ≤ 1

2ν(K) < ν(A). Therefore A + H is a union of at
least two cosets of H, so ν(A+H) ≥ 2ν(H), so

ν(A+H)− ν(H) ≥ 1
2ν(A+H) ≥ 1

2ν(A).

Thus

ν(A+B) = ν(A+H)− ν(H) + ν(B +H) ≥ 1
2ν(A) + ν(B),

as was to be shown. �
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Let G be a compact Abelian group with Haar measure µ, satisfying µ(G) = 1. Let |A|
denote the Lebesgue measure of any set A ⊂ T.

Proposition 10.2. There exists δ0 > 0 with the following property. Let A,B ⊂ G be
compact sets of positive measures satisfying

µ(A) + µ(B) ≤ 1− 200δ0 min(µ(A), µ(B)).

Suppose that

‖φ(x)‖T ≤ 1
2µ(A) + δ0 min(µ(A), µ(B)) for all x ∈ A,

‖φ(x)‖T ≤ 1
2µ(B) + δ0 min(µ(A), µ(B)) for all x ∈ B,

µ(A+B) ≤ µ(A) + µ(B) + δmin(µ(A), µ(B)) for some 0 < δ ≤ δ0.

Then φ(A) is contained in some interval in T of length µ(A)+100δmin(µ(A), µ(B)). Like-
wise, φ(B) is contained in some interval of length µ(B) + 100δmin(µ(A), µ(B)).

Define A = φ(A) and B = φ(B) in T. For t ∈ T define

At = {x ∈ A : φ(x) = t} ⊂ A ⊂ G.
At will be regarded sometimes as a subset of a coset of K = Kernel(φ), and sometimes
as a subset of K itself (by translating by any appropriate element of G). Likewise define
Bt ⊂ B.

Let ν be Haar measure on H = Kernel(φ), normalized to satisfy ν(H) = 1.
Each slice φ−1({t}) ⊂ G is a coset of H. By translation, ν also defines a measure on

each such coset, which will also be denoted by ν. Thus we may write ν(At), even though
there is no canonical identification of At with a subset of H.

The hypotheses allow us to regard φ as a mapping from A + B to R, rather than to T.
Indeed, denoting η := δ0 min(µ(A), µ(B)), each element of φ(a) ∈ φ(A) is represented by

some element φ̃(a) ∈ [−1
2µ(A) − η, 1

2µ(A) + η], and correspondingly for φ(B). Therefore,

for any a ∈ A and b ∈ B, φ(a + b) is represented by some element φ̃(a + b) ∈ (−1
2 ,

1
2).

These satisfy φ̃(a + b) = φ̃(a) + φ̃(b), where addition on the right-hand side is performed

in R rather than in T. These three mappings, all denoted by the common symbol φ̃, are
measure-preserving bijections.

Proof of Proposition 10.2. Define ρA, ρB ∈ [0, 1) by

(10.2) 1− ρA = sup
t
ν(At) and 1− ρB = sup

s
ν(Bs).

The hypothesis ‖φ(x)‖T ≤ 1
2µ(A) + δ0 min(µ(A), µ(B)) for x ∈ A implies that |A| ≤

(1+2δ0)µ(A). On the other hand, µ(A) ≤ (1−ρA)|A|. Therefore ρA ≤ 1−(1+2δ0)−1. Thus
if δ0 is sufficiently small then ρA <

1
4 . Likewise ρB < 1

4 . Therefore min(1− 2ρA, ρB) = ρB.
This relation will be used momentarily.

Let ε ∈ (0, ρA) be sufficiently small so that 1 − ρA − ε > 3
4 , and choose τ ∈ A satisfying

(10.3) ν(Aτ ) > 1− ρA − ε.
Set

A− = {a ∈ A : φ(a) < τ} and A+ = {a ∈ A : φ(a) > τ}
(where A is seen as a subset of R rather than of T).

Regarding B as a subset of R, let b−, b+ ∈ R be its minimum and maximum elements,
respectively.
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Now

A+B ⊃ (Aτ +B) + (A− +Bb−) + (A+ +Bb+)

and these three sets are pairwise disjoint. Therefore

µ(A+B) ≥ µ(Aτ +B) + µ(A− +Bb−) + µ(A+ +Bb+).

A− + Bb− contains a translate of A−, so µ(A− + Bb−) ≥ µ(A−). Likewise µ(A+ + Bb+) ≥
µ(A+). Therefore

(10.4) µ(A+B) ≥ µ(Aτ +B) + µ(A).

One application of (10.4) is the relation

(10.5) max(ρA, ρB) ≤ δ.

To prepare for its proof recall that according to Lemma 10.1,

ν(Aτ +Bt) ≥ min
(

1
2ν(Aτ ) + ν(Bt), 1

)
≥ min

(
ν(Bt) + 3

8 , 1
)

for any t ∈ φ(B), since ν(Aτ ) > 3
4 . Therefore

µ(Aτ +B) =

∫
B
ν(Aτ +Bt) dt

≥
∫
B

min(ν(Bt) + 3
8 , 1) dt = µ(B) +

∫
B

[
min(3

8 , 1− ν(Bt))
]
dt

≥ µ(B) +

∫
B

[
min(3

8 , ρB)
]
dt = µ(B) + ρB|B|

since ρB < 1
4 . Since |B| ≥ µ(B), inserting this bound into (10.4) gives

µ(A+B) ≥ µ(A) + µ(B) + ρBµ(B).

Since µ(A+B) ≤ µ(A) + µ(B) + δµ(B), we may conclude that ρB ≤ δ. The roles of A,B
can be interchanged, so ρA ≤ δ also.

Let A′ = {t ∈ A : ν(At) >
1
2}. Likewise define B′ ⊂ B.

We claim that

(10.6) µ(A+B) ≥ µ(A) + µ(B) + (1
2 − ρA)|B \ B′|.

The proof will use the fact that for any subsets S, T of a compact group H satisfying
µ(S) + µ(T ) > µ(H), the associated sumset S + T is all of H. Connectivity of H is not
required for this conclusion; it is valid for the kernel H of φ. Indeed, for any z ∈ H it
holds that {z − x : x ∈ S} ∩ T 6= ∅, since the intersection of these sets has measure equal
to µ(S) + µ(T )− µ(H) > 0. To prove the claim, majorize

(10.7) µ(Aτ +B) ≥
∫
B
ν(Aτ +Bt) dt.

One has ν(Aτ +Bt) ≥ ν(Bt) for all t. Moreover, if ν(Bt) ≤ 1
2 then

ν(Aτ +Bt) ≥ ν(Aτ ) ≥ 1− ρA − ε ≥ ν(Bt) + 1
2 − ρA − ε.

Therefore

(10.8) µ(Aτ +B) ≥
∫
B
ν(Bt) dt+

∫
B\B′

(1
2 − ρA − ε) dt = µ(B) + (1

2 − ρA − ε)|B \ B
′|.

Letting ε→ 0 and combining this with (10.4) gives (10.6). �
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From (10.6) together with the hypothesis µ(A+B) ≤ µ(A) + µ(B) + δmin(µ(A), µ(B))
and the bound max(ρA, ρB) ≤ δ we deduce that

(10.9) |B \ B′| ≤ (2 +O(δ))δmin(µ(A), µ(B)).

Since the roles of A,B can be freely interchanged in this reasoning, |A \ A′| satisfies the
same inequality.

For every s ∈ A′ and t ∈ B′, ν(As + Bt) ≥ min(ν(As) + ν(Bt), 1) = 1 since ν(As) >
1
2

and likewise ν(Bt) >
1
2 . Therefore ν((A + B)x) = 1 for every x ∈ A′ + B′. Therefore

|A′ + B′| ≤ µ(A+B), and consequently

|A′ + B′| ≤ µ(A) + µ(B) + δmin(µ(A), µ(B))

≤ |A|+ |B|+ δmin(µ(A), µ(B))

< |A′|+ |B′|+ 6δmin(µ(A), µ(B)).

On the other hand,

|A′| ≥ |A| − (2 +O(δ))δmin(µ(A), µ(B))

≥ µ(A)− (2 +O(δ))δmin(µ(A), µ(B))

> µ(A)− 3δmin(µ(A), µ(B))

and likewise for |B′|.
A straightforward adaptation to R (see [11]) of a theorem of Frĕıman states that if S, S′ ⊂

R are nonempty Lebesgue measurable sets satisfying |S + S′|∗ < |S|+ |S′|+ min(|S|, |S′|),
then S is contained in an interval of length ≤ |S + S′| − |S′|. Regarding A′,B′ as subsets
of R, as we may, this result allows us to conclude that if δ0 is less than some absolute
constant, then A′ is contained in an interval I of length ≤ |A′|+(6+O(δ))δmin(µ(A), µ(B)).
Similarly, B′ is contained in an interval J of length ≤ |B′|+ (6 +O(δ))δmin(µ(A), µ(B)).

The following claim completes the proof of Proposition 10.2.

Claim 10.1. The full sets A = φ(A) and B = φ(B) are contained in intervals of lengths
µ(A) + 100δmin(µ(A), µ(B)) and µ(B) + 100δmin(µ(A), µ(B)), respectively.

