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We show that the evidence for a local arrow of time, which is equivalent to the entropy production in
thermodynamic systems, can be decomposed. In a system with many degrees of freedom, there is a term
that arises from the irreversible dynamics of the individual variables, and then a series of non-negative
terms contributed by correlations among pairs, triplets, and higher-order combinations of variables. We
illustrate this decomposition on simple models of noisy logical computations, and then apply it to the
analysis of patterns of neural activity in the retina as it responds to complex dynamic visual scenes. We find
that neural activity breaks detailed balance even when the visual inputs do not, and that this irreversibility
arises primarily from interactions between pairs of neurons.
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A system held in steady state, away from thermal
equilibrium, must continuously dissipate heat to the sur-
rounding bath, causing an increase in entropy. Such a
system also violates detailed balance, so that the time
reversed trajectories must be measurably less probable than
the true trajectories; observation of the system trajectory
thus provides evidence for the arrow of time. An important
result of modern nonequilibrium statistical mechanics is
that the rate at which evidence—in the precise, informa-
tion-theoretic sense—accumulates for the arrow of time is
equal to the rate at which entropy is produced in the bath
[1,2]. This idea has been used to search for signatures of
irreversibility in experimental data, notably on a wide range
of living systems, across scales from single cells [3–5] to
global brain dynamics [6,7].
In almost all the systems where we want to study entropy

production and the arrow of time, there are many interact-
ing degrees of freedom. If we try to estimate the entropy,
then we know that treating each variable independently
results in an overestimate, and that as we take account of
correlations among pairs, triplets, and larger groups of
variables we generate a monotonically decreasing hierarchy
of bounds [8]. Here we show that the opposite is true of the
entropy production, or the evidence for the arrow of time:
we can decompose this measure of irreversibility into a
series of non-negative terms, corresponding to successive
orders of correlation or interaction among the variables in
the system. While correlations always decrease the entropy,
we find that correlations always increase the evidence for
irreversibility. This leads to a new way of analyzing the
origins of irreversibility in interacting systems, which we
apply to the neural representation of visual inputs.
Evidence for the arrow of time arises because the

probability of observing a trajectory and its time reverse

are different, consistently. The proper information-theoretic
measure of this difference is the Kullback-Leibler (KL)
divergence [9]. If we write trajectories schematically as
xðtÞ, with 0 < t < T, and the corresponding time reversed
trajectories as x̃ðtÞ, then the evidence for the arrow of
time is

E≡DKLðP½xðtÞ$jjP½x̃ðtÞ$Þ¼
X

xðtÞ
P½xðtÞ$log

!
P½xðtÞ$
P½x̃ðtÞ$

"
: ð1Þ

For large T in steady-state systems, under mild assump-
tions, this evidence grows linearly with time, so it is natural
to define a (global) rate

_Iglobal ≡ lim
T→∞

E
T
: ð2Þ

For a wide range of systems that can be described as
making transitions coupled to a heat bath, this rate is equal
to the rate _S of entropy production that results from heat
dissipation to the bath [1,2]. To simplify the discussion, it is
convenient to think of time advancing in discrete steps, and
to consider observing just one transition, or two steps of the
dynamics, at a time. This “local arrow of time” or “local
irreversibility” can be written

_I ¼
X

x;x0
Pðx → x0Þ log

#
Pðx → x0Þ
Pðx0 → xÞ

$
; ð3Þ

where

Pðx → x0Þ ¼ Probðxt ¼ x; xtþ1 ¼ x0Þ: ð4Þ

One can view this not as the Markovian approximation to
the global irreversibility, but instead as the exact evidence
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for the arrow of time contained in individual transitions.
Equation (3) makes very explicit that irreversibility is the
breaking of detailed balance.
We are interested in systems where the state x encom-

passes many interacting variables, x≡ fxig, with
i ¼ 1; 2;…; N. If we can measure dynamics with sufficient
temporal resolution, then no two variables can change state
at the same time. Then instead of considering the full
distribution Pðx → x0Þ we can focus on the N individual
distributions Piðxi → x0i; x−iÞ, each of which describes a
single variable transitioning from xi to x0i and the rest of the
system remaining in the same state, denoted x−i. Such
dynamics are referred to as multipartite, and exhibit a
number of useful properties [10–12]. Chief among these
properties is the fact that the local irreversibility simplifies
to a sum over the irreversibilities associated with the
individual elements:

