A SYMMETRIZATION INEQUALITY SHORN OF SYMMETRY
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ABSTRACT. An inequality of Brascamp-Lieb-Luttinger and of Rogers states that among
subsets of Euclidean space R? of specified Lebesgue measures, (tuples of) balls centered
at the origin are maximizers of certain functionals defined by multidimensional integrals.
For d > 1, this inequality only applies to functionals invariant under a diagonal action
of Sl(d). We investigate functionals of this type, and their maximizers, in perhaps the
simplest situation in which Sl(d) invariance does not hold. Assuming a more limited sym-
metry encompassing dilations but not rotations, we show under natural hypotheses that
maximizers exist, and moreover, that there exist distinguished maximizers whose structure
reflects this limited symmetry. For small perturbations of the Sl(d)-invariant framework
we show that these distinguished maximizers are strongly convex sets with infinitely dif-
ferentiable boundaries. It is shown that in the absence of partial symmetry, maximizers
fail to exist for certain arbitrarily small perturbations of Sl(d)—invariant structures.

1. INTRODUCTION

Let J be a finite index set, and for each j € J let L; : RP — R% be a surjective linear
mapping. Writing f = (f; : j € J), consider the functional f — A(f) defined by

(11) A = [T ) ax
RP jeg

The functions f; : R% — [0, 00] are assumed to be nonnegative and Lebesgue measurable.
The theory of Hoélder-Brascamp-Lieb inequalities [20], [4], [5], [9], [6], [1], [18], [2], [3]
is concerned with inequalities A(f) < A[[;c; [Ifill»; w1t includes a necessary and
sufficient condition on the data D, J,d;, L;,p; for there to exist A < oo for which such
an inequality holds for all f, it provides an expression of sorts for the optimal constant
A, it includes algorithms for computing certain elements of the theory, it has discrete
variants which are closely connected with Hilbert’s tenth problem (over Q), it includes a
characterization of maximizing tuples f under certain auxiliary hypotheses, and the optimal

constant sup A(f)/ [] || fjl|,»; has been shown to be a Holder continuous function of £ =
JjEJ
(Lj : j € J) within an appropriate domain and under appropriate hypotheses.

One of the foundational instances of this theory concerns the Riesz-Sobolev functional

(1.2) (1o for f3) = U s oo f) = / £1(2) fol) fa( + ) e dy

Rd xR
defined by pairing the convolution fi* fo with f3. The Riesz-Sobolev inequality extends the
conclusion beyond the Holder-Brascamp-Lieb theory through the symmetrization inequality

(1.3) (fu* fa, f3) < (ff* f5, f3),
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where f* : R? — [0,00) is (up to redefinition on Lebesgue null sets) the unique function
that is radially symmetric, is a nonincreasing function of |z|, and is equimeasurable with
f. The general inequality is a direct consequence of the special case in which each function
[j is the indicator function 1p; of a set.

In this paper, we are concerned with functionals (1.1), acting only on tuples of indicator
functions of sets. We abuse notation systematically by writing A(E) for A(f) where f; = 1,
and E = (E; : j € J), assuming always that each E; C R% is a Lebesgue measurable subset
of R% with finite Lebesgue measure. More accurately, each E; is an equivalence class of
sets, with E equivalent to E’ if and only if |E'A E'| = 0.

To E C R? is associated its symmetrization E* C R?, defined to be the closed ball whose
Lebesgue measure equals that of E if |[E| > 0, and to be the empty set if |E| = 0. Define
E* = (E7 : j € J). Rogers [23], [24] and Brascamp-Lieb-Luttinger [7] have extended! the
Riesz-Sobolev symmetrization inequality to

(1.4) A(E) < A(EY),

under certain natural hypotheses. Firstly, it is assumed that d; = d is independent of the
index j € J. Secondly, D/d =m € N. If d = 1 then (1.4) holds under these hypotheses. If
d > 1 then (1.4) holds under an additional symmetry hypothesis, under which there exists
an identification of RP = R™? with (R?)™ so that the diagonal action of Sl(d) on (R%)™ is
a symmetry of A, in the sense that

(1.5) A(f)=A(foT) for every T € Sl(d),

where f o T = (fj 0T : j € J). There is also a natural translation action of the additive
group R by y (f = (fi+Lj(y):j€ J)), under which A is invariant.

The inequality (1.4) for indicator functions can be read in two ways: as a statement of
monotonicity of A under the mapping E — E* = (Ej* : j € J), or alternatively as a formula
for the functional
(1.6) O(e) = sup A(E)

|Ej|=e;
where the supremum is taken over all tuples of measurable sets of the specified Lebesgue
measures. In particular, (1.4) states that maximizers of © exist, and that among these
maximizers are tuples of balls centered at the origin of the specified measures. Consequently,
according to the symmetry hypothesis, tuples of homothetic ellipsoids whose centers belong
to the orbit of 0 € (R?)” under the group of translation symmetries are also maximizers.
This orbit is the set of all |J|-tuples (L;(v) : j € J), where v ranges over RP,

Uniqueness theorems [8], [14], [12], [15] state that these are the only maximizers, un-
der certain additional hypotheses, of which the primary one is known as admissibility [8].
These uniqueness theorems for indicator functions do not have simple extensions to general
nonnegative functions, yet they can sometimes be used to analyze uniqueness and stability
questions for functionals of general nonnegative functions [10], [16], [11].

In this paper, we take up the question of whether any part of this theory for indi-
cator functions survives in the absence of the Rogers-Brascamp-Lieb-Luttinger symme-
try hypothesis. In general, ellipsoids are not maximizers, as this example reveals: Let
J =1{0,1,2...,D}. Let dj =1 for every j # 0 and dg = D — 1. For 1 < j < d define
Li(x1,79,...,24) = xj. Let Lo : RP? — RP~! be a generic surjective linear mapping. Let
E; C R! be the interval of length 1 centered at 0 for each j € {1,2,...,D}. Let Ey remain

IThe treatment of Rogers [24] for d > 1 may be incomplete.
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unspecified as yet. A(E) is equal to fEOK where K : RP-1 [0,00) and K(y) is the
one-dimensional measure of the slice {x : Lo(x) = y} of the unit cube in R”. For |Ep| in
a suitable parameter range, maximizing sets Fy are superlevel sets {y : K(y) > r} of K,
with 7 a function of |Ey|. These superlevel sets are convex polytopes.

We study the equidimensional case in which d; = d for every index j. We consider the
simplest equidimensional situation not subsumed by existing theory: d =2, D = 2d = 4,
and the index set J is Z = {1,2,3,4}. We impose a partial symmetry hypothesis, discussed
below. Our first two main conclusions concerning this situation are that there is a suitable
generalization of the concept of admissibility, and that maximizing tuples E exist. This
raises the question of the nature of such maximizers. In the subcase in which the tuple £
of mappings L; is a small perturbation of a tuple for which the symmetry hypothesis holds,
we also show that for any partially symmetrized maximizer E, each component set F; is
strongly convex with C'* boundary. Finally, we analyze a family of perturbed structures for
which the partial symmetry is overtly broken in a specific way, and show that maximizers E
exist for these structures if and only if they are equivalent via certain changes of coordinates
in R* to structures with the partial symmetry. Generically, such changes of coordinates do
not exist. Thus the partial symmetry condition is not wholly artificial.

Our partial symmetry hypothesis is most transparently expressed in coordinates. For
R*, we use coordinates (x;y) = (z1,x2;91,%2). We assume that each target space R? is
equipped with coordinates with respect to which the linear mapping L; : R* — R? takes
the form

(1.7) Li(x,y) = (Lj(x), L3(y))

with Lé- : R? — R! a surjective linear mapping. The perturbed structures of our nonexis-
tence examples take the form L;(x,y) = (le (x), L?(X, y))-

Structures of the form (1.7) enjoy two types of symmetries. Firstly, there is a translation
action of R* on (R?)* defined by

(zj:j €)= (xj + Lj(w)) : j € T)
for w € R*. Secondly, there are dilation actions of R* on R? and on (R?)*, defined by

(18) Dt(x7y) = (t$,t_1y)

and Dy(zj :j €Z) = (Dyzj 1 j €1).

In the fully symmetric case, Steiner symmetrization [21], [7] and rotational symme-
try combine to provide a powerful tool. Our partial symmetry hypothesis allows Steiner
symmetrization with respect to the horizontal and vertical axes, but not with respect to
arbitrary directions in R?. This limited symmetrization is a useful tool, but certainly a less
powerful one.

An essential element in the theory of maximizers in the fully symmetric situation is
the notion of admissibility. In the Riesz-Sobolev inequality, if |E3|'/4 > |By |4 4 |Ey|'/?
then maximizing configurations are those in which the sumset E; + E3 has measure < |Es)|
and is contained in F3. Thus maximizers exist, but have little structure and are not a
natural topic of discussion. Admissibility for this inequality is the condition that |Ej|"/? <
|E; |V 4 \Ej|1/d for all permutations (i, j, k) of (1,2,3). We formulate a suitable definition
of admissibility for our context, and combine Steiner symmetrization with the translation
and dilation symmetries to develop a compactness argument which establishes the existence
of maximizers in the admissible regime.
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We study in more detail those maximizers E that are Steiner symmetric with respect to
both the horizontal and vertical axes and show that (under a certain auxiliary hypothesis
of genericity) each component set Ej is strictly convex with C*> boundary. This is a type
of regularity theorem for a coupled system of free boundary problems. The 4—-tuple E
satisfies a generalized Euler-Lagrange relation, formulated in Proposition 9.2, which states
(formally) that the boundary of each E; is a level set of a certain function K; defined
in terms of the other three sets F;. A bootstrapping argument is used to establish C*°
regularity along with strong convexity.

2. NOTATION, HYPOTHESES, AND PRELIMINARIES

Throughout the paper we write Z = {1,2,3,4}. All sets E; C R? are assumed to be
Lebesgue measurable and to have finite Lebesgue measures, unless otherwise indicated.
Consider functionals of the form

4
(2.1) AL(E)—/ [ 12 (Li(z1, 22, y1, y2))dor dyr daadys
R

47
=1

where E = (E; : i € T) is a 4-tuple of Lebesgue measurable subsets of R? and £ = (L; :
i € T) is a collection of linear maps from R* — R2. The following structural hypothesis on
the maps L; will be in force throughout this paper: For each ¢ € 7, we require that L; can
be expressed in the form

(2.2) Li(x1, 29, y1,y2) = (L} (1, 72), L (y1,2))

where L} : R? — R and L? : R? — R are linear and surjective. We refer to (2.2) as the
partial symmetry hypothesis.

