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ABSTRACT

Electrical conduction among cardiac tissue is commonly modeled with partial differential equa-
tions, i.e., reaction-diffusion equation, where the reaction term describes cellular stimulation and
diffusion term describes electrical propagation. Detecting and identifying of cardiac cells that pro-
duce abnormal electrical impulses in such nonlinear dynamic systems are important for efficient
treatment and planning. To model the nonlinear dynamics, simulation has been widely used in
both cardiac research and clinical study to investigate cardiac disease mechanisms and develop
new treatment designs. However, existing cardiac models have a great level of complexity, and
the simulation is often time-consuming. We propose a deep spatio-temporal sparse decomposition
(DSTSD) approach to bypass the time-consuming cardiac partial differential equations with the
deep spatio-temporal model and detect the time and location of the anomaly (i.e., malfunctioning
cardiac cells). This approach is validated from the data set generated from the Courtemanche-
Ramirez-Nattel (CRN) model, which is widely used to model the propagation of the transmem-
brane potential across the cross neuron membrane. The proposed DSTSD achieved the best
accuracy in terms of spatio-temporal mean trend prediction and anomaly detection.

1. Introduction the existing studies focus on analyzing raw time series data
to detect abnormal patterns. Currently, the identification of
cardiac cells that initiate and maintain irregular electrical
activities remains challenging. This paper focuses on detect-
ing and locating dissimilar cellular stimulation (i.e., anom-
aly) from a large number of mnormal cells whose
transmembrane potentials either stay at a constant value or
vary regularly in a normal way by analyzing signals (i.e.,
changes of transmembrane potential overtime) generated
from individual cells. Detecting when and which cells initi-
ate the abnormal electrical impulses is important for effi-
cient treatment design and planning. More literature on
anomaly detection based on the cardiac electrical conduction
will be discussed in Section 2.1.

There are significant challenges involved in detecting the
anomaly from normal cardiac electrical activities. The first

Cardiac arrhythmia is a group of conditions where the
heartbeat is irregular. Common conditions include ventricu-
lar tachycardia, atrial flutter, ventricular fibrillation, etc.
These conditions occur when abnormal and chaotic elec-
trical impulses cause heart chambers to quiver ineffectively
instead of pumping blood to support the body. Such abnor-
mal activities can result in serious complications such as
stroke and even sudden death. For arrhythmias that can not
be treated with medications, surgical procedures can be
done to locate abnormal cardiac cells that initiate disorders
and burn the tissue to stop the abnormal electrical activities.
However, the identification of abnormal electrical impulses
and problematic tissue is challenging.

Detection and identification of the cardiac cells that cause
arrhythmia can be defined as an anomaly detection problem.

Anomaly detection is not a new concept in cardiac research.
Many studies have been done to identify dissimilar heart-
beats in Electrocardiogram (ECG) to aid cardiac diagnosis.
The majority of these studies use signal processing and
machine learning techniques to distinguish unusual wave-
forms in ECG and detect abnormal cardiac events (Kropf
et al., 2018). In addition, works have been done to detect
anomalies in time series of multi-parameter clinical data to
distinguish critical from non-critical conditions for patients
undergoing heart surgery (Presbitero et al., 2017). Most of

challenge is that normal cardiac activities usually present
very complicated spatio-temporal patterns. To study such
patterns, computer models across different organizational
scales, including cellular models, tissue models, and organ
models, are often used. The cardiac cell model describes the
transmembrane potential as a function of time by an ordin-
ary differential equation, and the measurement of the trans-
membrane potential waveform signifying the electrical
activity of cardiac cells is known as action potential (Xie
et al., 2002). The propagation of electrical waves in cardiac
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tissue is modeled by a reaction-diffusion equation where the
reaction term describes the cellular stimulation, and the dif-
fusion term represents cell-to-cell interactions. For example,
the Courtemanche-Ramirez-Nattel (CRN) model was devel-
oped (Courtemanche et al, 1998), which consists of over
seventy coupled equations to describe cardiac depolarization
and repolarization.

The second challenge is that anomaly can happen at any
location, time, and magnitude with complex spatio-temporal
propagation behavior. This paper aims to model the prema-
ture firing of the transmembrane potentials due to either
abnormal diastolic depolarization or after repolarization,
which is one of the major causes of cardiac arrhythmia,
such as atrial fibrillation. In the experiments, the regular/
periodic stimulation triggers the normal electrical conduc-
tion, and the irregular/random stimulation is given to trig-
ger abnormal stimulation. We are interested in detecting
abnormal stimulation from regular and periodic electrical
activities. Anomaly, due to the remodeling of individual car-
diac cells, is often sparse. One specific challenge is that if
the anomaly is not detected timely after its initiation, it will
be propagated throughout the entire system and become
hard to identify the exact time and location when or where
it starts.

The third challenge is that although many simulation
models such as CRN provides accurate quantification of car-
diac cellular functions, they may suffer from high computa-
tional time and unknown parameters. For example, when
the cardiac model extends to the higher organizational
scales, e.g., tissue and organ scales, the simulation is very
time-demanding. Furthermore, the identification and cus-
tomization of the CRN model to specific applications are
challenging since it involves unobservable variables (e.g., ion
channel gating variables), which are difficult to measure in
in-vitro/in-vivo experiments.

To address these challenges, we propose to learn a meta-
model to replace the time-consuming simulation models.
Cardiac electrical propagation is inherently a spatio-tem-
poral process with transmembrane potential changing in a
nonlinear fashion in the temporal domain and electrical
waves propagating in the spatial domain. Therefore, deep
spatio-temporal models can be constructed to learn the hid-
den dynamics in the spatio-temporal processes. Deep neural
networks such as convolutional neural networks (Krizhevsky
et al., XXXX) and recurrent neural networks (Mikolov et al.,
XXXX) have been proved as efficient models to describe the
complex spatio-temporal processes. For example, deep learn-
ing has recently been used as a metamodel to replace the
traditional partial differential equations (PDE) in cardiac
simulation and has achieved great prediction accuracy (Yan
et al,, 2019). This can be realized by learning the hidden
dynamics of the spatio-temporal process from simulation
data generated by realistic cardiac models.

In many cases, it is important not only to model the nor-
mal spatio-temporal patterns but also to detect when and
where the anomaly would happen (i.e., the cardiac cells that
produce irregular electrical impulses). In literature, spatial-
temporal smooth-sparse decomposition was proposed to
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detect sparse anomalies from the smooth spatial and tem-
poral mean trend (Yan et al., 2018). However, due to the
assumption of the linear basis representation for the compli-
cated spatio-temporal foreground, it is not suitable to model
complicated spatio-temporal patterns in the cardiac electrical
conduction. Furthermore, since the time interval of such
impulse is short and the anomaly pattern follows the same
spatiotemporal propagation rule (e.g, CRN equation)
according to the normal patterns. Therefore, it creates sig-
nificant challenges in anomaly detection in such complicated
systems. How to apply such deep learning methods for real-
time spatio-temporal metamodeling and anomaly detection
has not been fully discussed yet in literature, especially for
cardiac electrical simulation. More discussions will be pro-
vided in Section 2.

In this paper, we will focus on developing a new deep
spatio-temporal sparse decomposition (DSTSD) method,
which combines the power of the deep neural network to
represent the complicated spatio-temporal patterns of the
mean trend and the decomposition framework to separate
the sparse anomaly from the mean trend. More specifically,
two spatio-temporal model architectures are combined into
the proposed DSTSD, namely the ConvLSTM and
ConvWaveNet, for metamodeling and model the nonlinear
dynamics of the cardiac electric conduction. We demon-
strate that in the case of highly nonlinear spatio-temporal
systems, the proposed DSTSD method can achieve both the
smallest detection delay and accurate localization of
the anomaly.