_I ¼
XN

i¼1

_Ii; ð5Þ

where

_Ii ¼
X

x−i

X

xi;x0i

Piðxi → x0i; x−iÞ log
#
Piðxi → x0i; x−iÞ
Piðx0i → xi; x−iÞ

$
: ð6Þ

If the different variables in the system are independent
of one another, then the dynamics are fully defined by
the marginal probabilities Piðxi → x0iÞ ¼

P
x−i Piðxi →

x0i; x−iÞ, leading to an irreversibility

_Iind ¼
XN

i¼1

_Iindi ; ð7Þ

where

_Iindi ¼
X

xi;x0i

Piðxi → x0iÞ log
#
Piðxi → x0iÞ
Piðx0i → xiÞ

$
: ð8Þ

Even if the variables are not independent we can always
define this independent irreversibility. The difference
between this and the true irreversibility is the result of
interactions,

_Iint ≡ _I − _Iind ¼
XN

i¼1

_Iinti ; ð9Þ

where

_Iinti ¼ _Ii − _Iindi ð10Þ

¼
X

x−i

X

xi;x0i

Piðxi → x0i; x−iÞ log
#
Piðx−ijxi → x0iÞ
Piðx−ijx0i → xiÞ

$
ð11Þ

¼
X

xi;x0i

Piðxi → x0iÞDi
KL; ð12Þ

Di
KL ¼ DKL½Piðx−ijxi → x0iÞjjPiðx−ijx0i → xiÞ$; ð13Þ

and Piðx−ijxi → x0iÞ ¼ Piðxi → x0i; x−iÞ=Piðxi → x0iÞ. Since
each Di

KL ≥ 0, this demonstrates that _Iinti ≥ 0, so that inter-
actions can only increase the irreversibility of a system.
Equation (11) admits a simple interpretation: interactions

contribute to the arrow of time if the observation of xi → x0i
as opposed to x0i → xi points toward different states x−i of
the rest of the system. Thus, if i’s forward- and reverse-time
dynamics contain the same information about the rest of the
system, then interactions do not contribute to i’s local
irreversibility ( _Iinti ¼ 0), and violations of detailed balance
can only arise from independent dynamics ( _Ii ¼ _Iindi ).
Together, Eqs. (7)–(13) establish our first main result:

that the local arrow of time can be split into two non-
negative components,

_I ¼ _Iind þ _Iint; ð14Þ

where _Iind reflects the local irreversibility of the individual
elements and _Iint reflects the local irreversibility due to
interactions among the elements. Notice that for binary or
Ising variables in steady state, we must have Piðxi → x0iÞ ¼
Piðx0i → xiÞ (such that _Iind ¼ 0), and so the local arrow of
time necessarily arises from interactions ( _I ¼ _Iint).
Additionally, we note that decomposition in Eq. (14)
requires multipartite dynamics; if multiple elements can
change at once, then _Iint is ill defined (see Ref. [13]).
When we say that interactions contribute to irreversibil-

ity, we have the intuition that these contributions can be
further decomposed into interactions among pairs, triplets,
etc. Saying that we know only about interactions among
pairs, for example, is equivalent to saying that we know all
the marginal distributions

Piðxi → x0i; xjÞ ¼
X

x−fi;jg

Piðxi → x0i; x−iÞ; ð15Þ

where the sum runs over the states of all elements other than
i and j. We can then ask: what is the minimal irreversibility,
or the weakest arrow of time, implied by these pairwise
dynamics? To answer this question, we can search over all
possible distributions Piðxi → x0i; x−iÞ that are consistent
with the marginals in Eq. (15). Among these hypothetical
systems, one will achieve a minimum of the local irrevers-
ibility in Eq. (5), thus defining the minimum irreversibility
consistent with the observed pairwise dynamics, denoted
_Ið2Þ. This generalizes to higher orders, and since knowledge
of kth-order dynamics includes all information about
dynamics of lower orders k0 < k, the result is a series of
nested bounds,
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0 ≤ _Ið1Þ ≤ _Ið2Þ ≤ ' ' ' ≤ _IðN−1Þ ≤ _IðNÞ ¼ _I; ð16Þ