Definition 2.1. A tuple £° = (L? : j € T) is said to satisfy the Rogers-Brascamp-Lieb-
Luttinger symmetry hypothesis if satisfies (2.2) and

(2.3) Ll =12 foreachicT.

We say more succinctly that £0 satisfies the full symmetry hypothesis.
This implies the presence of a large symmetry group. Define T(E) = (T(E;) : j € ).
Then (2.2) and (2.3) imply that

A(T(E)) = A(E) for every E and T € SI(2).

The following notion of nondegeneracy is equivalent to Definition 2.3 of [12] when £
satisfies the full symmetry hypothesis.

Definition 2.2. A family L = (L; : i € I) of linear mappings L; : R* — R? that satifies
(2.2) is nondegenerate if for any i # j € I, the mappings x — (L}(x),L}(x)) and y —
(L3(y), sz(y)) are bijective linear transformations from R? to R?.

Notation 2.3. The Lebesque measure preserving dilations Dy : R> — R? are defined by
Dt(‘r) y) = (tSC, t_ly)
fort € RT. We also write

DE=Dy(E;:jeI)=(DE,:jeT).
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These dilations are symmetries of A, in the sense that
(2.4) Ar(DiE) = AL(E)
for all 4-tuples E of sets of Lebesgue measurable subsets of RZ. A, also enjoys a translation
symmetry. For any v € R*, A(E; : j € T) = A(Ej+ L;(v) : j € Z). This follows by making
a change of variables (x,y) — (x,y) — v in the integral defining A(E).
Notation 2.4. |E| denotes the Lebesgque measure of a subset of Buclidean space RY of
any dimension d. |E| denotes (|E1|,|Es|, |Es|,|E4|) € [0,00]* where each E; is a Lebesgue
measurable subset of R?.
Notation 2.5. Fore = (e;:i € I) € (0,00)*,
O(e) :== sup Ag(E).
E:|E|=e
Lemma 2.1. O satisfies a triangle inequality
(2.5) O(e+e€') > 0O(e) +O(e).
Proof. Consider any E, E’ satisfying |E| = e and |E’| = €’ such that all of the component
sets Ej, E; are bounded. Choose a vector v € R* that does not belong to the nullspace of
any of the four mappings L;. For large r € RT consider the 4-tuple E( of sets defined
by EJ(.T) = E; U(E} +rL;j(v)). For sufficiently large r, E} +rL;(v) is disjoint from Ej, so
By = ej + ¢} Since 15 = 15, + 1pr4rr,v) AE) > A(E) + A(E) +rL;(v) : j € T).
Indeed, A(E) is the sum of the two terms on the right-hand side of this last inequality, plus
24 — 2 other terms, each of which is nonnegative. By the translation invariance of A, this
is equal to
AE) + A(E; +rLj(v):j€Z)=AE)+ AE).

Upon taking the supremum over all tuples E, E’ with bounded component sets, the triangle
inequality follows. O

The vertical Steiner symmetrization Ef = (E;i : j € Z) is defined as follows. For E C R?
with finite Lebesgue measure, Ef C R? is

(2.6) B = {(e.y): |yl < J{t € R: (a,) € B}

if |{t e R: (x,t) € E}| > 0, and otherwise {y : (z,y) € E*} is empty. Then |E*| = |E|, and
the intersection of Ef with any vertical line has the same one-dimensional Lebesgue measure
as the intersection of E with that same vertical line. The horizontal Steiner symmetrizations
FE’ and E? are defined by interchanging the roles of the horizontal and vertical axes. Define

(2.7) Ef = (E" and E' = (E*)’.
It is elementary that
(2.8) Ef = (BN = (BT

up to Lebesgue null sets.

In general, (Ef)* and (E")! need not be equal, or even closely related. Consider for
instance the situation in which E C R? is a rectangle centered at the origin, with sides of
lengths 1 and ¢ < 1, with long axis making angles of 7/4 with the positive horizontal and
vertical axes. However, Ef = (ET)f = (E1)°.



6 MICHAEL CHRIST AND DOMINIQUE MALDAGUE

Definition 2.6. A Lebesque measurable set E C R? satisfying |E| < oo is symmetrized if
E = EY = E” up to Lebesque null sets. A tuple E = (Ej:j €I) is symmetrized if each set
E; is symmetrized.

Lemma 2.2. A satisfies

(2.9) A(E) < A(ET)

for all tuples of sets of finite Lebesgue measure.

Proof. Under the partial symmetry hypothesis,

(2.10) A(E) < A(E*) and A(E) < A(E)

for arbitrary E. These inequalities are proved in [7], under the full Rogers-Brascamp-Lieb-
Luttinger symmetry hypothesis of Definition 2.1, but only the partial symmetry hypothesis
is needed in their proofs since only Steiner symmetrizations in horizontal and vertical
directions are employed. (2.9) follows from (2.10) since

A(E) < A(E?) < A((EF)) = A(ED).
OJ

According to Lemma 2.2, if a maximizing tuple E exists, then there exists a symmetrized
maximizing tuple.

3. ADMISSIBILITY

We regard (0, 00)* as being partially ordered.

Notation 3.1. e < €' means that e; < €} for all four indices j € I. e < €' means that
e <e' ande; <) for at least one index j € T.

Definition 3.2. (L, e) is admissible if there exists no € < e satisfying ©(e’) = O(e).

We will sometimes write “e is admissible” instead.

E is said to be a maximizer if A(E) = O(|E|). ©(e) is said to be attained if there exists
a maximizer with |E| = e.
Lemma 3.1. © is locally Lipschitz continuous. More precisely, there exists C' < oo de-
pending only on L such that for any e, e € (0,00)%,

(3.1) |O(e') — O(e) | < CII?EEL%{(SIC +e}) max lej — €.

Proof. The mapping E +— Az (E) is locally Lipschitz in the sense that
. - NN < ) ! /
(3:2) IA(E) — A(E)] < C(max |Ej +r§1§;<|EJ!rgg%|EkAEk\

for arbitrary 4-tuples of Lebesgue measurable subsets of R?. This constant C' depends only
on L.

Given e and § > 0, choose E = (E; : j € T) satisfying |E| = e and A(E) > O(e) — 6.
From the sets Ej, construct sets E; C R? satisfying |E%| = e} with |E} A Ej| = [} —ej]. Tt
follows from (3.2) that

A(E') 2 A(E) — Cmaxey - max|e; — ¢fl,
where C' < 0o depends only on L. By letting § — 0 we conclude that

O(e') > O(e) — C / €.
(€) = O(e) — Cmax(ex + e5,) max[e; — ¢
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The mapping £ +— Az(E) is not continuous in £ uniformly in E.

Proposition 3.2. For anyt > 0 there exists an admissible e € (0,00)* satisfying O(e) = t.
For any e € (0,00)* there exists an admissible € < e satisfying ©(e') = O(e).

Proof. ©(re) = O(rey,req, res, req) = r20(e) for any r € (0,00) and e € (0, 00)*. Therefore
for any t € (0,00) there exists € satisfying ©(e) = ¢.

Let ¢t > 0. Choose A so that there exists E satisfying Az(E) =t with |E;| < A for each
j. Let S be the set of all e satisfying ©(e) =t and e; < A for each j. The choice of A
ensures that S # (). It is a consequence of the continuity of © that S is closed. Since the
nondegeneracy hypothesis ensures that

AE) <C|E;|- |Ej|forany i #j €T

where C' < oo depends only on L, it follows that infecg min;c7 e; is strictly positive. Thus
S is a compact subset of the open upper quadrant.
Let €1 = mine;. Define
ecS
€y = 1;161}51 €9
e1=e1

and iterate this process to define e; and then e4. Because S is compact, these quantities é;
exist. Because S is closed, € = (€, €2, €3,€4) lies in S. The construction guarantees that
there exists no e € S satisfying e < e. O

To any L, any ordered tuple (Ej, Ej, E;), and any index ¢ such that {i,5,k,i} = T is
associated a unique function K; : R? — [0, 00) characterized by the relation

(3.3) A(Ey, By, F3,Ey) = (1p,, K;) = /KlE for every F; C R?.

If E° is a 4-tuple of balls in R? centered at the origin, and if £ = £° satisfies the
full symmetry hypothesis of Definition 2.1 then the associated quantities KZQ are radially
symmetric for each i € Z.

Definition 3.3. Let £° satisfy the full symmetry hypothesis of Definition 2.1. Let EO be a
4-tuple of balls in R? centered at the origin and let e = |E°|. (£°,e) is strictly admissible if
for eachi € I, K? > 0 in some neighorhood of OEY, and %K?(u*, 0) < 0, where u € (0,00)

is defined by the property that (u,0) belongs to the boundary of E? c R2.
The notation %KZQ (u,0) denotes the one-sided derivative

Tim A (K0 + h,0) — K2(w.0)).

It is shown in [15] that if £ is nondegenerate? and satisfies the full symmetry hypothesis
of Definition 2.1, and if (£°,e) is strictly admissible, then every maximizer E satisfying
|E| = e for Ao is in the orbit of a 4-tuple of balls centered at the origin in R? under the
symmetry group generated by translations and by the diagonal action of SI(2). Thus each
FE; is an ellipse, these ellipses are homothetic, and the the 4-tuple of their centers belongs
to the orbit of (0,0,0,0) € (R?)* under the translation symmetry group.

2This statement is proved for d > 2 in [15]. The corresponding statement for d = 1, with a supplementary
genericity hypothesis, is proved in [12].
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K; can be written in the form

(3.4) /HIE li(u,v))dv

J#i
where /;; : R* — R? are surjective linear maps of the form
(3.5) Ca(u,v) = (Giaa(ur,v1), 0.2 (uz, v2))

with £jim : R® — R! linear and surjective. Moreover, £;; — £, = O(||[£ — £]|) and
0 = (Zg{i :j € T\ {i}) commute with the diagonal action of SI(2). {¢;; : j # i} is
nondegenerate in the sense that for any two distinct indices j, k # i, the linear mapping
(u,v) = (€ (u,v), g ;(u,v)) from R? x R? to R? x R? is nonsingular.

