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!ere is a growing e"ort in the “physics of behavior” that aims at complete quantitative
characterization of animal movements under more complex, naturalistic conditions.
One reaction to the resulting explosion of high-dimensional data is the search for
low-dimensional structure. Here I try to de#ne more clearly what we mean by the
dimensionality of behavior, where observable behavior may consist of either continuous
trajectories or sequences of discrete states. !is discussion also serves to isolate situations
in which the dimensionality of behavior is e"ectively in#nite.

information | prediction | complexity

Observations on behavior provide a window into the dynamics of the brain and mind.
!is is an ancient idea, now receiving renewed attention because of the explosive growth
of methods for quantitative measurements of behavior (1–8). !ese methods produce
enormous quantities of raw data, such as high-resolution videos, so there is an obvious
practical interest in data compression. !is often involves searching for a low-dimensional
description of the animal’s con"guration or posture at each moment in time. !is search
is grounded both by the observation that even large and complex animals have relatively
small numbers of muscles or joints and by direct evidence that motor behaviors are
described by low-dimensional models in organisms from the worm Caenorhabditis elegans
to humans and nonhuman primates (1, 9–14).

Reducing great volumes of video data to time series for just a few degrees of freedom
is a triumph. !e fact that this now can be done more or less automatically with machine
learning methods means that exhaustive and quantitative characterization of behavior is
possible in a much wider range of organisms, under a wider range of conditions. But
the classical literature on dynamical systems reminds us that the time series of even a
single variable could encode a higher-dimensional structure (15, 16). Indeed, this seems
natural: !e brain that generates behavior has many degrees of freedom, and observations
of behavior should be sensitive to these potentially high-dimensional dynamics. On the
other hand, the dynamics of large neural networks might be con"ned to low-dimensional
manifolds, perhaps to match the dimensionality of motor behaviors (17–20).

All of these developments point to the problem of de"ning the dimensionality of
behavior. In the extreme, we can imagine that the observable behavior reduces to a single
function of time, as with the opening angle of a clamshell. Can we analyze this time series
to identify a well-de"ned dimensionality for the underlying dynamics? Is it possible that
this dimensionality is e#ectively in"nite?

A Context for Phenomenology

!e quantitative analysis of behavior, including what follows here, is unapologetically
phenomenological. !e question is not “How does the brain generate behavior?” but
rather “What is it about behavior that we would like to explain?” In an era of highly
mechanistic biology, this emphasis on phenomenological description may seem odd. So,
at the risk of repeating things that are well known, it is useful to remind ourselves of the
long historical context for this approach.

If we want to explain why we look like our parents, a qualitative answer is that we
carry copies of their DNA. But, if we want to understand the reliability with which
traits pass from generation to generation, then DNA structure is not enough—the free
energy di#erences between correct and incorrect base pairing are not su$cient to explain
the reliability of molecular copying if the reactions are allowed to come to thermal
equilibrium, and this problem arises not just in DNA replication but in every step of
molecular information transmission. Cells achieve their observed reliability by holding
these reactions away from equilibrium, allowing for proofreading or error correction
(21, 22). In the absence of proofreading, the majority of proteins would contain at
least one incorrect amino acid, and ∼10% of our genes would be di#erent from those
carried by either parent; these error rates are orders of magnitude larger than observed.

Significance

How do we characterize animal
behavior? Psychophysics started
with human behavior in the
laboratory, and focused on simple
contexts, such as the decision
among just a few alternative
actions in response to sensory
inputs. In contrast, ethology
focused on animal behavior in the
natural environment,
emphasizing that evolution
selects potentially complex
behaviors that are useful in
specific contexts. New
experimental methods now make
it possible to monitor animal and
human behaviors in vastly greater
detail. This “physics of behavior”
holds the promise of combining
the psychophysicist’s quantitative
approach with the ethologist’s
appreciation of natural context.
One question surrounding this
growing body of data concerns
the dimensionality of behavior.
Here I try to give this concept a
precise definition.
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!ese quantitative di#erences are so large that life without proof-
reading would be qualitatively di#erent.*

!e example of proofreading highlights the importance of
starting with a quantitative characterization of the phenomena we
are trying to explain. For brains and behavior, this is an old idea.
In the late nineteenth century, many people were trying to turn
observations on seeing and hearing into quantitative experiments,
creating a subject that would come to be called psychophysics
(23). By ∼1910, these experiments were su$ciently well devel-
oped that Lorentz could look at data on the “minimum visible”
and suggest that the retina is capable of counting single photons
(24), and Rayleigh could identify the con%ict between our ability
to localize low-frequency sounds and the conventional wisdom
that we are “phase deaf” (25). Both of these essentially theoretical
observations, grounded in quantitative descriptions of human
behavior, drove experimental e#orts that unfolded over more
than half a century.