where we separately verify that _Ið1Þ ¼ _Iind [13].
The hierarchy of bounds in Eq. (16) is analogous to the

hierarchy of bounds on the entropy itself [8], but with
inequalities reversed. When subjected to linear constraints
on the underlying probability distributions—such as con-
straints on marginal distributions—entropy has a maximum
while mutual information or KL divergence have a mini-
mum [9]. Colloquially, “telling you more” about the
distribution increases the evidence for the local arrow of
time. Note that computing each bound _IðkÞ requires finding
a probability distribution that minimizes the irreversibility _I
subject to constraints on the kth-order dynamics [13];
because _I ¼ _S in thermodynamic contexts, this is equiv-
alent to asking for dynamics that minimize entropy pro-
duction. Minimizing entropy production is an idea that has
been widely explored [12,14–17], since the foundational
work of Onsager and Prigogine [18,19]. Importantly, we
are not claiming that real systems minimize their entropy
production, but rather are asking for hypothetical systems
that have minimal entropy production consistent with a
series of increasingly detailed constraints [15,16].
As a final interpretative step, it is natural to compare _IðkÞ

with _Iðk−1Þ. If _IðkÞ ¼ _Iðk−1Þ, then the kth-order dynamics are
redundant in the sense that their irreversibility is entirely
determined by lower-order correlations; by contrast, if
_IðkÞ > _Iðk−1Þ, then the kth-order dynamics contain new
information about the arrow of time. In this way, we can
think about the difference between _IðkÞ and _Iðk−1Þ as the
contribution of interactions of order k to the local arrow of
time, _IðkÞint ¼ _IðkÞ − _Iðk−1Þ ≥ 0. This yields

_I ¼ _Ið1Þint|{z}
_Iind

þ _Ið2Þint þ _Ið3Þint þ ' ' ' þ _IðNÞ
int|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

_Iint

; ð17Þ

which is our central result: the local arrow of time can be
decomposed into non-negative contributions from individ-
ual elements in the system, interactions between pairs of
elements, interactions among triplets, and so on.
To illustrate this decomposition, we consider a minimal

system of three binary variables x, y, and z. At each
moment in time, z is a noisy logical function of x and y, and
from one time step to the next the variables x and y flip
between their two states with probability pflip, as in
Fig. 1(a). These dynamics are Markovian, so the local
arrow of time is also the true global arrow of time. Since the
variables are stead state and binary, we have _Iind ¼ 0, and
since there are only three variables, the possible contribu-
tions are _Ið2Þint and _Ið3Þint .
To begin, consider the simplest function, where z copies

either x or y while ignoring the other input [Fig. 1(b)]. As
perror increases (that is, as the accuracy of the function

decreases), we find that the irreversibility _I decreases, until
at perror ¼ 1=2 (when the output z completely decouples
from the inputs x and y) the system becomes reversible
( _I ¼ 0). Additionally, the irreversibility vanishes if the
inputs x and y are static (pflip ¼ 0) and grows as the inputs
become more dynamic (pflip increases). Notably, for all

values of pflip and perror, we find that _Ið3Þint ¼ 0, and thus the
irreversibility of the system arises entirely from pairwise
dynamics, _I ¼ _Ið2Þint .
For comparison, consider the AND, OR, and XOR

functions [Figs. 1(c) and 1(d)]. As before, the irreversibility
increases as the functions become more accurate and as the
inputs become more dynamic. In contrast to the copy
functions, however, the irreversibilities of AND and OR
(which are identical) arise in nearly equal amounts from
pairwise and triplet interactions [Fig. 1(c)]. Indeed, for both
AND and OR, the output z tends to increase with each of
the inputs independently (yielding pairwise irreversibility),
yet the full dynamics are not defined until all three variables

(a) (b)