An extra condition which had not previously appeared in the theory for the fully sym-
metric framework arises naturally in our analysis. Formulation of this condition requires
some additional notation. Let £° be nondegenerate and satisfy the full symmetry hypoth-
esis of Definition 2.1. Let (LY, e) be strictly admissible. Let E = (E0 j € Z) be a tuple
of balls centered at the origin of size |E°| = e. For any i # j € Z, and any w € R?, define
the sets E;(w) C R? by

10 (453w, 0)) = 1 (0).

These sets are balls, whose centers are R?-valued linear functions of w € R?; the mappings
from R? 3 w to their centers are radially symmetric functions.

Write Z = {4, j, k, l}, with i playing the same role as in (3.4) and (3.5). Let w = (u,0) €
OEY with u > 0. The Lebesgue measure of Ej;(u,0) N Ey(u,0) N Ey(u,0) € R? equals
K?(u,0), which is strictly positive by the strict admissibility hypothesis. The centers of
these closed three balls E;(u,0), F;(u,0), Ey(u,0) lie on the horizontal axis in R?. Strict
admissibility implies that none of these three balls is contained in the interiors of the other
two.

Definition 3.4. Let £° be nondegenerate and satisfy the full symmetry hypothesis of Def-
inition 2.1, and let (L%, e) be strictly admissible. Let E® be a 4—tuple of balls centered at 0
satisfying ]E?| =¢j, let u € (0,00) be defined by (u,0) € OEY, and for w € R? let Ej(w) be
associated to E; as above. (L0, e) is generic if one of the following two mutually exclusive
cases holds:

(i) After some permutation of (j, k1), E (u 0) N Ej(u,0) is contained in the interior of
El(u 0), and the boundary of E;(u,0) N Ek(u 0) consists of a subarc of the boundary of

E;(u,0) and a subarc of the boundary of Ek(u 0), meeting transversely at two points.

(i) The threefold intersection E;(u,0)N Ey(u,0)NEj(u,0) is a connected, simply connected
domain whose boundary is a piecewise C™ curve consisting of 4 subarcs of circles, with two
of these arcs contained in the boundary of one of the three closed balls, exactly one of the
arcs contained in the boundary of another of the three closed balls, the final arc contained
in the boundary of the remaining closed ball, and with arcs meeting transversely where they
intersect on the boundary.

Excluded by this definition of genericity is that case in which, after permutation of
(4, k,1), Ey(u) contains E;(u) N Ey(u), but the interior of Ej(u) does not contain this inter-
section. In this situation, the boundary of the three-fold intersection consists of one subarc
of DE;(u) and one subarc of dEj(u), meeting transversely, but the points at which these
subarcs meet also belong to dFj(u). This situation is unstable, giving rise to either case (i)
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or (ii) upon arbitrary small perturbation. We expect this instability to lead to failure of the
boundary of components F; of maximizing tuples E to be C'*°, for general perturbations £
of L.

The following example shows that the property that e is generic does not follow from e
being strictly admissible: Let E be a 4-tuple of subsets of R? and consider the functional

(3.6) /4 1g, (21, y1)1E, (22, ¥2) 155 (1 + 22, y1 + y2) 15, (1 — 22, y1 — Yo)dz
R

written in coordinates z = (z1, z2,y1,y2). The data e = (1,1,r,1) is strictly admissible for
the above functional if 1 < r < 2. Because the functional satisfies the symmetry hypotheses
of the Rogers-Brascamp-Lieb-Luttinger inequality, the sets (B, B, B,, B), where B is the
radius 1 ball centered at the origin and B, is the radius r ball centered at the origin,
extremize the functional restricted to tuples of sets of size |[E| = (1,1,7,1). Using the
notation from the previous definition with i = 1, we have v = 1, By = E;, = B and
Eg = B,. The intersection

Bn (B, —(1,0))N(B+(1,0))

varies in type, satisfying case (i) or (ii) from Definition 3.4, and sometimes neither, for
different values of 1 < r < 2, as shown in Figure 1 below.

4. MAIN RESULTS
The main results of this paper are as follows.

Theorem 4.1 (Existence of maximizers). Let L be nondegenerate and satisfy the partial
symmetry hypothesis (2.2). For each e € (0,00)* there exists B satisfying |E| = e and
A(E) = O(e).

It will suffice to prove Theorem 4.1 in the admissible case. For we have shown that if
(L, e) is not admissible, then there exists an admissible € < e satisfying ©(e’) = O(e). If
there exists E' satisfying |E'| = ¢’ and A(E’') = ©(e’) = ©(e), then any tuple E satisfying
Ej; D Ej for each j € 7 and |E| = e is a maximizer for (£, e).

For admissible (£, e) a stronger result will be proved.

Theorem 4.2 (Qualitative stability of maximizers). Let e € (R1)* be admissible. Let E(™

be a sequence of tuples satisfying |E| = e, lim A(E™) = O(e), and (E™)I = EM,
n—o0

Then there exist a subsequence of indices ny, real numbers A, > 0, and a tuple E such that

for each index i € T,

(4.1) lim |E; A D, (E*)] = 0.

Theorem 4.1 for admissible (£, e) is a direct consequence of Theorem 4.2. Indeed, let
e be admissible. According to the definition of ©(e) as a supremum and by virtue of
the symmetrization inequality A(E) < A(E'), there exists a sequence (E, : v € N) of
tuples satisfying E, = EJ, |E,| = e, and VIEEOA(E”) = O(e). Since A and the relation

|E| = e are invariant under the group of dilations Dy, the continuity of A implies that the
tuple E = (E; : ¢ € 7) whose existence is guaranteed by Theorem 4.2 satisfies A(E) =
lim, o0 A(E,) = O(e). Theorem 4.2 is proved in §7.

In a perturbative regime we obtain structural information about (partially) symmetrized
maximizers E.
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r=1.85

FIGURE 1. The balls that form BN (B, — (1,0)) N (B + (1,0)) for different
values of r. The intersection is of type (i) for r = 1.3, type (ii) for r = 1.85,
and neither of type (i) nor of type (ii) for r = /3.

Theorem 4.3 (Convexity and regularity). Let L£° satisfy the full symmetry hypothesis
of Definition 2.1. Suppose that (L°,e) is strictly admissible and generic. There exists
0 > 0 with the following property. Let L satisfy the limited symmetry hypothesis and satisfy
£ — £O] < 8. Let E satisfy |E| = e and be a mazimizer for Az. Suppose that Ef = E.
Then for each j € I, Ej; is a strongly convex set with C*° boundary.

A C? domain is said to be strongly convex if it is convex, and its boundary has nonzero
curvature at every point. Theorem 4.3 is proved in §10.
A final result indicates that the partial symmetry hypothesis (2.2) is not entirely artificial.

Theorem 4.4 (Nonexistence of maximizers). Let LV satisfy the full symmetry hypothesis
(2.3). There exist nondegenerate L arbitrarily close to LO such that for any e such that
(L0, e) is strictly admissible, there exist no mazimizers E for Az satisfying |E| = e.

Proposition 11.1, formulated below, states more specifically that for tuples of mappings
L of the form L;j(x,y) = (le-(x), L?(X, y)), maximizers E cannot exist unless LJZ(X, y) takes

a special form which makes the functional Az equivalent, in a natural way, to A ; where L
satisfies (2.2). It is proved in Section 11.
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5. CONJECTURES

In this paper we explore a rather specific situation in the hope of building insight into
what is true, and what might be proved, in a broader framework. It is natural to venture
various conjectures in this regard. In all of these conjectures, we assume that (L, e) satisfies
appropriate nondegeneracy and admissibility hypotheses, which remain to be given precise
formulations.

Conjecture 1. For generic and admissible (L, e), maximizers E are not tuples of ellipsoids.

It is natural to envision a computer aided proof of this conjecture, using Taylor expansions
to verify that no tuples of ellipsoids can satisfy the generalized Euler-Lagrange relation (see
Proposition 9.2) that is satisfied by maximizers.

Conjecture 2. For generic (L,e) satisfying the partial symmetry hypothesis (2.2), any
mazimizer E is a translate of a symmetrized mazximizer.

This conclusion will be established in a sequel for the case in which £ is a small per-
turbation of a fully symmetric £° and (£°, e) is strictly admissible. Thus symmetrized
maximizers do play a central role in the subject, justifying the attention accorded them in
this paper.

Conjecture 3. Let (£°,e) be nondegenerate and strictly admissible. For generic admissible
(L,e) satisfying (2.2) with L sufficiently close to L°, symmetrized mazimizers of Az are
unique up to measure-preserving dilations of R2.

Conjecture 4. Under the partial symmetry hypothesis (2.2), the conclusion that the com-
ponent sets E; of any maximizer B are convex, holds with suitable strict admissibility and
nondegeneracy hypotheses on (L, e), without any hypothesis that L is a small perturbation
of a tuple of mappings that possesses Sl(d) invariance.

Conjecture 5. The results of this paper concerning existence and convexity of maximizers
have analogues for generic nondegenerate data L without partial symmetry.

Proposition 11.1 demonstrates that the requirement that £ be generic cannot be entirely
omitted. However, the construction on which the Proposition is based requires structural
properties not shared by generic £, and we do not regard these examples as indicative of
the state of affairs for generic data.

Conjecture 6. Consider small perturbations L, satisfying (2.2), of tuples L° that satisfy
(2.3). If the genericity hypothesis on (L°,e) is omitted then mazimizers need not have C*
boundaries.

Question 7. For generic (L,e) satisfying suitable nondegeneracy hypotheses, do maximiz-
ers exist?

Question 8. To what extent are mazximizers E unique up to translation, in the absence
of partial symmetry, for generic (L,e) satisfying suitable nondegeneracy and admissibility
hypotheses?

6. COMPATIBILITY

Definition 6.1. For tuples of sets E = (E; : j € I),

. ’EjﬂR‘
6.1 AME) = supmin ———
(6.1) (B) = o0 (5 + IR
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with the supremum taken over all rectangles R C R? centered at 0 with sides parallel to the
coordinate axes.

If £ = Ef, and if R is a rectangle centered at the origin with sides parallel to the
coordinate axes, then

(6.2) (R+y)NE|<|RNE| for every y € R?.

