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Abstract. An inequality of Brascamp-Lieb-Luttinger and of Rogers states that among
subsets of Euclidean space Rd of specified Lebesgue measures, (tuples of) balls centered
at the origin are maximizers of certain functionals defined by multidimensional integrals.
For d > 1, this inequality only applies to functionals invariant under a diagonal action
of Sl(d). We investigate functionals of this type, and their maximizers, in perhaps the
simplest situation in which Sl(d) invariance does not hold. Assuming a more limited sym-
metry encompassing dilations but not rotations, we show under natural hypotheses that
maximizers exist, and moreover, that there exist distinguished maximizers whose structure
reflects this limited symmetry. For small perturbations of the Sl(d)–invariant framework
we show that these distinguished maximizers are strongly convex sets with infinitely dif-
ferentiable boundaries. It is shown that in the absence of partial symmetry, maximizers
fail to exist for certain arbitrarily small perturbations of Sl(d)–invariant structures.

1. Introduction

Let J be a finite index set, and for each j ∈ J let Lj : RD → Rdj be a surjective linear
mapping. Writing f = (fj : j ∈ J), consider the functional f 7→ Λ(f) defined by

(1.1) Λ(f) =

∫
RD

∏
j∈J

fj(Lj(x)) dx.

The functions fj : Rdj → [0,∞] are assumed to be nonnegative and Lebesgue measurable.
The theory of Hölder-Brascamp-Lieb inequalities [20], [4], [5], [9], [6], [1], [18], [2], [3]
is concerned with inequalities Λ(f) ≤ A

∏
j∈J ‖fj‖Lpj (Rdj )

. It includes a necessary and

sufficient condition on the data D, J, dj , Lj , pj for there to exist A < ∞ for which such
an inequality holds for all f , it provides an expression of sorts for the optimal constant
A, it includes algorithms for computing certain elements of the theory, it has discrete
variants which are closely connected with Hilbert’s tenth problem (over Q), it includes a
characterization of maximizing tuples f under certain auxiliary hypotheses, and the optimal
constant sup

f
Λ(f)/

∏
j∈J
‖fj‖Lpj has been shown to be a Hölder continuous function of L =

(Lj : j ∈ J) within an appropriate domain and under appropriate hypotheses.
One of the foundational instances of this theory concerns the Riesz-Sobolev functional

(1.2) (f1, f2, f3) 7→ 〈f1 ∗ f2, f3〉 =

∫
Rd×Rd

f1(x)f2(y)f3(x+ y) dx dy

defined by pairing the convolution f1∗f2 with f3. The Riesz-Sobolev inequality extends the
conclusion beyond the Hölder-Brascamp-Lieb theory through the symmetrization inequality

(1.3) 〈f1 ∗ f2, f3〉 ≤ 〈f?1 ∗ f?2 , f?3 〉,
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where f? : Rd → [0,∞) is (up to redefinition on Lebesgue null sets) the unique function
that is radially symmetric, is a nonincreasing function of |x|, and is equimeasurable with
f . The general inequality is a direct consequence of the special case in which each function
fj is the indicator function 1Ej of a set.

In this paper, we are concerned with functionals (1.1), acting only on tuples of indicator
functions of sets. We abuse notation systematically by writing Λ(E) for Λ(f) where fj = 1Ej
and E = (Ej : j ∈ J), assuming always that each Ej ⊂ Rdj is a Lebesgue measurable subset

of Rdj with finite Lebesgue measure. More accurately, each Ej is an equivalence class of
sets, with E equivalent to E′ if and only if |E∆E′| = 0.

To E ⊂ Rd is associated its symmetrization E? ⊂ Rd, defined to be the closed ball whose
Lebesgue measure equals that of E if |E| > 0, and to be the empty set if |E| = 0. Define
E? = (E?j : j ∈ J). Rogers [23], [24] and Brascamp-Lieb-Luttinger [7] have extended1 the
Riesz-Sobolev symmetrization inequality to

(1.4) Λ(E) ≤ Λ(E?),

under certain natural hypotheses. Firstly, it is assumed that dj = d is independent of the
index j ∈ J . Secondly, D/d = m ∈ N. If d = 1 then (1.4) holds under these hypotheses. If
d > 1 then (1.4) holds under an additional symmetry hypothesis, under which there exists
an identification of RD = Rmd with (Rd)m so that the diagonal action of Sl(d) on (Rd)m is
a symmetry of Λ, in the sense that

(1.5) Λ(f) = Λ(f ◦ T ) for every T ∈ Sl(d),

where f ◦ T = (fj ◦ T : j ∈ J). There is also a natural translation action of the additive

group Rmd by y 7→
(
f 7→ (fj + Lj(y) : j ∈ J)

)
, under which Λ is invariant.

The inequality (1.4) for indicator functions can be read in two ways: as a statement of
monotonicity of Λ under the mapping E 7→ E? = (E?j : j ∈ J), or alternatively as a formula
for the functional

(1.6) Θ(e) = sup
|Ej |=ej

Λ(E)

where the supremum is taken over all tuples of measurable sets of the specified Lebesgue
measures. In particular, (1.4) states that maximizers of Θ exist, and that among these
maximizers are tuples of balls centered at the origin of the specified measures. Consequently,
according to the symmetry hypothesis, tuples of homothetic ellipsoids whose centers belong
to the orbit of 0 ∈ (Rd)J under the group of translation symmetries are also maximizers.
This orbit is the set of all |J |–tuples (Lj(v) : j ∈ J), where v ranges over RD.

Uniqueness theorems [8], [14], [12], [15] state that these are the only maximizers, un-
der certain additional hypotheses, of which the primary one is known as admissibility [8].
These uniqueness theorems for indicator functions do not have simple extensions to general
nonnegative functions, yet they can sometimes be used to analyze uniqueness and stability
questions for functionals of general nonnegative functions [10], [16], [11].

In this paper, we take up the question of whether any part of this theory for indi-
cator functions survives in the absence of the Rogers-Brascamp-Lieb-Luttinger symme-
try hypothesis. In general, ellipsoids are not maximizers, as this example reveals: Let
J = {0, 1, 2 . . . , D}. Let dj = 1 for every j 6= 0 and d0 = D − 1. For 1 ≤ j ≤ d define
Lj(x1, x2, . . . , xd) = xj . Let L0 : RD → RD−1 be a generic surjective linear mapping. Let
Ej ⊂ R1 be the interval of length 1 centered at 0 for each j ∈ {1, 2, . . . , D}. Let E0 remain

1The treatment of Rogers [24] for d > 1 may be incomplete.
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unspecified as yet. Λ(E) is equal to
∫
E0
K where K : RD−1 → [0,∞) and K(y) is the

one-dimensional measure of the slice {x : L0(x) = y} of the unit cube in RD. For |E0| in
a suitable parameter range, maximizing sets E0 are superlevel sets {y : K(y) ≥ r} of K,
with r a function of |E0|. These superlevel sets are convex polytopes.

We study the equidimensional case in which dj = d for every index j. We consider the
simplest equidimensional situation not subsumed by existing theory: d = 2, D = 2d = 4,
and the index set J is I = {1, 2, 3, 4}. We impose a partial symmetry hypothesis, discussed
below. Our first two main conclusions concerning this situation are that there is a suitable
generalization of the concept of admissibility, and that maximizing tuples E exist. This
raises the question of the nature of such maximizers. In the subcase in which the tuple L
of mappings Lj is a small perturbation of a tuple for which the symmetry hypothesis holds,
we also show that for any partially symmetrized maximizer E, each component set Ej is
strongly convex with C∞ boundary. Finally, we analyze a family of perturbed structures for
which the partial symmetry is overtly broken in a specific way, and show that maximizers E
exist for these structures if and only if they are equivalent via certain changes of coordinates
in R4 to structures with the partial symmetry. Generically, such changes of coordinates do
not exist. Thus the partial symmetry condition is not wholly artificial.

Our partial symmetry hypothesis is most transparently expressed in coordinates. For
R4, we use coordinates (x; y) = (x1, x2; y1, y2). We assume that each target space R2 is
equipped with coordinates with respect to which the linear mapping Lj : R4 → R2 takes
the form

(1.7) Lj(x,y) =
(
L1
j (x), L2

j (y)
)

with Lij : R2 → R1 a surjective linear mapping. The perturbed structures of our nonexis-

tence examples take the form Lj(x,y) =
(
L1
j (x), L2

j (x,y)
)
.

Structures of the form (1.7) enjoy two types of symmetries. Firstly, there is a translation
action of R4 on (R2)4 defined by

(xj : j ∈ I) 7→ (xj + Lj(w)) : j ∈ I)

for w ∈ R4. Secondly, there are dilation actions of R+ on R2 and on (R2)4, defined by

(1.8) Dt(x, y) = (tx, t−1y)

and Dt(zj : j ∈ I) = (Dtzj : j ∈ I).
In the fully symmetric case, Steiner symmetrization [21], [7] and rotational symme-

try combine to provide a powerful tool. Our partial symmetry hypothesis allows Steiner
symmetrization with respect to the horizontal and vertical axes, but not with respect to
arbitrary directions in R2. This limited symmetrization is a useful tool, but certainly a less
powerful one.

An essential element in the theory of maximizers in the fully symmetric situation is
the notion of admissibility. In the Riesz-Sobolev inequality, if |E3|1/d > |E1|1/d + |E2|1/d
then maximizing configurations are those in which the sumset E1 +E2 has measure ≤ |E3|
and is contained in E3. Thus maximizers exist, but have little structure and are not a
natural topic of discussion. Admissibility for this inequality is the condition that |Ek|1/d ≤
|Ei|1/d + |Ej |1/d for all permutations (i, j, k) of (1, 2, 3). We formulate a suitable definition
of admissibility for our context, and combine Steiner symmetrization with the translation
and dilation symmetries to develop a compactness argument which establishes the existence
of maximizers in the admissible regime.
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We study in more detail those maximizers E that are Steiner symmetric with respect to
both the horizontal and vertical axes and show that (under a certain auxiliary hypothesis
of genericity) each component set Ej is strictly convex with C∞ boundary. This is a type
of regularity theorem for a coupled system of free boundary problems. The 4–tuple E
satisfies a generalized Euler-Lagrange relation, formulated in Proposition 9.2, which states
(formally) that the boundary of each Ei is a level set of a certain function Ki defined
in terms of the other three sets Ej . A bootstrapping argument is used to establish C∞

regularity along with strong convexity.

2. Notation, hypotheses, and preliminaries

Throughout the paper we write I = {1, 2, 3, 4}. All sets Ei ⊂ Rd are assumed to be
Lebesgue measurable and to have finite Lebesgue measures, unless otherwise indicated.

Consider functionals of the form

(2.1) ΛL(E) =

∫
R4

4∏
i=1

1Ei(Li(x1, x2, y1, y2))dx1dy1dx2dy2

where E = (Ei : i ∈ I) is a 4–tuple of Lebesgue measurable subsets of R2 and L = (Li :
i ∈ I) is a collection of linear maps from R4 → R2. The following structural hypothesis on
the maps Li will be in force throughout this paper: For each i ∈ I, we require that Li can
be expressed in the form

(2.2) Li(x1, x2, y1, y2) = (L1
i (x1, x2), L2

i (y1, y2))

where L1
i : R2 → R and L2

i : R2 → R are linear and surjective. We refer to (2.2) as the
partial symmetry hypothesis.

Definition 2.1. A tuple L0 = (L0
j : j ∈ I) is said to satisfy the Rogers-Brascamp-Lieb-

Luttinger symmetry hypothesis if satisfies (2.2) and

(2.3) L1
i = L2

i for each i ∈ I.

We say more succinctly that L0 satisfies the full symmetry hypothesis.
This implies the presence of a large symmetry group. Define T (E) = (T (Ej) : j ∈ I).

Then (2.2) and (2.3) imply that

Λ(T (E)) = Λ(E) for every E and T ∈ Sl(2).

The following notion of nondegeneracy is equivalent to Definition 2.3 of [12] when L
satisfies the full symmetry hypothesis.