The reasoning in the following proof of this claim will be used again below.

Proof of Claim 10.1. Suppose that some point z ∈ A were to lie to the left of the left end-
point of I by a distance≥ C1δmin(µ(A), µ(B)). If y ∈ B′ lies within distance C1δmin(µ(A), µ(B))
of the left endpoint of J , then Az + By lies outside I + J . The set of all y ∈ B′ with this
property has Lebesgue measure

≥ |B′| −
(
|J | − C1δmin(µ(A), µ(B))

)
≥ (C1 − 6)δmin(µ(A), µ(B)).

The sum of Az with the union of all such By therefore has Haar measure ≥ 1
2(C1 −

6)δmin(µ(A), µ(B)). This sumset is disjoint from φ−1(A′ + B′) = φ−1(A′) + φ−1(B′).
Therefore

µ(A+B) ≥ µ(φ−1(A′)) + µ(φ−1(B′)) + 1
2(C1 − 6)δmin(µ(A), µ(B))

≥ (µ(A)− |A \ A′|) + (µ(B)− |B \ B′|) + 1
2(C1 − 6)δmin(µ(A), µ(B))

≥ µ(A) + µ(B) + 1
2(C1 − 18)δmin(µ(A), µ(B)).

Choosing C1 = 21 yields a contradiction for all sufficiently small δ.
Thus A = φ(A) is contained in an interval of length less than

|I|+ 40δmin(µ(A), µ(B)) ≤ |A′|+ 46δmin(µ(A), µ(B)) ≤ µ(A) + 100δmin(µ(A), µ(B)).
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Likewise for B. �

The conclusions of Proposition 10.2 hold if A,B satisfy the same hypotheses but are
merely assumed to be measurable, rather than compact, except that the constant 200 is
replaced by a sufficiently large finite constant C. To prove this, choose compact sub-
sets A′, B′ of A,B whose Haar measures are nearly those of A,B respectively, and invoke
Proposition 10.2 to obtain parallel rank one Bohr sets BA′ ⊃ A′ and BB′ ⊃ B′ satisfying
µ(BA′) ≤ µ(A) + Cδmin(µ(A), µ(B)) with the corresponding bound for µ(BB′). Then re-
peat the reasoning in the proof of the claim above to deduce that there exist slightly larger
parallel rank one Bohr sets, associated to the same homomorphism φ, which contain all
of A,B respectively, and whose measures satisfy the required upper bounds with a larger
constant factor C. �

With a small modifications, the proof of Proposition 10.2 establishes an extension: Set-
ting M = min(µ(A), µ(B)) to simplify notation, the hypotheses that ‖φ(x)‖T ≤ 1

2µ(A) +
δ0M for all x ∈ A and analogously for B can be relaxed to

(10.10)

{
‖φ(x)‖T ≤ 1

2µ(A) + δ0M ∀x ∈ A outside a set of Haar measure ≤ δ0M

‖φ(x)‖T ≤ 1
2µ(B) + δ0M ∀x ∈ B outside a set of Haar measure ≤ δ0M ,

to conclude that, provided that δ0 is sufficiently small, φ(A) is contained in some interval
in T of length µ(A) + Cδ0 min(µ(A), µ(B)), and likewise for φ(B).

To prove this, define A′, B′ to be the subsets of A,B, respectively, specified by these
inequalities. We will use the proof of Claim 10.1 to control A,B in terms of A′, B′, demon-
strating that A,B satisfy the hypotheses of Proposition 10.2 with δ0 replaced by ε0, where
ε0 depends only on δ0 and tends to zero as δ0 → 0. Thus the extension will be proved.

The only change to the reasoning in the proof of the claim is that we may no longer
conclude that, in the notation of that discussion, Az +By is disjoint from

I + J = {x ∈ T : ‖x‖T ≤ 1
2(µ(A) + µ(B)) +O(δ0)M}

whenever φ(z) ∈ [1
2µ(A) + 2Cδ0M, 1

2 ] and φ(y) ∈ [1
2µ(B) − Cδ0M, 1

2µ(B)]. Under the
hypotheses of this extension, it is not permissible to regard φ(A), φ(B) as subsets of R, and
the desired disjointness could fail due to periodicity.

Instead, we claim that if C1 is a sufficiently large constant and δ0 is sufficiently small
then for any x ∈ A satisfying

1
2µ(A) + C1δ0M ≤ |φ(x)| ≤ 1

2 ,

the set of all y ∈ B′ satisfying φ(x + y) /∈ I + J has Haar measure ≥ C2δ0M , where C2

depends on C1 but not on δ0, and C2 → ∞ as C1 → ∞. We may assume without loss of
generality that φ(x) ∈ [0, 1

2 ] by replacing (A,B) by (−A,−B) if necessary. The two desired
conditions for y are that w = φ(y) should satisfy

w ≥ 1
2µ(B) + 1

2µ(A)− φ(x) +O(δ0M)

and
w ≤ 1− 1

2µ(A)− 1
2µ(B)− φ(x)−O(δ0M).

The set of all w ∈ [−1
2µ(B), 1

2µ(B)] that satisfy both inequalities has Lebesgue measure
≥ C1δ0M provided that δ0 is sufficiently small. The inverse image under φ of this set
of elements w has Haar measure ≥ C1δ0M . The complement of the intersection with B
of this inverse image has Haar measure O(δ0M), with the constant in the O(·) notation
independent of the choice of C1. The result therefore follows.
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This completes the proof of the extension of Proposition 10.2. �

Proof of Theorem 1.4. Let η > 0. Let A,B ⊂ G satisfy min(µ(A), µ(B)) ≥ η and µ(A) +
µ(B) ≤ 1− η. Suppose that µ∗(A+B) ≤ µ(A) + µ(B) + δmin(µ(A), µ(B)). By the same
reasoning as the one used to extend the statement of Proposition 10.2 to measurable sets,
it suffices to treat the case in which A,B are compact.

If δ is sufficiently small, as a function of η alone, then the theorems of Tao [25] and/or
Griesmer [20] can be applied. The conclusion is that there exist parallel rank one Bohr sets
BA,BB such that

µ(A∆BA) ≤ ε(δ) min(µ(A), µ(B))

and likewise for µ(B∆BB). The quantity ε(δ) tends to 0 as δ → 0, provided that η remains
fixed.

The reasoning in the proof of the claim above now shows that the full sets A,B are

contained in parallel rank one Bohr sets B]A,B
]
B, respectively, satisfying

µ(B]A) ≤ µ(A) + ε] min(µ(A), µ(B))

where ε] → 0 as δ → 0. Likewise for B,B]B.
This is not the desired conclusion, since it includes no quantitative bound for the depen-

dence of ε] on δ. However, since ε] → 0 as δ → 0, it follows that if δ is sufficiently small
then the pair (A,B) satisfies the hypotheses of Proposition 10.2. Invoking that proposition
completes the proof of the theorem. �

11. A special case on T

In this section, we discuss our functionals for G = T, in the special situation in which one
of the sets is an interval. In particular, our next result ensures that, if (A,B,C) satisfies
near equality in the Riesz-Sobolev inequality on T, and C is an interval, then A and B are
nearly intervals. This will allow us in §12 to understand near equality in the Riesz-Sobolev
inequality on general G, when one of the sets is nearly Bohr.

When discussing the special case G = T, we will often use |E|, rather than m(E), to
denote the Lebesgue measure of E.

Proposition 11.1. Let η > 0. There exists a constant C <∞, depending only on η, with
the following property. Let (A,B,C) be an η–strictly admissible and η–bounded triple of
measurable subsets of T. Suppose that C is an interval with center xC . Then

(11.1) inf
x+y=xC

(
|A∆ (A? + x)|+ |B∆ (B? + y)|

)
≤ CD(A,B,C)1/2.

We outline here a proof based on a method relying on reflection symmetry and a two-
point inequality of Baernstein and Taylor [5]. This technique does not otherwise appear in
this paper. It is also used by O’Neill [24] to analyze the corresponding issue for the sphere
Sd, d ≥ 2.

Proof. The proof will consist of three steps.

Step 1. If D(A,B,C) = 0 and C is an interval, then A,B differ from intervals by Lebesgue
null sets, and these three intervals are compatibly centered.

Assume without loss of generality that C is centered at 0. Thus C = C∗. By the
complementation principle described in §5, it may also be assumed that m(A) ≤ 1

2 , m(B) ≤
1
2 .
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Identify T with the unit circle in C ↔ R2 via the mapping x 7→ e2πi(x+
π
2 ). For each

x = (x1, x2) ∈ T let R(x) = (x1,−x2) be the reflection of x about the horizontal axis. To
any E ⊂ T associate E] ⊂ T, defined as follows. For each pair of points {x,R(x)} with
x = (x1, x2) with x2 6= 0, let x+ = (x1, |x2|) and x− = (x1,−|x2|). If both x+, x− ∈ E then
both x+, x− ∈ E]; if neither belongs to E then neither belongs to E]; and if exactly one
belongs to E then x+ ∈ E] and x− /∈ E]. If x2 = 0 then x ∈ E] if and only if x ∈ E.

