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We develop a first-principles scaling theory of the spreading of three-dimensional (3D) magnetic reconnection of finite
extent in the out of plane direction. This theory addresses systems with or without an out of plane (guide) magnetic field,
and with or without Hall physics. The theory reproduces known spreading speeds and directions with and without guide
fields, unifying previous knowledge in a single theory. New results include: (1) Reconnection spreads in a particular
direction if an x-line is induced at the interface between reconnecting and non-reconnecting regions, which is controlled
by the out of plane gradient of the electric field in the outflow direction. (2) The spreading mechanism for anti-parallel
collisionless reconnection is convection, as is known, but for guide field reconnection it is magnetic field bending.
We confirm the theory using 3D two-fluid and resistive-magnetohydrodynamics simulations. (3) The theory explains
why anti-parallel reconnection in resistive-magnetohydrodynamics does not spread. (4) The simulation domain aspect
ratio, associated with the free magnetic energy, influences whether reconnection spreads or convects with a fixed x-line
length. (5) We perform a simulation initiating anti-parallel collisionless reconnection with a pressure pulse instead of
a magnetic perturbation, finding spreading is unchanged rather than spreading at the magnetosonic speed as previously
suggested. The results provide a theoretical framework for understanding spreading beyond systems studied here, and
are important for applications including two-ribbon solar flares and reconnection in Earth’s magnetosphere.

in the solar wind!”*%#! " Studying how reconnection spreads,

Magnetic reconnection is a fundamental process that con-
verts magnetic energy into kinetic and thermal plasma energy
through a change in magnetic topology'-2. It mediates erup-
tive solar flares® and geomagnetic substorms* and is thought
to be an important process in numerous settings in high-
energy astrophysics [e.g.,>® and references therein]. Early
models treated reconnection as two-dimensional (2D)7’9, but
naturally-occurring reconnection is a 3D process [e.g.,'%!1].

One way the 3D nature of reconnection is manifested is
that the x-line where the magnetic field topology changes has
a finite extent in the direction normal to the plane of recon-
nection. [Note, we use the term "x-line" to refer simply to
the line along which reconnection takes place, regardless of
whether it is a separator, quasi-separator or a squashed 3D
null point'>. We do not use the term to mean a line of x-
points, which can arise in 2D systems but is topologically
unstable in 3D.] Spatially confined reconnection regions for
which the extent of the region undergoing reconnection does
not change in time have been studied theoretically and nu-
merically (Refs.”>"!° and Pyakurel et al., submitted). Al-
ternately, the region undergoing reconnection can elongate,
which we synonymously call spreading, over time. Such
behavior has been observed in the solar corona during two-
ribbon solar flares?*-?® and prominence eruptions?®, at Earth’s
magnetopause>* =2, in Earth’s magnetotail*33-33, and in labo-
ratory reconnection experiments>®=°, and is thought to occur
in the production of extremely extended reconnection events
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which is the focus of the present study, is important in many
settings because it impacts secondary processes such as par-
ticle acceleration and the global efficiency of the release of
large-scale magnetic energy.

There have been many numerical studies of 3D reconnec-
tion spreading in various settings. During anti-parallel quasi-
2D reconnection, the consensus is that spreading occurs in the
direction perpendicular to the reconnection plane at the speed
and direction of the current carriers!31342-48 If one species
carries all the current, the spreading is unidirectional; if both
species carry some current the spreading is bidirectional.

A number of physical mechanisms for spreading have been
suggested. It was argued*? that spreading of collisionless re-
connection is caused by electrons convecting the reconnected
magnetic into the region not undergoing reconnection [see
also'>*]. They argued it was caused by a shock-like “recon-
nection wave” and motivated the result using linear theory.
The electron magnetohydrodynamic (eMHD) induction equa-
tion is

%—I::iVx(JxB), (1
where B is the magnetic field, » is the number density, e is the
proton charge, J = (¢/4m)V x B is the current density, and ¢ is
the speed of light. Linearizing around the out of plane current
profile, the perturbed reconnected (normal) magnetic field By,
is governed by
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This shows that the magnetic field of the x-line is convected at
a velocity associated with the current carriers, assumed to be
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electrons in their work. When ions carry some of the current,
spreading occurs at the speed of the current carriers in their re-
spective directions!3#>47_If the thickness of the current sheet
is wy, then in the reference frame in which the electrons carry
all the current, the spreading speed v, scales as

J cByp d;
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where B,, is the upstream reconnecting magnetic field
strength, d; = ¢/, = (m;c*/4nne®)'/? is the ion inertial
scale, co = B/ (47rnm,~)1/ 2 is the Alfvén speed based on B, P
and m; is the ion mass. The functional dependence on wy was
confirmed in simulations!3, and it was similarly shown that
the relevant speed of the current carriers is that of the initial
current sheet thickness wy rather than the kinetic-scale thick-
ness after reconnection has started*-°. Interestingly, if elec-
trons carry all the current for anti-parallel reconnection, it was
shown that reconnection does not spread in the resistive-MHD
model*’. Moreover, reconnection can merely convect without
the region undergoing reconnection elongating in the out of
plane direction'?.

An alternate mechanism for collisionless anti-parallel re-
connection spreading was presented, based on pressure in-
stead of magnetic field*>*’. The region where reconnection
occurs was found to be of lower plasma pressure than the non-
reconnecting regions. The low pressure convects with the cur-
rent carriers into the non-reconnecting regions, inducing in-
wards flow which causes reconnection sequentially in the out
of plane direction. A related model was developed to explain
observations of impulsive reconnection in the Magnetic Re-
connection eXperiment (MRX)3%3°. In their experiment, the
initial conditions had an electron flow gradient in the out of
plane direction. This gradient requires an inflow in an ad-
jacent non-reconnecting region to preserve mass continuity,
producing a sequential onset of reconnection.

Spreading of magnetic reconnection is qualitatively differ-
ent when there is a background out of plane (guide) mag-
netic field, which commonly is present in reconnection in so-
lar flares?®, the solar wind>!, and the dayside magnetopause’!.
Laboratory experiments showed that, for a strong guide field,
the spreading is bidirectional with a speed given by the Alfvén
speed c4. = By, /(4wm;n)"/? based on the guide field strength

Bo. rather than the speed of the current carriers>®:

Vs = £z “)

Two-fluid simulations found the same scaling with the out-of-
plane (guide) magnetic field*®>2. The spreading has been de-
scribed as being mediated by Alfvén waves*®, whistler waves
and flow induced waves2, and kinetic Alfvén waves®?. Re-
cently, it was shown in simulations of guide field reconnection
with asymmetric plasma conditions that spreading in current
sheets thinner than ion scales is bidirectional at the Alfvén
speed, but is at the current carrier speed for thicker current
sheets’’. The different behavior for different current sheet
thicknesses was attributed to the reduced tearing instability
growth rate for wider current sheets. A guide field can also
impede the spreading of reconnection due to the presence of

multiple oblique x-lines>3.