Definition 2.2. A family L = (Li : i ∈ I) of linear mappings Lj : R4 → R2 that satifies
(2.2) is nondegenerate if for any i 6= j ∈ I, the mappings x 7→ (L1

i (x), L1
j (x)) and y 7→

(L2
i (y), L2

j (y)) are bijective linear transformations from R2 to R2.

Notation 2.3. The Lebesgue measure preserving dilations Dt : R2 → R2 are defined by

Dt(x, y) = (tx, t−1y)

for t ∈ R+. We also write

DtE = Dt(Ej : j ∈ I) = (DtEj : j ∈ I).
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These dilations are symmetries of ΛL in the sense that

(2.4) ΛL(DtE) = ΛL(E)

for all 4–tuples E of sets of Lebesgue measurable subsets of R2. ΛL also enjoys a translation
symmetry. For any v ∈ R4, Λ(Ej : j ∈ I) = Λ(Ej +Lj(v) : j ∈ I). This follows by making
a change of variables (x,y) 7→ (x,y)− v in the integral defining Λ(E).

Notation 2.4. |E| denotes the Lebesgue measure of a subset of Euclidean space Rd of
any dimension d. |E| denotes (|E1|, |E2|, |E3|, |E4|) ∈ [0,∞]4 where each Ei is a Lebesgue
measurable subset of R2.

Notation 2.5. For e = (ei : i ∈ I) ∈ (0,∞)4,

Θ(e) := sup
E:|E|=e

ΛL(E).

Lemma 2.1. Θ satisfies a triangle inequality

(2.5) Θ(e + e′) ≥ Θ(e) + Θ(e′).

Proof. Consider any E,E′ satisfying |E| = e and |E′| = e′ such that all of the component
sets Ej , E

′
j are bounded. Choose a vector v ∈ R4 that does not belong to the nullspace of

any of the four mappings Lj . For large r ∈ R+ consider the 4–tuple E(r) of sets defined

by E
(r)
j = Ej ∪ (E′j + rLj(v)). For sufficiently large r, E′j + rLj(v) is disjoint from Ej , so

|E(r)
j | = ej + e′j . Since 1Ẽj = 1Ej + 1E′j+rLj(v), Λ(Ẽ) ≥ Λ(E) + Λ(E′j + rLj(v) : j ∈ I).

Indeed, Λ(Ẽ) is the sum of the two terms on the right-hand side of this last inequality, plus
24 − 2 other terms, each of which is nonnegative. By the translation invariance of Λ, this
is equal to

Λ(E) + Λ(E′j + rLj(v) : j ∈ I) = Λ(E) + Λ(E′).

Upon taking the supremum over all tuples E,E′ with bounded component sets, the triangle
inequality follows. �

The vertical Steiner symmetrization E] = (E]j : j ∈ I) is defined as follows. For E ⊂ R2

with finite Lebesgue measure, E] ⊂ R2 is

(2.6) E] = {(x, y) : |y| ≤ 1
2 |{t ∈ R : (x, t) ∈ E|}

if |{t ∈ R : (x, t) ∈ E}| > 0, and otherwise {y : (x, y) ∈ E]} is empty. Then |E]| = |E|, and
the intersection of E] with any vertical line has the same one-dimensional Lebesgue measure
as the intersection of E with that same vertical line. The horizontal Steiner symmetrizations
E[ and E[ are defined by interchanging the roles of the horizontal and vertical axes. Define

(2.7) E† = (E])[ and E† = (E])[.

It is elementary that

(2.8) E† = (E†)] = (E†)[

up to Lebesgue null sets.
In general, (E])[ and (E[)] need not be equal, or even closely related. Consider for

instance the situation in which E ⊂ R2 is a rectangle centered at the origin, with sides of
lengths 1 and ε� 1, with long axis making angles of π/4 with the positive horizontal and

vertical axes. However, E† = (E†)] = (E†)[.
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Definition 2.6. A Lebesgue measurable set E ⊂ R2 satisfying |E| < ∞ is symmetrized if

E = E] = E[ up to Lebesgue null sets. A tuple E = (Ej : j ∈ I) is symmetrized if each set
Ej is symmetrized.

Lemma 2.2. Λ satisfies

(2.9) Λ(E) ≤ Λ(E†)

for all tuples of sets of finite Lebesgue measure.

Proof. Under the partial symmetry hypothesis,

(2.10) Λ(E) ≤ Λ(E]) and Λ(E) ≤ Λ(E[)

for arbitrary E. These inequalities are proved in [7], under the full Rogers-Brascamp-Lieb-
Luttinger symmetry hypothesis of Definition 2.1, but only the partial symmetry hypothesis
is needed in their proofs since only Steiner symmetrizations in horizontal and vertical
directions are employed. (2.9) follows from (2.10) since

Λ(E) ≤ Λ(E]) ≤ Λ((E])[) = Λ(E†).

�

According to Lemma 2.2, if a maximizing tuple E exists, then there exists a symmetrized
maximizing tuple.

3. Admissibility

We regard (0,∞)4 as being partially ordered.

Notation 3.1. e ≤ e′ means that ej ≤ e′j for all four indices j ∈ I. e < e′ means that

e ≤ e′ and ej < e′j for at least one index j ∈ I.

Definition 3.2. (L, e) is admissible if there exists no e′ < e satisfying Θ(e′) = Θ(e).

We will sometimes write “e is admissible” instead.
E is said to be a maximizer if Λ(E) = Θ(|E|). Θ(e) is said to be attained if there exists

a maximizer with |E| = e.

Lemma 3.1. Θ is locally Lipschitz continuous. More precisely, there exists C < ∞ de-
pending only on L such that for any e, e′ ∈ (0,∞)4,

(3.1)
∣∣Θ(e′)−Θ(e)

∣∣ ≤ C max
k∈I

(ek + e′k) max
j∈I
|ej − e′j |.

Proof. The mapping E 7→ ΛL(E) is locally Lipschitz in the sense that

(3.2) |Λ(E)− Λ(E′)| ≤ C(max
i∈I
|Ei|+ max

j∈I
|E′j |max

k∈I
|Ek ∆E′k|

for arbitrary 4-tuples of Lebesgue measurable subsets of R2. This constant C depends only
on L.

Given e and δ > 0, choose E = (Ej : j ∈ I) satisfying |E| = e and Λ(E) ≥ Θ(e) − δ.
From the sets Ej , construct sets E′j ⊂ R2 satisfying |E′j | = e′j with |E′j ∆Ej | = |e′j − ej |. It

follows from (3.2) that

Λ(E′) ≥ Λ(E)− C max
k∈I

ek ·max
j∈I
|ej − e′j |,

where C <∞ depends only on L. By letting δ → 0 we conclude that

Θ(e′) ≥ Θ(e)− C max
k∈I

(ek + e′k) max
j∈I
|ej − e′j |.
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�

The mapping L 7→ ΛL(E) is not continuous in L uniformly in E.

Proposition 3.2. For any t > 0 there exists an admissible e ∈ (0,∞)4 satisfying Θ(e) = t.
For any e ∈ (0,∞)4 there exists an admissible e′ ≤ e satisfying Θ(e′) = Θ(e).

Proof. Θ(re) = Θ(re1, re2, re3, re4) = r2Θ(e) for any r ∈ (0,∞) and e ∈ (0,∞)4. Therefore
for any t ∈ (0,∞) there exists ẽ satisfying Θ(ẽ) = t.

Let t > 0. Choose A so that there exists E satisfying ΛL(E) = t with |Ej | ≤ A for each
j. Let S be the set of all e satisfying Θ(e) = t and ej ≤ A for each j. The choice of A
ensures that S 6= ∅. It is a consequence of the continuity of Θ that S is closed. Since the
nondegeneracy hypothesis ensures that

Λ(E) ≤ C|Ei| · |Ej | for any i 6= j ∈ I

where C <∞ depends only on L, it follows that infe∈S mini∈I ei is strictly positive. Thus
S is a compact subset of the open upper quadrant.

Let ē1 = min
e∈S

e1. Define

ē2 = min
e∈S
e1=ē1

e2

and iterate this process to define ē3 and then ē4. Because S is compact, these quantities ēi
exist. Because S is closed, ē = (ē1, ē2, ē3, ē4) lies in S. The construction guarantees that
there exists no e ∈ S satisfying e < ē. �

To any L, any ordered tuple (Ej , Ek, El), and any index i such that {i, j, k, l} = I is
associated a unique function Ki : R2 → [0,∞) characterized by the relation

(3.3) Λ(E1, E2, E3, E4) = 〈1Ei ,Ki〉 =

∫
Ki1Ei for every Ei ⊂ R2.

If E0 is a 4–tuple of balls in R2 centered at the origin, and if L = L0 satisfies the
full symmetry hypothesis of Definition 2.1 then the associated quantities K0

i are radially
symmetric for each i ∈ I.

Definition 3.3. Let L0 satisfy the full symmetry hypothesis of Definition 2.1. Let E0 be a
4–tuple of balls in R2 centered at the origin and let e = |E0|. (L0, e) is strictly admissible if
for each i ∈ I, K0

i > 0 in some neighorhood of ∂E0
i , and d

duK
0
i (u−, 0) < 0, where u ∈ (0,∞)

is defined by the property that (u, 0) belongs to the boundary of E0
i ⊂ R2.

The notation d
duK

0
i (u−, 0) denotes the one-sided derivative

lim
h→0−

h−1
(
K0
i (u+ h, 0)−K0

i (u, 0)
)
.

It is shown in [15] that if L0 is nondegenerate2 and satisfies the full symmetry hypothesis
of Definition 2.1, and if (L0, e) is strictly admissible, then every maximizer E satisfying
|E| = e for ΛL0 is in the orbit of a 4–tuple of balls centered at the origin in R2 under the
symmetry group generated by translations and by the diagonal action of Sl(2). Thus each
Ei is an ellipse, these ellipses are homothetic, and the the 4–tuple of their centers belongs
to the orbit of (0, 0, 0, 0) ∈ (R2)4 under the translation symmetry group.

2This statement is proved for d ≥ 2 in [15]. The corresponding statement for d = 1, with a supplementary
genericity hypothesis, is proved in [12].
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Ki can be written in the form

(3.4) Ki(u) =

∫
R2

∏
j 6=i

1Ej (`j,i(u, v)) dv

where `j,i : R4 → R2 are surjective linear maps of the form

(3.5) `j,i(u, v) =
(
`j,i,1(u1, v1), `j,i,2(u2, v2)

)
with `j,i,m : R2 → R1 linear and surjective. Moreover, `j,i − `0j,i = O(‖L − L0‖) and

`0i = (`0j,i : j ∈ I \ {i}) commute with the diagonal action of Sl(2). {`j,i : j 6= i} is
nondegenerate in the sense that for any two distinct indices j, k 6= i, the linear mapping
(u, v) 7→ (`j,i(u, v), `k,i(u, v)) from R2 × R2 to R2 × R2 is nonsingular.

An extra condition which had not previously appeared in the theory for the fully sym-
metric framework arises naturally in our analysis. Formulation of this condition requires
some additional notation. Let L0 be nondegenerate and satisfy the full symmetry hypoth-
esis of Definition 2.1. Let (L0, e) be strictly admissible. Let E0 = (E0

j : j ∈ I) be a tuple

of balls centered at the origin of size |E0| = e. For any i 6= j ∈ I, and any w ∈ R2, define

the sets Ẽj(w) ⊂ R2 by

1E0
j
(`j,i(w, v)) = 1Ẽj(w)(v).

These sets are balls, whose centers are R2–valued linear functions of w ∈ R2; the mappings
from R2 3 w to their centers are radially symmetric functions.

Write I = {i, j, k, l}, with i playing the same role as in (3.4) and (3.5). Let w = (u, 0) ∈
∂E0

i with u > 0. The Lebesgue measure of Ẽj(u, 0) ∩ Ẽk(u, 0) ∩ Ẽl(u, 0) ⊂ R2 equals
K0
i (u, 0), which is strictly positive by the strict admissibility hypothesis. The centers of

these closed three balls Ẽj(u, 0), Ẽi(u, 0), Ẽl(u, 0) lie on the horizontal axis in R2. Strict
admissibility implies that none of these three balls is contained in the interiors of the other
two.