(c) (d)

FIG. 1. Decomposing the irreversibility of logical functions.
(a) System of three binary variables x, y, and z, where z performs
a noisy logical function on the inputs x and y. At each point in
time, one of the variables is updated at random. With probability
pflip, the inputs x and y change value, and with probability perror,
the output z fails to perform the specified function. (b)–(d)
Pairwise and triplet contributions to the local arrow of time for
different logical functions. Across all functions, irreversibility
decreases with perror and increases with pflip. (b) When z copies
either x or y, the triplet irreversibility vanishes and all irrevers-
ibility arises from pairwise dynamics. (c) For AND and OR,
irreversibility is driven by both pairwise and triplet dynamics.
(d) For XOR, the pairwise irreversibility vanishes and all
irreversibility arises from triplet dynamics.
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are taken into account (yielding triplet irreversibility). The
XOR function is the classic example of an irreducibly
combinatorial interaction, so that the behavior of the system
only becomes apparent once all three variables are observed
simultaneously. As such, the pairwise dynamics are com-
pletely reversible, and all of the irreversibility is driven by
triplet dynamics, so that _I ¼ _Ið3Þint , as shown in Fig. 1(d).
Together, the results in Fig. 1 demonstrate how the local
arrow of time can emerge from different orders of inter-
actions among the many variables, even in relatively
simple cases.
Our perception of the arrow of time is driven by patterns

of activity in networks of neurons. In particular, our
experience of the visual world is constructed from the
activity of retinal ganglion cells in the optic nerve, carrying
information from eye to brain. Experimental developments
have made it possible to record, simultaneously, from larger
numbers of these cells, to the point that we can monitor all
of the information that the brain receives about a small
patch of the visual world [20]. Here we focus on one such
experiment, monitoring the activity of fifty-three neurons in
the salamander retina as it responds to movies with
different statistical structure [21]. Neurons have a naturally
binary response, generating an action potential (spike;
xi ¼ 1) or remaining silent (xi ¼ 0) in each small window
of time (Δt ¼ 20 ms), as in Fig. 2. As we slide the window
forward in time, the time resolution of detecting action
potentials is high enough that the dynamics are multipartite,
so that a spike from only one neuron will enter the front of
the window (xi ¼ 0 → 1) or exit the back (xi ¼ 1 → 0) at a
time, as in Fig. 2(a).
Figure 2(b) shows the probabilities Pðx → x0Þ for a

group of three neurons as they respond to a naturalistic
movie, and Fig. 2(c) shows the corresponding fluxes of
probability between states. Qualitatively we see that there
are loops of flux, a hallmark feature of broken detailed
balance in steady-state systems [3,4,14,22]. In fact, we
have checked that the neurons are in steady state [13], such
that the observed irreversibility cannot be attributed to
nonstationarity. As with other information-theoretic quan-
tities, estimating the local irreversibility from data is
challenging, and prone to systematic errors due to finite
data; we find that these can be controlled using the strategy
of Ref. [23] if we restrict our attention to groups of no more
than five cells. These and other technical details will be
addressed in a longer paper [13]. When we choose groups
of five cells at random from the fifty-three in the exper-
imental population, more than two-thirds exhibit values of _I
that are significantly different from zero, with the distri-
bution shown in Fig. 2(d).
Movies taken from natural settings, which provide the

visual stimuli for the experiments analyzed here, obviously
break time-reversal invariance. But one can construct
movies for which the time reverse is equally likely, for
example, a single bar moving along the trajectory generated

by equilibrium Brownian motion of a damped harmonic
oscillator, as was done (for different reasons) in the
experiments of Ref. [21]. Among the same groups of five
neurons, we again find that roughly two-thirds exhibit
nonzero local irreversibility, but perhaps surprisingly, these
groups are more irreversible during the Brownian stimulus
than the natural movie [Fig. 2(d)]. This difference in local
irreversibility holds for all group sizes from N ¼ 2 to
N ¼ 5. Together, these results demonstrate that retinal
neurons break detailed balance in a way that does not
simply reflect the irreversibility of the stimulus. In fact, the
neuronal dynamics can define an arrow of time, even when
the stimulus does not.
The decomposition in Eq. (17) gives us the opportunity

to ask how the local arrow of time in neural responses is
distributed across dynamics of different order. We recall
that the interaction irreversibilities _IðkÞint fundamentally