Define T+ = {x = (x1, x2) ∈ T : x2 > 0}. For y ∈ T define RyE = (E + y)], where
addition is in the additive group T = R/Z.

Assume without loss of generality that the interval C is centered at 0. The following
hold: for any measurable sets A,B ⊂ T,

m(A]) = m(A), m(B]) = m(B),(a)

m(A] ∆B]) ≤ m(A∆B),(b)

〈1A] ∗ 1C ,1B]〉 ≥ 〈1A ∗ 1C ,1B〉.(c)

Consequently the above conclusions hold with A], B] replaced by RyA,RyB, respectively,
for any y ∈ T. (a) and (b) are direct consequences of the definition of the ] operation, while
(c) is an almost equally direct consequence [5].

Observe that

(d) 〈1A] ∗ 1C ,1B]〉 > 〈1A ∗ 1C ,1B〉

if the set of all points (x+, y+) ∈ T2
+ satisfying x+ ∈ A, x− /∈ A, y+ /∈ B, y− ∈ B and

‖x+ − y+‖T < 1
2m(C) and ‖x+ − y−‖T > 1

2m(C) has positive Lebesgue measure in T2.

The same holds if the set of all points (x+, y+) ∈ T2
+ satisfying x+ /∈ A, x− ∈ A, y+ ∈ B,

y− /∈ B and the above two inequalities has positive Lebesgue measure in T2.
Moreover, if A ⊂ T is a finite union of closed intervals then there exists a finite sequence

y1, . . . , yN of elements of T such that

(e) RyNRyN−1 · · ·R1A = A?.

This is elementary, and its proof is left to the reader.
If A ⊂ T is Lebesgue measurable then there exists an infinite sequence yn ∈ T such that

(f) lim
N→∞

m
(
RyNRyN1

· · ·R1A∆A?
)

= 0;

(f) follows by combining (e) with the contraction property (b).
Consider any pair of measurable sets A,B ⊂ T that satisfy 〈1A∗1C ,1B〉 = 〈1A?∗1C ,1B?〉.

Choose a sequence (yn) such that the sets defined recursively by A0 = A and An = RynAn−1

for n ≥ 1 satisfy

m(An ∆A?)→ 0.

Define Bn recursively by B0 = B and Bn = RynBn−1 for n ≥ 1. Then 〈1An ∗ 1C ,1Bn〉 =
〈1A? ∗1C ,1B?〉 for every n. Choose nν so that the sequence 1Bnν converges weakly in L2(T)

to some h ∈ L2(T), with 0 ≤ h ≤ 1,
∫
h dm = m(B). Denoting (Aνn , Bνn) by (An, Bn) for

simplicity, the above implies

〈1An ∗ 1C ,1Bn〉 → 〈1A? ∗ 1C , h〉.

From this and the admissibility hypothesis it follows that h = 1B? . Thus 1Bn → 1B?
weakly. Since m(T) is finite, this forces

m(Bn ∆B?)→ 0.
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By (a), A?n = A? and B?
n = B∗ for all n ∈ N; therefore, for all ε > 0 there exists N =

N(ε) ∈ N for which
m(An ∆A?n) < ε and m(Bn ∆B?

n) < ε,

while also
〈1AN ∗ 1C ,1BN 〉 = 〈1A∗N ∗ 1C∗ ,1B∗N 〉

by (c). Therefore, fixing ε to be sufficiently small as a function of η alone, then the
perturbative theory of Lemma 9.1 can be applied, implying that

(11.2) there exists yN such that AN = A? + yN and BN = B? + yN .

Denote by R : T → T the reflection R(x1, x2) = (x1,−x2). Consider any measurable
A,B ⊂ T such that the triple (A,B,C) (for our fixed C) satisifes the hypotheses of the
proposition.

Claim 11.1. If A] = A? and B] = B?, and if 〈1A ∗ 1C ,1B〉 = 〈1A? ∗ 1C ,1B?〉, then either
(A,B) = (A?, B?) or (A,B) = (RA?,RB?).

The strict admissibility hypothesis guarantees that there exists ε > 0 such that for any
x ∈ A? there exists y = b(x) ∈ B? such that whenever x′, y′ ∈ T satisfy ‖x− x′‖T ≤ ε and
‖y − y′‖T ≤ ε, one has

(11.3) ‖x′+ − y′+‖T < 1
2m(C) but ‖x′+ − y′−‖T > 1

2m(C).

Indeed, identifying T with [−1
2 ,

1
2), it suffices to prove the above for x ∈ A? with x ≥ 0.

The η-strict admissibility and η-boundedness of (A,B,C) ensure that p̄ := 1
2m(A)− 1

2m(C)
has the property

−1
2m(B) + η2

2 ≤ p̄ ≤
1
2m(B)− η2

2

(in particular p̄ ∈ B∗), while the right endpoint 1
2m(A) of A∗ satisfies∣∣1

2m(A)− p̄−
∣∣
T =

∣∣1
2m(A)−

(
1
2 −

1
2m(A) + 1

2m(C)
)∣∣ = 1

2 −m(A) ≥ 1
2m(C),

as m(A) ≤ 1
2 .

Therefore, if p̄ ≤ 0, define b(x) := p̄− η2

4 for all x ∈ A?. If x̄ > 0, define b
(
tm(A)

2

)
:= p̄− η2

4

for every element tm(A)
2 of A?, for all 0 < t ≤ 1.

Denoting by Nx the ε-neighbourhood on T of any x ∈ T, it follows by the above and (d)
that, for any x ∈ A?,

either m
(
{x′ ∈ A? ∩Nx : x′+ /∈ A, x′− ∈ A}

)
= 0

or m
(
{y′ ∈ B? ∩Nb(x) : y′+ ∈ B, y′− /∈ B}

)
= 0

(11.4)

and

either m
(
{x′ ∈ A? ∩Nx : x′+ ∈ A, x′− /∈ A}

)
= 0

or m
(
{y′ ∈ B? ∩Nb(x) : y′+ /∈ B, y′− ∈ B}

)
= 0.

(11.5)

The second conclusion of (11.4) and the second conclusion of (11.5) cannot simultaneously
hold, therefore the first conclusion of either (11.4) or (11.5) holds. That is,

for every x ∈ A?, either m(RA ∩Nx) = 0 or m(A ∩Nx) = 0.

Now assume that, for some x ∈ A? with Nx ⊂ A?, it holds that m(RA ∩Nx) = 0. It will
be shown that

m(RA ∩Ny) = 0 for all y ∈ A? with ‖x− y‖T < ε and Ny ⊂ A?
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(and therefore, by the connectivity of A?, m(RA ∩ A?) = 0, i.e. A = A? up to a Lebesgue
null set).

Indeed, let y ∈ A? as above, and suppose that m(RA ∩ Ny) > 0. Due to the fact that

A] = A?, it holds that m(RA∩Nz)+m(A∩Nz) = m(A?∩Nz) for every z ∈ A?. Therefore,
m(RA ∩ Ny) = m(A ∩ Nx) = ε. Since the sets RA and A share at most two points (as
m(A) ≤ 1

2), it follows that

m
(
(RA ∩Ny) ∪ (A ∩Nx)

)
= 2ε.

This is a contradiction, as the set (RA∩Ny)∪(A∩Nx) is contained in the arc N := Ny∪Nx

of T, of length < ε
2 + ε+ ε

2 < 2ε.
Therefore, if x as above exists, then A = A? up to a Lebesgue null set. In a similar

manner it can be shown that if there exists x ∈ A? with m(A∩Nx) = 0 and Nx ⊂ A?, then
R(A) = A? up to a Lebesgue null set.

Thus, either A = A∗ or A = RA? up to a Lebesgue null set. Without loss of gener-
ality, it is assumed that the former holds (the functional 〈1A ∗ 1C ,1B〉 is invariant under
simultaneous translations of A and B). Then, the fact that D(A,B,C) = 0 means that

〈1A? ∗ 1C ,1−B〉 = 〈1A? ∗ 1C ,1−B?〉;

since A?, C are intervals, the above implies that |B∆B?| = 0.
It has thus been shown that either (A,B) = (A?, B?) or (A,B) = (RA?,RB?) (up to

Lebesgue null sets). This completes the proof of the claim. �
We are now in a position to complete the proof for Step 1. Return to the sequence of

pairs (An, Bn), for n = 1, . . . , N . By (11.2), (AN , BN ) = (A?+yN , B
?+yN ) up to Lebesgue

null sets. Now, (AN , BN ) = ((AN−1 − y)], (BN−1 − y)]) for some y ∈ T. Therefore, either
(AN−1, BN−1) equals either (A? + yN + y,B? + yN + y) or (RA? + yN + y,RB? + yN + y),
up to Lebesgue null sets. Repeating this reasoning recursively for n = N − 2, N − 3, . . . ,
we get a similar conclusion for (A,B).

This completes the discussion of Step 1.

Step 2. For any ε > 0, there exists δ = δ(η) > 0 such that if D(A,B,C)1/2 ≤ δ then

(11.6) inf
x+y=xC

(
|A∆ (A? + x)|+ |B∆ (B? + y)|

)
≤ ε.