Definition 3.4. Let L0 be nondegenerate and satisfy the full symmetry hypothesis of Def-
inition 2.1, and let (L0, e) be strictly admissible. Let E0 be a 4–tuple of balls centered at 0

satisfying |E0
j | = ej, let u ∈ (0,∞) be defined by (u, 0) ∈ ∂E0

i , and for w ∈ R2 let Ẽj(w) be

associated to Ej as above. (L0, e) is generic if one of the following two mutually exclusive
cases holds:
(i) After some permutation of (j, k, l), Ẽj(u, 0) ∩ Ẽk(u, 0) is contained in the interior of

Ẽl(u, 0), and the boundary of Ẽj(u, 0) ∩ Ẽk(u, 0) consists of a subarc of the boundary of

Ẽj(u, 0) and a subarc of the boundary of Ẽk(u, 0), meeting transversely at two points.

(ii) The threefold intersection Ẽj(u, 0)∩ Ẽk(u, 0)∩ Ẽl(u, 0) is a connected, simply connected
domain whose boundary is a piecewise C∞ curve consisting of 4 subarcs of circles, with two
of these arcs contained in the boundary of one of the three closed balls, exactly one of the
arcs contained in the boundary of another of the three closed balls, the final arc contained
in the boundary of the remaining closed ball, and with arcs meeting transversely where they
intersect on the boundary.

Excluded by this definition of genericity is that case in which, after permutation of
(j, k, l), Ẽl(u) contains Ẽj(u)∩ Ẽk(u), but the interior of Ẽl(u) does not contain this inter-
section. In this situation, the boundary of the three-fold intersection consists of one subarc
of ∂Ẽj(u) and one subarc of ∂Ẽk(u), meeting transversely, but the points at which these

subarcs meet also belong to ∂Ẽl(u). This situation is unstable, giving rise to either case (i)
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or (ii) upon arbitrary small perturbation. We expect this instability to lead to failure of the
boundary of components Ei of maximizing tuples E to be C∞, for general perturbations L
of L0.

The following example shows that the property that e is generic does not follow from e
being strictly admissible: Let E be a 4-tuple of subsets of R2 and consider the functional∫

R4

1E1(x1, y1)1E2(x2, y2)1E3(x1 + x2, y1 + y2)1E4(x1 − x2, y1 − y2)dz(3.6)

written in coordinates z = (x1, x2, y1, y2). The data e = (1, 1, r, 1) is strictly admissible for
the above functional if 1 < r < 2. Because the functional satisfies the symmetry hypotheses
of the Rogers-Brascamp-Lieb-Luttinger inequality, the sets (B,B,Br, B), where B is the
radius 1 ball centered at the origin and Br is the radius r ball centered at the origin,
extremize the functional restricted to tuples of sets of size |E| = (1, 1, r, 1). Using the

notation from the previous definition with i = 1, we have u = 1, Ẽ1 = Ẽ4 = B and
Ẽ3 = Br. The intersection

B ∩ (Br − (1, 0)) ∩ (B + (1, 0))

varies in type, satisfying case (i) or (ii) from Definition 3.4, and sometimes neither, for
different values of 1 < r < 2, as shown in Figure 1 below.

4. Main results

The main results of this paper are as follows.

Theorem 4.1 (Existence of maximizers). Let L be nondegenerate and satisfy the partial
symmetry hypothesis (2.2). For each e ∈ (0,∞)4 there exists E satisfying |E| = e and
Λ(E) = Θ(e).

It will suffice to prove Theorem 4.1 in the admissible case. For we have shown that if
(L, e) is not admissible, then there exists an admissible e′ ≤ e satisfying Θ(e′) = Θ(e). If
there exists E′ satisfying |E′| = e′ and Λ(E′) = Θ(e′) = Θ(e), then any tuple E satisfying
Ej ⊃ E′j for each j ∈ I and |E| = e is a maximizer for (L, e).

For admissible (L, e) a stronger result will be proved.

Theorem 4.2 (Qualitative stability of maximizers). Let e ∈ (R+)4 be admissible. Let E(n)

be a sequence of tuples satisfying |E(n)| = e, lim
n→∞

Λ(E(n)) = Θ(e), and (E(n))† = E(n).

Then there exist a subsequence of indices nk, real numbers λk > 0, and a tuple E such that
for each index i ∈ I,

(4.1) lim
k→∞

|Ei ∆Dλk(Enki )| = 0.

Theorem 4.1 for admissible (L, e) is a direct consequence of Theorem 4.2. Indeed, let
e be admissible. According to the definition of Θ(e) as a supremum and by virtue of
the symmetrization inequality Λ(E) ≤ Λ(E†), there exists a sequence (Eν : ν ∈ N) of

tuples satisfying Eν = E†ν , |Eν | = e, and lim
ν→∞

Λ(Eν) = Θ(e). Since Λ and the relation

|E| = e are invariant under the group of dilations Dt, the continuity of Λ implies that the
tuple E = (Ei : i ∈ I) whose existence is guaranteed by Theorem 4.2 satisfies Λ(E) =
limν→∞ Λ(Eν) = Θ(e). Theorem 4.2 is proved in §7.

In a perturbative regime we obtain structural information about (partially) symmetrized
maximizers E.
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r = 1.3
r =
√

3

r = 1.85

Figure 1. The balls that form B ∩ (Br − (1, 0)) ∩ (B + (1, 0)) for different
values of r. The intersection is of type (i) for r = 1.3, type (ii) for r = 1.85,
and neither of type (i) nor of type (ii) for r =

√
3.

Theorem 4.3 (Convexity and regularity). Let L0 satisfy the full symmetry hypothesis
of Definition 2.1. Suppose that (L0, e) is strictly admissible and generic. There exists
δ > 0 with the following property. Let L satisfy the limited symmetry hypothesis and satisfy
‖L − L0‖ < δ. Let E satisfy |E| = e and be a maximizer for ΛL. Suppose that E† = E.
Then for each j ∈ I, Ej is a strongly convex set with C∞ boundary.

A C2 domain is said to be strongly convex if it is convex, and its boundary has nonzero
curvature at every point. Theorem 4.3 is proved in §10.

A final result indicates that the partial symmetry hypothesis (2.2) is not entirely artificial.

Theorem 4.4 (Nonexistence of maximizers). Let L0 satisfy the full symmetry hypothesis
(2.3). There exist nondegenerate L arbitrarily close to L0 such that for any e such that
(L0, e) is strictly admissible, there exist no maximizers E for ΛL satisfying |E| = e.

Proposition 11.1, formulated below, states more specifically that for tuples of mappings
L of the form Lj(x,y) =

(
L1
j (x), L2

j (x,y)
)
, maximizers E cannot exist unless L2

j (x,y) takes

a special form which makes the functional ΛL equivalent, in a natural way, to ΛL̃ where L̃
satisfies (2.2). It is proved in Section 11.
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5. Conjectures

In this paper we explore a rather specific situation in the hope of building insight into
what is true, and what might be proved, in a broader framework. It is natural to venture
various conjectures in this regard. In all of these conjectures, we assume that (L, e) satisfies
appropriate nondegeneracy and admissibility hypotheses, which remain to be given precise
formulations.

Conjecture 1. For generic and admissible (L, e), maximizers E are not tuples of ellipsoids.

It is natural to envision a computer aided proof of this conjecture, using Taylor expansions
to verify that no tuples of ellipsoids can satisfy the generalized Euler-Lagrange relation (see
Proposition 9.2) that is satisfied by maximizers.

Conjecture 2. For generic (L, e) satisfying the partial symmetry hypothesis (2.2), any
maximizer E is a translate of a symmetrized maximizer.

This conclusion will be established in a sequel for the case in which L is a small per-
turbation of a fully symmetric L0 and (L0, e) is strictly admissible. Thus symmetrized
maximizers do play a central role in the subject, justifying the attention accorded them in
this paper.

Conjecture 3. Let (L0, e) be nondegenerate and strictly admissible. For generic admissible
(L, e) satisfying (2.2) with L sufficiently close to L0, symmetrized maximizers of ΛL are
unique up to measure-preserving dilations of R2.

Conjecture 4. Under the partial symmetry hypothesis (2.2), the conclusion that the com-
ponent sets Ei of any maximizer E are convex, holds with suitable strict admissibility and
nondegeneracy hypotheses on (L, e), without any hypothesis that L is a small perturbation
of a tuple of mappings that possesses Sl(d) invariance.

Conjecture 5. The results of this paper concerning existence and convexity of maximizers
have analogues for generic nondegenerate data L without partial symmetry.

Proposition 11.1 demonstrates that the requirement that L be generic cannot be entirely
omitted. However, the construction on which the Proposition is based requires structural
properties not shared by generic L, and we do not regard these examples as indicative of
the state of affairs for generic data.

Conjecture 6. Consider small perturbations L, satisfying (2.2), of tuples L0 that satisfy
(2.3). If the genericity hypothesis on (L0, e) is omitted then maximizers need not have C∞

boundaries.

Question 7. For generic (L, e) satisfying suitable nondegeneracy hypotheses, do maximiz-
ers exist?

Question 8. To what extent are maximizers E unique up to translation, in the absence
of partial symmetry, for generic (L, e) satisfying suitable nondegeneracy and admissibility
hypotheses?

6. Compatibility

Definition 6.1. For tuples of sets E = (Ej : j ∈ I),

(6.1) λ(E) = sup
R

min
j∈I

|Ej ∩R|
|Ej |+ |R|
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with the supremum taken over all rectangles R ⊂ R2 centered at 0 with sides parallel to the
coordinate axes.

If E = E†, and if R is a rectangle centered at the origin with sides parallel to the
coordinate axes, then

(6.2) |(R+ y) ∩ E| ≤ |R ∩ E| for every y ∈ R2.

Lemma 6.1 (Compatibility). Let K be a compact subset of (R+)4. For each ε > 0 there
exists δ > 0 with the following property. Let e ∈ K, and let E be a 4–tuple of subsets of R2

satisfying |E| = e and E = E] = E[. If λ(E) < δ then Λ(E) < ε.

Sublemma 6.2. For j ∈ I let Rj = Ij × I ′j ⊂ R2 be a rectangle with sides parallel to the

axes. Then for any permutation (i, j, k, l) of (1, 2, 3, 4),

(6.3) Λ(1Rj : j ∈ I) ≤ C|I ′k| · |I ′l | · |I ′i|−1|I ′j |−1|Ri| · |Rj |.

Proof. Λ(1Rj : j ∈ I) is majorized by the Lebesgue measure of the set of all (x,y) =

(x1, x2, y1, y2) ∈ R4 for which L1
i (x) ∈ Ii, L1

j (x) ∈ Ij , L2
k(y) ∈ I ′k, and L2

l (y) ∈ I ′l . The

mappings x 7→ (L1
i (x), L1

j (x)) and y 7→ (L2
k(y), L2

l (y)) are bijective linear transformations

from R2 to R2. Thus Λ(1Rj : j ∈ I) is bounded by a constant, which depends only on
(Ln : n ∈ I), multiplied by |Ii| · |Ij | · |I ′k| · |I ′l |. �

An analogous conclusion holds if the roles of Ik and I ′k are reversed.
In the following discussion, k = (k1, k2, k3, k4) ∈ Z4.

Sublemma 6.3. For each j ∈ I let {R(j)
k : k ∈ Z} be a family of rectangles in R2 of the

form R
(j)
k = I

(j)
k × J

(j)
k with J

(j)
k of length 2k. Suppose that

∑
k∈Z
|R(j)

k | < ∞ for each j ∈ I.

There exists C <∞ such that for any set S ⊂ Z4,∑
k∈S

Λ(R
(1)
k1
, R

(2)
k2
, R

(3)
k3
, R

(4)
k4

) ≤ C sup
k∈S

2
−(max

i
ki−min

j
kj)/2 · sup

k∈S
max
n∈I
|R(n)

kn
| ·max

j∈I

∑
k∈Z
|R(j)

k |.

Proof. By dilating we may assume without loss of generality that

sup
j∈I

∑
k∈Z
|R(j)

k | = 1.

It suffices to treat the summation over all k ∈ S that satisfy

(6.4) k4 ≤ k3 ≤ k2 ≤ k1.