Also ∼1910, von Frisch (26) was doing psychophysics experi-
ments to demonstrate bees could, in fact, discriminate among the
beautiful colors of the %owers that they pollinate.† But he took
these experiments in a very di#erent direction, focusing not on the
discrete choices made by individual bees but on how these individ-
uals communicated their sensory experiences to other residents of
the hive, leading to the discovery of the “dance language” of bees.
What grew out of the work by von Frisch and others was ethology
(28), which emphasizes the richness of behavior in its natural
context, the context in which it was selected for by evolution.
Because ethologists wrestle with complex behaviors, they often
resort to verbal description. In contrast, psychophysicists focus on
situations in which subjects are constrained to a small number of
discrete alternative behaviors, so it is natural to give a quantitative
description by estimating the probabilities of di#erent choices
under various conditions.

!e emergence of a quantitative language for the analysis of
psychophysical experiments was aided by the focus on constrained
behaviors, but was not an automatic consequence of this focus.
For photon counting in vision, the underlying physics suggests
how the probability of seeing vs. not seeing will depend on
light intensity (29), but the observation that human observers
behave as predicted points to profound facts about the underlying
mechanisms (30). Attempts to formalize the problems of detection
led to a more general view of the choices among discrete alternative
behaviors being discriminations among signals in a background of
noise (31), and, in the 1950s and 1960s, this view was exported
to experimental psychology (23). Much of this now seems like
an exercise in probability and statistics, something obviously
correct, but the early literature records considerable skepticism
about whether this (or perhaps any) mathematization of human
behavior would succeed.

More generally, quantitative phenomenology has been foun-
dational, certainly in physics and also in the mainstream of
biology. Mendel’s genetics was a phenomenological description
of the patterns of inheritance, and the realization that genes are
arranged linearly along chromosomes came from a more re"ned
quantitative analysis of these same patterns (32). !e work of
Hodgkin and Huxley (33) led to our modern understanding of
electrical activity in terms of ion channel dynamics, but explicitly
eschewed mechanistic claims in favor of phenomenology. !e

*In retroviruses, including HIV, reproduction occurs without proofreading. The dramatically
accelerated pace of evolution in these viruses gives a glimpse of how different life would
be if the transmission of genetic information depended on base pairing alone.
†See also the remarkable early work from Turner, who studied both insect behavior and
neuroanatomy in the decades straddling 1900 (27).

idea that transmission across a synapse depends on transmitter
molecules packaged into vesicles emerged from the quantitative
analysis of voltage %uctuations at the neuromuscular junction
(34).

Even when we are searching for microscopic mechanisms, it is
not anachronistic to explore macroscopic descriptions. Time and
again, the scienti"c community has leaned on phenomenology
to imagine the underlying mechanisms, often taking literally the
individual terms in a mathematical description as representing the
actual microscopic elements for which we should be searching,
whether these are genes, ion channels, synaptic vesicles, or quarks
(35–37). What is anachronistic, in the literal sense of the word, is
to believe that microscopic mechanisms were discovered by direct
microscopic observations without guidance from phenomenology
on a larger scale.

In this broad context, how can we construct a quantitative
phenomenology of complex, naturalistic behaviors? When we do
psychophysics, we characterize behaviors with numbers that are
meaningfully comparable across situations and across species. To
give but one example, we can discuss the accumulation of evidence
for decisions that humans and nonhuman primates make based on
visual inputs, but we can use the same mathematical language to
discuss decisions made by rodents based on auditory inputs (38).
A quantitative characterization of naturalistic behaviors requires,
similarly, that we attach comparable numbers to very di#erent
kinds of time series. !e dimensionality of behavior is a candidate
for this sort of unifying mathematical language.