We argue by contradiction. If the conclusion fails to hold then there exists an η–strictly
admissible η–bounded sequence (Ak, Bk, Ck) such that limk→∞D(Ak, Bk, Ck) = 0, but

(11.7) inf
x+y=xCk

(
|Ak ∆ (A?k + x)|+ |Bk ∆ (B?

k + y)|
)
≥ ε.

It may be assumed without loss of generality that each xCk = 0.
By passing to subsequences we may assume that 1Ak ,1Bk converge weakly in L2(T) to

f, g ∈ L2(T), respectively. Then 0 ≤ f, g ≤ 1, limk→∞ |Ak| exists and is equal to
∫
T f , and

likewise |Bk| →
∫
T g. Moreover, after a further diagonal argument, 1Ck → 1C weakly for

some interval C centered at 0.
Because the Ck are intervals, a simple compactness argument shows that 1Ak ∗ 1Ck

converges strongly in L2(T). Therefore limk→∞ T (Ak, Bk, Ck) = T (A?, B?, C) where A?, B?

denote here the intervals centered at 0 of lengths
∫
T f,

∫
T g, respectively. By continuity, the

limiting triple (A?, B?, C) satisfies D(A?, B?, C) = 0.
By Lemma 8.1, ∫

C
f ∗ g ≤

∫
C
f ∗ 1B? ≤ 〈f?,1B? ∗ 1C〉.
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The triple (
∫
T f

?, |B?|, |C|) is η–strictly admissible. Because 0 ≤ f? ≤ 1 and
∫
T f

? = |A?|,
η–strict admissibility ensures that 1B? ∗ 1C , which is is symmetric and nonincreasing, is
also strictly decreasing with derivative identically equal to −1 in {x : |x− |A?|/2 | ≤ r} for
some r > 0 which depends only on η. Therefore 〈f?,1B? ∗ 1C〉 = 〈1A? ,1B? ∗ 1C〉 if and
only if f? = 1A? almost everywhere. Thus f? is the indicator function of a set. Since f has
the same distribution function as f?, we conclude that f = 1A for some A ⊂ T. Likewise,
g = 1B for some set B.

Thus 1Ak → 1A and 1Bk → 1B weakly in L2(T). Therefore |Ak ∆A| + |Bk ∆B| → 0,
and D(A,B,C) = 0. Step 1 now applies, allowing us to conclude that A and B differ
from intervals by Lebesgue null sets, and that the centers of A, satisfy xA + xB = 0. This
contradicts (11.7), completing Step 2. �

Step 3. Let (A,B,C) be a triple satisfying the hypotheses of the proposition. Let δ0 be
the constant appearing in the statement of the perturbative Lemma 9.1. By Step 2, there
exists δ = δ(η) > 0, such that if D(A,B,C)1/2 ≤ δmax(|A|, |B|, |C|) then

inf
x+y=xC

(
|A∆ (A? + x)|+ |B∆ (B? + y)| ≤ δ0η ≤ δ0 max(|A|, |B|, |C|),

where the last inequality is due to the η-boundedness of (A,B,C). Therefore, by Lemma 9.1,
there exist x′, y′, z′ ∈ T with x′ + y′ = z′ such that

(11.8) |A∆ (A? + x′)|, |B∆ (B? + y′)|, |C ∆ (C? + z′)| ≤ CD(A,B,C)1/2,

for some C > 0 depending only on η. This would be the desired result if z′ = xC , something
which does not necessarily follow from Lemma 9.1. However, it can be proved that z′ is
very close to xC ; so close that, perturbing z′ to become xC and perturbing x′ by the same
amount, the truth of (11.8) is not violated, up to multiplication by constant factors.

More precisely, it holds that ‖z′ − xC‖T ≤ CD(A,B,C)1/2. Indeed, first observe that
C ∩ (C? + z′) 6= ∅, as otherwise (11.8) would imply

D(A,B,C)1/2 ≥ 1
C |C ∆ (C? + z′)| = 2

C |C| ≥
2η
C max(|A|, |B|, |C|)

by the η-strict admissibility of (A,B,C), a contradiction for δ sufficiently small. Thus,
since C,C? + z′ are intervals centered at xC , z

′, respectively, it holds that ‖z′ − xC‖T =
1
2 |C ∆ (C? + z′)| ≤ CD(A,B,C)1/2.

Therefore, x̄′ := x′ + (xC − z′) satisfies x̄′ + y′ = xC and∣∣A∆ (A? + x̄′)
∣∣ ≤ ∣∣A∆ (A? + x′)

∣∣+
∣∣(A? + x′) ∆ (A? + x̄′)

∣∣
≤ CD(A,B,C)1/2 + ‖x′ − x̄′‖T
≤ 2CD(A,B,C)1/2;

likewise for B. Therefore, the triple (A,B,C) satisfies (11.1) with constant depending only
on η.

As long as the quantity δ in the argument above is chosen sufficiently small, the comple-
mentary situation in which D(A,B,C)1/2 > δmax(|A|, |B|, |C|) also leads to (11.1) with
constant C = 2δ−1, simply because, for all x ∈ T,

|A∆ (A? + x)| ≤ 2|A| ≤ 2 max(|A|, |B|, |C|).

Likewise for B. �
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12. When one set is nearly rank one Bohr

The aim of this section is to establish for general groups G that if (A,B,C) is a strictly
admissible triple with D(A,B,C) small, if (A,B,C) satisfies appropriate auxiliary hypothe-
ses, and if one of the three sets A,B,C is nearly a rank one Bohr set, then the other two are
also nearly rank one Bohr sets (parallel to the first, with the triple compatibly centered).

Proposition 12.1. Let G be a compact connected Abelian topological group with normalized
Haar measure µ. For any η, η′ > 0, there exist c = c(η, η′) > 0 and C = C(η, η′, c) < ∞
such that the following holds. Let (A,B,C) be an η-strictly admissible triple of µ-measurable
subsets of G, with min(µ(A), µ(B), µ(C)) ≥ η and µ(A) + µ(B) + µ(C) ≤ 2 − η′. If there
exists a rank one Bohr set B with

µ(C ∆B) ≤ c(η, η′) max
(
µ(A), µ(B), µ(C)

)
,

then there exists a compatibly centered parallel ordered triple (BA,BB,BC) of rank one Bohr
sets satisfying

(12.1) µ(A∆BA) ≤ CD(A,B,C)1/2,

and likewise for µ(B∆BB) and µ(C ∆BC).

Proof. Let η, η′ > 0 and (A,B,C) be as in the statement of the proposition. We may
assume that (A,B,C) satisfy the supplementary hypothesis

(12.2) D(A,B,C) < c(η, η′) max
(
µ(A), µ(B), µ(C)

)2
for a small constant c(η, η′). Indeed, otherwise

µ(A∆BA) ≤ C(η, η′)D(A,B,C)1/2

holds trivially for any rank one Bohr set BA with µ(BA) = µ(A); likewise for B and C.
First, consider the case in which C is a rank one Bohr set. That is, C = φ−1(C?) + x,

for some continuous homomorphism φ : G → T and some x ∈ G. We assume without loss
of generality that C = φ−1(C?). Define φ∗ : L1(G)→ L1(T) by∫

E
φ∗(f) dm =

∫
φ−1(E)

f dµ for all measurable E ⊂ T.

Then

φ∗(1A ∗ 1B) = φ∗(1A) ∗ φ∗(1B),

and consequently∫
C

1A ∗ 1B dµ = TG(1A,1B,1C) = TT(φ∗(1A), φ∗(1B),1C?) = TT(f, g,1C?),

where the functions

f := φ∗(1A) and g := φ∗(1B)

from G to [0,∞) satisfy

0 ≤ f, g ≤ 1,
∫
T f dm = µ(A),

∫
T g dm = µ(B).

Thus, by the Riesz-Sobolev inequality on T,

TG(1A,1B,1C) = TT(f, g,1C?) ≤ TT(f?, g?,1C?).
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Applying Lemma 8.1 to the functions f?, g?,1C? gives

TG(1A,1B,1C) ≤ TT(f?, g?,1C?)

≤ max{TT(f?,1B? ,1C?), TT(1A? , g
?,1C?)}

≤ TT(1A? ,1B? ,1C?).

(12.3)

Moreover, since f?, g? are non-increasing functions with 0 ≤ f?, g? ≤ 1,
∫
T f dm = m(A?)

and
∫
T g dm = m(B?), the following holds.

Claim 12.1. There exists C <∞, depending only on η, such that

(12.4) ‖f? − 1A?‖L1(T) + ‖g? − 1B?‖L1(T) ≤ CD(A,B,C)1/2.

Proof. By (12.3) and because
∫
T(1A? − f?) dm = 0,

D(A,B,C) ≥
∫
T
(1A? − f?) · (1B? ∗ 1C?) dm =

∫
T
(1A? − f?) · (1B? ∗ 1C? − γ) dm

for any constant γ, and in particular for γ = 1B? ∗ 1C?
(
µ(A)

2

)
. The function K(x) =

1B? ∗ 1C? − γ is nonnegative on A? and nonpositive on T \A?, as is 1A? − f?, so

(12.5) D(A,B,C) ≥
∫
T
|1A? − f?| · |K| dm.