In conclusion, the rest of the paper is organized as fol-
lows. Section 2 reviews the related literature in cardiac elec-
trical conduction modeling and spatio-temporal anomaly
detection. Section 3 gives the motivating example of our
study for transmembrane potential simulation. Section 4
introduces the proposed DSTSD methodology for spatio-
temporal metamodeling, spatio-temporal mean trend predic-
tion, and anomaly detection. Section 5 shows the simulation
study to demonstrate the performance of the proposed
method for both long-term prediction and anomaly detec-
tion. Section 6 concludes the paper with future work.

2. Literature review

In this section, we will first review the literature on model-
ing and anomaly detection of Cardiac Electrical Conduction.
We will then review some data-driven methodology on the
monitoring and diagnosis of spatio-temporal data.

2.1. Cardiac electrical conduction modeling and
anomaly detection

Modeling and analysis of irregular cardiac electrical conduc-
tion have been widely studied in the literature, including the
efficient numerical simulation model (Collet et al., 2017;
Kaboudian et al., 2019). To detect anomalies in such com-
plex spatio-temporal systems, we briefly classified the cur-
rent methodology applied to the «cardiac electrical
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conduction Modeling into model-based, metamodel-based
and statistical-based methodology.

In the first category, most of the works have been focused
on using a model-based control method to control the
anomaly (Dubljevic et al., 2008). For example, Garzon et al.
(Garzén et al,, 2014) proposed a model-based continuous-
time feedback control methodology to suppress the anomaly.
Marcotte and Grigoriev (Marcotte & Grigoriev, 2016) pro-
posed an adjoint eigenfunction method to provide localiza-
tion for the dynamics and control of the unstable spiral
wave. Some efforts to reduce the computational complexity,
including Galerkin projection (Garzén et al., 2014) and
numerical approximation (Kaboudian et al., 2019) have been
proposed. However, the major limitations of the model-
based methodology are that these models require all the
complex dynamic models and parameters to be known,
which may not be feasible in practice.

In the second category, metamodeling has been a popular
approach that helps reduce model complexity with unknown
dynamics models and overcome computational challenges.
Gaussian Process (GP) model has been a popular choice to
extract information from high-dimensional data. Especially,
the GP model is widely used to model the shape of the
action potential (Chang et al., 2015; Johnstone et al., 2016;
Mirams et al., 2016). However, the major limitation of GP
models is that GP models lack the ability to perform long-
term prediction and are often computationally inefficient,
which is not a good candidate for metamodeling and real-
time anomaly detection purpose.

In the third category, machine learning methods are
applied to detect irregular behavior. For example, Yang et al.
(Yang et al., 2013) proposed a classification model by com-
bining a feature embedding technique and a self-organizing
map to classify different types of myocardial infarction. For
unknown anomaly detection, Loppini et al. (Loppini et al,
2019) proposed to use the statistical correlation functions to
detect irregular behaviors. Greisas et al. (Greisas et al., 2015)
proposed to Principal Component Analysis (PCA) for the
detection of abnormal cardiac activity. However, without a
good metamodel, it is often hard to accurately infer the
time, location, and magnitude of the external stimulation.

2.2. Spatio-temporal anomaly detection literature

Here, we will review some data-driven methodology on the
monitoring and diagnosis of spatio-temporal data. Current
research in this area can be classified into three groups:
principal component analysis-based approach, functional
data analysis-based techniques, and deep learning-
based methods.

In the first group, principal component analysis (PCA) is
one of the most popular methods for spatio-temporal data
dimension reduction because of its simplicity, scalability,
and data compression capability. For example, PCA (Liu,
1995), multivariate functional PCA (Paynabar et al., 2016),
tensor-based decomposition method (Yan et al., 2015),
multi-resolution PCA (Bakshi, 1998), subspace learning
(Zhang et al, 2018) have been proposed to reduce the

dimensionality and then apply the control chart on the low-
dimensional embedding and the residual space. The main
drawback of current PCA-based methods is that they cannot
be directly used for spatio-temporal data streams with a
time-varying mean.

The second category attempts to model the spatio-tem-
poral data as functional data by modeling the data structure
by a set of known spatial or temporal basis, kernel, and
covariance structure. For example, non-parametric methods
based on local kernel regression (Qiu et al., 2010; Zou et al.,
2008, 2009), splines (Chang & Yadama, 2010) and wavelets
(Paynabar & Jin, 2011) are proposed. Other works such as
longitudinal data analysis (Qiu & Xiang, 2014; Xiang et al,,
2013), Gaussian process (Cheng et al., 2015) are also pro-
posed. However, these methods do not directly model the
structure of the anomaly. Therefore, decomposition-based
approaches have become popular due to the ability to
decompose the anomaly signals directly from the complex
spatio-temporal trend (Yan et al, 2018). However, one
major drawback of the decomposition method is that these
methods assume the spatio-temporal data can be represented
by a set of known basis or kernels, which failed to model
the complicated spatio-temporal structure of the signal.

To monitoring complicated spatio-temporal systems,
deep learning methods such as convolutional neural net-
works and generative adversarial networks have been
applied. We can divide the current literature for deep learn-
ing in spatio-temporal anomaly detection into two classes:
Unsupervised autoencoder approaches and supervised spa-
tio-temporal regression. For the autoencoder approaches,
spatio-temporal autoencoders (Zhao et al., 2017) and
Generative Adversarial Nets (Ravanbakhsh et al., 2017) have
been proposed to detect anomalous events. The autoencoder
approaches can dramatically reduce the dimensionality of
the original problems, and the monitoring statistic is often
defined as a function of the model residual. In literature,
prediction-based deep learning methods have also been used
for anomaly detection. For example, feed-forward convolu-
tional networks are proposed in (Mathieu et al., 2015) for
video prediction by minimizing the mean square error of
future prediction. Another deep learning framework for
anomaly detection (Munawar et al., 2017) utilizes the
unsupervised learning method to extract features and then
detect irregularities through a prediction system. For either
supervised and unsupervised anomaly detection problems in
literature, no existing works exist to separate the anomaly
signals from the original spatio-temporal mean trend.

3. Motivating study: electrical propagation through
one-dimensional cell string based on
Courtemanche-Ramirez-Nattel (CRN) model

In this study, Courtemanche-Ramirez-Nattel (CRN) model
(Courtemanche et al., 1998) was used to simulate the trans-
membrane potential of individual cardiac cells. CRN model
is a detailed model that describes the complex mechanism
of cardiac electrical signaling in human atrial cells. The
mono-domain tissue model is adopted to simulate the
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Figure 1. Here shows the data generated by the CRN model with a single stimulation at the 1% cell. The X axis and Y axis in Fig. 1a, c and b represent time and
space (cell) index correspondingly. The X axis and Y axis in Fig. 1d represent space(cell) index and the magnitude of cell potential. Fig. 1a describes the raw signal
in a 2D plot. It shows the magnitude of the potential at different spatial-temporal locations. Figure 1d is an example of potential along with the cells at t=700.
Figure 1c describes the stimulation where regular stimulation is marked in black, and abnormal stimulation is marked in red. For Case |, there are repeated normal
stimulation at the 1% cell and the abnormal stimulation happens randomly along the cells. Figure 1b visualize one example of abnormal stimulation at t = 700.

electrical wave propagation on a one-dimensional (1D) cell
string. CRN model is a physiologically realistic model for
human atrial cells, which provides a detailed description of
ionic channel gating. More specifically, it models the com-
plex spatio-temporal dynamics of transmembrane potential,
which is defined as the difference in the electric potential
between the interior and the exterior of the biological cell,
by partial differential equations (PDE) defined in (1).