Two Examples

To work toward a sharper de"nition, consider the case in which
the behavior we observe is just a single function of time, x (t).
Two examples of such trajectories are shown in Fig. 1, Left, and we
will see that these correspond to one-dimensional (blue) and two-
dimensional (red) systems. Qualitatively, the blue trajectory varies
on one characteristic time scale, while the red trajectory involves
rough movements on a short time scale superposed on smoother
movements over a longer time scale. Our task is to make these
observations precise.
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Fig. 1. Two examples of behavioral trajectories (Left) and their correlation
functions (Right). One-dimensional example, from Eq. 1, is shown in blue.
Two-dimensional example, from Eq. 4, is shown in red. Behavioral trajectories
are offset for clarity, and time is measured in units of the correlation time τc.
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Let’s work backward and start with a model for the behavior,
a model in which it seems clear that the behavior really is one
dimensional: !e observed behavioral trajectory x (t) is described
completely by

τc
dx (t)

dt
= −x (t) + η(t), [1]

where η(t) is white noise,

〈η(t)η(t ′)〉 = 2τc〈x 2〉δ(t − t ′). [2]

It is important that the noise source is white; nonwhite noise
sources, which themselves are correlated over time, are equivalent
to having hidden degrees of freedom that carry these correlations.
!e blue trajectory in Fig. 1, Left is drawn from a simulation of
Eq. 1 with 〈x 2〉 = 1.

!e observable consequences of the dynamics in Eqs. 1 and 2.
are well known: x (t) will be a Gaussian stochastic process, with
the two-point correlation function

C1(τ) = 〈x (t)x (t + τ)〉 = 〈x 2〉e−|τ |/τc , [3]

shown in Fig. 1, Right. We recall that, for a Gaussian process,
once we specify the two-point function, there is nothing else to
say about the system. Importantly, we can turn this around: If
the observed behavior is a Gaussian stochastic process, and the
correlations decay exponentially as in Eq. 3, then Eqs. 1 and 2 are
a complete description of the dynamics.

An example of a clearly two-dimensional system involves not
only the observable x (t) but also an internal variable y(t),

τc
d

dt

[
x (t)
y(t)

]
= −

[
1 a
a 1

] [
x (t)
y(t)

]
+

[
η1(t)
η2(t)

]
. [4]

To keep things simple, we can assume that the driving noises are
independent of one another, and, again, they should be white so
that we are not hiding additional variables that carry correlations.
Since y is hidden, its units are arbitrary, which allows us to have
the strength of the noise driving each variable be the same without
loss of generality, so that

〈ηi(t)ηj(t
′)〉 = 2τc〈x 2〉(1 − a2)δijδ(t − t ′). [5]

!e choice to give each variable the same correlation time is just
for illustration, as is the symmetry of the dynamical matrix; the
red trajectory in Fig. 1, Left is drawn from a simulation of Eq. 4
with 〈x 2〉 = 1 and a = 0.75. Again, x (t) is Gaussian, but now
the correlation function has two exponential decays,

C2(τ) = A+e−(1+a)|τ |/τc + A−e−(1−a)|τ |/τc [6]

A± =
1

2
〈x 2〉 (1 − a2)

1 ± a
, [7]

shown in Fig. 1, Right. !e short time scale τc/(1 + a) cor-
responds to the rough movements seen in the trajectory, while
τc/(1 − a) corresponds to the smoother movements.

We see that a one-dimensional system generates behavior with
a correlation function that has one exponential decay, while a
two-dimensional system generates a correlation function with
two exponential decays. We would like to turn this around,
and say that, if we observe a certain structure in the behavioral
correlations, then we can infer the underlying dimensionality.

Gaussian Processes More Generally

Analyzing behavioral trajectories by constructing explicit dynam-
ical equations, as in Eq. 1 or 4, may not be the best approach.
In particular, if there are hidden dimensions, then there is no
preferred coordinate system in the space of unmeasured variables,
and hence no unique form for the dynamical equations. Let us
think, instead, about the probability distribution of the observed
trajectories x (t). For Gaussian processes, this has the form

P [x (t)] =
1

Z
e−S [x(t)] [8]

S [x (t)] =
1

2

∫
dt

∫
dt ′ x (t)K (t − t ′)x (t ′), [9]

where the integrals run over the interval of our observations,
which should be long. !e kernel K (τ) is inverse to the corre-
lation function,

∫
dt ′′ K (t − t ′′)〈x (t ′′)x (t ′)〉 = δ(t − t ′). [10]