Let a = µ(A)/2. Obtaining a lower bound for the right-hand side would be simpler if |K|
enjoyed a strictly positive lower bound, but K(a) = 0. K does satisfy |K(x)| = |x− a| for
x ∈ [0, 1

2 ] with |x−a| ≤ 1
2 min(µ(B)+µ(C)−µ(A), µ(A)−|µ(B)−µ(C)|), and the η–strict ad-

missibility hypothesis ensures that this holds whenever |x−a| ≤ 1
2ηmax(µ(A), µ(B), µ(C)).

Since 1B? ∗ 1C? is nonincreasing, we find that, for x ∈ [0, 1
2 ],

|K(x)| ≥

{
|x− a| if |x− a| ≤ η

2 max(µ(A), µ(B), µ(C))
η
2 max(µ(A), µ(B), µ(C)) otherwise.

It is elementary that if 0 ≤ ψ ≤ 1 then
∫
R |x|ψ(x) dx ≥ 1

4‖ψ‖
2
L1(R). Therefore from the

lower bound for K and the upper bound ‖1A? − f?‖C0 ≤ 1 it follows that∫
T
|1A?−f?| · |K| dm ≥ cmin

(
‖1A?−f?‖L1(T), ηmax(µ(A), µ(B), µ(C))

)
· ‖1A?−f?‖L1(T)

for a certain absolute constant c > 0. Now ‖1A? − f?‖L1(T) ≤ 2µ(A), so, provided that
η ≤ 1, this implies that ∫

T
|1A? − f?| · |K| dm ≥ c‖1A? − f?‖2L1(T),

for a constant c > 0 that only depends on η. The indicated conclusion for 1A? − f? follows
directly from this and (12.5). The same holds for 1B? − g? since the roles of A,B can be
interchanged. �

Since f, f? have identical distribution functions and likewise for g, g?, there exist Ã, B̃ ⊂ T
satisfying ‖f − 1Ã‖L1(T) = ‖f? − 1A?‖L1(T) and ‖g − 1B̃‖L1(T) = ‖g? − 1B?‖L1(T), with

m(Ã) = µ(A) =
∫
T f dm and m(B̃) = µ(B) =

∫
T g dm.
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Therefore, if c(η, η′) is sufficiently small, the triple (Ã, B̃, C∗) is η
2 -strictly admissible,

min(η, η′)-bounded and m(Ã) +m(B̃) +m(C∗) ≤ 2− η′

2 . Since C∗ is an interval, Proposi-
tion 11.1 states that there exists x̄ ∈ T satisfying

(12.6) m(Ã∆ (A? + x̄)) +m(B̃∆ (B? − x̄)) ≤ CD(Ã, B̃, C∗)1/2,

for a constant C depending only on η, η′. Now

(12.7) D(Ã, B̃, C?) ≤ CD(A,B,C)1/2 max(m(A),m(B),m(C)).

Indeed, since m(Ã) = m(A) and m(B̃) = m(B), it follows that Ã? = A? and B̃? = B?, so

TT(Ã?, B̃?, C?) = TT(A?, B?, C?),

while

TT(Ã, B̃, C?) = TT
(
f + (1Ã − f), g + (1B̃ − g),1C?

)
≥ TT(f, g,1C?)

− (‖1Ã − f‖L1(T) + ‖1B̃ − g‖L1(T))m(C?) + ‖1Ã − f‖L1(T)‖1B̃ − g‖L1(T)

≥ TG(A,B,C)−CD(A,B,C)1/2 max(m(A),m(B),m(C))

by Claim 12.1. Thus, (12.7) follows by (12.2).
The homomorphism φ preserves measure in the sense that µ(φ−1(E)) = m(E) for any

measurable E ⊂ T. Therefore, since f = φ∗(1A),

(12.8) µ
(
A∆φ−1(Ã)

)
= ‖f − 1Ã‖L1(T) ≤ CD(A,B,C)1/2.

Moreover, (12.6) and (12.7) together with this property of φ yield

µ
(
φ−1(Ã) ∆φ−1(A? + x̄)

)
≤ CD(A,B,C)1/4 max(µ(A), µ(B), µ(C))1/2.

In all,

µ(A∆BA) ≤ CD(A,B,C)1/4 max(µ(A), µ(B), µ(C))1/2

≤ Cc(η, η′)1/4 max(µ(A), µ(B), µ(C))

with BA = φ−1(A?)+x for some x ∈ G, and likewise for B, with x replaced by −x. The last
inequality above is due to (12.2), and it ensures that, as long as c(η, η′) is sufficiently small,
the perturbative Lemma 9.1 can be applied, yielding the desired conclusion for (A,B,C).
The analysis of the case in which the set C coincides with a rank one Bohr set is now
complete.

Suppose next that

µ(C ∆ C̄
)
≤ c(η, η′) max

(
µ(A), µ(B), µ(C)

)
,

where C̄ = φ−1(C∗) for some continuous homomorphism φ : G→ T.
If c(η, η′) is sufficiently small, then the triple (A,B, C̄) is η

2 -strictly admissible and satisfies

µ(A) + µ(B) + µ(C̄) ≤ 2− η
2 , while, by (12.2),

D(A,B, C̄) ≤ Cc(η, η′) max
(
µ(A), µ(B), µ(C)

)2
≤ Cc(η, η′)

(
1 + c(η, η′)

)2
max

(
µ(A), µ(B), µ(C̄)

)2
.

Therefore, since C̄ is a rank one Bohr subset of G, if c(η, η′) is sufficiently small then
the partial result proved above can be applied to (A,B, C̄), ensuring that there exists a
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compatibly centered parallel ordered triple (BA,BB,BC̄) of rank one Bohr sets, such that

µ(A∆BA) ≤ C(η, η′)D(A,B, C̄)1/2

≤ C(η, η′)c(η, η′) max
(
µ(A), µ(B), µ(C)

)
,

and likewise for B and C̄. Now, this further implies that

µ(C ∆BC̄) ≤ µ(C ∆ C̄) + µ(C̄ ∆BC̄)

≤ C(η, η′)c(η, η′) max
(
µ(A), µ(B), µ(C)

)
.

Therefore, if c(η, η′) is sufficiently small then the triple (A,B,C) satisfies the hypotheses
of the perturbative Lemma 9.1, the conclusion of which implies the desired estimate for
(A,B,C).

�

13. Stability of the Riesz-Sobolev inequality

In this section we complete the proof of Theorem 1.3. This proof consists of five main
steps. Firstly, given E with small defect D(E) for the Riesz-Sobolev functional, an associ-
ated triple E′ is constructed, also with small defect but with altered Haar measures µ(E′j)
satisfying a supplementary condition. Secondly, under this supplementary condition, small
Riesz-Sobolev defect for E′ implies that E′3 nearly saturates Kneser’s sumset inequality.
Thirdly, the inverse theorems of Griesmer and/or Tao imply that any saturator E′3 nearly
coincides with a rank one Bohr set. Fourthly, this conclusion for E′3 implies that the given
triple E nearly coincides with a parallel compatibly centered triple of rank one Bohr sets,
with oD(E)(1) control. In the fifth step, this crude bound is refined to O(D(E)1/2). All of
the ingredients have been developed in preceding sections. Here, we link them together.

Proof of Theorem 1.3. Let η > 0. Let δ0 > 0 be a sufficiently small positive constant, which
will depend only on η. Let (A,B,C) be an η–strictly admissible η–bounded ordered triple
of measurable subsets of G satisfying

(13.1) D(A,B,C) ≤ δ0.

In this discussion, Cη will denote positive constants that depend only on η, not on (A,B,C).
Cη is allowed to change in value from one occurrence to the next.

Assume without loss of generality that µ(C) ≤ µ(A) ≤ µ(B). The proof is organized
into three cases, reflecting the analysis in §7.

Case 1: µ(A) ≤ 1
2 and µ(C) ≤ (1− η

50)µ(B).
In this case, the lower bound assumption min(µ(A), µ(B), µ(C)) ≥ η implies that, for

δ0 sufficiently small, (A,B,C) satisfies the hypotheses of Lemma 7.1. Define τ by µ(C) =
µ(A) + µ(B) − 2τ , and define C ′ = SA,B′(τ). According to Lemma 7.1, there exists a
measurable set B′ ⊂ G such that the triple (A,B′, C ′) also nearly saturates the Riesz-
Sobolev inequality, in the sense that

(13.2) D(A,B′, C ′) ≤ η−1D(A,B,C) ≤ δ0η
−1,

satisfies the key supplementary condition

(13.3) µ(A) = µ(B′),
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and satisfies the technical conditions

(A,B′, C ′) is η/2–strictly admissible and η2/2–bounded,

µ(C ′) ≤ µ(A)− 4D(A,B′, C ′)1/2.