This study presents a number of new results on the funda-
mental physics of the spreading of reconnection of finite ex-
tent. We generalize the theory of anti-parallel reconnection
spreading*?, showing that it can be interpreted in the form of
a scaling analysis and showing that the same theory can be
used to derive from first principles the scaling of the spread-
ing speed in the strong guide field limit, thereby uniting the
understanding of reconnection spreading under a single first
principles approach. New results include: (1) We argue that
the key physical aspect of x-line spreading is the induction
of an x-line topology in the non-reconnecting region [see also
Jain et al. (2013)*%], which is carried out by the gradient in the
electric field in the outflow direction at the interface between
the reconnecting and non-reconnecting regions. If an x-line
topology is not induced in a given direction, reconnection does
not spread in that direction. (2) The physical cause of recon-
nection spreading without and with a guide field are different,
with convection at the Hall scale and MHD-scale magnetic
field bending, respectively, playing key roles. We validate the
theoretical results using 3D two-fluid and resistive-MHD nu-
merical simulations, for both anti-parallel and guide field re-
connection. (3) The theory explains why anti-parallel recon-
nection in the resistive-MHD model does not spread*’. (4)
We find that a determining factor for whether a current sheet
spreads or convects with a fixed length in a numerical sim-
ulation is the aspect ratio of the domain, which we suggest
is controlled by the amount of free magnetic energy in the
system. (5) Finally, we perform a test of whether the results
obtained herein are dependent on the manner in which recon-
nection is excited in the system. This is important because
it has been suggested® that reconnection spreads at the fast
magnetosonic speed rather than the speed of the current carri-
ers. Physically, this mechanism could occur if reconnection is
initiated through a pressure pulse squeezing the current sheet.
As simulations typically initiate reconnection using a mag-
netic perturbation, it is important to assess whether the speed
of the spreading depends on the way in which reconnection
is seeded. Using a pressure pulse to initiate reconnection, we
find that anti-parallel reconnection spreads at the current car-
rier speed rather than the magnetosonic speed.

The layout of this paper is as follows. In Sec. II, we discuss
the theory of 3D reconnection spreading and derive a number
of key implications about the physical cause of reconnection
spreading and applications to collisionless and collisional sys-
tems with and without a guide field. In Sec. III, we discuss our
numerical simulation setup. In Sec. IV, we discuss the results
of our simulations. We offer conclusions and discuss new in-
sights as a result of this work in Sec. V.

1. THEORY OF RECONNECTION SPREADING
A. General considerations

We use a coordinate system in which z is the direction of
the initial current, the current sheet is centered around y = y,,
and x is the direction of the equilibrium reconnecting magnetic
field, with B, > 0 for y < y.; and By < 0 for y > y.;. We
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use a reference frame where the electrons fully carry the out
of plane current. The asymptotic reconnecting magnetic field
strength is By, there may be a guide field of strength By, and
the current sheet has an initial thickness wy. The system is
sketched schematically in Fig. 1 for the case without a guide
field. The y =y plane is shown with two dotted lines. At a
given time, reconnection is occurring in a localized part of the
current sheet with finite out of plane extent 24, shown with
orange shading in the figure, while the parts of the system
shaded blue are not undergoing reconnection.

As in the model reviewed in the Introduction, we consider
the time evolution of the reconnected magnetic field By. To
generalize the previous approach*?, we begin from Faraday’s
law, dB/dt = —cV X E, where E is the electric field. At the
interface between reconnecting and non-reconnecting regions,
gradients in the z direction exceed gradients in the x direction,
so the term that dominates By production is [see also*®]

%N_ J0E,
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&)

A scaling analysis allows us to find a characteristic out of
plane spreading speed v;, given by

Az AE,
= — X —C

At ABy’

(6)
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where the spatial finite difference Az is evaluated at the bound-
ary between the reconnecting and non-reconnecting regions,
and we associate Az/Ar with the speed of the spreading v;.
We retain the minus sign, as it gives information about the
direction of propagation.

We first make contact with previous work. For anti-parallel
collisionless reconnection, it was argued that reconnection
spreading occurs via out of plane convection by the electrons.
The electric field associated with this is E, ~ —J, By, /nec, from
the Hall term. Using this in Eq. (6) and taking AB, ~ B, at the
interface between reconnecting and non-reconnecting regions
gives

A(J.By/ne) U,
N —— . 7
Vs AB, e (N

This reproduces the result that reconnection spreads at the
speed and direction of the current carriers in Eq. (2). In our
approach, the result follows from a scaling analysis rather than
linear theory.

In what follows, we argue that Eq. (6) is useful for predict-
ing the spreading speed beyond only anti-parallel reconnec-
tion. More generally, the component of the net electric field
in the outflow direction E is given by the generalized Ohm’s
law

_ WB;—v:B,

+JyBZ—JZBy_i8pe me dJx

E. =
* ne dx  ne? dt

+nJx,

(®)
where v is the (ion) bulk flow velocity, p, is the (scalar) elec-
tron pressure, m, is the electron mass, and 7 is the resistivity.
The right hand side includes the convection term, Hall term,

c nec

electron pressure gradient term, electron inertia term, and re-
sistive term in order of appearance. We show that in differ-
ent settings, different terms can dominate. We find the elec-
tron pressure gradient and electron inertia terms do not impact
spreading in current sheets at or above ion inertial scale thick-
nesses.

Before considering specific systems, we elucidate what our
approach reveals about the physical mechanism for reconnec-
tion spreading. Previous work*? suggested the evolution of
By is what determines spreading. Physically, in order to seed
an x-line in a plane in which there is initially no x-line, one
needs to generate a normal magnetic field By with a bipolar
structure of the proper polarity [see also*®]. If the x coordi-
nate of the x-line is x’, then an x-line is seeded if By > 0 for
x < x and By < 0 for x > x’ for the assumed B, directional-
ity. From Eq. (5), the signs of the gradient of the electric field
E, at the ends of the region undergoing reconnection deter-
mine whether dB, /0t is locally positive or negative for x < x’
and x > x/, which determines whether an x-line develops over
time in the non-reconnecting region. We argue the sign of the
gradient of the electric field in the outflow direction is a more
fundamental interpretation of how reconnection spreads via
convection.

We note a subtlety that is important for numerical studies
of reconnection spreading and may be important in naturally
occurring reconnection. Many theoretical developments of re-
connection spreading, including the treatment in this section,
are based on the propagation of a small By into regions not pre-
viously undergoing reconnection. However, the presence of
By is not synonymous with the onset of reconnection. Rather,
the presence of By triggers the tearing instability which makes
By, grow in time, and it is only after getting to large amplitudes
that steady reconnection is set up. Thus, there is a time delay
between when By spreads into a region not undergoing recon-
nection and when reconnection begins in earnest. This has
been seen in previous simulation studies*?, and more recently
has been noted as an important factor in the spreading of re-
connection in thick current sheets for which the time scale
of the tearing instability is longer®. For the present study,
the time delay between the appearance of By and the onset of
full-fledged reconnection is the same at all locations, so the
spreading speed of reconnection is unchanged by the delay.
Consequently, in this study, it is sufficient to study the spread-
ing speed of the normal magnetic field By as a proxy for the
spreading speed of the onset of full-fledged magnetic recon-
nection.