We can divide the full trajectory x (t) into the past, xp, with t ≤ 0,
and the future, xf, with t > 0. Schematically,

S [x (t)] =
1

2
xp · Kpp · xp +

1

2
xf · K# · xf

+ xp · Kpf · xf, [11]

where Kpf couples the past and future. More explicitly,

xp · Kpf · xf =

∫ ∞

0
dt

∫ ∞

0
dt ′ x (−t)K (t + t ′)x (t ′). [12]

If Kpf is of "nite rank, so that

K (t + t ′) =
D∑

µ=1

aµφµ(t)φµ(t ′), [13]

then everything that we can predict about future behavior given
knowledge of past behavior is captured by D features,

P [xf|xp] = P [xf|{Fµ}] [14]

Fµ =

∫ ∞

0
dt φµ(t)x (−t). [15]

Eq. 14 is telling us that the features {Fµ} provide “su$cient
statistics” for making predictions. We recall that, in a dynamical
system with D variables,

dyi

dt
= gi({yj}) + ηi(t), i = 1, 2, · · · , D , [16]

predicting the future (t > 0) requires specifying D initial condi-
tions (at t = 0). In this precise sense, the number of variables that
we need to achieve maximum predictive power is the dimension-
ality of the dynamical system. To complete the argument, we need
to show that Kpf has "nite rank when correlations decay as a "nite
combination of exponentials; see Appendix A.

In the case of Gaussian stochastic processes, we thus arrive at a
recipe for de"ning the dimensionality of the underlying dynamics.
We estimate the correlation function, take its inverse to "nd the
kernel, and isolate the part of this kernel which couples past and
future. If this past–future kernel is of "nite rank, then we can
identify this rank with the dimensionality of the system. In Fig. 2,
Top we see a sample trajectory (in red) from a system that is, by
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Fig. 2. Sample trajectories (Top) and spectra of thematrix Kpf (Bottom). In red
is an example in which the underlying dynamics is three dimensional. In blue
is an example with power law correlations, as in Eq. 17 with α = 1/2, which
is effectively infinite dimensional. Time is measured in discrete steps ∆t, and
spectra are computed in windows of duration T = 100∆t (×) or T = 1000∆t
(◦). Details are provided in Appendix B.

construction, three dimensional, with correlation times 4×, 32×,
and 256× the discrete time step (∆t) of our observations. As
explained in Appendix B, the coe$cients aµ in Eq. 13 can be found
as the eigenvalues of a symmetric matrix, and these eigenvalues
are plotted in Fig. 2, Bottom in rank order (in red). !is numer-
ical analysis yields three clearly nonzero eigenvalues, with other
eigenvalues below 10−10. Importantly, we "nd essentially the
same three eigenvalues when the analysis is done in time windows
of very di#erent sizes—here T = 100∆t and T = 1, 000∆t ,
smaller and larger, respectively, than the longest correlation time.

!e past–future coupling is not guaranteed to be of "nite rank.
More generally, if we analyze signals in a window of size T, then
the rank can grow with T. !is happens, for example, if behavioral
correlations decay as a power of time,

〈x (t)x (t ′)〉 = 〈x 2〉 tα0
tα0 + |t − t ′|α . [17]

Fig. 2, Top shows a sample trajectory from a Gaussian process with
this correlation function (in blue), and Fig. 2, Bottom shows the
associated spectrum of coe$cients aµ for α = 1/2 (in blue). !is
illustrates both that there is no obvious cuto# to the spectrum
and that the spectrum extends farther when the analysis is done
in longer time windows [T = 100∆t (×) vs. T = 1000∆t (◦)].
Indeed, the larger the window, the farther the spectrum extends,
with no bound. Under these conditions, the dimensionality is
e#ectively in"nite.

!e possibility that behavioral correlations decay as a power
of time has a long and sometimes contentious history. It thus is
worth noting that scaling of the correlation function implies an
e#ectively in"nite dimensionality, but it is not required. We can
imagine situations in which the kernel Kpf has an arbitrarily large
number of nonzero eigenvalues in the limit of long observation
times even if the correlation is not precisely a power law.