Qu(t,s)  Tion(u(t,s),v(t,s)) &u(t, s)

o Con FO—5a Telbs) M
ov(t,s)
T = h(u(t,s),v(t,s)). (2)

Here, t represents time and s indicates spatial location.
u(t, s) is the transmembrane potential, v(¢,s) is a vector of
variables associated with the ion channel conductance (gat-
ing variables). c(t, s) is the external stimulus, C,, is the total
capacitance, and D is the isotropic diffusion coefficient
determined by gap junction resistance, surface-to-volume
ratio, and membrane capacitance (Courtemanche et al,
1998). I, is the summation of 12 different ion channel cur-
rents, which are controlled by u(t, s) and v(t,s) with over 70
equations. These equations are compactly represented by
h(u(t,s),v(t,s)) in (2), and their detailed expressions as well
as model parameters used for the data generation can all be
found in (Xie et al, 2002). In reality, the transmembrane

potential u(t, s) can often be measured (i.e., observable), but
the ion currents I;,, and the associate hidden variable v(t,s)
are often hard to obtain (i.e., unobservable). Although I,
and v(t,s) are unobservable, it is known that they take into
effect on the transmembrane potential within different peri-
ods, such as the sodium currents affect the rising of u(t, s)
while potassium currents influence its restoration. It is such
a phenomenon that motivates the proposed modeling struc-
ture in the next section. The CRN model has been popularly
used in many studies to simulate both normal heart func-
tions and cardiac disorders such as atrial fibrillation (Harrild
& Henriquez, 2000; Xie et al., 2002; Zahid et al., 2016).
However, due to its computational complexity, metamodel-
ing techniques are important to reduce computational com-
plexity. The details of the CRN model can be found in
(Courtemanche et al., 1998).

Figures 1 and 2 show two different simulations of the
spatio-temporal propagation on a one-dimensional cell
string consisting of 1500 cells. The horizontal axis shows the
propagation time in milliseconds, and the vertical axis shows
the cell index. Periodic stimulation is given to the Ist cell in
the first case and to the Ist and 600th cells in the second
case. Figres la and 2a show the spatio-temporal map of
transmembrane potentials. Figures 1b and 2b show the mag-
nified spatio-temporal 2D map between 600 ms and 800 ms
around the anomaly regions (between the 1250th cell and
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Figure 2. Here shows the data generated by the CRN model with two stimulation at the 1% cell and the 600 cell. Figure 2a describes the raw signal in a 2D plot.
Figure 2d is an example of potential along with the cells at t =700. Figure 2c describes the stimulation where regular stimulation is marked in black, and abnormal
stimulation is marked in red. Figure 2b visualize one example of abnormal stimulation at t = 700.

the 1500th cell). The anomalies at t =700 are highlighted by
red squares. Further, Figs. 1c and 2c mark the regular and
abnormal stimulation, and Figs. 1d and 2d show the 1D
spatial map around these anomaly regions (i.e., the trans-
membrane potentials along the cell string).

In both cases, every other stimulation dies out and does
not propagate like others. This is due to the refractoriness of
the cardiac cell, where immediate stimulation after repolari-
zation within in the cell refractory period cannot be initi-
ated. The refractoriness of the cardiac cell can change the
propagating direction when two waves merge together, as
seen in the right case. It is essential to model such refrac-
toriness to capture the complex and dynamic activities of
cardiac electrical waves. Besides the regular stimulation,
there are also signals caused by irregular stimulations due to
the malfunction of the cardiac cells.

The goals of this paper are to (1) develop a metamodel-
ing framework to learn the nonlinear spatio-temporal
dynamics from the data/observations and apply it to predict
the spatio-temporal conduction of electrical waves in future
times. Here, the CRN model will be used as a case study to
test and validate the proposed method. However, the pro-
posed metamodeling framework can be generally applied to
other spatio-temporal systems as well and greatly improve
computational efficiency without losing too much accuracy.
(2) given the metamodel, design a real-time anomaly detec-
tion strategy to localize and separate the abnormal

stimulation (i.e., anomaly) automatically from incoming
observations.

4. Methodology

In this subsection, the proposed deep spatio-temporal sparse
decomposition (DSTSD) method is introduced in Section
4.1. We will then discuss two deep spatio-temporal architec-
tures that are useful to model the complicated spatio-tem-
poral structure in Section 4.2, namely the convolutional
WaveNet (Conv-WaveNet), and convolutional long short-
term memory (Conv-LSTM). In addition, to optimize the
deep learning algorithm in the presence of the outlier, we
proposed a robust spatio-temporal learning procedure,
which estimates the parameters of DSTSD in Section 4.3. In
Section 4.4, we discuss how the trained DSTSD can be used
to achieve long-term prediction of the spatio-temporal mean
trend. In Section 4.5, we proposed to through solving the
inverse problem through a buffer-window approach to give
a more accurate estimation of the anomaly. In Section 4.6,
the estimated anomaly will be used to conduct a likelihood
ratio test to give an alarm as soon as the anomaly is
detected. Finally, in Section 4.7, we introduce procedures for
the selection of tuning parameters.

Finally, in this paper, we will use non-bold symbols to
represent scalar, bold symbol a to represent vectors, capital



bold symbol A to represent matrices. For a more detailed
notation table, please see the online Appendix.

4.1. Deep spatio-temporal sparse decomposition

In this paper, we focus on the modeling of complicated non-
linear spatio-temporal dynamics in the HD (high dimen-
sional) data streams. For simplicity, we begin with profile
data and suppose a sequence of profiles {y;}"_, are available
at n different time instances t = [1y, ..., 7,]" . For each profile,
we assume the observations are taken at the same group of
p spatial locations, denoted as x = [xl,...,xP]T. It is worth
noting that the observation locations can vary for different
profiles and it does not introduce any complexity to the
implementation of the proposed method. Then, for the i
profile, we have y, = [y(‘c,-,xl),...,y(ri,xp)]T. In addition, the
i profile is assumed to be decomposed as y, = p; +e;,
where p, = [u(ri,xl),...,u(ri,xp)]T is the mean trend and
e; = [e(ti,x1),....e(1;,Xp)]" represents the observation noise.
Thus, the objective of this research is to infer the dynamics
governing u(t,s) for long-term prediction and anomaly
detection. However, due to the complexity of the underlying
mechanism and the scarcity of the available information,
this is difficult to be accomplished using basic modeling
approaches. For example, suppose we are interested in esti-
mating the dynamics of transmembrane potential, that is,
u(t,s) = u(t,s). As described in section 3, u(t, s) is the only
variable that can be observed, whose evolution is collectively
regulated by a bunch of unobserved variables, i.e., I, and
v(t,s), through lots of nonlinear equations. These special
features complicate the estimation of the underlying dynam-
ics of u(t, s). Therefore, we introduce a deep spatio-temporal
sparse decomposition (DSTSD) structure to achieve the
research goal.