(a)

(c) (d)

(b)

FIG. 2. Local irreversibility in groups of neurons. (a)–(c) A
group of three neurons in the salamander retina responding to a
natural movie. (a) Points mark the times of action potentials in
each of three neurons. To define neural states, we slide a window
of width Δt ¼ 20 ms forward in time. When a cell generates an
action potential inside the window we assign xi ¼ 1, and when it
is silent we assign xi ¼ 0. Transitions occur when a spike enters
the front or exits the back of the window, as shown. (b) The
distribution Pðx → x0Þ over pairs of the eight possible states.
Black entries indicate disallowed transitions. (c) Fluxes of
probability Pðx → x0Þ − Pðx0 → xÞ between neural states, dem-
onstrating that this group of neurons breaks detailed balance.
(d) Distributions of local irreversibilities _I over 5-cell groups
responding either to a natural movie (blue) or a Brownian
stimulus (red), which is designed to be time-reversal invariant.
Out of 100 random 5-cell groups, we only plot those (∼2=3) with
significant local irreversibility.
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quantify the local arrow of time in kth-order dynamics, and
need not be driven by direct connections between neurons
themselves. As noted above, the irreversibility that we
observe is not the result of nonstationarity; more rigorously
we find that in all the data we consider here, distributions
really are in steady state within experimental error [13]. But
for steady-state binary systems, the individual neurons
cannot establish a local arrow of time ( _Iind ¼ 0); note that
extended sequences of transitions from a single cell could
generate irreversibility, but we focus here only on the local
term. Thus, any irreversibility necessarily arises from
statistical dependencies between two or more neurons at
a time. For the same groups of N ¼ 5 cells in Fig. 2(d)
responding to the natural movie, we find that pairwise
dynamics account for much more of the local irreversibility
than complex higher-order dynamics [Fig. 3(a)]. In fact, for
both the natural and (time-reversal invariant) Brownian
movies, pairwise dynamics contribute 66%–74% of the
local irreversibility, more than any of the higher order terms
[Fig. 3(b)].
To summarize, we have shown how evidence for the

local arrow of time accumulates from the behavior of
individual degrees of freedom and their interactions.
Progressively higher-order dynamics each make a non-
negative contribution, adding to the local irreversibility. As
a practical matter, this decomposition allows us to (lower)
bound the local irreversibility through measurements of
low-order correlations in many-body systems, in much the
same way that the maximum entropy method allows us to
(upper) bound the entropy itself. We have focused here on
the magnitude and decomposition of the local arrow of
time, but it would be interesting to explore the hierarchy of
minimally irreversible models that we construct along the
way, especially as models for living systems. Perhaps these
will be as successful in describing dynamics as the
maximum entropy models have been in describing distri-
butions of states at single moments in time [24–28]. It

would be interesting to understand the relationship
of the minimally irreversible models to maximum entropy
models for trajectories, sometimes called maximum
caliber [29,30].
As a first step we have used our decomposition to

analyze the responses of small groups of neurons in the
retina as they encode complex visual inputs. It is not
surprising that this initial neural representation of the visual
world defines an arrow of time, although it is reassuring
that this can be quantified, reliably. It is perhaps surprising
that irreversibility is stronger in response to inputs that obey
detailed balance, raising questions about how our internal
perception of the arrow of time becomes aligned with the
external world. Despite these large differences in the
strength of the local arrow of time in response to different
inputs, the way in which large-scale irreversibility is built
out of fine-scale dynamics is constant, with the dominant
role played by correlations among pairs of neurons. This
relative simplicity holds out promise for simplified models
of the neural dynamics, similar to pairwise maximum
entropy models in the study of steady-state distributions.
Generally, the emergence of irreversibility from pairwise
dynamics opens the door for future investigations into
whether, and how, the physical connections between
neurons combine to produce a collective arrow of time.
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