While the relation of dimensionality to the spectrum of Kpf
is attractive, estimating this spectrum from "nite data can be
challenging. Even if the true spectrum has only a "nite number
of nonzero eigenvalues, in matrices built from "nite samples of

data, the zero eigenvalues will be replaced by a continuous spec-
trum, and this could make it di$cult, in practice, to distinguish
"nite from in"nite dimensional processes. At the same time, it
is important to emphasize that di$culty in resolving eigenvalues
against a continuum generated by "nite sample size is not evidence
for low dimensionality, nor should a continuum be assigned as
noise without further analysis. Random matrix theory provides
quantitative predictions for spectral broadening in closely related
contexts, including the dependence of spectra on sample size
and matrix dimensionality, and these should provide a basis for
identifying the contributions of noise to the observed eigenvalue
spectra (39).

Discrete States

In many cases, it is natural to describe animal behavior as moving
through a sequence of discrete states. We do this, for example,
when we transcribe human speech to text, and when we describe
a bacterium as running or tumbling (40). !is identi"cation of
discrete states is not just an arbitrary quantization of continuous
motor outputs, nor should it be a qualitative judgment by human
observers. Discrete states should correspond to distinguishable
clusters, or resolvable peaks in the distribution over the natural
continuous variables, and the dynamics should consist of move-
ments in the neighborhood of one peak that are punctuated by
relatively rapid jumps to another peak (e.g., ref. 3). A “mecha-
nism” for such discreteness is the existence of multiple dynamical
attractors, with jumps driven by noise (e.g., refs. 1 and 13).

When behavioral states are discrete, how do we de"ne dimen-
sionality? Once again, it is useful to think about the simplest
case, where there are just two behavioral states—perhaps “doing
something” and “doing nothing”—and time is marked by discrete
ticks of a clock. We can represent the two states at each time t
by an Ising variable σt = ±1. If the sequence of behavioral states
were Markovian, then σt depends only on σt−1, and, because
σ2 = 1, the only possible stationary probability distribution for
the sequences σ1, σ2, · · · , σT is

P ({σt}) =
1

Z
exp

[
h
∑

t

σt + J
∑

t

σt−1σt

]
, [18]

which is the one-dimensional Ising model with nearest-neighbor
interactions. Importantly, if we measure the correlations of the
%uctuations in behavioral state around its mean,

C (t − t ′) ≡ 〈(σt − 〈σ〉) (σt′ − 〈σ〉)〉, [19]

we "nd that these correlations decay exponentially,

C (t − t ′) = C (0)e−|t−t′|/τc , [20]

where we can express τc in terms of h and J (41). !is reminds
us of the exponential decays in the continuous case with Gaussian
%uctuations.

Suppose that we have only two states, but observe correlations
that do not decay as a single exponential. !en the probability
distribution P ({σt}) must have terms that describe explicit
dependences of σt on σt′ with t − t ′ > 1. !is can be true only
if there are some hidden states or variables that carry memory
across the temporal gap t − t ′. A sensible de"nition for the
dimensionality of behavior then refers to these internal variables.

Imagine that we observe the mean of the behavioral variable,
〈σ〉, and the correlation function C (t − t ′). What can we say
about the probability distribution P ({σt})? !ere are in"nitely
many models that are consistent with measurements of just these
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(two-point) correlations, but there is one that stands out as having
the minimal structure required to match these observations (42).
Said another way, there is a unique model that predicts the ob-
served correlations but otherwise generates behavioral sequences
that are as random as possible. !is minimally structured model
is the one that has the largest possible entropy, and it has the form

P ({σt}) =
1

Z
exp



h
∑

t

σt +
1

2

∑

t,t′

J (t − t ′)σtσt′



 ,

[21]
where the parameter h must be adjusted so that the model predicts
the observed mean behavior 〈σ〉, and the function J (t − t ′) must
be adjusted so that the model predicts the observed correlation
function C (t − t ′).

Maximum entropy models have a long history, and a deep
connection to statistical mechanics (42). As applied to temporal
sequences, the maximum entropy models sometimes are referred
to as maximum caliber (43). For biological systems, there has
been interest in the use of maximum entropy methods to de-
scribe amino acid sequence variation in protein families (44–46),
patterns of electrical activity in populations of neurons (47–51),
velocity %uctuations in %ocks of birds (52, 53), and more. !ere
have been more limited attempts to use these ideas in describing
temporal sequences, in neural populations (54) and in %ocks
(55–57).