B. Spreading of collisionless anti-parallel reconnection

We exploit the results of the previous subsection to develop
new insight on the physics of spreading for anti-parallel col-
lisionless (Hall) reconnection. In Fig. 1, the dark blue arrows
represent magnetic field lines within the blue shaded regions
in which reconnection is not taking place, which are straight
because there is no reconnection to bend them towards the
y = y¢s plane. In contrast, the dashed orange arrows depict
the projection of a representative reconnecting magnetic field
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FIG. 1. Sketch of a system undergoing anti-parallel reconnection in a localized region in the out of plane direction from —4 < z < A4,
motivating the physics behind why reconnection spreads in the direction of electron convection. Orange shading denotes the finite domain
where reconnection is taking place, and it is not taking place in the blue shaded region. The projection of a representative reconnecting magnetic
field line in the orange region is shown in the xy plane as the dashed orange line, with a dotted orange X denoting the x-line. The reconnected
components of the magnetic field in the orange region are denoted by thick vertical orange arrows. The Hall electric field component E, shown
as purple arrows points away from the x-line in the reconnecting region and is zero elsewhere. The gradient in E, at the z = —A interface
produces a normal magnetic field By that promotes an x-line topology (black arrows), extending the x-line and causing spreading. Atthe z =24
edge, the B, produced opposes an x-line topology (black arrows), so reconnection does not spread in that direction.

line in the xy plane within the orange shaded region where re-
connection is occurring, which bend in towards the x-line. As
previously noted!3#2, the out of plane current is carried in the
z direction by electrons convecting in the —z direction. Thus,
the x-line topology governed by By, depicted by the thick ver-
tical orange arrows in the region undergoing reconnection, is
convected in the —z direction and reconnection spreads in that
direction (the green arrow) in this reference frame.

We reinterpret this in terms of the electric field E, and the
induced magnetic field in the non-reconnecting regions. In
the region where reconnection is taking place, the out of plane
current J, (the thick black arrow) in the presence of the recon-
nected magnetic field By (the thick orange arrows, negative for
x > x/, positive for x < x’) produces a non-zero component of
the Hall electric field in the outflow direction E, ~ —J.By /nec,
pointing away from the x-line as denoted by the purple arrows.
This E, is relatively uniform between z = —A and z = A, but
at the boundaries of the reconnecting region at z = A, there
is a non-zero out of plane gradient dE,/dz. From Faraday’s
law, this produces a dB,,/dt in the adjacent non-reconnecting
planes, positive for x > x’,z= A and x < x’,z = —4 and neg-
ative for x <x’,z = A and x > x’,z = — A, represented by the
four thin black arrows in the z = +A planes. For the non-
reconnecting plane adjacent to the z = —A boundary, there
is initially no By, so the presence of a dB,/dt generates a

magnetic field that seeds an x-line topology (shown as an
X with black dotted lines), thus promoting the spreading of
the x-line in the direction of electron convection, as expected.
In contrast, in the non-reconnecting plane adjacent to z = A,
dBy /0t has the opposite polarity, which serves to weaken the
existing By, and thus the x-line and therefore reconnection do
not spread in the 4z direction. This provides an alternate,
but equivalent, understanding of why reconnection does not
spread in the direction of the current in the reference frame in
which the electrons carry the current.

C. Lack of spreading of anti-parallel reconnection in
resistive-MHD

In collisional reconnection described by resistive-MHD,
the Hall, electron pressure, and electron inertia terms are
dropped from the generalized Ohm’s law [Eq. (8)]. Then,
the only terms that can produce an E, are —v,B;/c,v.By/c,
and nJ,. For anti-parallel collisional reconnection in the ref-
erence frame in which the electrons carry the out of plane
current, B, and v, are both zero. Thus, there is no spread-
ing in collisional reconnection due to convection in the refer-
ence frame in which the electrons carry the out of plane cur-
rent. This result is consistent with previous resistive MHD
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simulations*’, and provides a first-principles reason for the
absence of spreading in this case. We point out that the re-
sistive term, with E, = 1J,, can in principle cause spreading.
This spreading is bidirectional, as magnetic diffusion of B, at
the boundary between the reconnecting and non-reconnecting
region induces an x-line topology in the non-reconnection
part. Using AE, = A(nJy) ~ NeBy/4mLy, where Ly is the
length scale of the transition between the reconnecting and
non-reconnecting regions, Eq. (6) gives

€))

i.e., the diffusion velocity across the boundary. This mech-
anism may be relevant for spreading in collisional plasmas,
such as the chromosphere or some laboratory experiments.
However, for most settings of heliophysical interest, the resis-
tivity is exceedingly small, so the spreading due to resistivity
is small on dynamical time scales.

D. Spreading of guide field reconnection

The physical cause of reconnection spreading with a non-
zero guide field By, is fundamentally different than with no
guide field. For simplicity, we consider the limit where the
guide field is much larger than the reconnecting magnetic
field, By, > By, and that the current sheet is not sufficiently
thicker than the ion gyroscale, at which point the mechanism
for reconnection spreading can change because of the guide
field dependence of guide field reconnection on the growth
rate of the collisionless tearing instability>’. Figure 2 shows a
sketch of reconnection spreading in the large guide field limit.
As in Fig. 1, blue regions are not initially undergoing recon-
nection. The magnetic field in this region is shown with dark
blue lines, depicted with a strong z component. The region
initially undergoing reconnection with length 24 is shown in
orange. As reconnection occurs, the upstream magnetic field
in this region convects inward towards the neutral line, shown
in dark orange lines. This bends the upstream magnetic field,
introducing a kink in the magnetic field localized near the
interface of the reconnecting and non-reconnecting regions.
This kinked magnetic field provides a curvature force, which
drives a bulk flow in the vertical (fy) direction, depicted as
red arrows near the z = £+A planes. The flow, therefore, has
a quadrupolar structure in the xz plane. The normal flow in a
region with a guide field produces a convective electric field
E, =~ —v,B;/c, depicted by the purple arrows. It is strongest
in a thin region near the interface, and also has a quadrupo-
lar structure in the xz plane. Since E has a gradient in the z
direction, Faraday’s law implies that B is generated in that re-
gion, with the sign of B, being given by Eq. (5). The induced
B, fields are depicted by the thin black arrows at z = +A. At
both edges, the magnetic topology generated by the induced
By is of an x-line, so the x-line spreads in both out-of-plane
directions. This is consistent with the known result that guide
field reconnection spreads bidirectionally. We stress that this
sketch of the physics is valid for both collisionless and colli-
sional reconnection. Essentially, this bending of the magnetic

field line is physically similar to a rotational discontinuity or
launching an Alfvén wave. For collisionless reconnection in
current sheets at gyroscales, this field line bending becomes a
kinetic Alfvén wave, as was previously elucidated™.