Therefore, if δ0 is sufficiently small then the triple (A,B′, C ′) satisfies the hypotheses of
Lemma 4.2, whose conclusion is that C ′ nearly coincides with a superlevel set:

(13.4) µ(C ′∆SA,B′(β)) ≤ 4D(A,B′, C ′)1/2 ≤ 4(δ0/η)1/2

with β = 1
2

(
µ(A) + µ(B′) − µ(C ′)

)
. Moreover, (A,B′, C ′) satisfies the hypotheses of the

key Lemma 6.1 (in particular, µ(A) = µ(B′)), whose conclusion is that the superlevel set
SA,B′(β) has small difference set:

µ
(
SA,B′(β)− SA,B′(β)

)
≤ 2µ(SA,B′(β)) + 12D(A,B′, SA,B′(β))1/2

≤ 2µ(SA,B′(β)) + 12(δ0/η)1/2.

So long as δ0 is appropriately small, SA,B′(β) satisfies the hypotheses of Corollary 6.2, whose
proof relied on the stability theorems of Tao [25] and/or Griesmer [20] for Kneser’s inequal-
ity. Its conclusion is that there exists a rank one Bohr set Bβ satisfying µ(Bβ ∆SA,B′(β)) ≤
Cηδ0. Combining this with (13.4) yields

µ(Bβ ∆C ′) ≤ Cηδ0.

Therefore for sufficiently small δ0, the triple (A,B′, C ′) satisfies the hypotheses of Propo-
sition 12.1, with parameters that depend only on η; C ′ nearly coincides with a rank one
Bohr set, and D(A,B′, C ′) is small. The proposition states that A and B′ consequently
also nearly coincide with rank one Bohr sets; in particular, there exists a rank one Bohr
set B′A satisfying

µ(B′A ∆A) ≤ CηD(A,B′, C ′)1/2 ≤ Cη(δ0/η)1/2

for some finite constant Cη. The last inequality is (13.2).
With this control of A we return to the originally given triple (A,B,C). For suffi-

ciently small δ0, the η-strictly admissible, η-bounded triple (A,B,C) satisfies the hypothe-
ses of Proposition 12.1, since A is now known to nearly coincide with a rank one Bohr
set. The proposition states that there exists a compatibly centered parallel ordered triple
(BA,BB,BC) of rank one Bohr sets satisfying

µ(A∆BA) + µ(B∆BB) + µ(C ∆BC) ≤ CηD(A,B,C)1/2.

This completes the proof in Case 1. �

Case 2: µ(A) ≤ 1
2 and µ(C) > (1− η

50)µ(B).
In this case, η–strict admissibility and η–boundedness together with sufficient smallness

of δ0 ensure that (A,B,C) satisfies the hypotheses of Lemma 7.3. Therefore, with τ defined
by µ(C) = µ(A) + µ(B)− 2τ , there exist measurable sets C ′ ⊂ C and A′ ⊂ A that satisfy

(SC′,A(τ), C ′, A) is η/4–strictly admissible and η/4–bounded

D(SC′,A(τ), C ′, A) ≤ 16D(C,B,A)

µ(C ′) = µ(A′) = µ(C)− 1
10ηµ(B),
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while 
(SC′,A′(τ), C ′, A′) is η/2–strictly admissible and η/2–bounded

D(SC′,A′(τ), C ′, A′) ≤ 16D(C,B,A)

µ(SA′,C′(τ)) ≤ (1− η/2
50 )µ(C ′).

The triple (SA′,C′(τ), C ′, A′) falls into Case 1 above, with parameters that depend only on
η. Therefore, if δ0 is sufficiently small then there exists a rank one Bohr set BC′ satisfying

µ(C ′∆BC′) ≤ CηD(SA′,C′(τ), A′, C ′)1/2 ≤ Cηδ
1/2
0 .

Setting F := SC′,A(τ), the η/4-strict admissibility and η/4-boundedness of the triple
(F,C ′, A) ensure that, for sufficiently small δ0, (F,C ′, A) satisfies the hypotheses of Propo-
sition 12.1. Therefore there exists a rank one Bohr set BA satisfying

µ(BA ∆A) ≤ CηD(F,C ′, A)1/2 ≤ Cηδ
1/2
0 .

By η–admissibility and η–boundeness, (A,B,C) satisfies the hypotheses of Proposition 12.1
provided that δ0 is sufficiently small. Therefore there exists a compatibly centered parallel
ordered triple (B′A,BB,BC) of rank one Bohr sets satisfying

µ(A∆B′A) + µ(B∆BB) + µ(C ∆BC) ≤ CηD(A,B,C)1/2.

�

Case 3: µ(A) > 1
2 .

As discussed in §5, the triple (C,G \ A,G \ B) is η
4 -strictly admissible and η

4 -bounded.

Moreover, since 1
2 < µ(A) ≤ µ(B), µ(G \ A) < 1

2 and µ(G \ B) < 1
2 . Therefore, (C,G \

A,G \ B) falls in the range of one of the two cases already analyzed above. Thus there
exists a compatibly centered parallel ordered triple (BC ,BG\A,BG\B) of rank one Bohr sets
satisfying

µ
(
(G \A) ∆BG\A

)
≤ CηD(C,G \A,G \B)1/2 = CηD(A,B,C)1/2 ≤ Cηδ

1/2

and likewise for µ
(
(G\B) ∆BG\B

)
and for µ(C ∆BC). The equality of D(C,G\A,G\B)1/2

with D(A,B,C)1/2 was established in Lemma 5.5.
For any measurable subsets E1, E2 of G, µ(E1 ∆E2) = µ

(
(G\E1) ∆ (G\E2)

)
. Therefore

the compatibly centered parallel ordered triple (BA,BB,BC) of rank one Bohr sets with
BA := G \ BG\A, BB := G \ BG\B satisfies

µ(A∆BA) + µ(B∆BB) + µ(C ∆BC) ≤ CηD(A,B,C)1/2.

The proof of Theorem 1.3 is complete. �

14. Cases of equality in the Riesz-Sobolev inequality

Theorem 1.2 states that if TG(E) = TT(E?), and if E is admissible, then there exists a TG–
compatibly centered ordered triple of parallel rank one Bohr sets satisfying µ(Ej ∆Bj) = 0
for every j ∈ {1, 2, 3}.

There are two cases in the proof. If E is strictly admissible, then there exists η > 0
such that E is η–strictly admissible and η–bounded. Therefore E satisfies the hypotheses
of Theorem 1.3, the quantitative stability theorem, with δ = 0. That theorem, whose proof
has been completed above, gives the required conclusion.
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If E is admissible but not strictly admissible, then after appropriate permutation of the
three indices, µ(E1) + µ(E2) = µ(E3) < 1, and

〈1E1 ∗ 1E2 ,1−E3〉 = µ(E1)µ(E2) = 〈1E1 ∗ 1E2 ,1G〉.
Therefore 1E1 ∗1E2 = 0 µ–almost everywhere on the complement of −E3, that is, E1 +0E2

is contained in the union of −E3 with a nullset. Thus µ(E1 +0 E2) ≤ µ(E3). The converse
inequality holds by Kneser’s theorem, so µ( ∆ (E1 +0 E2, −E3) = 0. It is a corollary
of more quantitative results of Griesmer [20] and Tao [25] that equality of µ(E1 +0 E2)
with µ(E1) + µ(E2) implies existence of a parallel pair of rank one Bohr sets satisfying
µ(Ej ∆Bj) = 0 for j = 1, 2. Set B3 = B1 + B2. Then (B1,B2,B3) is an ordered triple of
rank one Bohr sets with all required properties. �

15. Stability in the relaxed framework

Theorem 1.6, a stability theorem for the Riesz-Sobolev inequality in the situation in
which indicator functions of sets are replaced by functions taking values in [0, 1], follows
from slight modification of the proof of Theorem 1.3.

Proof of Theorem 1.6. Let f, g, h be as in the statement of the theorem. To simplify nota-
tion, set

M = max
( ∫

f dµ,
∫
g dµ,

∫
h dµ

)
.

With the notation of §12,

〈f ∗ g, h〉G ≤ 〈f? ∗ g?, h?〉T ≤ 〈1A? ∗ 1B? , h
?〉T ≤ 〈1A? ∗ 1B? ,1C?〉T.

As shown in §12, this implies that

‖h? − 1C?‖L1(T) ≤ CD1/2.

Since h has the same distribution function as h?, there exists a set C ⊂ G satisfying

(15.1) ‖h− 1C‖L1(G,µ) = ‖h? − 1C?‖L1(T) ≤ CD1/2.

The same reasoning applies to f and to g, yielding corresponding sets A,B ⊂ T, respec-
tively. Now ∣∣ 〈f ∗ g, h〉G − 〈1A ∗ 1B,1C〉G

∣∣ ≤ CMD1/2,

so, for D sufficiently small as a function of η alone,

〈1A ∗ 1B,1C〉G ≥ 〈1A? ∗ 1B? ,1C?〉T −CMD1/2

= 〈1A? ∗ 1B? ,1C?〉T −C max(µ(A), µ(B), µ(C))D1/2

≥ 〈1A? ∗ 1B? ,1C?〉T −CMD1/2

with the convention that the constant C ∈ (0,∞) may change from one occurrence to the
next. In the final line we have used the fact that max(µ(A), µ(B), µ(C)) is comparable to
M .