To connect with the previous discussion, for continuous vari-
ables, a Gaussian process is the maximum entropy model con-
sistent with the measured (two-point) correlations. In particular,
if correlations decay as a combination of exponentials, then, in
discrete time, the relevant Gaussian model has maximum entropy
consistent with correlations among a "nite number of neighboring
time points. !ese models can also be written as autoregressive
processes (58).

!e maximum entropy model in Eq. 21 can be rewritten
exactly as a model in which the behavioral state at time t depends
only on some internal variable x (t). As explained in Appendix C,
x (t) is not Gaussian, but the only coupling of past and future,
again, is through a kernel K (t). !is kernel is not the inverse of
the observed behavioral correlations but of the e#ective interac-
tions between states at di#erent times, J (τ). But, importantly, we
are considering quantities that are determined by the correlation
function, and hence the problem is conceptually similar to the
Gaussian case: We analyze the correlations to derive a kernel, and
the dimensionality of behavior is the rank of this kernel. !e
maximum entropy model plays a useful role because it is the least
structured model consistent with the observed correlations.

If x (t) is one dimensional in the sense de"ned above, then the
interactions decay over some "xed time scale, J (t) ∼ J0e−|t|/τ ,
and, at long times, the correlations also will decay exponentially.
At the opposite extreme, if x (t) has e#ectively in"nite dimen-
sionality, then we can have J (t) ≈ J0|t |−α. Ising models with
such power-law interactions are the subject of a large literature in
statistical physics; the richest behaviors are at α = 2, where results
presaged major developments in the renormalization group and
topological phase transitions (59–62). It would be fascinating if
these models emerged as e#ective descriptions of strongly non-
Markovian sequences in animal behavior, as suggested recently
(63).

Generalization

In both the continuous Gaussian case and the discrete case, di-
mensionality can be measured through the problem of prediction.

To make this more general, consider observations of behavior
in a time window −T < t < T ; for simplicity, I will keep the
notation x (t) for the behavioral trajectory. Within each window,
the trajectory x (t < 0) de"nes the past xp, x (t > 0) de"nes
the future xf, and these are drawn from the joint probability
distribution PT (xp,xf). To characterize the possibility of making
predictions, we can measure the mutual information between past
and future,

I (xpast;xfut) =
∑

xp,xf

PT (xp,xf) log
[

PT (xp,xf)

PT (xp)PT (xf)

]
. [22]

!is “predictive information” Ipred(T ) can have very di#erent
qualitative behaviors as T becomes large (64).

For a time series that can be captured by a "nite-state Markov
process, or more generally described by a "nite correlation time,
then Ipred(T ) is "nite as T →∞. On the other hand, for Gaus-
sian processes with correlation functions that decay as a power,
as in Eq. 17, the predictive information diverges logarithmically,
Ipred(T →∞) ∝ log T , and similarly for discrete time series with
power-law correlations.‡

In the example of a dynamical system with D variables, as in
Eq. 16, all the predictive power available will be realized if we can
specify D numbers, which are the initial conditions for integrating
the di#erential equations. !us we consider smooth mappings of
the past into d features,

Md : xpast → {Fµ}, µ = 1, 2, · · · , d . [23]

For any choice of features, we can compute how much predictive
information has been captured, and then we can maximize over
the mapping, resulting in

Ipred(T ; d) = max
Md

I ({Fµ};xfut), [24]

which is the maximum predictive information we can capture with
d features in windows of duration T.

If the system truly is D dimensional, then D features of the past
are su$cient to capture all of the available predictive information.
!is means that a plot of Ipred(T ; d) vs. d will saturate. To be
precise, we are interested in what happens at large T, so we can
de"ne

lim
T→∞

Ipred(T ; d)

Ipred(T )
= f (d). [25]

If f (d ≥ D) = 1, then we can write the analog of Eq. 14,
P [xf|xp] = P [xf|{Fµ}], [26]

where the features Fµ now are more complex functions of the past.
But there are only D of these features needed to make Eq. 26
true (µ = 1, 2, · · · , D), and so we conclude that the behavior
has dimensionality D.

!e equivalence of Eq. 26 to Eq. 14 immediately tells us that
the general information theoretic de"nition of dimensionality
agrees with the de"nition for Gaussian processes based on the
spectrum of Kpf. In the Gaussian case, we see that the features
Fµ are just linearly "ltered versions of the past, as in Eq. 15. !e
connection to the discussion of two-state variables is a bit more
complicated, and exploits the equivalence to an internal or latent
variable as described in Appendix C.