To learn the complex dynamics, the evolution of u(t,s) at
location x, is assumed to be governed by the following
equation:

:u(TiH)xq) = :u(rirxq) +f({:uj}]§l) + Ciy1. (3)

This assumption indicates that the difference of the mean
trend at a specific location, ie., pu(tit1,xq) — p(Ti %), is
controlled by two components. The first component f(-) is a
complicated function to be modeled using a neural network,
which takes the historical trajectories at all p locations as
inputs. Introducing the mean at other locations is to model
the interaction among different spatial locations. The intu-
ition for incorporating historical information of u(t,s) in
the dynamics is based on the observation of the CRN model.
As mentioned in section 3, the unobservable take into effect
the transmembrane potential within different time periods.
Thus, the information within the former can be extracted

from the historical information of the latter, ie., {”J}j<i'

The second component ¢; = [c(t;%1), ..., c(t,-,xp)]T is the
external stimulation exerted on the system. To detect the
anomaly, we assume that the stimulation at time 7; can be
decoupled as ¢; = r; + a;, where r; is the regular stimulation
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as shown in black in Fig. lc, and a; is the abnormal stimula-
tion as shown in red in Fig. lc.

In reality, we can not directly use (3) to estimate u;,
given {4} . for the following two reasons: 1) the system
dynamic f(-) is often unknown. 2) We only have noisy
observations of {g;} |, ie, {y;};_,. To estimate {m}
given {y;}'_, without knowing the system dynamics f(-), we
propose another function g(-), which can take the noisy
observation {y,} j<; as input to estimate the system dynam-
ics. To put it simply, g(-) estimate the differences of p; | —
u;. In addition, to better capture the abnormal stimulation,
a spatial basis B, is assumed to be existed to decompose a;
as a; = B,0,,;, where 0,; are the temporal coefficients of
the anomaly at time 7, The spatial basis of the anomaly
should represent the spatial structure of the anomaly. Here,
we assume that the anomaly is a local clustered region,
therefore, a spline basis is used. To put things together, we

can have (4):
Yie1 = H; +g({Y]‘}jSi§ 9) + i1+ Balg i1 + €. (4)

where 6 is the parameters of function g(-). Although the
proposed structure is motivated by the CRN model, we
would like to emphasize that it is very general and can be
applied for other spatio-temporal dynamics.

To estimate 0, and 0,;, we propose a penalized regres-
sion model to estimate all the parameters through the fol-
lowing loss function

10,00,1) = > [l vi1— 8 ({Vi}fsﬁ 0) —
i=1

(5)
—B04,i+1 — rit ||2
2 Rp; +9[104,i1]
where || - ||, is the L; norm operator, and 4 and y is the tun-

ing parameter to be determined by the user. Au! Ry, encour-
ages the smoothness of background and y|0, |, encourage
the sparsity of the anomalous regions. The Matrix R is the
regularization matrix that controls the smoothness of the
mean function p;. For example, one popular choice for R is
that R=D'D, where D is the second-order differential
1 -2 1

operator as D = T
1 -2 1

Therefore, in the following chapters, we will first discuss
two variants of the spatio-temporal model architectures g(-)
for the spatial-temporal mean trend of the functions and
then discuss how to estimate g; in the current framework.

4.2. Spatio-temporal model architectures for u,

In this subsection, we will evaluate two popular deep learn-
ing architectures for the complex spatio-temporal dynamic
models g({yj}jgi; 0) in (4), inspired by the CRN equation in

(1). In literature, there are many spatio-temporal models
that can be used. Here, we are specifically interested in non-
linear methods with long-term prediction capacity. We will
also evaluate which model is able to predict the
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refractoriness effect of cardiac cells. More specifically, we
will focus on two specific models Convolutional WaveNet
(Conv-WaveNet) and Convolutional Long Short-Term
Memory Networks Model (Conv-LSTM) due to their ability
to model the long-term dependency. More details about the
specific architecture are discussed in the supplemen-
tary material.

4.2.1. Convolutional WaveNet (Conv-WaveNet)

WaveNet was originally introduced to model and generate
realistic audio waveforms by considering the long-term
dependency of the time sequence by the use of deep dilated
convolution to increase the receptive field to model long-
term dependency. We propose to extend the WaveNet archi-
tecture with spatial convolution such that the complex spa-
tial correlation and long-term dependency can be modeled
simultaneously (vOord et al, 2016). Here, we denote the
size of the receptive window as w,.

g({yj}jgt; 0) =8(Yiow:0)

Therefore,  g(y, ,,.;0) is a  function  of
Yiow Yiw,s1> - ¥s- Here, the receptive field w, = 24, where
d is the number of dilated convolutional layers in the deep
neural network. The benefit of using the WaveNet architec-
ture is that the receptive field increases exponentially with
the depth so that the long-term dependency can be modeled.
More details about the Conv-WaveNet architecture are dis-
cussed in the supplementary material.

4.2.2. Convolutional long short-term memory networks
model (Conv-LSTM)

LSTM 1is one type of recurrent neural network that is
designed to learn the long-term dependencies. They are
widely used in a large variety of problems, such as time-ser-
ies prediction and natural language processing. However, the
LSTM method is not suitable to model the spatio-temporal
propagation since it uses the fully connected transition
matrices on the hidden state, which cannot take advantage
of the spatial neighborhood structure during the temporal
transition and could potentially lead to the overfitting
(Sainath et al., XXXX). In contrast, Conv-LSTM is proposed
in (Sainath et al., XXXX) to model this local propagation via
the convolutional operator. We use zj, to represent the
memory state of Conv-LSTM at time ¢ and Conv-LSTM is a
recursive function to link the data and previous memory
state as:

z;, = ag(()wf *p+ 0y x 2y, + 0y, 02, + by)

zi, = 0g(Ow, * p, + Oy, x 2, + Oy, 0z, + b))

zZ, =25 02, , + 2 00 (0w, * pu, + 0y, *2p,_, +b;)
zo, = 0g(Ow, * p, + Oy, x 2, + Oy, 0z + b,)

Zh, = Z,, © 0p(Z¢,)

Mgy = M+ 2, + Gy

Again, motivated by the Euler’s equation, the LSTM
model is used to model the difference between p, and p ;.

Here, we use zj, z;,, Z,, Zo,, Zy, to denote the latent state vari-
ables, namely the forget gate, input gate, cell state, output
gate, and hidden state inside the LSTM model, and we use
OWP 0Uf’ va, 0Wi’ BU,., 0\/{, OWL_, 0Uca OVC, OWo’ 0U0s 0\/0 to denote
the parameters for LSTM model (Sainath et al, XXXX),
which are the parameters for the forget gate, input gate, cell
state, and output gate, respectively. Notation o represents
the Hadamard product and * represents the convolu-
tion operator.

4.3. Phase-I analysis

In the Phase-I analysis, we will discuss the algorithm to
optimize 6 and 0,, in the off-line setting for Phase-I ana-
lysis. We assume that a set of spatio-temporal data y;, with
length N; will be collected with i = 1,...,N. To simplify the
cases, we assume that the outliers in Phase-I analysis, if
exist, are often random, which corresponds to B, = I.

We first prove that solving  and 0, in (5) is equivalent
to optimize the @ with the Huber loss function in the fol-
lowing proposition and then the soft thresholding on
the residual.