The same reasoning will apply with arbitrary permutations of the indices 1, 2, 3, 4. For the
rest of the proof, we assume that every k ∈ S satisfies (6.4). Set ρ = sup

k∈S
2(k4+k3−k2−k1)/2.

Individual summands satisfy

Λ(R
(1)
k1
, R

(2)
k2
, R

(3)
k3
, R

(4)
k4

) ≤ C2k3+k4−k1−k2 |R(1)
k1
| · |R(2)

k2
|

≤ Cρ2−(k1−k2)/22(k3+k4−2k2)/2|R(1)
k1
| · |R(2)

k2
|.

Summation over all k3, k4 ≤ k2 yields an upper bound

ρ
∑
k2≤k1

2−(k1−k2)/2|R(1)
k1
| · |R(2)

k2
| ≤ Cρ

(∑
k1

|R(1)
k1
|2
)1/2 · (∑

k2

|R(2)
k2
|2
)1/2
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with the first sum taken over all (k1, k2) satisfying k2 ≤ k1 for which there exist k3, k4 for
which k ∈ S, the second sum over all k1 for which there exist k2, k3, k4 for which k ∈ S,
and so on. Now(∑

k1

|R(1)
k1
|2
)1/2 ≤ sup

k
|R(1)

k |
1/2 ·

(∑
k1

|R(1)
k1
|
)1/2 ≤ sup

k
|R(1)

k |
1/2,

with a corresponding majorization for
(∑

k2
|R(2)

k2
|2
)1/2

. �

Proof of Lemma 6.1. Define E+
j = {(x, y) ∈ Ej : x > 0} and E−j = {(x, y) ∈ Ej : x < 0}.

We will analyze Λ(E+
j : j ∈ I); the same reasoning will apply equally well to Λ(E±j : j ∈ I)

with all possible choices of ± signs.

To Ej associate rectangles R
(j)
k ⊂ R2 with sides parallel to the coordinate axes, defined

as follows: Express E+
j , up to a Lebesgue null set, as

E+
j = {(x, y) : x > 0 and |y| < fj(x)}

where fj : (0,∞)→ [0,∞) is nonincreasing and right continuous. Define

R
(j)
k = {x ∈ R+ : 2k ≥ fj(x) > 2k−1} × [−2k, 2k].

Then E+
j ⊂ ∪∞k=−∞R

(j)
k , so |Ej | ≤ 2

∑
k

|R(j)
k |. On the other hand, |R(j)

k ∩ Ej | ≥
1
2 |R

(j)
k |,

so ∑
k∈Z
|R(j)

k | ≤ 2|E+
j | = |Ej |.

Express

Λ(E+
j : j ∈ I) =

∑
k∈Z4

Λ(E+
j ∩R

(j)
kj

: j ∈ I) ≤
∑
k∈Z4

Λ(R
(j)
kj

: j ∈ I).

Let η = η(δ) > 0 be a small parameter which will be chosen below to depend only on δ,
and will tend to zero as δ → 0. Introduce

S1 = {k ∈ S : max
j∈I
|R(j)

kj
| ≤ η}

S2 = {k ∈ S \ S1 : max
i∈I

ki −min
j∈I

kj > log2(1/η)}

S′ = S \ (S1 ∪ S2).

By Sublemma 6.3,

Λ(E+
j : j ∈ I) ≤ Cη1/2 + C

∑
k∈S′

Λ(R
(j)
kj

: j ∈ I).

Matters are thus reduced to the sum over k ∈ S′.
As above, by partitioning S′ into finitely many subsets, we may assume for the remainder

of the proof that |R(1)
k1
| ≥ |R(2)

k2
| ≥ |R(3)

k3
| ≥ |R(4)

k4
| for each k ∈ S′. Since each R

(j)
kj

is a

rectangle with sides parallel to the coordinate axes with vertical side of length 2kj , and
since max

i,j∈I
2ki/2kj ≤ η−1, (6.3) gives

Λ(R
(j)
kj

: j ∈ I) ≤ C2k12k32−k42−k2 |R(4)
k4
| · |R(2)

k2
| ≤ Cη−2

|R(4)
k4
|

|R(1)
k1
|
· |R(1)

k1
| · |R(2)

k2
|
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Since k 6∈ S2, k3 ≤ k2 + log2(1/η), and summing over such k3 yields the bound

Cη−12k12−k4 |R(4)
k4
| · |R(2)

k2
|.

Summing over k2 gives

Cη−12k12−k4 |R(4)
k4
|.

Again since k 6∈ S2, −k4 ≤ log2(1/η) − k1. Summing over all remaining indices which in

addition satisfy min
i∈I
|R(i)

ki
| ≤ η3max

j∈I
|R(j)

kj
| gives the bound

Cη−1
∑
k1

∑
2k1−k4≤1/η

2k1−k4
(
|R(4)

k4
|/|R(1)

k1
|
)
|R(1)

k1
|

≤ Cη2
∑
k1

∑
2k1−k4≤1/η

2k1−k4 |R(1)
k1
|

≤ Cη
∑
k1

|R(1)
k1
| = Cη.

Therefore it remains to consider indices k ∈ S′ which satisfy min
i∈I
|R(i)

ki
| > η3max

j∈I
|R(j)

kj
|.

Assume that λ(E) < δ, with δ > 0 small. Let S̃ be the set of all k ∈ S that remain

untreated, and for which Λ(R
(j)
kj

: j ∈ I) 6= 0. To complete the proof, it suffices to show

that if η(δ)→ 0 sufficiently slowly as δ → 0, then the hypothesis that λ(E) < δ forces S̃ to
be empty.

Consider any k ∈ S̃. The associated four rectangles R
(j)
kj

have sides parallel to the

coordinate axes, have vertical sides of comparable lengths — meaning that the ratios of any
two of these lengths are bounded above by a function of η alone — and have comparable
Lebesgue measures, in the same sense of comparability. Therefore the lengths of their
horizontal sides are likewise comparable. Therefore there exists a single rectangle R ⊂ R2,

with sides parallel to the coordinate axes, such that R
(j)
kj

is contained in a translate R+ vj

and has Lebesgue measure comparable to |R|, for each j ∈ I. Since |R(j)
kj
∩ Ej | ≥ 1

2 |R
(j)
kj
|,

and since |Ej | is comparable to 1, the ratio
|Ej∩R

(j)
kj
|

|Ej |+|R
(j)
kj
|

is comparable to |R(j)
kj
|. Therefore we

find that for each j ∈ I,

|R| ≤ C(η)|R(j)
kj
| ≤ C(η)

|Ej ∩R(j)
kj
|

|Ej |+ |R(j)
kj
|
≤ C(η)

|Ej ∩R|
|Ej |+ |R|

,

where C(η) < ∞ depends only on η and we used (6.2) in the last inequality. By the
definition of λ(E), we have

|R| ≤ C(η)λ(E) ≤ C(η)δ.

Therefore if C(η) · δ < η then we conclude that k ∈ S1, whence k /∈ S̃. Thus S̃ would be
empty.

For each η > 0, the inequality C(η)δ < η holds for all sufficiently small δ > 0. Therefore
there exists a function δ 7→ η(δ) satisfying both limδ→0 η(δ) = 0, and C(η(δ)) · δ < η(δ) for
every δ > 0. �
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Corollary 6.4. For each compact set K ⊂ (R+)4 and each δ > 0 there exists ρ > 0 with
the following property. If |E| = e ∈ K, if E = E†, and if Λ(E) ≥ δ then there exists t ∈ R+

such that for each j ∈ I,

(6.5) [−ρ, ρ]× [−ρ, ρ] ⊂ Dt(Ej).

Proof. This is a direct consequence of Lemma 6.1 and the definition of λ(E). Choose a
rectangle R ⊂ R2, with sides parallel to the coordinate axes and centered at the origin, that
maximizes the ratio defining λ(E), up to a factor of 2. The lower bound for Λ(E) implies

a lower bound for the Lebesgue measure of R. An appropriate dilation gives ρ = c|R|1/2
where c > 0 is a constant. �

7. Precompactness

In this section we apply the results of Section 6 to establish Theorem 4.2, concerning
the precompactness of symmetrized maximizing sequences for admissible (L, e) up to the
dilation and translation symmetries of Λ introduced above. A pivotal issue is how the
admissibility of (L, e) comes into play in the proof. As was implicitly shown in the comment
following Theorem 4.1, precompactness cannot hold if (L, e) is not admissible, for if e′ < e
with e′j < ej , and if E′ = (E′i : i ∈ I) satisfies Λ(E′) = Θ(e′) = Θ(e) then any tuple

(Ei : i ∈ I) with Ei = E′i for every i 6= j, Ej ⊃ E′j , and |Ej | = ej satisfies Λ(E) = Θ(e)

and |E| = e.

Proof of Theorem 4.2. Suppose that |E(n)| = e for each n ∈ N, that each E(n) is sym-

metrized, and that Λ(E(n)) → Θ(e) as n → ∞. Write E(n) = (Enj : j ∈ I). By invoking

Corollary 6.4 and replacing each E(n) with a suitable dilate, we may assume that there
exists a cube Q̃ with positive sidelength, centered at the origin, that is contained in Eni for
every n and every i ∈ I.

By the Banach-Alaoglu theorem, there exists a subsequence nk of indices and functions
gi ∈ L2(R2) such that for every i ∈ I, 1Enki

converges weakly in L2 to gi as k → ∞.

By replacing E(n) by a subsequence, we may assume henceforth that the full sequence of
indicator functions 1Eni converges weakly in L2.

The set Eni intersected with (0,∞)×[0,∞) is the region under the graph of a nonnegative,
nonincreasing function fi,n. For any s > 0, sfi,n(s) ≤ 1

4 |E
n
i | = 1

4ei. A simple consequence
of the Helly selection theorem is that the weak limit of (1Eni : n ∈ N) is the indicator
function of a region

Ei = {(u, v) : |v| ≤ fi(u)}
where fi is even, the restriction of fi to (0,∞) is nonincreasing, and ufi(u) ≤ ei/4 for every
u > 0. Thus gi = 1Ei .

Set

E = (E1, E2, E3, E4),

E(n) ∩E = (Eni ∩ Ei : i ∈ I),

E(n) \E = (Eni \ Ei : i ∈ I).

Lemma 7.1.

(7.1) lim
n→∞

Λ(E(n)) = lim
n→∞

[Λ(E(n) ∩E) + Λ(E(n) \E)].
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Proof of Lemma 7.1. Expressing the indicator function of Eni as the sum of the indicator
functions of Eni ∩Ei and of Eni \Ei, and then invoking the multilinearity of Λ, produces an

expansion of Λ(E(n)) as a sum of 24 terms, of which two are the main terms Λ(E(n) ∩ E)

and Λ(E(n)\E). Each of the remaining 14 terms takes the form Λ(En1 ∩E1, E
n
2 \E2, F

n
3 , F

n
4 )

with Fnj equal either to Enj ∩ Ej or to Enj \ Ej , up to permutation of the indices 1, 2, 3, 4.
Moreover,

Λ(En1 ∩ E1, E
n
2 \ E2, F

n
3 , F

n
4 ) ≤ Λ(En1 ∩ E1, E

n
2 \ E2, E

n
3 , E

n
4 ).

Thus in order to prove (7.1), it will suffice to show that

Λ(En1 ∩ E1, E
n
2 \ E2, E

n
3 , E

n
4 )→ 0

as n→∞, provided that the same reasoning applies with the indices permuted, as it indeed
will.

To analyze Λ(En1 ∩ E1, E
n
2 \ E2, E

n
3 , E

n
4 ), let ε > 0. For R > 0, let QR = [−R,R]2. For

N,M > 0, we have the upper bound

Λ(En1 ∩ E1, E
n
2 \ E2, E

n
3 , E

n
4 ) ≤ Λ(E1 ∩QM , En2 \ (E2 ∪QN ), En3 , E

n
4 )

+ Λ(E1 ∩QM , (En2 \ E2) ∩QN , En3 , En4 ) + C|E1 \QM |e2

≤ Λ(E1 ∩QM , En2 \QN , En3 , En4 )

+ Λ(E1, (E
n
2 \ E2) ∩QN , En3 , En4 ) + C|E1 \QM |e2.