‡If we observe a continuous variable in continuous time, then smoothness generates a
formal divergence in the mutual information between past and future. Modern analyses of
behavior typically begin with video data, with time in discrete frames, evading this problem.
Alternatively, if measurements include a small amount of white noise, then the predictive
information becomes finite even without discrete time steps. Thanks go to A. Frishman for
emphasizing the need for care here.
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Conclusion

!e arguments here de"ne the dimensionality of behavior as
the minimum number of features of the past needed to make
the maximally informative predictions about the future. As we
consider pasts of longer duration, the dimensionality can grow,
potentially without bound. !e connection between dimension-
ality and prediction is familiar from the now classical literature on
dynamical systems, which also reminds us that, in its most general
form, any such de"nition runs into all the well-known di$culties
of estimating dimensions from "nite data (65). More useful is the
result that, in some cases, estimating this predictive dimensionality
reduces to analyzing the spectrum of a matrix.

Data Availability. There are no data underlying this work.

Appendix

A. Past–Future Kernels, Explicitly. We are interested in the be-
havior of the kernel K when the correlation function C is a sum
of exponentials. As noted above, we need to be a little careful
to make this problem well posed. If we monitor a continuous
variable in continuous time, then continuity leads to in"nite
mutual information between x (t−) and x (t+). We can solve this
either by assuming that observations are made at discrete ticks of a
clock (as in video recordings) or by assuming that observations are
made in a background of white noise. Here I will take the second
approach.

!e statement that the correlation function is a sum of expo-
nentials, but measurements are in a background of white noise,
means that the observed correlation function

〈x (t)x (0)〉 ≡ C (t) =
M∑

µ=1

Aµe−|t|/τµ + N δ(t), [27]

where N is the strength of the noise. We want to construct the
kernel K (t) that is the operator inverse to C, as in Eq. 10. We
recall that this can be done by passing to Fourier space,

G(ω) =

∫
dt e+iωtC (t) [28]

K (t) =

∫
dω

2π
e−iωt 1

G(ω)
. [29]

From Eq. 27, we can see that

G(ω) =

∫
dt e+iωt

[
M∑

µ=1

Aµe−|t|/τµ + N δ(t)

]
[30]

=
M∑

µ=1

2Aµτµ

1 + (ωτµ)2
+ N . [31]

!en, to "nd K (t), we invert and transform back, being careful
to isolate the contribution of the white noise term,

K (t) =

∫
dω

2π
e−iωt

[
M∑

µ=1

2Aµτµ

1 + (ωτµ)2
+ N

]−1

[32]

=

∫
dω

2π
e−iωt

[
1

N − PM−1(ω2)

PM (ω2)

]
, [33]

where

PM−1(ω
2) =

M∑

µ=1

2Aµτµ

∏

ν '=µ

[1 + (ωτν)
2] [34]

is a M − 1 st-order polynomial in ω2, and

PM (ω2) = N
(

N
M∏

µ=1

[1 + (ωτµ)2] + PM−1(ω
2)

)
[35]

is a M th-order polynomial in ω2. Note that both polynomials
have all real and positive coe$cients.

We notice that PM−1(ω2)/PM (ω2) vanishes at large |ω|, and
e−iωt vanishes for values of ω with a large negative (positive)
imaginary part if t > 0 (t < 0). !is means that we can do the
integral over ω in Eq. 33 by closing a contour in the complex
plane. !en we can use the fact that

PM (ω2) = B
M∏

n=1

(ω2 − ω2
n ), [36]

where B is a constant and {ω2
n} are the roots of the polynomial.

!e simplest case is where all ω2
n are real, in which case they must

be negative, and we can write ωn = −iλn, with λn > 0. !en, for
t > 0, we close the contour in the lower half plane, picking out
the poles at ω = ωn, while, for t < 0, we close the contour in the
upper half plane, picking out the poles at ω = −ωn. !e result is
that

K (t) =
1

N δ(t) −
∫

dω

2π
e−iωt PM−1(ω2)

PM (ω2)
[37]

=
1

N δ(t) − 1

B

∑

n

PM−1(ω2 = −λ2
n)

2λn
∏

m '=n(λ
2
m − λ2

n)
e−λn|t|. [38]