Therefore according to Theorem 1.3, there exists a compatibly centered parallel triple
(Ã, B̃, C̃) of rank one Bohr subsets of G such that

|A∆ Ã| ≤ CM1/2D1/4,

with the same bound for |B∆ B̃| and |C ∆ C̃|. In combination with (15.1) and the corre-
sponding results for f, g, this gives

max
(
‖f − 1Ã‖L1 , ‖g − 1B̃‖L1 , ‖h− 1C̃‖L1

)
≤ CM1/2D1/4.
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It is given in the hypotheses of Theorem 1.6 that D/M2 is less than some small absolute
constant that is at our disposal, but no lower bound is given. Therefore this conclusion
is weaker than the desired bound CD1/2. However, any bound of the form oD/M2(1) ·M
is sufficient to place us in the perturbative context of Lemma 9.3, which gives the desired
bound, completing the proof of Theorem 1.6. �

16. A flow of subsets of T

This section and the next develop an alternative approach which, as it now stands,
applies directly only for G = T, but which yields slightly superior results for that group;
the bounds remain appropriately uniform as the measures of A,B,C tend to zero. It is
based on monotonicity of the functional (A,B,C) 7→ TT(A,B,C) under a certain continuous
one-parameter deformation. Such a monotonicity phenomenon is well-known for G = R
[12]. The variant developed here, which applies to T, is less effective than the classical
version for R, but is nonetheless useful. In the present section we develop the deformation
and its basic properties for Kneser’s inequality and for the Riesz-Sobolev inequality. In the
following section we apply it to establish an improved stability theorem for T.

In the present section and in §17, the Lebesgue measure of a subset E ⊂ T is denoted
by |E|. All integrals over T are formed with respect to Lebesgue measure.

Let L(T) be the class of all equivalence classes of Lebesgue measurable sets E ⊂ T with
|E| > 0, and E equivalent to E′ if and only if |E∆E′| = 0. Assuming that |E| > 0, define

(16.1) TE = − ln(|E|) > 0.

In the next theorem, E and Ej denote arbitrary equivalence classes of Lebesgue measurable
subsets of T. For equivalence class A,B, the notation A ⊂ B means of course that any two
representatives of these classes satisfy |B \A| = 0.

Recall that

(16.2) A+0 B = {x : 1A ∗ 1B(x) > 0}.

The inequality |A+B|∗ ≥ min(|A|+ |B|, 1) for all measurable A,B ⊂ G implies that

(16.3) |A+0 B| ≥ min(|A|+ |B|, 1) for all measurable A,B ⊂ T.

Indeed, given A,B ⊂ T, denote by A† ⊂ A and B† ⊂ B the sets of Lebesgue points of A,B,
respectively. From the fact that almost every point is a Lebesgue point, it follows easily
that

A† +0 B
† = A† +B†.

Therefore, since A† ⊂ A and B† ⊂ B, it follows that

|A+0 B| ≥ |A† +0 B
†| = |A† +B†| ≥ min(|A†|+ |B†|, 1) = min(|A|+ |B|, 1),

establishing (16.3) for A,B.

Theorem 16.1. There exists a flow (t, E) 7→ E(t) of elements of L(T), defined for t ∈
[0, TE ], having the following properties.

(1) E(0) = E and E(TE) = T.
(2) E(s) ⊂ E(t) whenever s ≤ t.
(3) |E(t)| = et|E| for all t ∈ [0, TE ].
(4) |E(s) ∆E(t)| → 0 as s→ t.

(5) If E ⊂ Ẽ then E(s) ⊂ Ẽ(s) for all s ∈ [0, TẼ ].
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(6) e−t|E1(t) ∆E2(t)| ≤ e−s|E1(s) ∆E2(s)| for all E1, E2 and every 0 ≤ s ≤ t ≤
min(TE1 , TE2).

(7) If 0 ≤ s ≤ t ≤ TE then E(t) = (E(s))(t− s)
(8) If E is the rank one Bohr set {x : ‖φ(x)‖ ≤ r} associated to a nonconstant homo-

morphism φ : T→ T then E(t) = {x : ‖φ(x)‖ ≤ etr}.
(9) (E+ y)(t) = E(t) + y for every E ∈ L(T), y ∈ T, and t ≤ TE. Likewise, (−E)(t) =
−E(t).

(10) The function t 7→ e−t|E1(t) +0 E2(t)| is nonincreasing on [0,min(TE1 , TE2)].
(11) The function t 7→ e−2tT (E1(t), E2(t), E3(t)) is nondecreasing on [0, τ ] provided that

τ ≤ minj∈{1,2,3}(TEj ) and
∑3

j=1 |Ej(τ)| ≤ 2.

Each conclusion is to be interpreted in terms of equivalence classes of measurable sets.
Thus, for instance, A ⊂ B means |B \A| = 0.

As mentioned earlier, a flow with variants of these properties is known for R. See for
instance a discussion in [12]. Such a flow acting on a dense class of sets, namely finite
unions of intervals, is discussed in [22]. That it extends to arbitrary sets has been known
to experts [7], though it seems not to have been extensively discussed in the literature.

The flow for R [12] preserves Lebesgue measures, whereas that of Theorem 16.1 does
not. There exists no flow for T that mimics all properties of the flow for R. Indeed, a rank
one Bohr set E ⊂ T is a union of small intervals centered at the elements of a finite cyclic
subgroup H of T, or at elements of a coset of H. E satisfies |E+E| = 2|E| if |E| < 1

2 , so E
realizes equality in the sumset inequality. There is no way to continuously deform one such
set E to another, through sets satisfying |E(t) + E(t)| = 2|E(t)| with |E(t)| independent
of t, if the two sets in question are associated to subgroups H having different numbers of
elements.

The flow of Theorem 16.1 lacks another key property of its analogue for R, a lack which
may appear to severely limit its utility, although we will show in the next section that it
is nonetheless a valuable tool. The functionals e−2tT (E1(t), E2(t), E3(t)) and e−t|E1(t) +0

E2(t)| are only defined with desired monotonicity properties for t ≤ T , for a certain terminal
time T . The defect is that the sets Ej(T ) reached at the terminal time need not possess
any particular structure (such as Ej(T ) = Ej(T )? up to translation, or Ej(T ) = T). In
contrast, the corresponding flow for R deforms each set Ej to its symmetrization E?j .

Proof. The proof is nearly identical in many respects to that of a corresponding result for
R proved in [12], with the exception of the conclusion concerning |E1(t) +0 E2(t)|. We will
provide only a sketch which deals with those points at which differences arise.

One begins by defining t 7→ E(t) in the special case in which E is a finite union of
closed intervals. One verifies the stated properties in that case, then uses these properties
to show that the flow extends to L(T) via uniform continuity with respect to the metric
ρ(E,E′) = |E∆E′|.2

Let E = ∪jIj (a finite union), where Ij ⊂ T is a closed arc of length |Ij | with center cj ,
and these closed arcs are pairwise disjoint. Define E(t) = ∪jIj(t), where Ij(t) is the arc
with center cj and length et|Ij |, for all 0 ≤ t ≤ T1, where T1 is the smallest t for which some
pair of arcs Ii(t), Ij(t) intersect. Any two arcs that do intersect share only an endpoint (or
two endpoints, in the case in which the union has length 1). Thus E(T1) may be expressed
in a unique way as a disjoint union of finitely many closed arcs, with certain centers. The

2The flow of Theorem 16.1 acts on equivalence classes of sets. Its restriction to finite unions of closed
intervals agrees with the preliminary flow defined on finite unions of intervals, up to Lebesgue null sets.
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number of such arcs is strictly smaller than the number of arcs comprising the initial set
E. Repeat the first step for this new collection of arcs, stopping at the first time T2 > T1

at which intersection occurs. Again reorganize E(T2) as a union of finitely many pairwise
disjoint closed arcs, and repeat until a single arc remains. This occurs, because the number
of arcs is reduced with each iteration, and it is not possible for the number of arcs to exceed
1 if the measure of their union equals 1. Continue until |E(t)| = 1.

We claim that if Ej is a finite union of Nj pairwise disjoint closed arcs for each index
j ∈ {1, 2, 3}, and if τ > 0 is sufficiently small that Ej(t) is defined for t ∈ [0, τ ] and is a
union of exactly Nj pairwise disjoint closed arcs for every t ∈ [0, τ) for each index j, then
e−2tT (E(t)) is a nondecreasing function of t ∈ [0, τ ]. It suffices to prove this for t ∈ [0, T1].

Write 1Ej(t) =
∑Nj

n=1 1Ij,n(t) with the natural notations. Then |Ij,n(t)| = et|Ij,n(0)| for all

indices j, n. By linearity of T , it suffices to show that t 7→ e−2tT (I(t)) is a nondecreasing
function for any triple I(t) = (Ij(t) : j ∈ {1, 2, 3}) of intervals, with centers cj of Ij(t)
independent of t and with lengths |Ij(t)| = et|Ij(0)|. By translation-invariance, we may
assume that c1 = c2 = 0. By reflecting about 0 if necessary, we may assume that the center
c̄3 := −c3 of −I3 satisfies etc̄3 ∈ [0, 1

2 ].
Set lj = |Ij(0)|/2. Now

T (I(t)) =

∫∫
T2

1‖x‖≤etl11‖y‖≤etl21‖x+y−c̄3‖≤etl3 dx dy.