We claim that for any M <∞,

(7.2) Λ(E1 ∩QM , En2 \QN , En3 , En4 ) ≤ ρM,e(N)

where the function ρM,e(N) depends only on L, e,M,N and ρM,e(N)→ 0 as N →∞ while
M, e,L remain fixed. Indeed, define α so that the intersection of En2 with {N} ×R, which
is an interval, has length 2α. Then (−N,N) × (−α, α) ⊂ En2 , so α ≤ 4N−1e2. Likewise,
defining β so that the intersection of En2 with R×{N} has length 2β, one has β ≤ 4N−1e2.
Therefore if N is sufficiently large, En2 \ QN is contained in the union of R × (−α, α)
with (−β, β) × R. Define En2,h to be the former portion of En2 , and En2,v to be the latter.

Consider Λ(E1 ∩QM , En2,h \QN , En3 , En4 ), which is majorized by Λ(E1 ∩QM , Ẽn2 , En3 , En4 ),

where Ẽn2 = (En2,h)[, is the horizontal Steiner symmetrization of En2,h.

We will apply Lemma 6.1, which asserts that Λ(E) is small if the quantity λ(E) defined
in (6.1) is small. Consider any rectangle R ⊂ R2 with sides parallel to the coordinate
axes and centered at 0. In evaluating λ(E), clearly only rectangles R whose vertical sides
have length . α need be considered. If R does have vertical length . α then R has
small measure unless its horizontal side has length & α−1e2 & N/4. However, in this case

|R ∩ E1| ≤ |R ∩ QM | . αM . MN−1e2. Therefore λ(E1 ∩ QM , Ẽn2 , En3 , En4 ) becomes
arbitrarily small as N becomes arbitrarily large. Therefore by Lemma 6.1, the same goes
for Λ(E1 ∩QM , En2,h, En3 , En4 ). The same reasoning applies to Λ(E1 ∩QM , En2,v, En3 , En4 ).

Choose M sufficiently large that |E1 \ QM | < ε. Then choose N large enough so that
ρM,e(N) < ε. Finally, the weak convergence of En2 implies that

|(En2 \ E2) ∩QN | = |En2 ∩ (QN \ E2)| → |E2 ∩ (QN \ E2)| = 0 as n→∞.

Thus lim sup
n→∞

Λ(En1 ∩E1, E
n
2 \E2, E

n
3 , E

n
4 ) ≤ 2ε. Since ε > 0 was arbitrary, this proves that

Λ(En1 ∩ E1, E
n
2 \ E2, E

n
3 , E

n
4 ) → 0. The same reasoning, with natural changes in notation,

proves that the other cross terms in the expansion of Λ(E(n)) also have limit zero. This
completes the proof of Lemma 7.1. �
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We claim next that

(7.3) lim
n→∞

Λ((E(n) \E)) = 0.

It suffices to show that limn→∞ Λ((E(n)\E)†) = 0. To prove this, note that since |Eni ∩Ei| →
|Ei| by the weak convergence,

lim
n→∞

|(E(n) \E)†| = (e1 − |E1|, e2 − |E2|, e3 − |E3|, e4 − |E4|).

If lim supn→∞ Λ((E(n) \ E)†) > 0 then after passing to a subsequence of indices n that
realizes the limit supremum, we may invoke Corollary 6.4 to conclude that there exist a
sequence of dilations Dηk and δ > 0 such that the cube [−δ, δ]2 = Qδ is contained in

Dηk((Eki \ Ei)†) for all i, k.
By a change of variables that preserves the partially symmetric multilinear structure of Λ

(permitted by Definition 2.2), we may assume without loss of generality that L1(x1, y1, x2, y2) =
(x1, y1) and L2(x1, y1, x2, y2) = (x2, y2). For each k, let Nk > 0 be large enough so
|Enk1 \ QNk | < 1

k and |Dηk((Enk1 \ E1)†) \ QNk | < 1
k . Also let vk1 ∈ R2 be large enough

so that QNk ∩ (QNk + vk1 ) = ∅. Then

Λ(E(nk) ∩E) + Λ(E(nk) \E) ≤ Λ(Enk1 ∩ E1 ∩QNk , E
nk
2 ∩ E2, E

nk
3 ∩ E3, E

nk
4 ∩ E4)

+ Λ(Dηk(Enk1 \ E1)† ∩QNk , Dηk(Enk2 \ E2)†, Dηk(Enk3 \ E3)†, Dηk(Enk4 \ E4)†)

+ Ce2k
−1

= Λ(Enk1 ∩ E1 ∩QNk + vk1 , E
nk
2 ∩ E2, E

nk
3 ∩ E3 + vk3 , E

nk
4 ∩ E4 + vk4 )

+ Λ(Dηk(Enk1 \ E1)† ∩QNk , Dηk(Enk2 \ E2)†, Dηk(Enk3 \ E3)†, Dηk(Enk4 \ E4)†)

+ Ce2k
−1

for certain vk3 , v
k
4 ∈ R2 determined by vk1 and L.

The two sets
(
Enk1 ∩E1 ∩QNk

)
+ vk1 and [Dηk(Enk1 \E1)†] ∩Qnk are disjoint for each k.

Let Fnk1 be the union of these two sets. Define Fnkj for j = 2, 3, 4 as follows. Fnk2 is the

union of Enk2 ∩ E2 with Dηk(Enk2 \ E2)†. For j = 3, 4, Fnkj is the union of (Enkj ∩ Ej) + vkj
with Dηk(Enkj \ Ej)†. Then |Fnkj | ≤ ej for each j ∈ I.

Λ(Enk1 ∩ E1 ∩QNk + vk1 , E
nk
2 ∩ E2, E

nk
3 ∩ E3 + vk3 , E

nk
4 ∩ E4 + vk4 )

≤ Λ(Enk1 ∩ E1 ∩QNk + vk1 , F
nk
2 , Fnk3 , Fnk4 )

since Enk2 ∩ E2 ⊂ F2 and similarly for the indices j = 3 and j = 4. Likewise,

Λ(Dηk(Enk1 \ E1)† ∩QNk , Dηk(Enk2 \ E2)†, Dηk(Enk3 \ E3)†, Dηk(Enk4 \ E4)†)

≤ Λ(Dηk(Enk1 \ E1)† ∩QNk , F
nk
2 , Fnk3 , Fnk4 ).

Thus we have shown that

Λ(E(nk) ∩E) + Λ(E(nk) \E) ≤ Λ(Enk1 ∩ E1 ∩QNk + vk1 , F
nk
2 , Fnk3 , Fnk4 )

+ Λ(Dηk(Enk1 \ E1)† ∩QNk , F
nk
2 , Fnk3 , Fnk4 ) + o(1)

= Λ(Fnk1 , Fnk2 , Fnk3 , Fnk4 ) + o(1)

with the equality holding because Fnk1 is the disjoint union of Enk1 ∩ E1 with Dηk(Enk1 \
E1)† ∩QNk .
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Thus by Lemma 7.1,

Θ(e) = lim
k→∞

Λ(E(nk)) ≤ lim sup
k→∞

Θ(e1, |Fnk2 |, e3, e4).

There exists a cube Q̃ centered at 0 ∈ R2, of positive sidelength, that is contained in E2

and in Enk2 for every k. Therefore for every sufficiently large k,

|(Enk2 ∩ E2) ∪Dηk(Enk2 \ E2)∗| ≤ e2 − |Q̃ ∩Qδ| < e2.

By letting k →∞ one deduces that

Θ(e1, e2, e3, e4) ≤ Θ(e1, e2 − |Q̃ ∩Qδ|, e3, e4).

This contradicts the definition of admissibility of e. Therefore (7.3) must hold.

Inserting (7.3) into (7.1), we find that Λ(E(n) ∩ E) → Θ(e) as n → ∞. Since |Enj | ≤ ej
for every n and every j by assumption, the same holds for the subsets Enj ∩ Ej . If there

were to exist j ∈ I and a subsequence satisfying lim supk→∞ |E
nk
j ∩ Ej | < ej , then we

would conclude that ΘL(e′) = ΘL(e) for some e′ < e, contradicting the admissibility of e.
Therefore lim infn→∞ |Eni ∩ Ei| = ei for each i ∈ I. Since ei = |Eni | and |Ei| ≤ ei, this
forces limn→∞ |Eni ∆Ei| = 0. Therefore |Ei| = ei for each i ∈ I, and Λ(E) = ΘL(e). That
completes the proof of Theorem 4.2. �

8. Continuity of Θ with respect to L

In the next lemma, L0 is not assumed to satisfy the full symmetry hypothesis (2.3), even
though this notation is reserved for that special case in nearly all of this paper.

Lemma 8.1. Let L0 and Lν be nondegenerate and satisfy (2.2). Let ((Lν , eν) : ν ∈ N) be
a sequence of data such that (Lν , eν)→ (L0, e0) as ν →∞. Then

(8.1) lim
ν→∞

ΘLν (eν) = ΘL0(e0).

Proof. There exists a symmetrized maximizing configuration E0 for (L0, e0). Modifying
each component E0

i appropriately yields a sequence Eν of symmetrized 4–tuples satisfying
|Eν | = eν . Then |Eν,i ∆E0

i | → 0 as ν → ∞ for each i ∈ I. It follows that ΛLν (Eν) →
ΛL0(E0) = ΘL0(e0). Therefore

(8.2) lim sup
ν→∞

ΘLν (eν) ≥ ΘL0(e0).

However, no converse inequality follows with comparable ease, because the mapping (L,E) 7→
ΛL(E) fails to be continuous in any sufficiently uniform sense with respect to E.

To prove the converse, pass to a subsequence to ensure that ΘLν (eν) converges to ΘL0(e0)
as ν → ∞. Let (Eν) satisfy |Eν | = eν and lim supν→∞ ΛLν (Eν) = lim supν→∞ΘLν (eν),

and let each Eν satisfy Eν = E†ν . Write Eν = (Eν,i : i ∈ I). By replacing Eν by DtνEν

for an appropriately chosen sequence of parameters tν ∈ (0,∞), we may assume that there
exists ρ > 0 such that [−ρ, ρ]2 ⊂ Eν,i for each i ∈ I.

By repeating the reasoning in the proof of Theorem 4.2 we conclude that after passing

to a subsequence, there exists E0,] = (E0,]
i : i ∈ I), satisfying E0,] = (E0,])†, such that for

each i ∈ I, Eν,i may be expressed as a disjoint union E]ν,i ∪ E[ν,i, satisfying E]ν,i = (E]ν,i)
†

and E[ν,i = (E[ν,i)
†, with |E]ν,i ∆E0

i,1| → 0, and

lim
ν→∞

(
ΛLν (E]

ν) + ΛLν (E[
ν)
)

= lim
ν→∞

ΘLν (eν),
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where E]
ν = (E]ν,i : i ∈ I) and analogously for E[

ν . The cross terms that arise in the proof
of Theorem 4.2 contribute zero in the limit ν →∞, because the bounds in Lemma 6.1 are
uniform in ν since Lν → L0.

Since |E]ν,i ∆E0,]
i | → 0 and Lν → L0 as ν →∞,

(8.3) lim
ν→∞

ΛLν (E]
ν) = ΛL0(E0,]).

Therefore setting eν,1 = e[ν and e0
1 = e0,],

(8.4) lim sup
ν→∞

ΘLν (eν) ≤ ΘL0(e0
1) + lim sup

ν→∞
ΘLν (e[ν,1)

and

(8.5) e0 = e0
1 + lim

ν→∞
eν,1

with addition and limits defined componentwise for 4–tuples. If limν→∞ΘLν (eν,1) = 0 then
the proof is complete.

Write eν,1 = (eν,1,i : i ∈ I). Observe that mini∈I |E0
i | ≥ 4ρ2 since Eν,i ⊃ [−ρ, ρ]2 for

every ν. Therefore for every sufficiently large ν, eν,1,i ≤ e0
i − 3ρ2.

Pass from the full sequence to a subsequence of indices ν, along which lim supν→∞ΘLν (eν,1)
is achieved in the limit. Apply the above construction to obtain a partition of Eν,1 in terms

of E]
ν,1 and E[

ν,1 and a limiting set E0,]
2 = E0

2. Conclude in the same way that

(8.6) lim
ν→∞

ΘLν (eν) ≤ ΘL0(e0
1) + ΘL0(e0

2) + lim sup
ν→∞

ΘLν (eν,2)

where eν,2 = e[ν,1, with

(8.7) lim
ν→∞

(
e0

1 + e2
0 + eν,2

)
= e0.