We now perform a scaling analysis to obtain the spreading
speed in the strong guide field limit. The bulk flow in the y
direction due to the curvature force from the bent upstream
magnetic field is described by the momentum equation

8vy - BQZ aBy
ot 4mmn 9z

(10)

In writing this, we use that the large guide field limit implies
vyBo; > v, By in the convection electric field in Ohm’s law, as
both the out of plane bulk flow v, and the reconnected field B,
are small during the early stages of reconnection.

A scaling analysis on this equation gives

By,AB,

~ o,
4rtminv,
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where we have taken Av) ~ v, between adjacent reconnect-
ing and non-reconnecting planes and vy, = Az/Ar as per equa-
tion (6). Then, the relevant term in Eq. (8) gives E) as

_WBo: BG.AB, (12)
c 4mnvgce’
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and using this result in Eq. (6) reveals
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This reproduces the known result that reconnection with a
large guide field spreads bidirectionally at the Alfvén speed
based on the guide field cy4, in Eq. (4).

Ill. SIMULATION SETUP

Simulations are carried out using the two-fluid code F3D>,
which updates the continuity, momentum, induction, and
pressure equations, and can include the Hall, resistive, and
electron inertia terms in the generalized Ohm’s law. Time
is stepped forward using the trapezoidal leapfrog algorithm>®
and spatial derivatives are fourth order finite differences. For
simulations with the Hall term, lengths are normalized to the
ion inertial scale djy = (m;c*/ 47rnoez)1/ 2 time is normalized
to the inverse ion cyclotron frequency Q;(l) = m;c/eBy, veloc-
ities to the Alfvén speed ca9 = Bo/+/4m;ny, electric fields to
ca0Bo/c, and temperatures to micfw /kg, where By is the initial
upstream reversing magnetic field magnitude, ny is the initial
upstream density, and kp is Boltzmann’s constant. When the
Hall term is absent, the only differences to the normalizations
are that lengths are normalized to an arbitrary length Lygp,
times are normalized to Lygp/cao, and resistivity is normal-
ized to 47'CCA0LMHD/C2.
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FIG. 2. Analogously to Fig. 1, sketch of a system undergoing guide field reconnection in a localized region in the out of plane direction from
—A < z < A, motivating the physics behind why guide field reconnection spreads bidirectionally. Reconnection between —A < z < A convects
the magnetic field towards the neutral line, which sets up a strongly bent magnetic field at the interfaces. This strong magnetic curvature drives
flow in the normal direction (red arrows). This flow immersed in the guide field sets up an Ey, shown as the purple arrows. The gradient in E,
at the interfaces produces x-lines at both the +4 boundaries, extending the x-line in both directions.

The computational domain has dimensions Ly X L, X L, =
102.4 x 51.2 x 256.0, where x and y correspond to the out-
flow and inflow directions in 2D, respectively, and z is per-
pendicular to the 2D reconnecting plane. Boundary condi-
tions are triply periodic, and the system size is chosen to be
large enough that the boundaries do not impact the relevant
dynamics. The grid scale is Ax x Ay x Az=0.05x0.05 x 1.0.
The lower resolution in the out-of-plane direction has been
used before!340, and is justified since out-of-plane dynamics
in our setup change more slowly than dynamics in the recon-
nection plane. When electron inertia is included, the ion-to-
electron mass ratio is m;/m, = 25, and we expect the rele-
vant results are independent of this value, since previous work
on the spreading of anti-parallel reconnection has shown that
the dynamics of x-line spreading are insensitive to the mass
ratio'? and the terms in Ohm’s law that contribute to reconnec-
tion spreading in the theory (the Hall and convection electric
fields) are independent of the mass ratio.

The initial conditions consist of two oppositely directed
current sheets. The x-component of the initial magnetic
field is given by Bo, = tanh[(y + L,/4)/wo| — tanh[(y —
Ly/4)/wo)] — 1, where wy is the initial current sheet thick-
ness. When a guide field By, is included, it is uniform. The
initial density is uniform with a value of 1, and a non-uniform
temperature varying from 1 to 1.5 is used to balance magnetic
pressure in the current sheet. The plasma pressure is provided
fully by ions and is treated as adiabatic, while the electrons
are assumed cold at all times. The electrons carry all of the

initial current.

The resistivity 7 is identically zero for simulations employ-
ing the Hall term, and is 0.004 for the resistive-MHD simula-
tions. Fourth-order diffusion is included in all equations with
coefficients Dy, = D4y = 1.6 X 107 and a larger diffusion co-
efficient in the z direction Dy, = 1.6 x 10! because the grid
scale is larger. The time step is 0.02 for all simulations with
no guide field. For simulations with a guide field, a smaller
time step of 0.01 and a larger fourth-order diffusion coeffi-
cient Dy, = 6.4 x 10! are used to account for the faster dy-
namics in the out of plane direction. The diffusion coefficient
and time step values are varied in trial simulations to ensure
they do not play any significant role in the numerics.

We employ simulations with initial thickness wg = 1.0. We
repeat the simulation of anti-parallel reconnection with differ-
ent uniform current sheet thicknesses wg = 0.5,2.0 and 3.0
and the guide field simulation with wy = 2 to confirm that in
all cases, the local physics remain qualitatively similar to their
wo = 1 counterparts and that the spreading speeds are consis-
tent with previous work!3. When a guide field is included, we
use By, = 3.0, which is sufficient to be in the large guide field
limit.

Unless otherwise stated, we initialize the simulations with
a coherent perturbation in the magnetic field. To do so, the z
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component of the perturbed vector potential is defined as

Arz(x,7,2) = BALLEX {1 +cos (Wﬂ sin (i’?) f(2)

for y > 0 and O for y < 0, where B| =0.005 is a constant and
the envelope f(z) has the form

Q=5 {tanh (”Vg‘”’) ~tanh (Z”;O”ﬂ . as)

where wope,s defines the initial half-extent of the coherent per-
turbation in the out of plane direction. We use wope,s = 15
unless stated otherwise. The resulting magnetic perturbation
B = —Z x VA, seeds an x-line/o-line pair in the xy plane
for only the upper current sheet at y = y.; = L, /4, localized
t0 —Woperr < 2 < Wopers. We perturb only the upper current
sheet because doing so prolongs the timescale for the inter-
action between the two current sheets due to flows in the y-
direction and thus ensures the reconnection occurring in the
upper sheet at later times is purely due to reconnection spread-
ing in the upper sheet. To ensure the spreading has no de-
pendence on wopes, We perform a suite of simulations with
an anti-parallel field configuration with wy = 1 with varying
Wopers Of 9,12,15, and 30, with all other parameters held the
same. We find that wop,,, affects the initial extent of the re-
connection region in the z direction at the time of onset, which
is to be expected, but the spreading of reconnection is unaf-
fected. Incoherent noise in the x and y components of the
magnetic field at the 107> level is also used to break symme-
try, which prevents secondary magnetic islands from staying
in the initial x-line location™>.

IV. RESULTS
A. Anti-parallel collisionless reconnection spreading

We begin by testing the theory in Sec. IIB. To do so, we
need to verify the structure and the dominant contributor of
the electric field E, and the time evolution of the magnetic
field By near the boundary of the initial reconnecting region.