Proposition 1. When B, =1, in (5), 0 can be solved by
0 = arg minyl,(0) (6)
05,041 = S,/2 (Yi,t+1 - g({Yi, y}ﬂgt; 0) — M~ 1't+1)) (7)

where 1,(0) is defined as:

N N,
1(0) = Z:Z:(p(ym —8({vihiei ) e —r)+ (g
i1 =
/lﬂtTR”t)'
Here, p(x) is the Huber loss function, defined by p(x) =
x? x| < %
7 ) S,(x) = sgn(x)(|x| —7), is the soft
ylxl = 1 || > 5

thresholding operator, in which sgn(x) is the sign function
and x; = max(x,0).

The proof is given in the Supplementary Material.

Finally, given the loss function in (8), the parameter 6
can be solved by the combination of the back-propagation
and the stochastic gradient descent to update the model par-
ameter 0 based on a mini-batch of samples in the k™ iter-
ation. More specifically, in the Conv-WaveNet model, since
gy} 0) =8(yi_y.: 0), g%f(;o) can be directly computed
via the back-propagation. However, for the Conv-LSTM
model, the gradient will flow back into the starting time,
which increases the computational complexity dramatically
for large t. Normally, truncated back-propagation can be
applied to cut the gradient flow in the latest few measure-
ments to decrease the computational complexity.

4.4. Real-time long-term prediction

The previous subsection focuses on training the spatio-
temporal models in the off-line setting. However, since the
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temporal dimension is changing over time, it is not trivial to
apply the model in the online-setting for real-time long-
term prediction. In the example of the cardiac electric con-
duction, it is important to predict the future events in a
couple of cardiac cycles (i.e, heartbeats) for over 500 ms to
1000 ms (At = 0.1ms). In the anomaly detection applica-
tion, the long-term prediction provides references to identify
abnormal stimulation. To achieve this, we will discuss how
to apply the trained model in the online setting in real-time.

In this subsection, we will discuss how to enable the
long-term prediction for both Conv-WaveNet models and
Conv-LSTM models. However, since the temporal depend-
ency of these two models is different, we will discuss them
separately as follows:

Conv-WaveNet: We will discuss how to enable the long-
term prediction for the Conv-WaveNet model. Here, we
denote g, (to + At) as the At-ahead prediction of u(ty + At)
at time f,. For the long-term prediction, the following
method can be used. We know that p(fp+i+1)=
Ctyriv1 + B(to + 1) + (Vi iy 43 0)- Therefore, we can
derive the following formula for the long-term prediction.

At—1
ﬁto(to +At) = Y, T Zg(ﬁto+i—w,zt0+i§ 0) + Crorar
i=1

Here, typically, in the real-time prediction, we will set the
future anomaly a; = 0. However, in some rare cases, the
future anomaly source is already known a;, this method can
also predict how the system reacts to the
aly accurately.

Conv-LSTM: Similarly, we would like to discuss how to
enable long-term prediction for the Conv-LSTM model.
Unlike the Conv-WaveNet model, the predicted value
i, (to + 1) requires all values y, t = 1,...tp. We divide the
long-term prediction into two phases: the warm-up phase
and the prediction phase. In the warm-up phase, we will
start with y, or some value from y,,t < t; to learn a more
accurate memory state representation h, from the original
data as well as estimating the mean trend g, in the past. In
the warm-up phase, the y, is known for t = 1,...t), there-
fore, y, can be used as input for the Conv-LSTM model.
Furthermore, a,, 1 = 9a,t+1 in the phase-I analysis, can be
estimated by (7). In the prediction phase, y, is not known
for t > ty. In this case, we propose to use the future predic-
tion [i, for t > t;. In the long-term prediction phase, if we
know the future stimulation a;, this can be combined in
future prediction. If we do not know where and when the
future stimulation is, we typically set a, = 0.

anom-

4.5. Online anomaly estimation

In this subsection, we will discuss how to apply the pro-
posed algorithm for online anomaly detection. More specif-
ically, we assume that the anomaly is sparse and only
happens at a certain time interval ¢t € [T, Ty + w] (i.e., epi-
demic change (Rackauskas & Suquet, 2004)). This type of
change is very common in the cardiac electrical conduction.
Mathematically speaking, we define the normal and abnor-
mal transition in (9).
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Beii(s) = pe(s) +f(”t($)) +rgt<Tyort>Ty+ T,
Bepi(s) = py(s) +f(l‘t(S)) + 11 +agt € [To, To + Ty,
)

Detecting the epidemic change is very challenging. The
reason is that if we design a control chart methodology only
based on the Q-control chart, designed based on the model
residual such as Q(t) = [ly, -, — g({y }oo, 3O QW
will be small for t < Ty or t > Ty + T,, and only be large
during the epidemic change window ([T, To + Tl
Therefore, if the algorithm fails to detect the anomaly at
time t € [Tp, To + Ty, it may never detect the anomaly
again in the future time ¢ > Ty + T, since the anomaly will
be combined into the future spatio-temporal mean trend in
the next time as u, = u,_| +g({y,},.,_;:0) + a; and results
in small residual Q(¢) for future t' > Ty + T,,.

Another aspect is that when the anomaly happens at time
Ty, it will start with a small magnitude at T, and then
propagate to a large area in the future time ¢ > Ty.
Therefore, it is often much effective to detect such change
from a retrospective perspective to analyze the change point
and location that may happen in the past. However, a full
perspective requires scanning all possible locations of
changes back in time, which is computationally inefficient.

To address this, we propose to use a buffer window to
provide a better estimation of the anomaly event. Suppose
we would like to detect change at time T, we propose to use
T+w to T as a buffer period to estimate the source of the
anomaly. This may naturally introduce a detection delay due
to the buffer window w but will create a better estimation of
the anomaly. For a special case, w=0, only data y; will be
used to detect the change at time T. For more discussion
about choosing the best buffer period, please refer to
Section 4.7.

This procedure relies on the long-term prediction cap-
acity of the proposed algorithm. For example, we assume
that under this buffer period, the true data y, is not meas-
ured. Therefore, to estimate the change, we have to rely on
the predicted p, when t > T. Therefore, we have:

Pook = By +8({Me by crins 0) + ek + Tk (10)
s.it. k=1,..,w.

Furthermore, in Phase-II monitoring, we assume that the
spatio-temporal model has been trained before, and 6 has to
be estimated. We will rely on the following optimization
algorithms to estimate the 6, ,. Here, one specific challenge
is the recursive formula of g Since p, relies on g, ;, which
in turns relies on a,_;. Therefore, the following loss function
aims to optimize or estimate the anomaly from time T to
T+ w, namely ar to ar;,. The challenge is that the problem
is highly coupled, given the recursion of p, ,, as shown in

(11).

T4+w T4+w

min Y {ly, =l +7 ) 1164l
=T

o, thyer, 14w) =T

11)
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St My, = Hry, +g({”t’}t’<t+k; 0)+
Baﬂa) T+w + | R
) (12)

Hr = U, +g<{:ut’}t'<T; 0) + Baoa,T +rr.

To minimize the regularized loss function in (11), we
propose to first plug in all the p, into the definition of the
py, for t=T,.TH+w as a function p, =p,_, +
g{mp}yn0) +Bl, +r, = =pu({04¢},.,). Finally,
we define the windowed loss function as Ir_7.,({0,,}) in
(13).

T+w

lT—>T+W({0a,t}) = Z HYt - ”t({o% t’}z/<t)||2

t=T

(13)

Finally, by plugging in the windowed loss function in
(11), we have (14).