As in the initial step, each component e0
2,i of the tuple e0

2 is minorized by a positive quantity,

which in turn is minorized by a positive function of limν→∞ΘLν (eν,2)).
Iterate this process. It may halt after finitely many steps, in which case it produces a

finite sequence e0
k satisfying

∑
k e0

k ≤ e0 and lim supν→∞ΘL0(eν) =
∑

k ΘL0(e0
k). Obviously∑

k ΘL0(e0
k) ≤ ΘL0(e0), completing the proof.

If the process fails to halt after finitely many steps then it produces infinite sequences
e0
k and eν,k. Necessarily

(8.8) lim
k→∞

lim sup
ν→∞

ΘLν (eν,k) = 0.

Indeed, at each step there exists ρk > 0 for which [−ρk, ρk]2 ⊂ E0,]
i for each i ∈ I, and ρk

is bounded below by a strictly positive quantity if lim supν→∞ΘLν (eν,k) is bounded away
from zero. If lim supν→∞ΘLν (eν,k) did not tend to zero then each component of e0

k would
be bounded away from zero uniformly in k, contradicting the relation

∑
k e0

k ≤ e0.
Therefore

(8.9) lim sup
ν→∞

ΘLν (eν) ≤
∞∑
k=0

ΘL0(e0
k)

with
∑

k e0
k ≤ e0. This last inequality implies that

∑∞
k=0 ΘL0(e0

k) ≤ ΘL0(e0), once more
completing the proof. �
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Corollary 8.2. Let e′, e′′ ∈ (0,∞)4. Let L be nondegenerate and satisfy the partial sym-
metry hypothesis (2.2). If (L, e′ + e′′) is admissible then

(8.10) ΘL(e′) + ΘL(e′′) < ΘL(e′ + e′′).

Proof. First suppose that e′, e′′ are admissible. Let E′,E′′ be symmetrized maximizing
tuples satisfying |E′| = e′ and |E′′| = e′′. As in the proof of Theorem 4.2, there exists c > 0
such that for any ε > 0 there exists v ∈ R4 such that the tuple E = (E′i ∪ (E′′i + Li(v)) :
i ∈ I) satisfies Λ(E) ≥ Λ(E′) + Λ(E′′) − ε and |E′1 ∪ (E′′1 + L1(v))| ≤ e′1 + e′′1 − c. Thus
Θ(e′1 + e′′1 − c, e′2 + e′′2, . . . ) ≥ Θ(e′ + e′′), contradicting the admissibility of e′ + e′′. �

Lemma 8.3. Let (L0, e0) and (Lν , eν) satisfy the hypotheses of Lemma 8.1. Suppose that
(L0, e0) satisfies the full symmetry hypothesis of Definition 2.1, and is strictly admissible.
Suppose that |Eν | = eν , that each Eν is symmetrized, and that ΛLν (Eν) → ΘL0(e0) as
ν →∞. Then there exists a sequence tν such that

(8.11) |(DtνEν) ∆ E0| → 0 as ν →∞.

Proof. Choose tν so that there exists ρ > 0 for which [−ρ, ρ]2 ⊂ DtνEν for all sufficiently
large ν. Assume henceforth that ν is indeed large, and replace Eν by DtνEν .

Apply the proof of Theorem 4.2. The quantity e0
1 constructed in that proof must be

equal to e0, for otherwise a contradiction would be reached immediately using Corollary 8.2.
Therefore eν,1 → 0. �

While the two notions of strict admissibility on the one hand, and admissibility on the
other, are defined somewhat differently, they are related. If L0 satisfies the full symmetry
hypothesis of Definition 2.1, and if (L0, e0) is strictly admissible, then (L0, e0) is admissible
in the sense of Definition 3.2.

Lemma 8.4. Let (L0, e0) be nondegenerate, satisfy the full symmetry hypothesis (2.3), and
be strictly admissible. Then (L, e) is admissible whenever L satisfies the partial symmetry
hypothesis (2.2) and (L, e) is sufficiently close to (L0, e0).

Proof. Consider any sequence (Lν , eν) that satisfies the hypotheses and tends to (L0, e0)
as ν → ∞. There exists e′ν ≤ eν such that (Lν , e′ν) is admissible and satisfies ΘLν (e′ν) =
ΘLν (eν).

In this situation, e′ν → e0. Indeed, suppose instead that after passing to a subsequence,
e′ν → e′ < e0. Each component of e′ is strictly positive, since |ΘLν (e′ν)| is uniformly
minorized by a positive quantity, and is majorized by a constant multiple of the product of
the two smallest components of e′ν , uniformly in ν. By Lemma 8.1,

ΘL0(e) = lim
ν→∞

ΘLν (e′ν) = lim
ν→∞

ΘLν (eν) = ΘL0(e0).

This forces e′ = e0, that is, e′ν → e0. Indeed, the function ẽ 7→ ΘL0(ẽ) is nondecreasing.
Since (L0, e0) is strictly admissible, this function is strictly increasing in a neighborhood
of e0. That is, if e′ < e′′ and both are close to e0, then ΘL0(e′) < ΘL0(e′′). Therefore if
e′ < e0 then ΘL0(e′) < ΘL0(e0), contradicting the conclusion of the preceding paragraph.

Let Eν satisfy |Eν | = e′ν , Eν = E†ν , and ΛLν (Eν) = ΘLν (e′ν) = ΘLν (eν). By replacing
Eν by Dtν (Eν) for appropriate parameters tν ∈ (0,∞) we may assume that the associated
component sets satisfy |Eν,i ∆E0

ν,i| → 0 as ν →∞ for each i ∈ I.

It follows that the associated functions K0
i ,Kν,i satisfy Kν,i → K0

i in C0(R2) norm.
A consequence of strict admissibility is that K0

i is bounded below by a strictly positive
quantity in a neighborhood of the closure of E0

i . Therefore Kν,i is also bounded below by a
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strictly positive quantity in a subset of R2 \ Eν,i whose Lebesgue measure is also bounded
below by a strictly positive quantity, uniformly in ν. Write e′ν = (e′ν,i : i ∈ I). Let r > e′ν,i
be close to e′ν,i. Define ẽ = (ẽk : k ∈ I) by ẽj = e′ν,j for j 6= i and ẽi = r. Construct Ẽ

satisfying |Ẽ| = ẽ with Ẽj = Eν,j for j 6= i, Ẽi ⊃ Eν,i, and Kν,i strictly positive on Ẽi \Eν,i.
Then

ΘLν (ẽ) ≥ ΛLν (Ẽ) =

∫
Ẽi

Kν,i >

∫
Eν,i

Kν,i = ΛLν (Eν) = ΘLν (e′ν).

This holds for every r > e′ν,i, for each i ∈ I. Since e′ν < eν , this forces ΘLν (e′ν) < ΘLν (eν),

which is a contradiction. Therefore (Lν , eν) is admissible for every sufficiently large ν. �

9. Nonpositive first variation

If E maximizes ΛL among tuples of sets with prescribed measures e, then ΛL(E′) ≤
ΛL(E) whenever there exists i ∈ I for which E′j = Ej for every j 6= i and |E′i| = |Ei|. If

(L, e) is admissible then this inequality has an interpretation that will be exploited in the
proof of Theorem 4.3.

Definition 9.1. E is a superlevel set of a function K ≥ 0 if either there exist Ẽ satisfying
|Ẽ∆E| = 0 and t > 0 such that

(9.1) {x : K(x) > t} ⊂ Ẽ ⊂ {x : K(x) ≥ t},

or

(9.2)
∣∣E∆ {x : K(x) > 0}

∣∣ = 0.

The following assertion is immediate.

Lemma 9.1. Let 0 ≤ K ∈ L1(Rd), and let m ∈ (0,∞). Assume that |{x : K(x) > 0}| ≥ m.
Let E ⊂ Rd satisfy |E| = m. Then

∫
EK = sup|A|=m

∫
AK if and only if E is a superlevel

set of K.

Proposition 9.2. Let (L, e) be admissible and nondegenerate. Suppose that |E| = e and
that E is a maximizer, that is, that ΛL(E) = ΘL(e). For each k ∈ I, let Kk be associated
to L,E as in (3.3),(3.4). Then for each i ∈ I, Ei is a superlevel set of Ki.

Thus under the nondegeneracy and admissibility hypotheses, if E is a maximizer then
the tuple E is a solution of a coupled system of free boundary problems.

Proof. The nondegeneracy hypothesis ensures that Ki : R2 → [0,∞) is continuous, and that
Ki(u) → 0 as |x| → ∞. Since E is a maximizing tuple, any tuple E′ satisfying E′j = Ej
for all j 6= i and |E′i| = |Ei|, satisfies Λ(E′) ≤ Λ(E). This conclusion can be equivalently
reformulated as

(9.3)

∫
E′i

Ki ≤
∫
Ei

Ki for every set E′i satisfying |E′i| = |Ei|.

If |{u : Ki(u) > 0}| < |Ei| then Ẽi = Ei ∩ {u : Ki(u) > 0} satisfies |Ẽi| < |Ei|
and

∫
Ẽi
Ki =

∫
Ei
Ki. Thus if Ẽj = Ej for j 6= i then Λ(Ẽ) = Λ(E) contradicting the

admissibility of (L, e). Therefore |{u : Ki(u) > 0}| ≥ |Ei|. It follows from Lemma 9.1 that
Ei is a superlevel set of Ki. �
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10. Convexity and regularity of maximizers

In this section we prove Theorem 4.3, concerning the qualitative properties of maximizing
tuples, by exploiting the Euler-Lagrange relation of Proposition 9.2.

The set of all 4 tuples L = (Lj : j ∈ I) of linear mappings Lj : R4 → R2 is a finite-
dimensional vector space. Choose any norm ‖ · ‖ for this space, and fix it for the remainder
of the analysis. This allows us to quantify the difference between L and L0 as ‖L − L0‖.

Throughout section 10, L0 is assumed to be nondegenerate and to satisfy the full sym-
metry hypothesis (2.3), and (L0, e0) is assumed to be strictly admissible. It is assumed
that L is nondegenerate and satisfies the partial symmetry hypothesis (2.2), that (L, e) is
admissible, and that (L, e) is a small perturbation of (L0, e0).

Let E = {Ej : j ∈ I} be fixed and satisfy |Ej | = ej . Let the functions Ki be defined
in terms of the sets Ej by (3.3),(3.4). We will prove Theorem 4.3 via a bootstrapping
argument, in which properties of {Ei : i ∈ I} are used to deduce information concerning
{Ki : i ∈ I}, leading in turn to stronger properties of {Ei : i ∈ I}. Several iterations are
required to reach desired conclusions. The most involved step is Lemma 10.3 below, which
establishes smallness of Ki −K0

i in the Lipschitz norm, leading to the conclusion that Ei
is a Lipschitz domain whose boundary is close to that of E0

i in the Lipschitz sense.

As was proved in [15], since (L0, e0) is strictly admissible, if E0 satisfies |E0| = e0 then
E0 maximizes Λ0 if and only if E0 is a 4–tuple of homothetic ellipses, whose centers form
a 4–tuple that belongs to the orbit of (0, 0, 0, 0) under the translation symmetry group.
Among these tuples are those with sides parallel to the axes and with each E0

j centered at

0 ∈ R2. These special maximizers of Λ0 naturally play a distinguished role in the analysis.
According to Theorem 4.2, if (L0, e) is strictly admissible, if (L, e) is admissible and L is

sufficiently close to L0, and if E is a maximizer for ΛL satisfying E = E† and |E| = e, then
there exists t such that DtE is close to a special maximizer E0 of Λ0, in the sense that

|(DtEj) ∆E0
j | < ε for each j ∈ I,

where ε → 0 as ‖L − L0‖ → 0. We will prove the conclusions of Theorem 4.3 for a dilate
Dt of E chosen so that for each j ∈ I, |(DtEj) ∆E0

j | < ε where E0
j is a ball centered at the

origin. Assume henceforth that E0 is a 4–tuple of balls centered at the origin.
By oδ(1) we mean a quantity that depends on L0 and on e, but tends to 0 as δ → 0

provided that (L0, e) remains fixed, or more generally, remains inside a compact subset of
the set of all (L0, e) that satisfy our hypotheses.