Lemma 6.1 (Compatibility). Let K be a compact subset of (RT)*. For each ¢ > 0 there
exists 6 > 0 with the following property. Let e € K, and let E be a 4—tuple of subsets of R?
satisfying |E| = e and E = Ef = E*. If \(E) < 6 then A(E) < ¢

Sublemma 6.2. For j € I let R; = I; X IJ’. C R? be a rectangle with sides parallel to the
azes. Then for any permutation (i,7,k,1) of (1,2,3,4),

(6.3) AR, +j € I) < CU| - 4] - 1LY Rl - Ryl

Proof. A(1r; : j € I) is majorized by the Lebesgue measure of the set of all (x,y) =
(z1,72,y1,92) € R* for which L}(x) € I, le(x) € I;, Li(y) € I}, and L}(y) € I]. The
mappings x — (L}(x), le. (x)) and y — (L3(y), L?(y)) are bijective linear transformations
from R? to R2. Thus A(1 R, 1 J € 7) is bounded by a constant, which depends only on
(Lyp : n € I), multiplied by |I;| - |I;] - |I;| - |1]]. O

An analogous conclusion holds if the roles of I, and I}, are reversed.
In the following discussion, k = (ki, k2, k3, k4) € Z*.

Sublemma 6.3. For each j € T let {R,&j) : k € Z} be a family of rectangles in R? of the

form RY = 19 » JY9) with J9 of length 2%. Suppose that RY| < for each j € L.
k k k k k
keZ
There exists C < oo such that for any set S C Z*,

—(max k;—mink;)/2
ZA Rl(el (2)’ (3),R( )) < Csup 2 (ma bl supmaX‘R( maxz ‘R])’
wer! ! kesS kes n€L " o

Proof. By dilating we may assume without loss of generality that
supz |Ry; U )] =1.
I€T ke,
It suffices to treat the summation over all k € S that satisfy
(6.4) key < kg < ko < ky.

The same reasoning will apply with arbitrary permutations of the indices 1,2, 3,4. For the

rest of the proof, we assume that every k € S satisfies (6.4). Set p = sup Q(kaths—ka—k1)/2,
keS
Individual summands satisfy

1 2 3 4 . ki — 1 2
AR R RY RY) < cofathibik D) | RY))
< Cp2~(hi=h2)/29(kathi=2k2)/2) oD | p(2))
< M. |RP).

Summation over all ks, k4 < ko yields an upper bound

—(k1— 1 2 172 1 2
p 32 2RI IR < Op(S IR (IRER)
ka<k1 k1
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with the first sum taken over all (k1, ko) satisfying ko < ky for which there exist ks, k4 for
which k € S, the second sum over all k; for which there exist ko, k3, k4 for which k € S,
and so on. Now

2 2
Z|Rk1 )Y < sup R Zu% )17 < sup RV,

with a corresponding majorization for (7, \R,@ |2)1/2. O

Proof of Lemma 6.1. Define E;r ={(z,y) € Ej : 2 >0} and E; = {(z,y) € Ej : z < 0}
We will analyze A(EJJr : j € T); the same reasoning will apply equally well to A(E]i 1J €T
with all possible choices of + signs.

()

To E; associate rectangles R’ C R? with sides parallel to the coordinate axes, defined
as follows: Express Ef, up to a Lebesgue null set, as

E;' ={(z,y) :z >0and |y| < fj(z)}
where f; : (0,00) — [0,00) is nonincreasing and right continuous. Define
RY — {z e RV : 2 > fi(z) > 2571} x [—2F 24,
Then Ef ¢ U2 _ Ry, so |Ej| < 22\3(”; On the other hand, |RY) N E;| > 3|RY)|,

SO ‘
> IRDI < 20| = |El.

kEZ
Express
MES:jeT)= ZAE*mRk jel) < ZA ) je).
k€Z4 k€Z4

Let n = n(6) > 0 be a small parameter which will be chosen below to depend only on 6,
and will tend to zero as § — 0. Introduce

Si={keS§: maX\R | <)

So={keS\ Sl : I?Eazxki — rjnel?kj > logy(1/n)}
=5\ (51 US,).
By Sublemma 6.3,
MEf:jeT) <o+ 0 Y ARY :jeT).
kes’

Matters are thus reduced to the sum over k € S’.
As above, by partitioning S’ into finitely many subsets, we may assume for the remainder

of the proof that |Rl(€11)| > |R,(€22)| > |R,(f;)| > |Rl(€i)| for each k € S’. Since each R,(fj‘,) is a
rectangle with sides parallel to the coordinate axes with vertical side of length 2%, and

since ma>zc2k /2% <71 (6.3) gives
7]6

, Joc
M) 5 € T) < cana—tsa = B B < O el D) )
J 7))

1
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Since k € Sa, k3 < k2 + logy(1/n), and summing over such k3 yields the bound
—1akio—k 4 2
O 2ok R LR,
Summing over ko gives
C77_12k1 2—k4 ‘R(4) |

Again since k & So, —k4 < logy(1 /77) — k1. Summing over all remaining indices which in
addition satisfy m1n|Rk | <n maX|Rk | gives the bound

oty > 2 (IRE IR ) IRE)

k1 2k1—ka<i/n

<oy N kR

ki 2k1—ka<1/p

<ond R =0
k1

Therefore it remains to consider indices k € S” which satisfy mi%l\R,(f_)\ > 173maZX|R,g )\.
i€ 4 jE

Assume that A\(E) < 4, with 6 > 0 small. Let S be the set of all k € S that remain
untreated, and for which A(R( 7 : 7 €I) # 0. To complete the proof, it suffices to show

that if n(0) — 0 sufficiently slowly as & — 0, then the hypothesis that A(E) < § forces S to
be empty.
/)

Consider any k € S. The associated four rectangles R,(f] have sides parallel to the

coordinate axes, have vertical sides of comparable lengths — meaning that the ratios of any
two of these lengths are bounded above by a function of n alone — and have comparable
Lebesgue measures, in the same sense of comparability. Therefore the lengths of their
horizontal sides are likewise comparable. Therefore there exists a single rectangle R C R2,

()

with sides parallel to the coordinate axes, such that R is contained in a translate R+ v

and has Lebesgue measure comparable to |R|, for each j € Z. Since |R,(€? NE;| > |R(] l,

‘E mR(J)' i
and since |Ej;| is comparable to 1, the ratio EIR ”\ is comparable to |R,(jj )|. Therefore we
J
find that for each j € Z,
BN R E;NR
R < C)IRY)| < O~ < oy AT
Byl + Ry Bl + 1Rl

where C(n) < oo depends only on 7 and we used (6.2) in the last inequality. By the
definition of \(E), we have

R < C(nAE) < C(n)d.

Therefore if C(n) - 6 < n then we conclude that k € Sy, whence k ¢ S. Thus S would be
empty.

For each 1 > 0, the inequality C'(n)d < n holds for all sufficiently small 6 > 0. Therefore
there exists a function 6 — 7(d) satisfying both lims_,on(d) = 0, and C(n(9)) - § < n(d) for
every § > 0. g
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Corollary 6.4. For each compact set K C (R*Y)* and each § > 0 there exists p > 0 with
the following property. If |E| = e € K, if E = Ef, and if A(E) > 0 then there exists t € RT
such that for each j € T,

(6.5) [=p,p] X [=p, p] C De(Ej).

Proof. This is a direct consequence of Lemma 6.1 and the definition of A(E). Choose a
rectangle R C R?, with sides parallel to the coordinate axes and centered at the origin, that
maximizes the ratio defining A(E), up to a factor of 2. The lower bound for A(E) implies
a lower bound for the Lebesgue measure of R. An appropriate dilation gives p = c|R]1/ 2
where ¢ > 0 is a constant. O

7. PRECOMPACTNESS

In this section we apply the results of Section 6 to establish Theorem 4.2, concerning
the precompactness of symmetrized maximizing sequences for admissible (£, e) up to the
dilation and translation symmetries of A introduced above. A pivotal issue is how the
admissibility of (£, e) comes into play in the proof. As was implicitly shown in the comment
following Theorem 4.1, precompactness cannot hold if (£, e) is not admissible, for if ¢’ < e
with e} < e;, and if E' = (E] : i € 7) satisfies A(E') = ©(e/) = O(e) then any tuple
(E; » i € I) with E; = Ej for every i # j, Ej D Ej, and |Ej| = e; satisfies A(E) = O(e)
and |E| = e.

Proof of Theorem 4.2. Suppose that ]E(")] = e for each n € N, that each E(™ is sym-
metrized, and that A(E(™) — ©(e) as n — co. Write E® = (B} :j € I). By invoking
Corollary 6.4 and replacing each E(™ with a suitable dilate, we may assume that there
exists a cube @ with positive sidelength, centered at the origin, that is contained in E} for
every n and every ¢ € 7.

By the Banach-Alaoglu theorem, there exists a subsequence ny of indices and functions
gi € L*(R?) such that for every i € Z, 1 g converges weakly in L? to g; as k — oo.
By replacing E(™ by a subsequence, we may assume henceforth that the full sequence of
indicator functions 1 gp converges weakly in L?.

The set E} intersected with (0, 00) x [0, 00) is the region under the graph of a nonnegative,
nonincreasing function f;,. For any s > 0, sfin(s) < i|EZ”| = %ei. A simple consequence
of the Helly selection theorem is that the weak limit of (1gr : n € N) is the indicator
function of a region

Ei = {(u,v) : [v] < fi(u)}
where f; is even, the restriction of f; to (0, 00) is nonincreasing, and uf;(u) < e;/4 for every

u > 0. Thus g; = 1g,.
Set

E = (E, Es, E3, Ey),
EMWNE=(E'NE;:ieT),
EM\E = (E’\E;:ie1).
Lemma 7.1.

(7.1) lim A(E™) = lim [A(E™ NE) + A(E™ \ E)).

n—oo n—oo
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Proof of Lemma 7.1. Expressing the indicator function of E;' as the sum of the indicator
functions of E' N E; and of EI\ Ej;, and then invoking the multilinearity of A, produces an
expansion of A(E(™) as a sum of 2% terms, of which two are the main terms A(E™ N E)
and A(E(™\E). Each of the remaining 14 terms takes the form A(E} N Ey, EY\ B, F}, FJ)
with F7' equal either to E} N Ejor to B} \ Ej, up to permutation of the indices 1,2, 3, 4.
Moreover,

Thus in order to prove (7.1), it will suffice to show that

AEYNE,EyY\ Ey, B3 E}) — 0

as n — oo, provided that the same reasoning applies with the indices permuted, as it indeed
will.