T4+w
min lT~>T+w({0a,t}) +VZ||0a,t||1- (14)
0a, 1> te[T, T+w] =T

Finally, the loss function in (14) can be decomposed into
two terms, where Ir_7.,({0,,}) is differentiable and
tTjTW [10,¢]]; is non-differentiable but has a rather simple
proximal operator. Therefore, the proximal gradient algo-

rithm can be used to optimize 0, ;.

Proposition 2. In k™ iteration, 0;{‘?1) in (14) can be opti-
mized by
0
0" = 8,200 — 50—l ({001}, (15)
00,

where ¢ is the step size of the proximal gradient algorithm
and S, ,(-) is the soft-thresholding operator.

The proof is given in Supplementary Material.

It is worth noting that for convex and Lipschitz continu-
ous function Iy 71,(+), 0, will converge to the global opti-
mum. However, since Ir, 7., () is highly non-convex from
the deep learning architectures, it is often impossible to
guarantee the convergence. However, in reality, we find out
with only a few iterations, the algorithm can already obtain
a great estimation of the anomaly 0, ;. Finally, this estimated
0,,: will be used to construct the monitoring statistics, which
will be discussed in Section 4.6.

4.6. Anomaly detection through the likelihood ratio test

After 6,, has been solved, we will construct a likelihood
ratio test to detect the change over time. We know from (4)
that r, =y, —p,_ | —g({y;},.;;0) = Bal,; +e. If 0,,=0,
there will be no anomaly and r; ~ N(0,%I). If there is an
anomaly, r; ~ N(Baéa,t, 6*I). Therefore, we can propose a
likelihood ratio procedure to test the mean of r;, denoted as
Ky, as follows:

Ho:p, =0, Hy:p, =B.0,,.

Moreover, in this paper, we propose to use a likelihood
ratio test procedure to test whether there is a change in the
estimated anomaly solved by the inverse problem. Finally,
according to (Wang & Jiang, 2009; Zhang et al., 2018), we

can derive the following likelihood ratio-test statistics

AT ~T N
T, = zou,tBZ;(Yt+1 — 1 —8({yi}ics0)) — ou,tBaTBugﬂ,t'
(16)

Correspondingly, we chose a control limit L >0 for (16)
and define if T; > L, the monitoring scheme triggers an OC
alarm at time ¢.

4.7. Tuning parameter selection

In this subsection, we will discuss the procedure of selecting
the best tuning parameters, including the buffer window size
w, anomaly basis B,, control limit L, smoothing parameter
/., and sparsity parameter 7.

First, we would like to discuss the procedure of choosing
the buffer window size w. In reality, the best w depends on
the signal-noise ratio, defined by the magnitude of the
change divided by the noise magnitude. For a larger signal-
noise ratio, it is often easier to detect and a smaller w is rec-
ommended (i.e., w=0) . However, for a smaller signal-noise
ratio, it is often recommended to use a larger w. In reality,
it is often hard to know the change magnitude beforehand.
Therefore, we suggest to choose to construct the control
chart with a buffer window from w =0,1,..., W, and select
the one with the smallest detection delay. For example, at
time ¢, we can decide whether time t - W to t has an anom-
aly due to the use of different buffer windows. The algo-
rithm will stop until it triggered the first anomaly.

Second, selecting the anomaly basis is also essential.
Selecting a basis for anomalous regions depends on the type
of anomalies we aim to detect. For example, if anomalies are
randomly scattered over the mean, it is recommended to use
an identity basis, ie., B, =I. If anomalies form clustered
regions, a spline basis or kernel basis can be used. More
details about the spatial basis selection of the functional
mean and anomalies are given in (Yan et al., 2017).

Third, we like to discuss the procedure of choosing the
control limit L. Specifically, given a pre-specified IC average
run length (ARL,), we propose to select the control limit L
by simulation. Given the complicated spatial-temporal distri-
bution of the data, it is often hard to get the exact distribu-
tion of T, In particular, we first choose an initial value for
L, and then compute the ARL, of the monitoring statistic in
(16) based on a large number of simulation replications,
where the IC samples are generated from the IC distribution
of the process. If the computed ARL, is smaller than the
nominal one, we increase the value of L. Otherwise, we
decrease it. We repeat this process until the ARL, is
achieved with the desired precision. In particular, in the
searching procedure, we may use some numerical searching
algorithms, such as the bisection search algorithm
(Qiu, 2008).

Forth, we like to discuss the procedure of choosing the
smoothing parameter 4. Here, 4 is selected by the cross-val-
idation procedure, where the validation points are randomly
selected points across the entire sequence y,. The data at the
validation points will be set to 0. The algorithm will try to
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recover the spatio-temporal mean trend on the validation
set and compared it with the original y,.

Finally, we like to discuss the procedure of choosing the
sparsity parameter y. In this procedure, y will be selected
based on the fixed false discovery rate as 5% in the Phase-I
analysis with the same basis B, used in Phase-II analysis.
We will select y such as 5% of the 0, ; will be detected as an
anomaly. The procedure is described in detail in (Yan
et al., 2020).

5. Simulation study

In this section, we will first discuss the data generation and
Experimentation Details in Section 5.1 and Section 5.2. The
proposed method will be evaluated in terms of metamodel-
ing and mean-trend prediction in Section 5.3.1 and anomaly
detection in Section 5.3.2.

5.1. Data generation

We will use the CRN model described in (1) to perform
simulations on a one-dimensional cell array (i.e., 1-D cable)
with 1500 cells and assume the mono-domain tissue model.
Samples (i.e., cell transmembrane potentials) generated by
simulations are used to train the metamodel for the spatio-
temporal mean trend in the proposed DSTSD model. In this
study, we are going to consider two simulation protocols
as follows.

e Case 1: One stimulation at a variable cycle length of
200ms (5Hz) to 1000ms (1Hz) in a 100 ms increment is
given to the left end of the cell array, which triggers elec-
trical waves to propagate to the other end of the cable. In
addition, more experiments were done by moving the stimu-
lation to the right of the cable in a step of 100 cells. For
example, stimulation is given at the left end of the cell array
every 300 ms. (See Fig. 1a).

e Case 2: Two periodic stimulations at a variable cycle
length of 200ms (5Hz) to 1000ms (1 Hz) in a 100 ms incre-
ment are given at different locations. The two stimulations
are at a variable distance of 300 cells and 600 cells. For
example, the stimulations are given at the 1% cell and the
600th'" cells (see Fig. 2a and c).

In the Phase-II analysis, we still use the two simulation
protocols, Case 1 and Case 2, as described before. We fur-
ther generate anomalies on top of the regular stimulation ry,
which represents cell malfunctioning. The abnormal stimula-
tion is randomly picked along the cell array with an inten-
sity of . We design the anomaly as a sequence of abnormal
points, which will cause a continuous stimulation on the
cell. More specifically, we illustrate two cases here with three
consecutive abnormal points, causing stimulation at with the
amplitude ranging from 4.5 to 11 that will last for 2ms. In
another word, we choose the anomaly a;; = JRyl(s €
Sa)1(t € St) in (1), where R, is the magnitude of regular
stimulation. S, is the set of anomalous pixels, and Sy is the
set of time points with anomalies generated. ¢ characterizes
the relative intensity difference between anomalies and the
spatio-temporal mean trend. 1(-) is the indicator function.
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In this study, we choose Su = {so,50 + 1,50 + 2} and Sr =
{to,to + 1}. Here, the sy and f, are chosen randomly. t, is
the start time of the change. A sample of the simulated spa-
tio-temporal mean trend and multiple randomly chosen
anomalies are shown in Fig. la. In the Phase-I analysis for
the training of the spatio-temporal metamodel, we have gen-
erated 15 samples according to Case 1 and 10 samples
according to Case 2. Each sample contains 1000 measure-
ments in 1-ms time step.