We investigate the electric and magnetic field structure at
t = 10, when the perturbed B, is spreading out from its ini-
tial location, but before full-fledged reconnection is going at
its steady rate (which occurs closer to t = 80), as discussed in
Section IT A. Figure 3 shows the net electric field component
E,. Planar cuts through the upper (perturbed) current sheet
¥ = yes = 12.8 and through the reconnecting planes at z =2
and z = —20 near the boundaries of where reconnection oc-
curs are shown. These z planes are selected because the x-line
seeded by the perturbation is initially between z = +15, but
this region drifts in the —z direction, the direction of electron
convection. The initial convection of the perturbed region be-
fore reconnection spreads is consistent with the behavior ob-
served in Fig. 1 of Huba and Rudakov (2002)*?, though it was
not discussed in their study.

The red-white-blue color map for the electric field E,
ranges from —0.005 to 0.005. The two zeroes of E, in the

reconnecting region (in white) at x = x' = —25.6 and x = 25.6
coincide with the x-line and o-line, respectively. The elec-
tric field E, is qualitatively similar at later times when the x-
line is significantly longer in extent in the —z direction. The
bipolar structure of E, points outwards from the x-line, con-
sistent with the sketch in Fig. 1. The largest contributor to E,
is the Hall term Ef“” = —J,By/nec, as expected®?. It has a
maximum magnitude of 0.005 and is two orders of magnitude
larger than the next largest contribution from the convection
term v.B, /c.

To quantitatively confirm that the induction of By is caused
by EH4! we compute the out of plane gradient dEH! /97 at
both boundaries of the reconnecting region to the left and right
of the initial x-line, x = —38.4 and x = —12, respectively. We
use least squares to fit a line to EZ%/! as a function of z through
the center line of the upper current sheet from —28 < z < —20
and 2 < z < 10 to approximate dEH! /9z. We calculate the
local time derivative dB,/dt at the midpoint of the specified
ranges in z, determined with a time-centered difference be-
tween t = 9 and 11. The results are gathered in Table I. The
similarity between the two terms shows that the main contri-
bution to dB,/dt comes from —dEH!! /97, as expected.

The signs of dB,/dt in the z = —24 plane are negative at
x = —12 and positive at x = —38.4, to the left and right of
the zero of By, respectively. This serves to promote an x-line
topology in the z = —24 plane. In contrast, at z = 6, the signs
of dBy/dt oppose the formation of an x-line, consistent with
our explanation of why reconnection does not spread in the
z direction. These results confirm our theoretical predictions
for anti-parallel collisionless reconnection spreading.

B. Guide field collisionless reconnection spreading

We now discuss the large guide field case. Figure 4 shows
the net electric field component Ey at t = 10 for a simula-
tion with guide field By, = 3, again when the perturbed By, is
spreading out from its initial location, but before full-fledged
reconnection is going at its steady rate. Planar cuts are shown
at y = y. through the upper (perturbed) current sheet and the
z = —38 and z = 38 planes near the boundaries between the
reconnecting and non-reconnecting regions. The two zeroes
of E, at the intersections of the planes (in white) are again
located at approximately x = x' = —25.6 and x = 25.6, coin-
ciding with the x-line and o-line, respectively. Note, E has a
much larger extent in the y direction than for the anti-parallel
case, which is localized within an ion inertial scale. That E,
extends far beyond the current sheet to MHD scales is typical
of reconnection with a large guide field. When reconnection
is occurring, ion inflows v, extend into the upstream region,
well outside the current layer to MHD scales. In the absence
of a guide field By, the associated convection electric field
E\ ~ vyB;/c in the upstream region is negligible. This is be-
cause the only contribution to B, is the quadrupolar Hall mag-
netic field, which is very small at MHD scales upstream of
the diffusion region. This explains why E is localized to the
current layer in the case without a guide field (see Fig. 3).
However, if there is a large guide field By, the electric field
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FIG. 3. Electric field Ey from a 3D simulation of anti-parallel reconnection with a current sheet of initial thickness 1 at # = 10. Data are plotted
at planes of y = y.; = 12.8, z =2, and z = —20. The x-line is at x = —25.6, and the o-line is at x = 25.6. The structure of E| is consistent with

the sketch in Fig. 1, motivating why anti-parallel reconnection spreads only in the direction of the current carriers.

Anti-Parallel | (x = —38.4,2 <z < 10)|(x = —38.4,-28 <z < —20)|(x=—12,2<z< 10) | (x = —12,-28 < z < —20)
_oeT -0.00045 0.00045 0.00048 20.00048
% -0.00056 0.00058 0.00056 -0.00056

TABLE 1. Comparison of the out of plane gradient of the Hall electric field —9EH4! /97 and the local time derivative dBy /9t for the wy = 1
anti-parallel collisionless reconnection simulation at # = 10. The spatial gradient is measured over the specified ranges in z near the boundaries
of the reconnecting region, and the time derivative is measured between ¢ = 9 and 11 at the midpoint of the specified ranges in z. The agreement
confirms that the electrons convect the x-line topology in the —z direction for anti-parallel reconnection.

E. ~ vyB,/c is non-zero, both at Hall scales and beyond the
current layer into MHD scales because of the ion inflow, as is
seen in Fig. 4

The largest contributor to the electric field E, during the
initial spreading phase is the convection term E{”" = v,B; /c,
which has a maximum magnitude of 0.009 and is three times
larger than than the next largest contribution from Ef““ =
J.By /nec. The quadrupolar structure of E, points inwards to-
wards the x-line at z = 38 and outwards from the x-line at
z = —38, consistent with the sketch in Fig. 2.

We note that there is a small amplitude oscillatory signa-
ture at the leading edges of the E, signal. This is reminiscent
of low amplitude oscillatory behavior observed in Jain and
Buchner’s (2017) study’? in the outermost edges of the recon-
necting region, although in our simulation we do not see the

larger amplitude oscillations they observed in between. Un-
derstanding these differences is outside of the scope of the
present study. Regardless, due to the smallness of this os-
cillatory signal in our study (~ 0.001 compared to ~ 0.008
for the non-oscillatory signal), it is not playing any significant
role in the spreading. To quantitatively confirm the induction
of By is caused by the convective electric field, we compute
JES™ /dz at both boundaries of the reconnecting region to
the left and right of the initial x-line, x = —38.4 and x = —12
respectively, using a similar approach as the previous subsec-
tion, at —48 < z < —38 and 38 < z < 48. We then compare to
dBy /0t at the midpoint of the specified ranges z = —43 and
7 =43, computed as in the previous subsection. The results
are gathered in Table II. The similarity between the two quan-
tities shows that the main contribution to dB,/dt comes from
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Guide Field 3] (x = —38.4,38 < < 48)[(x= —38.4,—48 <z < —38)[(x= —12,38 <7 <48)[(x= —12, 48 <z < —38)
~ BT 0.00050 0.00026 -0.00053 -0.00027
% 0.00041 0.00035 -0.00043 -0.00038

TABLE II. Same as Table I, but for the convective electric field at the given locations and times in the guide field 3 case. The agreement
confirms that the convection electric field gradients propagate the x-line topology in the £z directions for guide field reconnection.