To analyze A(E} N Ey, EY \ Ey, E}, E}), let ¢ > 0. For R > 0, let Qr = [~ R, R]%. For
N, M > 0, we have the upper bound
A(EY N Ey By \ By, B3, EY) < AM(E1NQu, By \ (B2 UQN), B3, EY)

+ A(Eh (Eg \ E2) N QNv Ega EZ) + C|E1 \ QM|62-
We claim that for any M < oo,

(7.2) A(EL N Qur, By \ @n, B3, EY) < pare(N)

where the function ppse(/V) depends only on £, e, M, N and pare(N) — 0 as N — oo while
M, e, £ remain fixed. Indeed, define o so that the intersection of Ef with {N} x R, which
is an interval, has length 2c. Then (=N, N) x (—a,a) C E¥, so a < 4N~ ley. Likewise,
defining 3 so that the intersection of EY with R x {N} has length 23, one has 8 < 4N~ les.
Therefore if N is sufficiently large, Ef \ Qn is contained in the union of R x (—a, )
with (=3, 8) x R. Define E3, to be the former portion of £}, and E}, to be the latter.
Consider A(E1 N Qyr, Ey ), \ Qn, E¥, E}), which is majorized by A(E1 N Qu, Eg‘, EY E}),
where £} = (E},), is the horizontal Steiner symmetrization of EJ,.

We will apply Lemma 6.1, which asserts that A(E) is small if the quantity A(E) defined
in (6.1) is small. Consider any rectangle R C R? with sides parallel to the coordinate
axes and centered at 0. In evaluating A(E), clearly only rectangles R whose vertical sides
have length < « need be considered. If R does have vertical length < « then R has
small measure unless its horizontal side has length > a~'ey > N/4. However, in this case
IRNE1| < |RNQu| S aM < MN ey, Therefore A(Ey N Qur, EY, EY, E}) becomes
arbitrarily small as N becomes arbitrarily large. Therefore by Lemma 6.1, the same goes
for A(E1 N Qs Ey,, EY, E}). The same reasoning applies to A(Ey N Qur, B3, EY, EY).

Choose M sufficiently large that |E; \ Qur| < €. Then choose N large enough so that
pme(N) < . Finally, the weak convergence of E3 implies that

(B3 \ E2) NQn| = [E5 N (QN \ E2)| = [E2 N (Qn \ E2)[ =0 as n — <.
Thus limsup A(E} N Ey, EY \ Eq, EY, E}) < 2e. Since € > 0 was arbitrary, this proves that

n—oo
AET N Ey, E3 \ Ey, EY, E}) — 0. The same reasoning, with natural changes in notation,

proves that the other cross terms in the expansion of A(E() also have limit zero. This
completes the proof of Lemma 7.1. O
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We claim next that

(7.3) lim A((E™ \ E)) = 0.

n—oo

It suffices to show that lim,, o, A((EM™\E)!) = 0. To prove this, note that since | E’NE;| —
|E;| by the weak convergence,

lim |[(E™\ E)| = (e; — |E1|, e2 — | Ea|, e3 — | B3|, e4 — | E4)).

n—0o0

If limsup,, ., A((E \ E)f) > 0 then after passing to a subsequence of indices n that
realizes the limit supremum, we may invoke Corollary 6.4 to conclude that there exist a
sequence of dilations D,, and § > 0 such that the cube [—§,6]> = Qs is contained in
D, (EF\ E;)T) for all 4, k.

By a change of variables that preserves the partially symmetric multilinear structure of A
(permitted by Definition 2.2), we may assume without loss of generality that Li(x1,y1,x2,y2) =
(x1,y1) and Lo(x1,y1,22,y2) = (x2,y2). For each k, let Ny > 0 be large enough so
|ET* \ Qn,| < + and |Dy, ((ET* \ E))")\ Qn,| < . Also let vf € R? be large enough
so that Qn, N (Qn, + vf) = 0. Then
AEM™) N E) + A(EM™) \ E) < A(E[* N Ey N Qy,, Ey* N By, EY* N E3, Ef* N Ey)

+ A(an (E?k \ E1>T n QNk’ D’?k(Egk \ EQ)Tv an (E?T;Lk \ E3)T7 an (Ez?k \ E4)T)
+ Cegkfl
= AEY N EyNQy, +vf, EY* N By, BY* N By + ok, EY* N By +vk)
+ A(an (E?k \ El)T N QNk’ an(E;k \ EQ)Ta an (Egk \ E3)T’ D77k (EZ'“ \ E4)T)
+ Cegk_l

for certain v§, v¥ € R? determined by v¥ and L.

The two sets (ET* N E1 NQn,) + vf and [Dy, (ET* \ E1)T] N Q,, are disjoint for each k.
Let F{"™" be the union of these two sets. Define F;“ﬂ for j = 2,3,4 as follows. Fy* is the
union of Ey* N Ey with Dy, (Ey* \ Ea)'. For j = 3,4, F['* is the union of (E* N Ej) + v}

. n n .
with Dy, (E7*\ E;)T. Then |F]"| < ¢; for each j € T.
AEY N EyNQn, + vf, EY* N By, BY* 0 B3 + v, E}* N By + of)
< A(EY* N Ey N Qp, + v}, Fy* Fy* Fy%)
since Ey* N Ey C Fy and similarly for the indices j = 3 and j = 4. Likewise,

A(an (E{Lk \ EI)T NN, an<E;lk \ E2)T7 Dy, (E:?k \ E3)Tv Dy, (Ez?k \ E4)T)
< A(Dy, (BY*\ BN N Qn,, Fy*, By ).
Thus we have shown that
AEM™) AE) + AEM™) \ E) < AEM™ N E1 N Qn, + v, Fyk Fi% F™)
T A(Dy (B \ B! Qs F25, FJS FJ) + o(1)
= A(F"™, F3% F3%  F') 4+ o(1)

with the equality holding because Fj™ is the disjoint union of EY* N Ey with D, (ET* \
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Thus by Lemma 7.1,
O(e) = lim A(E™)) < limsup O(ey, |Fy*|, e3, eq).

k—o0 k—oo
There exists a cube Q centered at 0 € R?, of positive sidelength, that is contained in Fy
and in Ey* for every k. Therefore for every sufficiently large k,

|(E3* N E2) U Dy, (B3* \ E2)*| < €2 — QN Qs < ea.
By letting k& — 0o one deduces that

O(e1, €2, €3, €4) < O(e1, €3 — |Q N Qs €3, €4).
This contradicts the definition of admissibility of e. Therefore (7.3) must hold.

Inserting (7.3) into (7.1), we find that A(E(™ NE) — ©(e) as n — oo. Since |E7| < e
for every n and every j by assumption, the same holds for the subsets ET N Ej;. If there
were to exist j € Z and a subsequence satisfying lim sup;_, |E;““ N Ej| < ej, then we
would conclude that ©,(e') = ©,(e) for some € < e, contradicting the admissibility of e.
Therefore liminf,, o |E]' N E;| = e; for each i € Z. Since e; = |E}'| and |E;| < e;, this
forces limy, o |E]* A Ej| = 0. Therefore |E;| = e; for each i € Z, and A(E) = O,(e). That
completes the proof of Theorem 4.2. O

8. CONTINUITY OF © WITH RESPECT TO L

In the next lemma, £ is not assumed to satisfy the full symmetry hypothesis (2.3), even
though this notation is reserved for that special case in nearly all of this paper.

Lemma 8.1. Let £° and L, be nondegenerate and satisfy (2.2). Let ((L,,e,) : v € N) be
a sequence of data such that (L,,e,) — (£°,€%) as v — oo. Then

(8.1) 1i_>m Or,(e,) = Or0(eY).

Proof. There exists a symmetrized maximizing configuration E° for (£° e°). Modifying
each component EZQ appropriately yields a sequence E, of symmetrized 4-tuples satisfying
|E,| = e,. Then |E,; AE?| — 0 as v — oo for each i € Z. It follows that A., (E,) —
Ao (E%) = O,0(e?). Therefore
(8.2) limsup O, (e,) > O 0(e?).

V—00
However, no converse inequality follows with comparable ease, because the mapping (£, E) —
Az (E) fails to be continuous in any sufficiently uniform sense with respect to E.

To prove the converse, pass to a subsequence to ensure that O, (e, ) converges to © zo(e)
as v — oo. Let (E,) satisfy |E,| = e, and limsup,_,., Az, (E,) = limsup,_,., O, (e,),
and let each E, satisfy E, = EZT, Write E, = (E,; : i € Z). By replacing E, by D; E,
for an appropriately chosen sequence of parameters ¢, € (0,00), we may assume that there
exists p > 0 such that [—p, p|?> C E,; for each i € Z.

By repeating the reasoning in the proof of Theorem 4.2 we conclude that after passing
to a subsequence, there exists E®f = (E?’jj .4 € T), satisfying E%f = (E®%)| such that for
each ¢ € 7, E,; may be expressed as a disjoint union Eﬁl U Elb,ﬂ-, satisfying EEZ = (EﬁZ)Jr
and E); = (B ), with | B}, AE?,| - 0, and

. § VY — 1
Jim (Ag, (EJ) + Ag, (E))) = lim O, (e,),
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where Ef, = (Eﬁl .4 € T) and analogously for E?. The cross terms that arise in the proof
of Theorem 4.2 contribute zero in the limit ¥ — oo, because the bounds in Lemma 6.1 are
uniform in v since £, — £V.

Since ]Eﬁl AE?’ﬁ] —0and £, — LY as v — o0,

(83) lim Az, (B}) = Ago(E%).
Therefore setting e, 1 = ei’, and e(l) = eo’ﬂ,
(8.4) limsup O, (e,) < Opo(e?) + limsup O, (e),;)
V—00 V—00
and
(8.5) e’ =e! + lim e,
V—00

with addition and limits defined componentwise for 4-tuples. If lim,_,», O, (€,1) = 0 then
the proof is complete.

Write e, 1 = (e,1; : i € Z). Observe that minez |EY| > 4p* since E,; D [—p, p]* for
every v. Therefore for every sufficiently large v, e, 1; < e? — 3p2.

Pass from the full sequence to a subsequence of indices v, along which limsup,_,., O, (e,.1)
is achieved in the limit. Apply the above construction to obtain a partition of E, ; in terms

of E?,,l and E?,J and a limiting set Eg’ﬁ = EY. Conclude in the same way that

(8.6) li_)m Or,(ey) < BOpo (e[l)) +Or0 (eg) +limsup O, (e, 2)

V—00
where e, = e, |, with

: 0, .2 _ .0
(8.7) Vlggo (e} +ej+e2) =€’
As in the initial step, each component eg’i of the tuple €J is minorized by a positive quantity,
which in turn is minorized by a positive function of lim,_,~ O, (€,2)).