Lemma 10.1. Let L0 be nondegenerate and satisfy the full symmetry hypothesis of Defi-
nition 2.1. Let (L0, e) be strictly admissible and generic. Let E0 be the 4–tuple of balls in
R2 centered at the origin satisfying |E0| = e. For each i ∈ I there exists a neighborhood of
∂E0

i in which K0
i is C∞ and has nowhere vanishing gradient.

Proof. Since E0
j are balls centered at the origin for all j 6= i, and since the diagonal action

of O(2) on (R2)4 defines a symmetry of ΛL0 , K0
i is a radially symmetric function. Thus it

suffices to analyze its gradient at the unique point in ∂E0
i of the form (ū, 0) with ū > 0.

Consider u in a small neighborhood of ū. K0
i (u, 0) is the Lebesgue measure of⋂

i 6=j∈I
Ẽ0
j (u, 0) =

⋂
i 6=j∈I

(Ẽ0
j + (ρju, 0))

where the three real coefficients ρj are determined by the mappings `j,i defined in (3.4)

and are pairwise distinct, and Ẽ0
j = Ẽ0

j (0, 0) is a closed ball centered at the origin. Write
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{j ∈ I : j 6= i} as {j, k, l}, with the indices labeled so that ρj < ρl < ρk. By making a
u–dependent translation change of variables in the integral over R2 that defined K0

i (u, 0)

we may reduce to the case in which ρl = 0. Then Ẽ0
l (u, 0) = Ẽ0

l is a closed ball centered
at the origin in R2.

According to the strict admissibility and genericity hypotheses, either Ẽ0
j (ū, 0)∩ Ẽ0

k(ū, 0)

is contained in the interior of Ẽ0
l , or the threefold intersection of these three balls is a convex

domain bounded by circular arcs of positive lengths that meet transversely, with 2 of these
arcs being subarcs of Ẽ0

n(ū, 0) for each n ∈ {j, k, l}. In either case, it is an elementary
consequence of the inequality ρj < 0 = ρl < ρk that in a neighborhood of ū, the volume of
the threefold intersection is a C∞ function of u with strictly negative derivative.3 �

The tuples E = (Ei : i ∈ I) depend on (L, e), but this dependence is not indicated in
our notations.

Lemma 10.2. Let δ0 > 0 be a sufficiently small constant, depending only on L0, e. Let
‖L − L0‖ ≤ δ ≤ δ0. For each i ∈ I, Ei is a bounded set whose diameter is bounded above,
uniformly in L. The Hausdorff distance from ∂Ei to ∂E0

i is oδ(1).

Proof. It follows directly from (3.4) and the nondegeneracy hypothesis that Ki is contin-
uous, and that Ki(u) → 0 as |u| → ∞. The same holds for K0

i . Moreover, ‖Ki‖C0 ≤
C|Ek| · |El| for any k 6= l ∈ I \ {i}, and

‖Ki −K0
i ‖C0 ≤ C max

j 6=i
|Ej ∆E0

j |

where C < ∞ depends on L0, e and on an upper bound for δ. Therefore ‖Ki −K0
i ‖C0 ≤

oδ(1).
The strict admissibility hypothesis implies that each set E0

i is a superlevel set {x :
K0
i (x) ≥ ti > 0} of K0

i , and ∇K0
i vanishes nowhere on the boundary of E0

i . Since ‖Ki −
K0
i ‖C0 is small, and since E is a maximizing tuple, for each i ∈ I, Ei ⊂ {u : Ki(u) >

ti − oδ(1)} provided that δ is sufficiently small. Therefore the diameters of the sets Ei are
majorized by an acceptable constant.

The nonvanishing of ∇K0
i in a neighborhood of ∂E0

i and the smallness of ‖Ki −K0
i ‖C0

together imply smallness of the Hausdorff distance from the boundary of Ei to the boundary
of E0

i . �

Lemma 10.3. If δ > 0 is sufficiently small then each function Ki is Lipschitz continuous,
with Lipschitz constants uniformly bounded above, for all L satisfying ‖L − L0‖ ≤ δ.

For any i ∈ I, for each j 6= i define Ẽj to be the inverse image of Ej under the mapping

v 7→ `j,i(0, v). Define Ẽ0
j in the corresponding way, in terms of E0

j and L0. Ẽj could more

properly be denoted by Ẽj,i, but the simplified notation will be sufficiently unambiguous
for our purpose.

Proof.

|Ki(u)−Ki(u
′)| ≤

∫
R2

∣∣∏
j 6=i

1Ej (`j,i(u, v))−
∏
j 6=i

1Ej (`j,i(u
′, v))

∣∣ dv
=

∫
R2

∣∣∏
j 6=i

1Ej (`j,i((u− u′), v))−
∏
j 6=i

1Ej (`j,i(0, v))
∣∣ dv.

3See also (10.3) below.
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As a function of v ∈ R2, 1Ej (`j,i(u−u′, v)) and 1Ej (`j,i(0, v)) are translates of Ẽj . Moreover,
they are translates by quantities whose difference is a linear transformation of u − u′.
Therefore it suffices to verify that |(Ej+w) ∆Ej | = O(|w|) for w ∈ R2. Moreover, it suffices
to verify this merely for w ∈ R×{0}, and for w ∈ {0}×R2. Since the horizontal and vertical
coordinates can be freely interchanged in this theory, it suffices to treat w = (z, 0) ∈ R×{0}.
The bound |(Ej +w) ∆Ej | = O(|w|) is an immediate consequence of two properties of Ej :
the intersection of Ej with any horizontal line in R2 is an interval, and the diameter of Ej
is bounded above by an acceptable constant. �

Lemma 10.4. For each i ∈ I,∣∣ (Ki −K0
i )(u)− (Ki −K0

i )(u′)
∣∣ ≤ oδ(1) · |u− u′|+O(|u− u′|2)

for all u, u′ sufficiently close to ∂(E0
i ).

Proof. Fix any index i ∈ I. For u ∈ R2 define

Ωi(u) = {v ∈ R2 : `j,i(u, v) ∈ Ej ∀j 6= i} =
⋂
j 6=i

Ẽj(u).

Thus Ki(u) = |Ωi(u)|. Likewise define Ω0
i (u) in terms of L0 and the sets E0

j , Ẽ
0
j . For

each u in a neighborhood of ∂E0
i , Ω0

i (u) is a bounded connected set, whose boundary is a
union of two or four arcs of circles. The genericity hypothesis guarantees that these arcs
meet transversely at any points of intersection, and that only two arcs meet at any such
point. These are subarcs of translates of the boundaries of the balls Ẽ0

j , respectively. The

intersection of Ωi(u) with any horizontal or vertical line is empty, or is an interval.

Each set Ẽj is invariant with respect to reflection about both the horizontal and ver-

tical axes. In the first quadrant, the boundary of Ẽj is a rectifiable curve that can be
parametrized by arclength as s 7→ (x(s), y(s)) with

(10.1) ẋ(s) ≥ 0 and ẏ(s) ≤ 0.

This curve is contained in an oδ(1)–neighborhood of the boundary of Ẽ0
j . The sets Ẽj(u), Ẽ0

j (ū)

are translates of Ẽj , Ẽ
0
j , respectively.

Let δ > 0 be small, and let L satisfy ‖L − L0‖ ≤ δ. Consider any i ∈ I, any ū in an

oδ(1)–neighborhood of ∂Ẽ0
j , and any u near ū. Choose a collection of two or four disks

{Qα} in R2 whose radii tend to zero slowly as δ → 0, centered at the two or four intersection
points of the arcs comprising the boundary of Ω0

i (ū). The boundary if Ωi(u) then consists
of two or four arcs of circles in the boundaries of the disks Qα, together with two or four
rectifiable curves, each of which has Hausdorff distance oδ(1) to a subarc of one of the
circular arcs comprising the boundary of Ω0

i (ū), is a translate of a subarc of the boundary

of Ẽj for some j ∈ I, and has monotonicity properties thereby inherited from (10.1).

For u sufficiently close to ū, the boundaries ∂Ẽk(u) enjoy the following two properties.

For each k ∈ I and each α, if ∂Ẽk(ū) meets ∂Qα then these intersect at a single point

z(k, α, ū). There exists a subarc Γ(u) of ∂Ẽk(u) of arclength O(|u − ū|) such that the

portion of ∂Ẽk(u) not lying in Γ(u) lies at distance ≥ C0|u− ū| from the boundary of Qα.

Moreover, for all u sufficiently close to ū, ∂Ẽk(u) meets ∂Qα at a single point, and this
point lies within distance O(|u− ū|) of z(k, α, ū). These properties are consequences of the

monotonicity properties (10.1) of the boundaries of Ẽj and the assumption that u takes
the form (u1, 0).
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For u ∈ R2 near ū, for sufficiently small δ,

Ki(u) =

∫
Ωi(u)

dv1 ∧ dv2 =

∫
Ωi(u)\∪αQα

d(v1 dv2) +
∑
α

∫
Qα∩Ωi(u)

dv1 ∧ dv2.

The same reasoning as in the proof of Lemma 10.3 shows that each term
∫
Qα∩Ωi(u) dv1∧dv2

defines a locally Lipschitz function of u, whose Lipschitz norm is oδ(1) because the Lebesgue
measure of Qα is oδ(1). K0

i (u) can be analyzed in the same way, producing a corresponding
term that is also Lipschitz with norm oδ(1).

The main term for Ki(u),
∫

Ωi(u)\∪αQα d(v1 dv2), can be rewritten via Stokes’ theorem.

What results is a sum of integrals of the one-form ω = v1 dv2 over finitely many rectifiable
arcs γβ(u). Each of these arcs is either a subarc of the boundary of a single Ẽk(u), or is
a subarc of the boundary of some Qα. Label these arcs so that for each index β, γβ(u) is
close in the Hausdorff metric to each of γβ(ū), γ0

β(u), and γ0
β(ū), provided that δ and |u− ū|

are sufficiently small.
Consider the contribution of an arbitrary γ(u) = γβ(u) of the former type. Its contribu-

tion is
∫
γ(u) v1 dv2. We wish to compare this quantity to

∫
γ(ū) v1 dv2. γ(u) is a subarc of

the full boundary ∂Ẽk(u) for some index k ∈ I \ {i}. This full boundary may be expressed
as a translate

∂Ẽk(u) = ∂Ẽk(ū) + `]k,i(u− ū)

for a certain linear mapping `]k,i : R2 → R2, which differs by oδ(1) from the corresponding

mapping `]k,i associated to L0.

Denote the first component of the R2–valued linear map `]k,i by ˜̀
k,i. The contribution of

γ(u) is ∫
γ(u)

v1 dv2 =

∫
γ(u)−`]k,i(u−ū)

(v1 + ˜̀
k,i(u− ū)) dv2

=

∫
γ(ū)

(v1 + ˜̀
k,i(u− ū)) dv2 +R(u, ū)

where the remainder R(u, ū) is expressed as an integral over the symmetric difference

between γ(ū) and γ(u, ū) = γ(u)−`]k,i(u− ū) of an integrand of the form v1 dv2 +O(|u− ū|).
Both γ(ū) and γ(ū, u) are subarcs of ∂Ẽk(ū), so their symmetric difference is a union of

two or fewer rectifiable arcs. We claim that each of these two or fewer arcs has diameter
O(|u − ū|). Indeed, if z ∈ ∂Ẽk(ū) lies at distance ≥ C0|u − ū| from the boundary of

Qα then z + `]k,i(u − ū) ∈ ∂Ẽk(u) shares this property with C0 replaced by C0/2, and

conversely, provided that the constant C0 is chosen to be sufficiently large. Thus the portion
of γ(ū) ∆ γ(u, ū) that lies within distance oδ(1) of the boundary of Qα lies entirely within

distance O(|u − ū|) of ∂Qα. By the key property of ∂Ẽk(ū) noted above, this establishes
the claim.