Define K(x) = 1Ĩ1 ∗ 1Ĩ2(x) for x ∈ R, where Ĩj = [−1
2 lj ,

1
2 lj ] ⊂ R. Then, since |I1(t)| +

|I2(t)| < 1 (as t < T1), T (I(t)) can be expressed as

T (I(t)) =

∫
R
et(K(e−tu) +K(e−t(u− 1)))1|u−c̄3|≤etl3(u) du.

Splitting this as a sum of two integrals and substituting u = etx in one and u = ety + 1 in
the other gives

e−2tT (I(t)) =

∫
R
K(x)1−I3−c̄3(x− e−tc̄3) dx+

∫
R
K(y)1−I3−c̄3(y + e−t(1− c̄3)) dy.

Because K is nonnegative, even, and is nonincreasing on [0,∞), each of the two integrals
above represents a nondecreasing function of t for any interval I3. This completes the proof
of monotonicity.

The conclusions of Theorem 16.1 now follow in the same way as in [12], with the exception
of monotonicity of e−t|E1(t)+0E2(t)|, which was not discussed there. Set E3 = −(E1+0E2).
Then T (E1, E2, E3) = |E1||E2|. We have shown above that t 7→ e−2tT (E1(t), E2(t), E3(t))
is a nondecreasing function of t. In particular,

e−2tT (E1(t), E2(t), E3(t)) ≥ T (E1(0), E2(0), E3(0)) = T (E1, E2, E3) = |E1| · |E2|.

But ∫
T

1E1(t) ∗ 1E2(t) ≤ |E1(t)| · |E2(t)| = e2t|E1| · |E2|.

Therefore ∫
−E3(t)

1E1(t) ∗ 1E2(t) =

∫
T

1E1(t) ∗ 1E2(t),

forcing {x : 1E1(t) ∗ 1E2(t)(x) > 0} ⊂ −E3(t) up to a Lebesgue null set. Therefore

e−t|E1(t) +0 E2(t)| ≤ e−t|E3(t)| = |E1 +0 E2|.
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If 0 ≤ s ≤ t then Ej(t) = (Ej(s))(t− s), so the general relation

e−s|E1(s) +0 E2(s)| ≤ e−t|E1(t) +0 E2(t)|

follows from the case s = 0. �

Remark 16.1. An equivalent formulation of the monotonicity of e−2tT (E1(t), E2(t), E3(t))
is that t 7→ e−2tD(E1(t), E2(t), E3(t)) is nonincreasing on [0, τ ], provided that τ ≤ minj∈{1,2,3} TEj
and

∑3
j=1 |Ej(τ)| ≤ 2. The monotonicity will be invoked in this form.

Indeed, for t ∈ [0, τ ],

e−2tD(E1(t),E2(t), E3(t))

= e−2tT
(
E1(t)?, E2(t)?, (−E3(t))?

)
− e−2tT

(
E1(t), E2(t),−E3(t)

)
= e−2tT

(
E?1(t), E?2(t), (−E3)?(t)

)
− e−2tT

(
E1(t), E2(t), (−E3)(t)

)
= T

(
E?1 , E

?
2 , (−E3)?

)
− e−2tT

(
E1(t), E2(t), (−E3)(t)

)
.

Now e−2tT
(
E1(t), E2(t), (−E3)(t)

)
is nondecreasing by the final conclusion of Theorem 16.1;

its hypotheses are satisfied since |(−E3)(τ)| = |E3(τ)| and T−E3 = TE3 .

The following remark, which will not be used in this paper but which may nonetheless
be of interest, also follows in the same way as in [12].

Proposition 16.2. Let E ⊂ R1 be a Lebesgue measurable set with finite measure. For each
t ∈ (0, TE ], E(t) equals a union of intervals, up to a Lebesgue null set.

That is, there exists a countable family of pairwise disjoint intervals In(t) such that
|E(t) ∆

⋃
n In(t)| = 0.

The next lemma makes it possible to propagate control of a triple E(t) backwards in
time, with respect to the flow t 7→ E(t), in the analysis of inequality (1.2) for T.

Lemma 16.3 (Time reversal). For each η, η′ > 0 there exist δ1 > 0 and C < ∞ with the
following property. Let E be an η–strictly admissible ordered triple of measurable subsets of
T, satisfying

∑
j |Ej | ≤ 2 − η′ . Let 0 < t ≤ min1≤j≤3 TEj with et − 1 ≤ δ1. Suppose that

there exists y = (y1, y2, y3) ∈ T3 satisfying y1 + y2 = y3 such that

(16.4) |Ej(t) ∆ (Ej(t)
? + yj)| ≤ δ1 max

j
|Ej(t)| ∀ j ∈ {1, 2, 3}.

Then there exists z = (z1, z2, z3) ∈ T3 satisfying z1 + z2 = z3 such that

(16.5) |Ej ∆ (E?j + zj)| ≤ CD(E)1/2 ∀ j ∈ {1, 2, 3}.

Proof. Requiring δ1 ≤ 1, as we may, yields

|Ej ∆ (E?j + yj)| ≤ |Ej ∆Ej(t)|+ |Ej(t) ∆ (Ej(t)
? + yj)|+ |(Ej(t)? + yj) ∆ (E?j + yj)|

≤ (et − 1)|Ej |+ δ1e
t max

k
|Ek|+ (et − 1)|Ej |

≤ (2(et − 1) + δ1) max
k
|Ek|

= O(δ1 max
k
|Ek|).

Therefore, if δ1 is sufficiently small, then E satisfies the hypotheses of Lemma 9.1. The
conclusion of that lemma is the desired inequality (16.5). �
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17. Concluding steps for T

In this section we exploit the properties of the flow developed in §16 to establish an
improvement of Theorem 1.3 for the case G = T. This improvement lies in the absence
of any lower bound for min(m(A),m(B),m(C)). That no lower bound is needed, is to be
expected after the work of Bilu [1] on the sumset inequality.

Theorem 17.1. For each η > 0 there exist δ0 > 0 and C <∞ with the following property.
Let (A,B,C) be an η–strictly admissible ordered triple of Lebesgue measurable subsets of T
satisfying m(A) +m(B) +m(C) ≤ 2− η. Let δ ≤ δ0. If

(17.1)

∫
C

1A ∗ 1B dm ≥
∫
C?

1A? ∗ 1B? dm− δmax(m(A),m(B),m(C))2

then there exists a compatibly centered parallel ordered triple (BA,BB,BC) of rank one Bohr
subsets of T satisfying

(17.2) m(A∆BA) ≤ Cδ1/2 max(m(A),m(B),m(C))

and likewise for m(B∆BB) and m(C ∆BC).

Proof. By Theorem 1.3, the desired conclusion holds for all triples (A,B,C) that addition-
ally satisfy min(m(A),m(B),m(C)) ≥ 1

3η
2.

Now, let (A,B,C) be a triple satisfying the hypotheses of the theorem, but with

min(m(A),m(B),m(C)) < 1
3η

2.

Set E = (E1, E2, E3) = (A,B,C) and consider the flowed triples E(t) for 0 ≤ t ≤ T , with
T chosen so that

min
j=1,2,3

m(Ej(t)) = 1
3η

2.

That is, 1
3η

2 = eTm, for m := minj=1,2,3m(Ej).
For all t ∈ [0, T ], the triple E(t) is η-strictly admissible. Setting M := maxj=1,2,3m(Ej),

the η-strict admissibility of E ensures that

max
j=1,2,3

m(Ej(T )) = eTM ≤ eTmη−1 = 1
3η,

whence
3∑
j=1

m(Ej(t)) ≤ η ≤ 2− η for all t ∈ [0, T ].

Moreover, the assumption D(E) ≤ δM2 together with the monotonicity of the Riesz-
Sobolev functional under the flow discussed in §16 imply that

D(E(t)) ≤ e2tD(E) ≤ e2tδM2 = δ max
j=1,2,3

m(Ej(t))
2 for all t ∈ [0, T ].

The triple E(T ) enjoys the additional property that it is η2-bounded, and therefore
satisfies the hypotheses of Theorem 1.3 with parameters depending only on η. It follows
that, provided that δ0 is sufficiently small as a function of η alone, there exists a compatibly
centered parallel ordered triple B := (B1,B2,B3) of rank one Bohr sets with

m
(
Bj ∆Ej(T )

)
≤ Cδ1/2 max

j=1,2,3
m(Ej(T )).
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Assuming again that δ0 is sufficiently small as a function of η, the time reversal Lemma
16.3 can be applied in a straightforward series of reverse time steps to conclude that there
exists a compatibly centered triple (B′1,B′2,B′3) of rank one Bohr sets such that

m(B′j ∆Ej) ≤ CD(E)1/2

for each j ∈ {1, 2, 3}. �
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