5.2. Experimentation details

This subsection will give more details on the experimental
details in both Phase-I and Phase-II analysis.

In the phase I analysis, we first need to fit the cardiac
dynamics with the proposed Conv-LSTM and Conv-
WaveNet, which is important to achieve good performance
on long-term prediction and anomaly detection. Please see
the supplementary material for all the details of the training
of Conv-LSTM and Conv-WaveNet.

In the phase-II analysis, a multi-step loss is considered
for solving the inverse problem. The window size is set to 3
regarding the tradeoff between detection delay and detection
accuracy. The learning rate ¢=0.01, and each solving pro-
cess includes 5 epochs.

5.3. Result comparison

In this subsection, we aim to evaluate the performance of
the proposed method in two different parts. First, we will
evaluate the performance of the proposed algorithm in
terms of predicting the spatio-temporal mean trend in
Section 5.3.1. This also evaluates the performance of the
proposed DSTSD in terms of metamodeling. 2) Evaluate
how well the proposed DSTSD achieves anomaly detection
and localization in Section 5.3.2.

5.3.1. Spatio-temporal mean trend prediction accuracy
We compared the prediction accuracy of the learned spatio-
temporal metamodel in terms of the spatio-temporal mean
trend prediction, ie., p(s,t). relative Mean square error
(rMSE) of the predicted mean for the prediction horizon At
ms were computed as

H.‘A‘z t(,(tO + At) — M t(,(tO + At)HZ

rMSE(At) = ,
NTny it ||I‘z‘(t0)”2

17)

where T is the length of the sequence in the testing data, N
is the number of testing samples, and n, is the length of the
spatial dimensions. For the benchmark method, we will
compare with the ST-SSD method (Yan et al., 2018) in
terms of future prediction accuracy.

The prediction accuracy of the proposed DSTSD methods
based on Conv-WaveNet and Conv-LSTM architectures are
calculated and compared using testing data from both cases.
For case 1, stimulation at every 800ms is given to the Oth
cell of the cable, which generates a series of electrical waves
propagating to both ends of the cable. For case 2, a more
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Table 1. Long-term mean trend prediction accuracy MSE for different predic-
tion horizon At = 10,100, 200.

Case 1

Method At =10 At =100 At = 200
Conv-WaveNet 2.5e-5 (1e-5) 9.9e-4 (3e-4) 2.0e-3 (8e-4)
Conv-LSTM 1.2e-3 (1e-4) 5e-3 (1e-3) 6e-3 (8e-4)
AutoRegressvie 1.6e-2 (3e-4) 1.9e-1 (6e-3) 4.2e-1 (Te-2)
Case 2

Method At=10 At =50 At =100
Conv-WaveNet 8.5e-3 (2e-2) 8.5e-2 (8e-3) 2.0e-1 (2e-1)
Conv-LSTM 1.2e-2 (1.8e-2) 1.3e-2 (8e-3) 4.9e-2 (6e-2)
AutoRegressvie 2.7e-2 (2e-2) 3.1e-1 (1e-1) 6.3e-1 (3e-1)

complicated scenario is considered, where two stimulations
are given at the 1" cell and the 600" cell every 300 ms. Two
electrical waves are generated and propagate toward each
other and to both ends of the cable. For case 2, given the
2nd stimulation is still inside the cardiac refractory period,
it will generate the wave. We will like to evaluate how the
proposed model is able to predict cardiac refractoriness
behavior. For the benchmark method, we will choose a
time-series analysis but treat each spatial dimension inde-
pendently. The result of the rMSEs of At= 10ms, 100 ms,
and 200 ms are shown in Table 1.

From Table 1, we can conclude that in relatively simple
case (ie, Case 1), Conv-WaveNet out-performs Conv-
LSTM. However, for a more complicated case (i.e., Case 2),
where two waves merge, and a new excitation is generated
within the refractory period, Conv-LSTM is able to predict
this refractoriness quite accurately (i.e., a new stimulation is
not able to produce any waves.), but Conv-WaveNet failed
to predict this effect. For comparison, we also compare with
the autoregressive time-series model, which failed to capture
any of the trends and result in the largest error. To show
this more clearly, we also show the long-term prediction
accuracy of both Conv-WaveNet and Conv-LSTM in Fig. 3,
which shows the prediction of both Conv-WaveNet and
Conv-LSTM compared to the true simulation model. In the
supplementary material, we also show the snapshots and the
video to demonstrate the performance of the proposed
Conv-WaveNet and Conv-LSTM
Overall, we can conclude that Conv-LSTM works better and
more robustly given different scenarios compared to Conv-
WaveNet, which only works well for relatively simple cases.

Here, we would also like to report the computational
time of the proposed metamodels (i.e., Conv-WaveNet and
Conv-LSTM) compared to the CRN simulation model to
simulate 1s of the cardiac signal. From Table 2, we can con-
clude that the metamodel is much faster compared to the
simulation model (i.e., 0.004s for Conv-LSTM compared to
1.58s for the simulation model) without losing too much
accuracy. Conv-LSTM is faster than Conv-WaveNet due to
its ability to use the hidden variables to compress the histor-
ical observations.

in various scenarios.

5.3.2. Anomaly detection accuracy

In this subsection, we will compare the performance of our
proposed DSTSD with both architectures from Conv-WaveNet
and Conv-LSTM (denoted as ’DSTSD-ConvWaveNet and

"DSTSD-ConvLSTM’) with a few benchmark methods in the
literature in terms of anomaly detection. First, we would like to
compare with methods that only rely on residual of deep spa-
tio-temporal learning methods. We will use the deep learning
architecture with exactly the same architecture, namely the
Conv-WaveNet and Conv-LSTM. We also compare with the
Hotelling T° method as the baseline methods. For Hotelling T°,
it doesn’t have the ability to model the complicated spatio-tem-
poral mean trend, so we use a simple difference along the time
dimension to remove the dynamic mean-trend beforehand. We
also try the moving average approach and do not find any
improvement. Finally, we compared the proposed methods
with the ST-SSD methods, which is another spatio-temporal
decomposition method but with a fixed smooth spatio-temporal
basis (Yan et al., 2018).

For evaluation, we will compare the performance of the
proposed DSTSD with benchmark methods mentioned
above in terms of average detection delay and the localiza-
tion accuracy. (i) To evaluate the detection delay, we will
use the out-of-control Average run length ARL;, which is
defined as the average detection delay after the change
occurs with the fixed in-control ARL, as 0. To evaluate the
localization accuracy, we will use three additional criteria
after a shift is detected: (ii) precision, defined as the propor-
tion of detected anomalies that are true anomalies; (ii) recall,
defined as the proportion of the anomalies that are correctly
identified; (iii) F1-score, a single criterion that combines the
precision and recall (Van Rijsbergen, 1979). It is worth not-
ing that only decomposition-based methods have the ability
to isolate the anomaly signals. Therefore, for non-decompos-
ition-based methods such as T2, Conv-LSTM, and Conv-
WaveNet, we select a threshold based on Otsu’s method on
the residual for source identification (Otsu, 1975). Finally,
the average values of these criteria and their standard devi-
ation over 100 simulation replications for 6 = 0.2 and ¢ =
0.3 are given in Table 3.