—dES™ /dz, as we predict in our scaling of Eq. (12) for the
large guide field limit. The signs of dB,/dt show that B, de-
velops with a negative sign at x = —38.4 and a positive sign at
x = —12, to the left and right of the zero of By, respectively, at
both z = —42 and z = 42. This implies the magnetic topology
is that of an x-line at both z = —42 and z = 42 planes, con-
sistent with the model for why the x-line spreads in both the z
and —z directions.

Additionally, we test the prediction that the bulk flow vy is
driven by the curvature force due to the bent upstream mag-
netic field at the boundaries of the reconnecting region by di-
rectly computing the left and right hand sides of Eq. (10) with
simulation data. For the right hand side, we first compute
dBy/dz at t = 10 near the ends of the reconnecting region
through y = y,,, using a least squares fit of B, as a function of
zfrom both —42 < z < —35 and 35 < z < 42 and to the left and
right of the x-line at x = —38.4 and x = —12.8, respectively.
Then, the numerical estimate for the curvature force term is
(B;/n)dB,/dz (in code units). The left hand side dvy/dr is
then computed locally at the midpoints z = 38 and z = —38
with a time-centered difference between + =9 and 11. The
results are gathered in Table III. The similarity of the two
terms is strong evidence that the curvature force drives the
bulk flows vy near the boundaries of the reconnection region
in guide field reconnection. In summary, our simulation re-
sults confirm the predictions about the electric and magnetic
fields in guide field reconnection in Section II D.

C. Spreading of collisional reconnection in resistive-MHD

Here, we study the spreading of collisional reconnection
in resistive-MHD to test the predictions in Sec. IIC. For
these simulations, the initial out-of-plane length scale in z of
the transition is L,y = 2 from Eq. (15) and n = 0.004, so
Eq. (9) gives a predicted spreading speed of vy ~ 0.002 (in
code units). For the duration of the simulations carried out
here, the distance reconnection would spread from resistive
effects is expected to be negligible. Consequently, we expect
no spreading for anti-parallel reconnection, but spreading will
occur for guide field reconnection.

We carry out two 3D simulations using the resistive-MHD
model. One has no guide field, and one has guide field
By, = 3. The initial current sheet thickness is wg = 0.32.
All other system properties and initialization parameters are
the same as described in Sec. III. For the anti-parallel recon-
nection simulation, we find that reconnection does not spread
up to the simulated time ¢ = 200 Lygp/cao (not shown). If
spreading were to occur at the speed of the current carriers
vy = Jy/ne = 1/wy = 3 cp9, we would expect reconnection

would spread a distance ~ 600 Lygp in the simulated time.
This would be clearly observable, as this is longer than the
computational domain in the z direction. The region under-
going reconnection also does not convect in the out of plane
direction, as the electrons initially carry all the current. These
findings are consistent with previous results*’. The region
undergoing reconnection also does not convect in the out of
plane direction, as the electrons initially carry all the cur-
rent. With By, = 3, reconnection spreads bidirectionally (not
shown), as in the collisionless two-fluid simulation. This con-
firms that, for the parameters of our study, there is no spread-
ing for anti-parallel reconnection in which electrons carry the
current within the resistive-MHD model, that MHD physics
drives the spreading when there is a guide field, and that col-
lisions play no important role in reconnection spreading.

D. Dependence of spreading on system aspect ratio

An interesting result arises from comparing our anti-
parallel collisionless reconnection simulation with wg = 2
(used to confirm the results from the wy = 1 simulation do not
depend on the current sheet thickness) with previous knowl-
edge. In particular, we find that reconnection spreads with
wo = 2, while a previous study found that reconnection with
a current sheet of that thickness developed a reconnecting re-
gion of finite extent in the z direction and simply convected at
the speed of the current carriers rather than spread'?; see the
dashed lines of their Fig. 3a. Similar behavior was observed
in other studies of Hall reconnection spreading in relatively
thick current sheets!.

The difference between the present and previous simula-
tions is that the prior studies used a square computational do-
main in the xy—plane, whereas our domain is twice as big in
the x direction than in the y direction. We repeat our simula-
tion with a current sheet of thickness wg = 2 in a square com-
putational domain with Ly x L, x L, = 51.2 x 51.2 x 256.0, as
in Shay et al. (2003)!3. We also find the x-line remains a fixed
length and convects rather than spreads.

We demonstrate our result graphically using a plot of the re-
connected magnetic field By. For a given xy plane we find the
reconnection region by first finding the zeroes of By, through
the symmetry line of the current sheet in the y =y, = L,/4
plane and determine if the magnetic topology is that of an x-
line or an o-line. For a current in the z direction, By changing
from positive to negative with increasing x is an x-line and
from negative to positive is an o-line. If there are multiple
x-lines, we define the primary one as that with the largest out-
of-plane current J;. The strength of the reconnected field By
increases from zero away from the reconnection region un-
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Momentum Eqn. | (x = —38.4,35 <z < 42)|(x = —38.4,—-42 <z < —35) | (x = —12,35 <z < 42) | (x = —12,—42 < z < —35)
BE: -0.00021 0.00024 0.00026 -0.00043
% -0.00021 0.00014 0.00023 -0.00045

TABLE III. Comparison of the curvature force term (B;/n)dB,/dz (in code units) and the local acceleration of the bulk flow dv,/dt, in the
guide field reconnection spreading simulation at + = 10. The spatial derivative is averaged over the given ranges in z near the boundaries of
the reconnecting region, and the time derivative is determined from a time-centered difference between t =9 and 11 at the midpoint in the
specified ranges in z. This confirms that the curvature force drives the vertical flows.

25.6 -

> 12.8 -

-51.2

FIG. 4. Electric field Ex from a 3D simulation of guide field reconnection with a guide field 3 with a current sheet of initial thickness wy = 1
at t = 10. Data are plotted at planes of y = y.s = 12.8, z = —38, and z = 38. The x-line is at x = —25.6, and the o-line is at x = 25.6. The
structure of E) is consistent with the sketch in Fig. 2, motivating why reconnection spreads bidirectionally.

til the downstream edge of the electron diffusion region. At
every plane of constant z and at every time ¢, we use the aver-
age magnitude of B, at the left and right downstream edges of
the electron diffusion region as a proxy for the appearance of
reconnection and denote this quantity as By (z,t).

For the distance from the x-line to the downstream edges
of the electron diffusion region, we note that the collision-
less reconnection rate E is typically ~ 0.1 [e.g.,>’°], which
is also comparable to the aspect ratio of the diffusion region
0 /L, where 0 is its thickness (in the y direction) and L is its
length (in the x direction). The thickness of the electron diffu-
sion region2 is the electron inertial scale d,, so one expects the
length L of the electron diffusion region to be approximately
10 d,. For this study, L =~ 2 djy since d, = 0.2 d;. We validate
this choice by visual inspection of cuts of By, confirming this

choice of L reasonably represents where the strength of the
reconnected magnetic field is near its first maximum. Conse-
quently, we compute the average reconnected field magnitude
By (z,1) at the downstream edges of the electron diffusion re-
gion for each xy plane as

/ /

By(et) = |By (x' + L, yes,2,1)| 42- |By (x' —L,yes,2,1)| a6
where x’ is the location of the x-line in the plane in question.