Iterate this process. It may halt after finitely many steps, in which case it produces a
finite sequence e satisfying 3", € < e’ and limsup,_,,. ©0(e,) = >, Oo(€l). Obviously
>k ©r0(e)) < Oro(e”), completing the proof.

If the process fails to halt after finitely many steps then it produces infinite sequences
eg and e, . Necessarily
(8.8) lim limsup®g, (e, ;) = 0.

k—oco py—oo
Indeed, at each step there exists p, > 0 for which [—pg, pp]? C E?’ﬁ for each ¢ € Z, and py
is bounded below by a strictly positive quantity if limsup,_, ., O, (e, ) is bounded away
from zero. If limsup,,_,., O, (e, ) did not tend to zero then each component of ) would

be bounded away from zero uniformly in &, contradicting the relation ), eg < el
Therefore

(8.9) limsup O, (e,) <> Oro(e))

v—0o0 k=0

with Y, e) < €Y. This last inequality implies that > po O ro(e?) < O 0(e”), once more
completing the proof. ]
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Corollary 8.2. Let €',e” € (0,00)*. Let L be nondegenerate and satisfy the partial sym-
metry hypothesis (2.2). If (L,e + €") is admissible then

(8.10) Or(e) +0,(e") <Or(e +€").

Proof. First suppose that e’,e” are admissible. Let E/, E” be symmetrized maximizing
tuples satisfying |E’'| = €’ and |E”| = €”. As in the proof of Theorem 4.2, there exists ¢ > 0
such that for any & > 0 there exists v € R* such that the tuple E = (E/ U (E! + £;(v)) :
i € T) satisfies A(E) > A(E') + A(E") — ¢ and |E] U (EY + L1(v))] < €} + ¢/ —c¢. Thus
Ol +ef —c,eh+e,...) > 0(e +€"), contradicting the admissibility of € + €. O

Lemma 8.3. Let (£°,e°) and (L,,e,) satisfy the hypotheses of Lemma 8.1. Suppose that
(£°,e°) satisfies the full symmetry hypothesis of Definition 2.1, and is strictly admissible.
Suppose that |E,| = e,, that each B, is symmetrized, and that Az, (E,) — ©,0(e?) as
v — o0o. Then there exists a sequence t, such that

(8.11) |(Dy,E,) AE?| = 0 as v — oo.

Proof. Choose t,, so that there exists p > 0 for which [—p, p]?> C Dy, E, for all sufficiently
large v. Assume henceforth that v is indeed large, and replace E, by Dy E, .

Apply the proof of Theorem 4.2. The quantity e constructed in that proof must be
equal to e’, for otherwise a contradiction would be reached immediately using Corollary 8.2.
Therefore e, 1 — 0. O

While the two notions of strict admissibility on the one hand, and admissibility on the
other, are defined somewhat differently, they are related. If £° satisfies the full symmetry
hypothesis of Definition 2.1, and if (£, €") is strictly admissible, then (£, e?) is admissible
in the sense of Definition 3.2.

Lemma 8.4. Let (£°,e°) be nondegenerate, satisfy the full symmetry hypothesis (2.3), and
be strictly admissible. Then (L,e) is admissible whenever L satisfies the partial symmetry
hypothesis (2.2) and (L, e) is sufficiently close to (L£°,e?).

Proof. Consider any sequence (£,,e,) that satisfies the hypotheses and tends to (£°,e°
as v — oco. There exists e}, < e, such that (£,,e],) is admissible and satisfies O, (e)) =
O, (ev).

In this situation, e/, — €. Indeed, suppose instead that after passing to a subsequence,
e/, - e < e’. Each component of € is strictly positive, since |G, (e},)| is uniformly
minorized by a positive quantity, and is majorized by a constant multiple of the product of
the two smallest components of €/,, uniformly in v. By Lemma 8.1,

Oro(e) = Van;o O, (e),) = Vli_)rgo Or,(e,) = O,0(e").

This forces e’ = €, that is, e/, — €. Indeed, the function & — © 0(&) is nondecreasing.
Since (£, %) is strictly admissible, this function is strictly increasing in a neighborhood
of e’. That is, if € < €” and both are close to €, then ©0(e') < ©0(e”). Therefore if
e’ < e’ then O,0(e') < O 0(e?), contradicting the conclusion of the preceding paragraph.

Let E, satisfy |E,| = €/, E, = E}, and Az, (E,) = O, (e,) = O, (e,). By replacing
E, by D;, (E,) for appropriate parameters ¢, € (0,00) we may assume that the associated
component sets satisfy |E,; A E);| — 0 as v — oo for each i € T.

It follows that the associated functions K?, K, ; satisfy K,; — K? in C°(R?) norm.
A consequence of strict admissibility is that K? is bounded below by a strictly positive
quantity in a neighborhood of the closure of E? . Therefore K, ; is also bounded below by a
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strictly positive quantity in a subset of R? \ E,; whose Lebesgue measure is also bounded
below by a strictly positive quantity, uniformly in v. Write e, = (e;,; : i € Z). Let 7 > ¢,
be close to e;,;. Define & = (& : k € Z) by é; = ¢, ; for j # i and & = r. Construct E
satisfying |E| = € with E; = E, j for j # i, E; D E, ;, and K,,; strictly positive on E; \ E,, ;.
Then

Or,(8) > Ap, (E) = / Kpi> / Koi = Az, (Ey) = O, (c)).
E; By

i, for each i € Z. Since e;, < e,, this forces O, (e,) < O, (e,),

which is a contradiction. Therefore (£,,e,) is admissible for every sufficiently large v. O

This holds for every r > e

9. NONPOSITIVE FIRST VARIATION

If E maximizes Az among tuples of sets with prescribed measures e, then Az(E’) <
A(E) whenever there exists i € Z for which £} = Ej for every j # i and |Ej| = |E;|. If
(L,e) is admissible then this inequality has an interpretation that will be exploited in the
proof of Theorem 4.3.

Definition 9.1. E is a superlevel set of a function K > 0 if either there exist E satisfying
|[EAFE|=0 andt >0 such that

(9.1) {z:K(x)>t}CcEcC{z: K(x) >t}
(9.2) |EA{z: K(z) >0} =0.

The following assertion is immediate.

Lemma 9.1. Let 0 < K € LY(R%), and let m € (0,00). Assume that |{z : K(x) > 0} > m.
Let E C R? satisfy |E| = m. Then Jp K = SUP|A|=m J4 K if and only if E is a superlevel
set of K.

Proposition 9.2. Let (L£,e) be admissible and nondegenerate. Suppose that |E| = e and
that E is a maximizer, that is, that Ap(E) = O (e). For each k € Z, let K}, be associated
to L,E as in (3.3),(3.4). Then for each i € L, E; is a superlevel set of K;.

Thus under the nondegeneracy and admissibility hypotheses, if E is a maximizer then
the tuple E is a solution of a coupled system of free boundary problems.

Proof. The nondegeneracy hypothesis ensures that K; : R? — [0, 00) is continuous, and that
Ki(u) — 0 as |z| — oo. Since E is a maximizing tuple, any tuple E' satisfying £} = E;
for all j # ¢ and |E]| = |E;|, satisfies A(E’) < A(E). This conclusion can be equivalently
reformulated as

(9.3) /E ;

If [{u : K;j(u) > 0} < |E;| then E; = E; N {u : K;(u) > 0} satisfies |E;| < |E
and [z K; = [p Ki. Thus if E; = E; for j # i then A(E) = A(E) contradicting the
admissibility of (£, e). Therefore [{u : K;(u) > 0}| > |E;|. It follows from Lemma 9.1 that
E; is a superlevel set of K;. ]

K; < / K; for every set Ej satisfying |E.| = |E;|.
E;
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10. CONVEXITY AND REGULARITY OF MAXIMIZERS

In this section we prove Theorem 4.3, concerning the qualitative properties of maximizing
tuples, by exploiting the Euler-Lagrange relation of Proposition 9.2.

The set of all 4 tuples £ = (L; : j € Z) of linear mappings L; : R* — R? is a finite-
dimensional vector space. Choose any norm || - || for this space, and fix it for the remainder
of the analysis. This allows us to quantify the difference between £ and £° as ||£ — L]

Throughout section 10, £° is assumed to be nondegenerate and to satisfy the full sym-
metry hypothesis (2.3), and (£°,e°) is assumed to be strictly admissible. It is assumed
that £ is nondegenerate and satisfies the partial symmetry hypothesis (2.2), that (£, e) is
admissible, and that (£, e) is a small perturbation of (£°,e?).

Let E = {E; : j € Z} be fixed and satisfy |Ej| = e;. Let the functions K; be defined
in terms of the sets E; by (3.3),(3.4). We will prove Theorem 4.3 via a bootstrapping
argument, in which properties of {E; : i € Z} are used to deduce information concerning
{K; : i € T}, leading in turn to stronger properties of {E; : i € Z}. Several iterations are
required to reach desired conclusions. The most involved step is Lemma 10.3 below, which
establishes smallness of K; — K? in the Lipschitz norm, leading to the conclusion that F;
is a Lipschitz domain whose boundary is close to that of EZD in the Lipschitz sense.

As was proved in [15], since (£°,e”) is strictly admissible, if E? satisfies |[E°| = e” then
E° maximizes A° if and only if E? is a 4-tuple of homothetic ellipses, whose centers form
a 4-tuple that belongs to the orbit of (0,0,0,0) under the translation symmetry group.
Among these tuples are those with sides parallel to the axes and with each E? centered at
0 € R2. These special maximizers of A naturally play a distinguished role in the analysis.

According to Theorem 4.2, if (£°, e) is strictly admissible, if (£, e) is admissible and £ is
sufficiently close to £°, and if E is a maximizer for A satisfying E = Ef and |E| = e, then
there exists ¢ such that D;E is close to a special maximizer E° of A?, in the sense that

|(D:Ej) AE]Q] < ¢ for each j € 7,
where ¢ — 0 as ||£ — £°|| — 0. We will prove the conclusions of Theorem 4.3 for a dilate

D, of E chosen so that for each j € Z, [(D:E;) A E?] < € where E? is a ball centered at the

origin. Assume henceforth that E is a 4-tuple of balls centered at the origin.

By o05(1) we mean a quantity that depends on £° and on e, but tends to 0 as § — 0
provided that (£°, e) remains fixed, or more generally, remains inside a compact subset of
the set of all (£, e) that satisfy our hypotheses.