From Table 3, we can conclude that the proposed
DSTSD-ConvLSTM method achieves the best performance
with the smallest detection delay ARL,. For example, when
0=0.3, the ARL; =0.2 for the proposed DSTSD-
ConvLSTM and the second-best Conv-LSTM has ARL; =
24.16. Similarly, the proposed DSTSD-ConvLSTM has also
the best performance for localizing the source. For example,
the F=0.521 for the proposed DSTSD-ConvLSTM 6 = 0.2
and the second-best Conv-LSTM has F=0.448. In general,
the proposed DSTSD methods are better than the predic-
tion- based model considering both F1 and ARL. T2 doesn’t
work well due to its inability to capture the complex spatial-
temporal dynamics. ST-SSD failed to detect the anomalies
due to its strong smoothness assumption, which is violated
by the data generated from the CRN models.

The advantage of the performance is due to the following
two reasons: 1) The ability to accurately capture the complex
spatio-temporal patterns of the mean trend. The importance
of capturing spatio-temporal patterns is demonstrated by
comparing the Conv-LSTM, Conv-WaveNet, and the ST-
SSD. Conv-LSTM uses the combination of RNN and CNN,
which gives the best overall estimation of the spatio-
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Figure 3. A comparison of Metamodel performance of the proposed Conv-WaveNet and Conv-LSTM. Figure 3a—c illustrated case 1 and Figure 3d-f shows case 2.
The results show that Conv-WaveNet does not capture the cell refractoriness effect in case 2.

Table 2. The computational time for the original finite element simulation,
the proposed Conv-LSMT, and the proposed Conv-WaveNet to simulate 1s of
the cardiac signal.

Method
Time

FEM Simulation
1.58s

Conv-LSTM
0.004 s

Conv-WaveNet
0.01s

Table 3. The anomaly detection means and standard deviations (including
precision, recall, F-1 score, and ARL) for different change magnitudes 6 = 0.2
and 0 = 0.3 for different anomaly detection methods.

0=03

Method precision recall F1-score ARL

T2 0.188(0.087) 0.104(0.049) 0.131(0.061) 53.67(3.08)
Conv-LSTM 0.758(0.041) 0.677(0.034) 0.711(0.033) 24.16(2.67)
Conv-WaveNet 0.354(0.061) 0.250(0.046) 0.292(0.051) 45.35(4.62)
DSTSD-Conv-WaveNet 0.812(0.087) 0.625(0.077) 0.700(0.079) 29.75(4.34)
DSTSD-ConvLSTM 1.000(0.000) 1.000(0.000) 1.000(0.000) 3.20(0.03)
ST-SSD 0.06(0.007)  0.5(0.007) 0.1(0.012) 50.17(5.25)
0=02

T2 0.031(0.030)  0.021(0.020) 0.025(0.024) 49.21(1.59)
Conv-LSTM 0.448(0.087) 0.333(0.064) 0.373(0.071) 46.97(5.99)
Conv-WaveNet 0.250(0.625) 0.167(0.041) 0.200(0.050) 53.58(4.14)
DSTSD-ConvWaveNet  0.417(0.075) 0.292(0.050) 0.342(0.059) 42.06(4.47)
DSTSD-ConvLSTM 0.521(0.052) 0.469(0.057) 0.490(0.054) 27.05(4.39)
ST-SSD 0.008(0.001) 0.16(0.025)  0.10(0.012)  50.17(5.25)

temporal mean trend, which is also shown in Table 1.
Conv-WaveNet considers complicated spatial structures.
However, due to its use of the auto-regressive model for the
temporal structure, it works not as well as Conv-LSTM. ST-
SSD relies on the smoothness assumption with a fixed basis
in both the spatial dimension and the temporal dimension,
which limits its ability to capture and predict complex spa-
tio-temporal dynamics. 2) The ability to separate the anom-
aly signals considering the sparse structure in the proposed
DSTSD framework. In the proposed DSTSD methods (i.e.,
both DSTSD-ConvLSTM and DSTSD-ConvWaveNet), we

solve the inverse problem using the buffered window
approach, which achieves a better estimation of the anomaly
and leads to smaller ARL;.

We also perform a sensitivity analysis by comparing the
proposed algorithm with the benchmark on different change
magnitudes 6. Here, we have generated abnormal cases with
stimulation amplitude ranging from 4.5 to 11 in 0.5 incre-
ments, which corresponds to the relative magnitude ¢ from
0.15 to 0.35 in 0.015 increase given the noise level is ¢ =
1.5. For each case, we generate 16 replications for each
delta. We further evaluate the ARL; and Fl-score for differ-
ent benchmark methods under these magnitudes (i.e., differ-
ent 0). It is clear that through solving the inverse problem,
two DSTSD-based approaches (i.e., Shown in red) get much
better results than their corresponding residual-based meth-
ods (i.e., shown in blue). Figure 4 shows that DSTSD-
ConvLSTM can detect the change right away at J = 0.275,
while the other methods got a large ARL; for every set up
we designed. From the result of the Fl-score, we can see
that DSTSD-ConvLSTM can identify almost all anomalies as
0 is close to 0.35 (i.e., F1-score is close to 1).

To show how the proposed algorithm is able to isolate
the source location. An example of the detected source for
Case I can be seen from Fig. 5. The correctly predicted
stimulation points (i.e., true positive) are shown in the red
markers, missing stimulation points (i.e., false negative) are
shown in blue points, and incorrect predictions (i.e., false
positive) are shown in black markers. Through solving the
inverse problem, we are able to identify when and where a
stimulation happens. For Case I, there is a periodic stimula-
tion at a single location which is cell 1 (can be seen in Fig.
1c and a). From the results, we can see that both methods
can identify almost all actual stimulations. In general,
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Figure 5. (a) and (b) show the comparison of the estimated and actual stimulation for the proposed DSTSD-ConvLSTM and DSTSD-ConvWaveNet, respectively.
Here, the black square shows the false positives and the blue square shows the false negative. The red square shows the correct predictions.

DSTSD-ConvLSTM gives a better source localization result
with fewer false positives and false negatives compared to
DSTSD-ConvWaveNet. In summary, Conv-LSTM performs
better than Conv-WaveNet.

6. Conclusion

Identifying the cardiac cells that produce electrical impulses
in the system governed by complex spatio-temporal dynam-
ics is an important task. In this work, we first proposed a
deep spatio-temporal sparse decomposition approach to
effectively decompose the original data into a spatio-tem-
poral mean trend as well as the sparse anomaly. To effect-
ively solve the optimization problem, the proximal gradient
descent algorithm is applied. To estimate the time and loca-
tion of the anomaly more accurately, we propose to solve
the inverse problem in a window-buffer approach to esti-
mate the anomaly sources accurately. Finally, a sequential
likelihood ratio test was proposed to detect the anomaly
online. The proposed method is then validated through the
data set generated by the CRN model, which is widely used
to simulate the changes of transmembrane potential in
human atrial cells. Through extensive comparison, we
showed that the proposed methods outperform existing spa-
tio-temporal modeling in terms of the spatio-temporal mean

trend prediction (i.e., metamodeling performance), anomaly
detection and localization (i.e., anomaly detection perform-
ance). For future works, we plan to combine the physical
domain knowledge such as the PDEs into the spatio-tem-
poral model for a better generalization power. Furthermore,
we are going to extend the current algorithm into multi-
dimensional cases, which might be harder due to additional
computational challenges.
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