The average reconnected field Ey(z, t) for the upper current
sheet y = yo; = Ly/4 is shown as a stack plot of time 7 and
out-of-plane coordinate z for the rectangular computational
domain in Fig. 5. The time delay between the spreading of
By and the onset of full-fledged reconnection is apparent as
the white space on the left side of the plot; the reconnection
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FIG. 5. Average reconnected magnetic field By(z,t), defined in
Eq. (16), as a function of out of plane position z and time ¢, for
the anti-parallel reconnection simulation with wy = 2. The triangles
mark where Ey crosses over 0.04, and the white line gives the best fit
of these points, giving the spreading speed v;.

This plot shows reconnection spreads, in contrast to the results in a

square computational domain in which the x-line convects without
spreading [Fig. 3a of Shay et al. (2003)!3].

does not begin at z = —45 until = 170 even though the per-
turbed B, would have reached that location by ¢ = 60. The
triangular shape of By(z,t) is representative of reconnection
that is spreading, and not convecting with a fixed extent. A
reconnecting x-line that is merely convecting without spread-
ing would appear as a diagonal stripe, with a fixed extent in
the z-direction. An example of this is in Fig. 3(a) of Shay
et al. (2013)13; the dashed lines there show a reconnecting x-
line that convects with a fixed length. The interior structures
within the overall triangular region are due to magnetic is-
lands that arise after reconnection at that location has reached
its steady state. To calculate the spreading speed, we define
onset at a given xy plane to be when B, exceeds 0.04. Onset
times for individual xy planes are plotted in Fig. 5 as black tri-
angles for a chosen interval in —100 < z < —50. The spread-
ing speeds are simply the slope of the collection of points de-
noting the onset time. We determine this slope using a least
squares fit. We find the spreading speed is vy = —0.51, con-
sistent with Eq. (3), as expected. Moreover, in a separate sim-
ulation with wy = 3 with the same square domain, we find
that fast reconnection does not occur in the simulated time,
whereas reconnection does occur in the rectangular cross sec-
tion domain and spreads at the current carrier speed rather
than merely convecting.

These results suggest that the aspect ratio of the reconnect-
ing plane of the computational domain contributes to whether
reconnection spreads or convects. We hypothesize that recon-
nection in the square domain stops because the reconnection
runs out of free magnetic energy relatively quickly, while in
the rectangular domain there is more free energy and thus the
reconnection persists longer, consistent with the stack plot.
This is only a single simulation, though, so future work is
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needed to test this hypothesis.

E. Dependence on perturbation structure

To test whether the results obtained here are dependent on
the manner in which reconnection is initiated in the system,
we carry out an anti-parallel reconnection simulation with cur-
rent sheet thickness wg = 1, with the Hall effect and electron
inertia turned on. Instead of perturbing the current sheet with
a coherent perturbation of the magnetic field [see Eq. (14)],
we perturb the system with localized regions of higher plasma
pressure localized just upstream of the current sheet. This per-
turbation is designed to drive flow towards the current sheet in
a localized region to seed an x-line. The pressure perturbation
P we employ has the form

I\ 2
Pl(x,y,z):elexp{—o.s[(xw_x> +an

Ox

Y=Y Yo : Y=Y Yo 2
cs ert [\ ert
< P ) ( p ) ‘| }f(z),
W()y W()y

where P;; = 2 is the amplitude of the upstream pressure per-
turbation, X' = —L, /4 is the desired x coordinate of the x-line,
wox = 4 is the extent of the pressure perturbation in the x di-
rection, y.; = Ly /4 is the y location of the center of the current
sheet being perturbed, woy, = 1 is the thickness of the pressure
perturbation in the y direction, yopes = 4 is the distance up-
stream of the current layer on each side that the pressure per-
turbation is centered, and f(z) is the same envelope in Eq. (15)
enforcing localization in z between £wope;.

The pressure perturbation launches a pulse that propagates
out in all directions. The ion pressure P, in a cut through
¥ = yes at t = 20 is shown in Fig. 6(a). The leading edge
of the pressure pulse at this time is at z =~ +50, so its ve-
locity is approximately 35 / 20 ~ 1.75. This compares fa-
vorably to the fast magnetosonic speed, vy, = (c +¢2)!/2 =
(145/3)1/2 = 1.63, as expected. The pressure pulse drives
flow toward the current sheet which initiates reconnection, as
desired, and the reconnection does spread in time. The recon-
nected magnetic field By in the same plane at the same time
is shown in Fig. 6(b). The figure shows that reconnection
spreads unidirectionally in the direction of the current carri-
ers, not bidirectionally. The average reconnected field B, (z,t)
at y =y, 1s shown as a stack plot in Fig. 7. Using the same
method described in Sec. IV D, the reconnection spreading ve-
locity is found to be &~ —0.92, represented as a white line. This
is consistent with the velocity of the current carriers, which is
-1 for this simulation. For reference, two dashed black lines
are sketched representing what the boundaries of the struc-
ture in the stack plot would be if reconnection were to spread
bidirectionally at the fast magnetosonic speed v,,;s =~ +1.63,
showing clear disagreement.

We conclude that perturbing the current sheet using a co-
herent perturbation in the magnetic field does not introduce
a bias in our theoretical model for anti-parallel reconnection
spreading, at least for the simulation presented here. More re-
search is needed to see whether there are scenarios in which
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FIG. 6. Planar cuts through y = y.; from a 3D simulation of anti-
parallel Hall reconnection with a current sheet of initial thickness
wo = 1 at# = 20. This simulation seeds reconnection with a pressure
pulse instead of a magnetic perturbation. (a) lon pressure P; and (b)
reconnected magnetic field By. The pressure pulse propagates bidi-
rectionally at the fast magnetosonic speed, but reconnection spreads
in the direction of the current carriers in the current sheet.
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FIG. 7. Average reconnected magnetic field Ey(z,t), defined in
Eq. (16), as a function of out of plane position z and time ¢, for
the anti-parallel reconnection simulation with wy = 1 initiated with a
pressure perturbation. Dashed lines show the expected x-line bounds
if spreading occurs bidirectionally at the fast magnetosonic speed
vms. Instead, spreading occurs unidirectionally with electron flow
speed vy in the current sheet, denoted by the white line.

reconnection can spread with the fast magnetosonic speed, as
has been previously suggested>*.
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V. DISCUSSION AND CONCLUSIONS

We study the out-of-plane spreading of 3D magnetic re-
connection that begins localized in the out of plane z direc-
tion. We build off of a previously developed analysis*? for
the spreading of anti-parallel collisionless reconnection. It
describes the unidirectional spreading as caused by electrons
convecting the reconnected magnetic field out of the recon-
nection plane (which they dubbed a “reconnection wave”),
and quantified by the Hall term in the electron-MHD induc-
tion equation.