Lemma 10.1. Let £° be nondegenerate and satisfy the full symmetry hypothesis of Defi-
nition 2.1. Let (L°,e) be strictly admissible and generic. Let EO be the 4—tuple of balls in
R? centered at the origin satisfying |E°| = e. For each i € T there exists a neighborhood of
3EZQ in which KZQ is C'° and has nowhere vanishing gradient.

Proof. Since E;-) are balls centered at the origin for all j # 4, and since the diagonal action

of O(2) on (R%)* defines a symmetry of Apo, K? is a radially symmetric function. Thus it

suffices to analyze its gradient at the unique point in E? of the form (u,0) with @ > 0.
Consider u in a small neighborhood of @. K?(u,0) is the Lebesgue measure of

i#j€T i#jeT
where the three real coefficients p; are determined by the mappings ¢;; defined in (3.4)
and are pairwise distinct, and E;-) = E;-)(O, 0) is a closed ball centered at the origin. Write
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{j €Z:j+#1i} as {j,k, 1}, with the indices labeled so that p; < p; < px. By making a
u~dependent translation change of variables in the integral over R? that defined K?(u,0)
we may reduce to the case in which p; = 0. Then EP(u,0) = E is a closed ball centered
at the origin in R2.

According to the strict admissibility and genericity hypotheses, either E? (a,0)N E,g (u,0)
is contained in the interior of EZO, or the threefold intersection of these three balls is a convex
domain bounded by circular arcs of positive lengths that meet transversely, with 2 of these
arcs being subarcs of E2(@,0) for each n € {j, k,I}. In either case, it is an elementary
consequence of the inequality p; < 0 = p; < pj, that in a neighborhood of @, the volume of
the threefold intersection is a C' function of u with strictly negative derivative.? O

The tuples E = (E; : i € Z) depend on (£, e), but this dependence is not indicated in
our notations.

Lemma 10.2. Let §g > 0 be a sufficiently small constant, depending only on L0 e. Let
£ — EOH << 6§y. For each i € I, E; is a bounded set whose diameter is bounded above,
uniformly in L. The Hausdorff distance from OF; to OEY is os(1).

Proof. 1t follows directly from (3.4) and the nondegeneracy hypothesis that K; is contin-
wous, and that K;(u) — 0 as |u| — oco. The same holds for K?. Moreover, |K;|co <
C|E| - |Ey| for any k #1 € T\ {i}, and

IK; — K7 |0 < C max|E; AE)|

where C' < oo depends on £, e and on an upper bound for §. Therefore |K; — K?||co <
os(1).

The strict admissibility hypothesis implies that each set E? is a superlevel set {z :
K?(z) > t; > 0} of K?, and VK vanishes nowhere on the boundary of E?. Since || K; —
K?||co is small, and since E is a maximizing tuple, for each i € Z, E; C {u : K;(u) >
t; — os(1)} provided that ¢ is sufficiently small. Therefore the diameters of the sets E; are
majorized by an acceptable constant.

The nonvanishing of VK? in a neighborhood of E? and the smallness of || K; — K?||co
together imply smallness of the Hausdorff distance from the boundary of F; to the boundary
of EY. 0

Lemma 10.3. If§ > 0 is sufficiently small then each function K; is Lipschitz continuous,
with Lipschitz constants uniformly bounded above, for all L satisfying || — L£°]| < 6.

For any i € Z, for each j # i define Ej to be the inverse image of E; under the mapping
v = £;;(0,v). Define Eg-) in the corresponding way, in terms of E? and £0. E; could more

properly be denoted by Ej7i, but the simplified notation will be sufficiently unambiguous
for our purpose.

Proof.
|K;(u) — K;(u')] < /2 ‘ HlEj(Ej,i(u,v)) — H 1g; (ﬁj,i(u/,v))‘ dv
B i#i
— [Tt it )0 = T] 1, a0, 0)) o
RS i i

3See also (10.3) below.
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As a function of v € R?, 1, (¢;;(u—u',v)) and 1g,(£;;(0,v)) are translates of E;. Moreover,
they are translates by quantities whose difference is a linear transformation of u — u'.
Therefore it suffices to verify that |(E;+w) A Ej| = O(Jw]) for w € R%. Moreover, it suffices
to verify this merely for w € R x {0}, and for w € {0} x R?. Since the horizontal and vertical
coordinates can be freely interchanged in this theory, it suffices to treat w = (z,0) € Rx{0}.
The bound |(E; + w) A Ej| = O(Jw]) is an immediate consequence of two properties of Ej:
the intersection of F; with any horizontal line in R? is an interval, and the diameter of E;
is bounded above by an acceptable constant. O

Lemma 10.4. For each i € T,

[ (Ko~ K)(u) ~ (K~ K ()| < 05(1) - u— /] + O(fu — o/?)
for all u,u sufficiently close to O(EY).
Proof. Fix any index i € Z. For u € R? define

Qi(u) = {v € R?: £j;(u,v) € E; Vj # i} = () Ej(u).
J#i

Thus K;(u) = |Qi(u)|. Likewise define Q?(u) in terms of £° and the sets E?,E?. For
each u in a neighborhood of AE?, QY(u) is a bounded connected set, whose boundary is a
union of two or four arcs of circles. The genericity hypothesis guarantees that these arcs
meet transversely at any points of intersection, and that only two arcs meet at any such
point. These are subarcs of translates of the boundaries of the balls EJO-, respectively. The
intersection of ;(u) with any horizontal or vertical line is empty, or is an interval.

Each set Ej is invariant with respect to reflection about both the horizontal and ver-
tical axes. In the first quadrant, the boundary of E’j is a rectifiable curve that can be
parametrized by arclength as s — (z(s),y(s)) with

(10.1) #(s) >0 and gy(s) <0.

This curve is contained in an o5(1)—neighborhood of the boundary of E;-). The sets E;(u), Ejo(ﬂ)

are translates of E'j, E'J(-), respectively.

Let 6 > 0 be small, and let £ satisfy ||[£ — L% < §. Consider any i € Z, any @ in an
05(1)—neighborhood of 8E§-), and any u near #. Choose a collection of two or four disks
{Q,} in R? whose radii tend to zero slowly as 6 — 0, centered at the two or four intersection
points of the arcs comprising the boundary of Q9(#). The boundary if Q;(u) then consists
of two or four arcs of circles in the boundaries of the disks (), together with two or four
rectifiable curves, each of which has Hausdorff distance o5(1) to a subarc of one of the
circular arcs comprising the boundary of Q?(ﬂ), is a translate of a subarc of the boundary
of Ej for some j € Z, and has monotonicity properties thereby inherited from (10.1).

For u sufficiently close to @, the boundaries dEj(u) enjoy the following two properties.
For each k € 7 and each o, if OFE) (@) meets Q, then these intersect at a single point
z(k,a,@). There exists a subarc I'(u) of dFy(u) of arclength O(Ju — @) such that the
portion of dE}(u) not lying in I'(u) lies at distance > Cp|u — @| from the boundary of Q.
Moreover, for all u sufficiently close to u, 8Ek(u) meets 0Q, at a single point, and this
point lies within distance O(|u — u|) of z(k, , u). These properties are consequences of the
monotonicity properties (10.1) of the boundaries of F; and the assumption that u takes
the form (uq,0).
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For u € R? near 4, for sufficiently small §,

Ki(u):/g()dvl/\dv2:/g()\UQ d(vldvz)—l—Z/Q mQ()dvl/\dUQ.

The same reasoning as in the proof of Lemma 10.3 shows that each term | Qa2 (1) dvy Advg

defines a locally Lipschitz function of u, whose Lipschitz norm is o5(1) because the Lebesgue
measure of Qg is 05(1). K?(u) can be analyzed in the same way, producing a corresponding
term that is also Lipschitz with norm os(1).

The main term for K;(u), fQi(u)\UaQa d(v1 dvy), can be rewritten via Stokes’ theorem.
What results is a sum of integrals of the one-form w = vy dvg over finitely many rectifiable
arcs yg(u). Each of these arcs is either a subarc of the boundary of a single Ek(u), or is
a subarc of the boundary of some @),. Label these arcs so that for each index 3, yg(u) is
close in the Hausdorff metric to each of y3(a), 'yg (u), and 'yg(ﬁ), provided that ¢ and |u—u|
are sufficiently small.

Consider the contribution of an arbitrary v(u) = vg(u) of the former type. Its contribu-
tion is fv(U) vy dvs. YVe wish to compare this quantity to f'y(ﬂ) vy dvy. ~y(u) is a subarc of
the full boundary 0Fj(u) for some index k € 7\ {i}. This full boundary may be expressed
as a translate

OB (u) = 0By (@) + £} ,(u — )
for a certain linear mapping fﬁk,i : R? — R2, which differs by os(1) from the corresponding
mapping ﬂgi associated to £°.

Denote the first component of the R?-valued linear map f% ; by gkz The contribution of
~v(u) is

/ U1 d’Ug = / (Ul + Zk,z(u - Z_L)) d’Uz
(w) y(u)—€, (u—7)
- / (v1 + Ekﬂ-(u — 1)) dvy + R(u, u)
y(@)

where the remainder R(u, @) is expressed as an integral over the symmetric difference
between ~y(u) and vy(u, u) = vy(u) —Eiﬂ.(u—ﬁ) of an integrand of the form v; dva+ O(|u—al).

Both ~(@) and (@, u) are subarcs of E} (i), so their symmetric difference is a union of
two or fewer rectifiable arcs. We claim that each of these two or fewer arcs has diameter
O(|lu — @|). Indeed, if z € OFE(a) lies at distance > Cplu — @| from the boundary of
Qo then z + fiyi(u — @) € OEj(u) shares this property with Cy replaced by Cy/2, and
conversely, provided that the constant Cy is chosen to be sufficiently large. Thus the portion
of y(u) A~(u,u) that lies within distance o5(1) of the boundary of @, lies entirely within
distance O(|u — @|) of Q4. By the key property of dEy (@) noted above, this establishes
the claim.

The corresponding quantity associated to K;(u) is simply f,y(ﬁ) v1 dvg. Subtracting this

from f,y(u) v1 dvg yields
—lyi(u — @) / dvy + R(u, @).
(@)

The factor fﬂ/(ﬁ) dvy is independent of u. Moreover, it is the integral of an exact one-form
over the curve vy(u), and consequently depends only on the two endpoints of this curve.
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Analyzing K?(u)— K? (1) in the same way results in a corresponding term, which depends
in the same way on the two endpoints of the corresponding elliptical arc v(u). Because
the Hausdorff distance between OFE) and 8E2 is 0s(1), the difference between these two
contributions is therefore O(|u — al) - 05(1).