The corresponding quantity associated to Ki(ū) is simply
∫
γ(ū) v1 dv2. Subtracting this

from
∫
γ(u) v1 dv2 yields

−˜̀
k,i(u− ū)

∫
γ(ū)

dv2 +R(u, ū).

The factor
∫
γ(ū) dv2 is independent of u. Moreover, it is the integral of an exact one-form

over the curve γ(ū), and consequently depends only on the two endpoints of this curve.
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Analyzing K0
i (u)−K0

i (ū) in the same way results in a corresponding term, which depends
in the same way on the two endpoints of the corresponding elliptical arc γ(ū). Because
the Hausdorff distance between ∂Ek and ∂E0

k is oδ(1), the difference between these two
contributions is therefore O(|u− ū|) · oδ(1).

To complete discussion of the contribution of γ, it remains to analyze R(u, ū)−R0(u, ū).
Consider the two rectifiable curves that comprise the symmetric difference between γ(ū)
and γ(ū, u). On each, the function v1 may be expressed as a constant plus O(|u − ū|).
Terms that are O(|u − ū|) produce contributions that are O(|u − ū|2) since the integrals
here are taken over curves whose lengths are O(|u− ū|). As above, the constant terms give
rise to integrands which are constant multiples of dv2. Subtracting the corresponding terms
for K0

i and exploiting exactness of dv2, we conclude that

|R(u, ū)−R0(u, ū)| ≤ O(|u− ū|)oδ(1) +O(|u− ū|2).

The analysis of subarcs of the boundaries of the disks Qα is very slightly simpler, since
these arcs are not translated. Their contributions are entirely of the type of the remainders
R(u, ū). The same analysis as carried out for R(u, ū) above applies to them. �

Corollary 10.5. For each i ∈ I, Ei is a Lipschitz domain, uniformly for all L sufficiently
close to L0.

Proof. In a neighborhood of the boundary of E0
i , K0

i is a C∞ function with nowhere van-
ishing gradient. Since ‖Ki−K0

i ‖Lip ≤ oδ(1), if δ is sufficiently small then Ei = {u : Ki(u) ≥
ti = ti(L, e)} is a Lipschitz domain whose boundary lies in an oδ(1)–neighborhood of the
boundary of E0

i . �

Conclusion of proof of Theorem 4.3. Continuing the discussion in the proof of Corollary 10.5,
for any u ∈ ∂Ei, for any u′ sufficiently near u, u−u′ lies in a cone of aperture oδ(1) centered
around a vector that is tangent to ∂E0

i at a point whose distance to u is oδ(1). Therefore
∂Ωi(u) is a Lipschitz domain whose boundary consists of finitely many Lipschitz arcs γβ(u),

with each γβ(u) being a subarc of the boundary of a translate of Ẽk for some i 6= k ∈ I.
Denote the endpoints of γβ(u) by xβ(u),x′β(u). At any intersection of these arcs, only
two arcs meet, and any such intersection is transverse in the sense that tangent cones are
separated by a positive angle.

Inserting this information into the proof of Lemma 10.4, the disks Qα can now be dis-
pensed with, yielding the representation

(10.2) Ki(u) =
∑
β

∫
γβ(u)

v1 dv2

for all u in some neighborhood of ∂E0
i .

From this and the fact that γβ(u) is a subarc of a translate of the Lipschitz boundary of

Ẽk(ū) by a linear function of u− ū we deduce that Ki ∈ C1 in a neighborhood of ∂Ei with
∇Ki expressible as

(10.3) ∇Ki(u) =
∑
β

∫
γβ(u)

wk(β)(u− ū) dv1 =
∑
β

wk(β)(u− ū) (yβ(u)− y′β(u))

where yβ , y
′
β ∈ R are the second coordinates of xβ ,x

′
β ∈ R2, respectively, and wk(u − ū)

are R2–valued linear functions of u − ū determined by L and the indices i, k, mediated
by the function (v1, v2) 7→ v1. Therefore |wk(β)(u − ū)| = O(|u − ū|). The representation
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(10.3) holds for C1 boundaries, and follows for Lipschitz boundaries from the C1 case by a
limiting argument.

Therefore the superlevel set Ei of Ki is also a C1 domain. It follows that the endpoints
xβ(u),x′β(u) are themselves C1 functions of u, since they are translates by affine functions

of u of transversely intersecting C1 arcs. Moreover, xβ(u) − x0
β(u) and its gradient with

respect to u are uniformly oδ(1). Likewise for x′β(u).

Inserting this information into (10.3), we conclude that Ki ∈ C2. Since xβ(u) − x0
β(u)

and its gradient with respect to u are uniformly oδ(1) and likewise for x′β(u), it follows

moreover that ‖Ki − K0
i ‖C2 = 0δ(1) in a neighborhood of ∂E0

i . Therefore Ei is strongly
convex.

This reasoning can be iterated to conclude that Ki ∈ C∞. �

11. Nonexistence of maximizers

In this section we discuss a family of data that do not satisfy the partial symmetry
hypothesis (2.2). In exceptional cases these data are reducible via simple skew-shift changes
of variables to data that satisfy the full symmetry hypothesis. We show that for all other
data of this special type, maximizers E fail to exist. Thus our partial symmetry hypothesis
(2.2) is less artificial than it may appear to be.

Let L0
j (x,y) = (L0

j,1(x), L0
j,2(y)) with L0

j,1 = L0
j,2, so that L0 = (L0

j : j ∈ I) satisfies the

full symmetry hypothesis. Suppose that L0 is nondegenerate.
Let `j : R2 → R1 be linear, and consider L = (Li : i ∈ I) with

(11.1) Lj(x,y) = (Lj,1(x), Lj,2(x,y))

of the form

(11.2) Lj,1 = L0
j,1 and Lj,2(x,y) = L0

j,2(y) + `j(x).

Define ` : R2 → R4 by `(x) = (`i(x) : i ∈ I) and L0
2 : R2 → R4 by (L0

j,2(y) : y ∈ I).

Proposition 11.1 (Nonexistence of maximizers). Let L0 be nondegenerate. Let (L0, e) be
strictly admissible. If the range of ` is not contained in the range of L0

2, then there exists
no 4–tuple E satisfying |E| = e and ΛL(E) = ΘL(e).

Thus maximizers can fail to exist for arbitrarily small perturbations L of Sl(d)–invariant
data L0.

We believe that this remains true if the full symmetry hypothesis is relaxed to (2.2), but
the proof below utilizes a property of maximizers that has as yet been established under
only the full symmetry hypothesis, or (as a corollary, using Theorem 4.3) for partially
symmetric data that are sufficiently small perturbations of fully symmetric data.

The proof of Proposition 11.1 uses partial symmetrization. Recall the vertical sym-

metrizations E] and E] introduced in (2.6), with E]x = [−1
2 |Ex|,

1
2 |Ex|] if |Ex| > 0 where

Ex = {y ∈ R1 : (x, y) ∈ E}. Recall also the dilations Dt introduced in 2.3.

Lemma 11.2. For any E,

(11.3) ΛL(E) ≤ ΛL0(E]).
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Proof. Consider

ΛL(E) =

∫
R2

∫
R2

∏
j∈I

1Ej (Lj(x,y)) dy dx

=

∫
R2

∫
R2

∏
j∈I

1Ej,Lj,1(x)(L
0
j,2(y) + `j(x)) dy dx

where Ej,z = {y : (z, y) ∈ Ej}. For each x ∈ R2, apply the symmetrization inequality
of Rogers-Brascamp-Lieb-Luttinger to the inner integral. No symmetry hypothesis comes
into play, since each set Ej,z is a subset of R1. Therefore

ΛL(E) ≤
∫
R2

∫
R2

∏
j∈I

1E?
j,Lj,1(x)

(L0
j,2(y)) dy dx

where E?j,z ⊂ R1 is the usual symmetrization of Ej,z; it is the closed interval centered at

0 ∈ R1 whose Lebesgue measure equals that of Ej,z if this measure is strictly positive, and

is empty otherwise. The right-hand side of this last inequality is equal to ΛL0(E]). �

This proof of (11.3) yields supplementary information that is essential to our purpose:
If E = E], then ΛL(E) = ΛL0(E) if and only if for almost every x ∈ R2,

(11.4)

∫
R2

∏
j∈I

1Ej,Lj,1(x)(L
0
j,2(y) + `j(x)) dy =

∫
R2

∏
j∈I

1Ej,Lj,1(x)(L
0
j,2(y)) dy.

Upon taking the supremum over all E satisfying |E| = e, we conclude from (11.3) that
ΘL(e) ≤ ΘL0(e) for any e. More is true:

Proposition 11.3. Let ` : R2 → R4 be an arbitrary linear map. Let L,L0 be as described
above. For any e ∈ (0,∞)4,

(11.5) ΘL(e) = ΘL0(e).

Proof. By (11.3), it suffices to show that for any 4–tuple satisfying E = E],

(11.6) ΛL(DtE)→ ΛL0(E) as t→ 0.

To evaluate this limit write

ΛL(DtE) =

∫
R2

∫
R2

∏
j∈I

1DtEj
(
L0
j,1(x), L0

j,2(y) + `j(x)
)
dy dx

=

∫
R2

∫
R2

∏
j∈I

1Ej
(
t−1L0

j,1(x), tL0
j,2(y) + t`j(x)

)
dy dx

=

∫
R2

∫
R2

∏
j∈I

1Ej
(
L0
j,1(x), L0

j,2(y) + t2`j(x)
)
dy dx

by substituting x = tu and y = t−1 v and then replacing (u,v) by (x,y) to obtain the last
line.

For any interval I ⊂ R centered at the origin |I ∆ (I + t)| ≤ |t|. The conclusion (11.5)
follows by applying this bound together with routine majorizations to the expression for
ΛL(DtE) in the final line of the chain of identities in the preceding paragraph. �
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Proof of Proposition 11.1. Suppose that E were a maximizer for ΛL. Then E] is also a
maximizer for ΛL, by (11.3). Moreover, by (11.5), E] is a maximizer for ΛL0 . So consider
any common maximizer for ΛL and for ΛL0 that satisfies E = E].

Arbitrary maximizers for ΛL0 have been characterized for nondegenerate strictly admis-
sible (L0, e) [15]. They have the property that there exists η > 0, depending on E, such that
for all x ∈ R2 satisfying |x| ≤ η, the 4–tuple (|Ei,Li,1(x)| : i ∈ I) of measures of associated
one-dimensional sets is strictly admissible for the lower-dimensional form

(11.7)

∫
R2

∏
j∈I

1Fj (L
0
j,2(y)) dy,

where (Fj : j ∈ I) represents a 4–tuple of subsets of R1.
Maximizers of (11.7) have been characterized [12] under hypotheses of nondegeneracy,

strict admissibility, and genericity. These hypotheses are satisfied by (L0
j,2 : j ∈ I) and e.

We conclude that for any x for which (|Ei,Li,1(x)| : i ∈ I) is a strictly admissible 4–tuple,

the vector `(x) = (`j(x) : j ∈ I) ∈ R4 takes the form (L0
j,2(u) : j ∈ I) for some u ∈ R2;

that is, `(x) belongs to the range of L0
2. Since `, L0

2 are linear mappings, the range of ` is
contained in the range of L0

2, as claimed.

Conversely, if the range of ` = (`i : i ∈ I) is contained in the range of L0
2 = (L0

2,i :

i ∈ I), then the theory developed in this paper for data L satisfying the partial symmetry
hypothesis (2.2) can be applied to ΛL after a simple change of variables. It is not necessary
to assume that L0 satisfies the full symmetry hypothesis (2.3). Indeed the hypothesis of
inclusion of the ranges implies that there exists a linear mapping h : R2 → R2 satisfying
`i = L0

2,i ◦ h for every i ∈ I. Thus

ΛL(E) =

∫
R2

∫
R2

∏
j∈I

1Ej,Lj,1(x)(L
0
j,2(y + h(x))) dy dx.

The linear change of variables (x,y) 7→ (x,y + h(x)) in R4 transforms this double integral
to ∫

R2

∫
R2

∏
j∈I

1Ej,Lj,1(x)(L
0
j,2(y)) dy dx = ΛL0(E).

�
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