In this study, we re-envision the previous model using a
scaling analysis of Faraday’s law using the full generalized
Ohm’s law rather than a linear analysis. We show that the
same analytical approach can be used in a unified manner
to describe the spreading of collisionless reconnection with
a guide field, resulting in the known spreading speed given by
the Alfvén speed and spreading bidirectionally®®*®. The same
approach also provides an explanation for why anti-parallel
reconnection in resistive-MHD does not spread*’.

Importantly, this new interpretation provides an alternate,
first-principles understanding of the mechanism of reconnec-
tion spreading. In this approach, reconnection spreading oc-
curs when the x-line extends, which requires the seeding of
an x-line in the non-reconnecting region [see also Jain et al.
(2013)*8]. Thus, if the normal (y) component of the magnetic
field is induced in a way that produces an x-line topology,
then reconnection spreads. The normal magnetic field subse-
quently grows in time due to the tearing instability [see also
Li et al. (2020)°] until steady-state reconnection is reached,
with some time delay after B, enters the region previously not
undergoing reconnection. If no x-line topology is induced at
the interface between reconnecting and non-reconnecting re-
gions, then the x-line does not spread in that direction. The
induction of the normal magnetic field is controlled by the
out of plane gradient of the component of the electric field
in the outflow direction (x). For anti-parallel reconnection in
which electrons carry the current, the Hall term dominates the
E, contribution due to electron convection. For reconnection
with a strong guide field, spreading is caused by the bending
of the upstream magnetic field, which occurs predominantly at
the boundary between the reconnecting and non-reconnecting
regions. This sets up a strong magnetic curvature force driving
flows in the y direction. There is an associated electric field Ey
due to convection vy through the guide field B;, which induces
the necessary B, to produce an x-line topology in both direc-
tions. This mechanism relies only on MHD physics, showing
that collisional guide field reconnection can spread similar to
collisionless guide field reconnection.

The scaling analysis has other important implications. It re-
veals that collisions can cause reconnection to spread bidirec-
tionally at the diffusion speed, which could be important for
collisional reconnection in the laboratory and some settings
in the Sun. However, in most settings where collisionality is
quite weak, collisions play no important role in reconnection
spreading. We confirm the validity of each of these analyti-
cal results using 3D two-fluid and resistive MHD numerical
simulations.
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Our simulation study also reveals two other important as-
pects of reconnection spreading. First, we find that recon-
nection with current sheets wider than the ion inertial scale
spread (for current sheets up to thicknesses of 3d;), which dif-
fers from prior work in which reconnection convected with a
fixed extent without spreading!>!>. We hypothesize that the
reason for the difference is that the prior work employed a
computational domain with a square reconnecting geometry,
while ours employ a rectangular geometry. The difference is
likely caused by the additional free magnetic energy in the
rectangular domain. Assessing this more carefully should be
the subject of future research.

Second, our simulation of anti-parallel reconnection with a
perturbation in the plasma pressure to force reconnection in-
stead of using a magnetic perturbation still results in reconnec-
tion spreading with the direction and speed of the current car-
riers. It does not spread at the faster magnetosonic speed, as
has been previously postulated®*. Future research with other
simulation setups are needed to more thoroughly test this pre-
diction.

The results of the present study has a number of important
implications. The analysis carried out here makes it clear that
spreading with and without a guide field are dominated by
different physics. Consequently, the MHD description is suf-
ficient to describe the speed and bidirectionality of the spread-
ing in reconnection with a strong guide field. In contrast, the
MHD description does not properly describe the spreading of
anti-parallel reconnection, at least for the uniform resistivity
profile employed in the present study. This has important im-
plications for global 3D modeling in coronal and magneto-
spheric settings. Global MHD simulations have historically
been quite common in both settings. Our results suggest that
care is needed when the reconnection is anti-parallel in such
settings.

Another implication is that the present research provides
a formalism to understand reconnection in more general set-
tings than studied here. For example, reconnection spreading
studies have been carried out for current sheets of uniform
thickness. However, this is unlikely to be the case in many ap-
plications, such as the propagation of reconnection between
two solar active regions in sympathetic flares, or in Earth’s
magnetotail or dayside magnetopause. The theory here can be
used to understand spreading in such systems, as will be the
topic of a forthcoming study (Arencibia et al., in preparation).

The theory presented here assumes reconnection spreads
solely by inducing the x-line topology in non-reconnecting re-
gions. An alternate model is that a pressure minimum in the
reconnecting region is convected into the non-reconnecting re-
gion, generating an inflow to initiate reconnection and thus
elongate the x-line3¥4347. We note this model would predict
that anti-parallel reconnection in resistive MHD would con-
vect at the speed of the current carriers. However, numerical
simulations in this work and in Nakamura et al. (2012)*7 show
no evidence of this. This suggests that induction of the recon-
necting magnetic field in the out of plane direction, not the
pressure gradient between reconnecting and non-reconnecting
regions, is the essential ingredient for spreading.

Our result may also be important in the context of recent
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results®'0 that the spreading of asymmetric guide field recon-

nection at Earth’s dayside magnetopause occurs at Alfvénic
speeds bidirectionally for thin current sheets, but at the slower
speed of the current carriers for thicker current sheets. They
argued that the reason is that the tearing instability is slower in
thicker current sheets, and showed this hypothesis organizes
when the spreading is Alfvénic or dominated by current car-
riers. Then, information about the onset time [alternately the
growth time of the linear tearing mode"] is needed to find the
time until reconnection onsets. If too slow, other spreading
mechanisms could be faster. In particular, the present analysis
suggests that different spreading mechanisms are additive, so
convection of the reconnected magnetic field by the current
carriers remains an active effect due to the Hall term in the
generalized Ohm’s law even if the convection term that drives
spreading in thin current sheets is small for thicker current
sheets. More research is needed to understand the interplay
between the multiple possible spreading mechanisms.

There are many avenues for future studies. For applica-
tions to the corona or magnetosphere, simulations in a 3D
box may not faithfully capture the geometry of the system, in-
cluding plasma and magnetic field asymmetries at the dayside
magnetopause”, curvature of the large-scale magnetic fields,
and density stratification in the corona. As has been previ-
ously pointed out®®, some two-ribbon flare spreading events
with nearly anti-parallel magnetic fields spread in the direc-
tion opposite to that of the inferred current carriers. This
may be related to the global magnetic field configuration
not captured in the treatment here. More work is needed
to understand spreading in fundamentally 3D reconnection
geometries”. Also, as discussed earlier, it is important to
study the relationship between reconnection regions spread-
ing vs. convecting as a function of system parameters, includ-
ing the computational domain size, the perturbation size and
wavenumber*$, the current sheet thickness, and when the gra-
dient in the thickness of the current sheet is very large!®. Fur-
ther work is also needed to understand how the spreading is
impacted by the mechanism that reconnection is seeded, es-
pecially with a guide field. As anomalous resistivity has been
invoked to explain reconnection in the solar corona®®®! it
is also important to study spreading in with this dissipation
mechanism.
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