If we look back at the derivation of Eq. 12, we can see that a delta
function term in K (t) does not contribute to coupling past and
future. !us K (t > 0) collapses into the form of Eq. 13,

K (t + t ′) =
M∑

n=1

anφn(t)φn(t
′) [39]

an =
1

B

PM−1(ω2 = −λ2
n)

2λn
∏

m'=n(λ
2
m − λ2

n)
[40]

φn(t) = e−λnt , [41]

and the dimensionality D = M , as we hoped: If the observed
behavioral variable is Gaussian, and the correlation function can
be written as the sum of M exponentials, then the system has
underlying dimensionality D = M .
It is useful to work out the case M = 1. !en we have

〈x (t)x (0)〉 ≡ C (t) = Ae−|t|/τc + N δ(t), [42]

And, after some algebra, we "nd

K (t) = a1e
−λ1|t| [43]

λ1 =
1

τc

√
1 + 2Aτc/N . [44]

It is useful to think more explicitly about the fact that we have
embedded a correlated signal in the background of white noise,
so we can write

x (t) = y(t) + η(t) [45]

〈y(t)y(t ′)〉 = Ae−|t−t′|/τc [46]
〈η(t)η(t ′)〉 = N δ(t − t ′). [47]
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Only y(t) is predictable; the best predictions would be based on
knowledge of y(t = 0). One can then show that the best estimate
of this quantity, given observations on the noisy x (t), is

yest(0) =

∫ ∞

0
dt K (t)x (−t), [48]

with the same K (t) as in Eq. 43. !us, asking for the optimal
prediction is the same as asking for the optimal separation of the
predictable signal from the unpredictable noise (66).

B. Details for Fig. 2. To generate Fig. 2, I start with some as-
sumed correlation function C (τ) ≡ 〈x (t)x (t + τ)〉, sampled at
discrete times tn = n∆t . !is de"nes a correlation matrix Cnm =
C (tn − tm), and then the kernel is the inverse of this matrix.
One row of the matrix Knm = (C−1)nm provides a sampled
version of the function K (t − t ′), from which we can construct
Kpf = K (t + t ′) from Eq. 12. Note that K̃nm = K (tn + tm) is a
symmetric matrix, and, if we normalize the functions φn(t), then
the coe$cients an in Eq. 13 are the eigenvalues of this matrix;
these eigenvalues are plotted in Fig. 2.

As an example that should illustrate a "nite dimensionality,
consider

C3(τ) =
1

3

[
e−|τ |/(4∆t) + e−|τ |/(32∆t) + e−|τ |/(256∆t)

]
.

[49]
To be a bit more realistic, I add measurement noise with an
amplitude of 10%, independent in each time bin, so that Cnm →
(1/1.01)Cnm + (0.01/1.01)δnm. !en the matrix Knm is com-
puted by inverting Cnm in a window of T = 4, 000∆t . !e
symmetric K̃nm is constructed in windows of T = 100∆t or
T = 1000∆t , and then diagonalized to "nd the eigenvalues. As
an example that could illustrate in"nite dimensionality, I consider
the power-law correlation function in Eq. 17, with t0 = ∆t and
α = 1/2, then follow the same procedure as with C3.

C. Interactions vs Latent Variables. Models where the observed
degrees of freedom depend on hidden or latent variables, but

not directly on one another, are sometimes set in opposition to
statistical physics models, where it is more natural to think about
direct interactions. But, as explained also in the supplementary
material of ref. 67, this dichotomy is incorrect. In fact, interacting
models can be rewritten as models where individual element
responds independently to some hidden or latent variables. As an
example, the maximum entropy model in Eq. 21 can be rewritten
exactly as a model in which the behavioral state at time t depends
only on some internal variable x (t),

P ({σt}) =

∫
Dx P [x (t)]

∏

t

P(σt |x (t) + h), [50]

P(σ|x + h) =
exp [σ · (x + h)]

2 cosh(x + h)
, [51]

and the distribution of the internal variable is

P [x (t)] =
1

Z ′ e
−S ′[x(t)] [52]

S ′[x (t)] =
1

2

∑

t,t′

x (t)K (t − t ′)x (t ′) −
∑

t

ln cosh (x (t) + h) ,

where K (t) is the matrix inverse of the function J (t),
∑

t′′

K (t − t ′′)J (t ′′ − t ′) = δtt′ . [53]
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