To complete discussion of the contribution of v, it remains to analyze R (u, %) —R%(u, ).
Consider the two rectifiable curves that comprise the symmetric difference between ~y(u)
and y(u,u). On each, the function v; may be expressed as a constant plus O(|u — /).
Terms that are O(|u — @) produce contributions that are O(|u — 1|?) since the integrals
here are taken over curves whose lengths are O(|u —@|). As above, the constant terms give
rise to integrands which are constant multiples of dvy. Subtracting the corresponding terms
for KZQ and exploiting exactness of dvs, we conclude that

R (u, @) — R(u, )| < O(lu— al)os(1) + O(|u — af?).

The analysis of subarcs of the boundaries of the disks @, is very slightly simpler, since
these arcs are not translated. Their contributions are entirely of the type of the remainders
R(u,w). The same analysis as carried out for R(u, @) above applies to them. O

Corollary 10.5. For eachi € Z, F; is a Lipschitz domain, uniformly for all L sufficiently
close to L°.

Proof. In a neighborhood of the boundary of E?, K? is a C* function with nowhere van-
ishing gradient. Since || K; —K?||Lip < 0s(1), if § is sufficiently small then E; = {u : K;(u) >
t; = ti(L,e)} is a Lipschitz domain whose boundary lies in an o5(1)-neighborhood of the
boundary of E?. O

Conclusion of proof of Theorem 4.3. Continuing the discussion in the proof of Corollary 10.5,
for any u € OF;, for any ' sufficiently near u, u—u’ lies in a cone of aperture o5(1) centered
around a vector that is tangent to OEY at a point whose distance to u is 05(1). Therefore
0€;(u) is a Lipschitz domain whose boundary consists of finitely many Lipschitz arcs vg(u),
with each y5(u) being a subarc of the boundary of a translate of Ey, for some i # k € T.
Denote the endpoints of vg(u) by xg(u),xj(u). At any intersection of these arcs, only
two arcs meet, and any such intersection is transverse in the sense that tangent cones are
separated by a positive angle.

Inserting this information into the proof of Lemma 10.4, the disks @), can now be dis-
pensed with, yielding the representation

10.2 Ki(u) = vy dv
( ) () 25:[75(11) H

for all u in some neighborhood of OE.
From this and the fact that yg(u) is a subarc of a translate of the Lipschitz boundary of

E (@) by a linear function of u — % we deduce that K; € C! in a neighborhood of OF; with
V K; expressible as

(10.3) VK;(u) = Z/ wy(s) (u— 1) doy =Y wig) (u— 1) (y(u) — yh(w))
B 'YB(U) 8

where y/g,y% € R are the second coordinates of Xlg,X/ﬂ € R2, respectively, and w(u — @)

are R?-valued linear functions of v — @ determined by £ and the indices 4, k, mediated
by the function (v1,v2) + v1. Therefore |wyg)(u — u)| = O(Ju — u|). The representation
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(10.3) holds for C* boundaries, and follows for Lipschitz boundaries from the C! case by a
limiting argument.

Therefore the superlevel set E; of K; is also a C' domain. It follows that the endpoints
xg(u),xj3(u) are themselves C ! functions of u, since they are translates by affine functions
of u of transversely intersecting C' arcs. Moreover, xz(u) — X%(u) and its gradient with
respect to u are uniformly o5(1). Likewise for xj(u).

Inserting this information into (10.3), we conclude that K; € C2. Since xg(u) — x%(u)
and its gradient with respect to u are uniformly os(1) and likewise for x’ﬁ(u), it follows
moreover that ||K; — K?||c2 = 05(1) in a neighborhood of OEY. Therefore E; is strongly
convex.

This reasoning can be iterated to conclude that K; € C*. ([l

11. NONEXISTENCE OF MAXIMIZERS

In this section we discuss a family of data that do not satisfy the partial symmetry
hypothesis (2.2). In exceptional cases these data are reducible via simple skew-shift changes
of variables to data that satisfy the full symmetry hypothesis. We show that for all other
data of this special type, maximizers E fail to exist. Thus our partial symmetry hypothesis
(2.2) is less artificial than it may appear to be.

Let Lg(x,y) = (Lg{l(x), L%Q(y)) with L9,1 = L%Q, so that £0 = (Lg : j € ) satisfies the
full symmetry hypothesis. Suppose that £° is nondegenerate.

Let ¢; : R? — R! be linear, and consider £ = (L; : i € Z) with

(11.1) Lj(x,y) = (Lj1(x), Lj2(x,¥))

of the form

(11.2) Ljy = Ly and Lja(x,y) = Lj,(y) + (%)

Define ¢ : R? — R* by /(x) = ({;(x) : i € Z) and LI : R? — R* by (L(J]-?Q(y) ry €I).

Proposition 11.1 (Nonexistence of maximizers). Let £° be nondegenerate. Let (L°,e) be
strictly admissible. If the range of £ is not contained in the range of LY, then there exists
no 4-tuple E satisfying |E| = e and Az (E) = O,(e).

Thus maximizers can fail to exist for arbitrarily small perturbations £ of Sl(d)-invariant
data £°.

We believe that this remains true if the full symmetry hypothesis is relaxed to (2.2), but
the proof below utilizes a property of maximizers that has as yet been established under
only the full symmetry hypothesis, or (as a corollary, using Theorem 4.3) for partially
symmetric data that are sufficiently small perturbations of fully symmetric data.

The proof of Proposition 11.1 uses partial symmetrization. Recall the vertical sym-
metrizations Ef and Ef introduced in (2.6), with Ef = [~1|E,|, }|E,[] if |E,| > 0 where
E,={y € R!: (x,y) € E}. Recall also the dilations D; introduced in 2.3.

Lemma 11.2. For any E,

(11.3) Az(E) < Ago(EF).
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Proof. Consider

re®) = [ [ TTs Ly dyax
JEL

- /2/2 HIE]',L]-J(x)(L?,Q(Y)+5j(X))dydx
R2JR? 57

where E;, = {y : (z,y) € E;}. For each x € R?, apply the symmetrization inequality
of Rogers-Brascamp-Lieb-Luttinger to the inner integral. No symmetry hypothesis comes
into play, since each set F; . is a subset of R!. Therefore

0
re@® ] 1255, o (Eat) dy ix
J

where E]*Z C R! is the usual symmetrization of E; .; it is the closed interval centered at
0 € R! whose Lebesgue measure equals that of E; . if this measure is strictly positive, and
is empty otherwise. The right-hand side of this last inequality is equal to A zo(EF?). O

This proof of (11.3) yields supplementary information that is essential to our purpose:
If E = Ef, then A£(E) = Ayo(E) if and only if for almost every x € R?,

0 _ 0
(11.4) / 2 H 15, oo (E9a(y) +45(x)) dy = /R 2 H 15, 1,100 (L5 () dy.

Upon taking the supremum over all E satisfying |E| = e, we conclude from (11.3) that
Or(e) < Opo(e) for any e. More is true:

Proposition 11.3. Let ¢ : R2 — R* be an arbitrary linear map. Let £, L0 be as described
above. For any e € (0,00)*,

(11.5) Or(e) = Opo(e).
Proof. By (11.3), it suffices to show that for any 4-tuple satisfying E = Ef,
(11.6) Ar(DE) = Apo(E) ast — 0.

To evaluate this limit write

Ae(DiE) = / / TT 10,5, (E04(x), Z24(y) + £5()) dy dx
R2 JRZ
JjET
—/ / HlEj(t_1L971(x),tL972(y)—i—t@-(x)) dy dx
R2 JR2 jeT

- /R2 /R2 H g, (L?,I(X)v L?Q(Y) +t%;(x)) dy dx
JET

by substituting x = tu and y = ¢! v and then replacing (u, v) by (x,y) to obtain the last
line.

For any interval I C R centered at the origin |I A (I 4 ¢)| < |t|. The conclusion (11.5)
follows by applying this bound together with routine majorizations to the expression for
Az (DE) in the final line of the chain of identities in the preceding paragraph. ]



A SYMMETRIZATION INEQUALITY SHORN OF SYMMETRY 29

Proof of Proposition 11.1. Suppose that E were a maximizer for Az. Then Ef is also a
maximizer for Az, by (11.3). Moreover, by (11.5), Ef is a maximizer for Azo. So consider
any common maximizer for Az and for Ao that satisfies E = Ef.

Arbitrary maximizers for Ao have been characterized for nondegenerate strictly admis-
sible (£, e) [15]. They have the property that there exists > 0, depending on E, such that
for all x € R? satisfying |x| < 7, the 4-tuple (|E;, Lii(x)| 7 € I) of measures of associated
one-dimensional sets is strictly admissible for the lower-dimensional form

(11.7) / 115 (29:(x)) dy,
R? jer
where (Fj : j € T) represents a 4-tuple of subsets of R
Maximizers of (11.7) have been characterized [12] under hypotheses of nondegeneracy,
strict admissibility, and genericity. These hypotheses are satisfied by (Lg2 :j €7Z) and e.
We conclude that for any x for which (|Ej 1, (x| : 7 € I) is a strictly admissible 4-tuple,

the vector £(x) = (£;(x) : j € ) € R? takes the form (L‘;-Q(u) : j € T) for some u € R?;
that is, £(x) belongs to the range of LY. Since ¢, LY are linear mappings, the range of ¢ is
contained in the range of LY, as claimed.

Conversely, if the range of ¢ = (¢; : i € I) is contained in the range of L9 = (Lgi :
i € T), then the theory developed in this paper for data £ satisfying the partial symmetry
hypothesis (2.2) can be applied to A, after a simple change of variables. It is not necessary
to assume that £° satisfies the full symmetry hypothesis (2.3). Indeed the hypothesis of
inclusion of the ranges implies that there exists a linear mapping h : R? — R? satisfying
l; = L%i o h for every i € Z. Thus

Me®) = [ [ TL 000, (ol + b)) dy dx.
JET

The linear change of variables (x,y) + (x,y + h(x)) in R* transforms this double integral
to

/2 /2 H 1Ej,Lj71(x) (L_(])72(Y)) dy dx = ALO (E).
REIRS jez
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