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Kinetic Entropy in an EDR

We examine velocity-space kinetic entropy, a spatially local measure of entropy for

systems out of thermal equilibrium, during an encounter of an electron di↵usion

region (EDR) at a magnetic reconnection site in Earth’s magnetotail by the Magne-

tospheric Multiscale (MMS) mission. We start by generalizing the theory of kinetic

entropy to the case of non-uniform velocity space grids and transforming the equa-

tions into spherical energy coordinates useful to experimental plasma detectors. The

theory is then applied to MMS data and compared to particle-in-cell simulations of re-

connection. We demonstrate that the entropy based non-Maxwellianity measure from

the MMS data is of su�ciently high precision to reliably identify non-Maxwellian dis-

tributions, and therefore the measurements when kinetic e↵ects are most significant.

By comparing two di↵erent non-Maxwellian measures, we show that total entropy

density su↵ers from “information loss” because it lacks a dependence on the velocity

space grid, and so has lost information about how well a distribution function is

resolved. Local velocity-space kinetic entropy density recovers this information. We

quantify information loss and argue that the considerations needed to minimize it

are crucial for instruments designed to measure distribution functions in-situ.
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I. INTRODUCTION

Energy at large scales gets dissipated at small scales in essentially all plasmas, and

how this conversion and dissipation occurs often impacts the plasma dynamics at the large

scales1. For example, the evolution of collisionless shocks2, plasma turbulence3, and mag-

netic reconnection4 all influence – and are influenced by – small scale energy conversion and

dissipation processes. Magnetic reconnection, where a change in magnetic field topology

facilitates a rapid release of magnetic energy5, plays a central role in the spoiling of confine-

ment in tokamaks, the release of energy in solar flares, and the energy cycle within Earth’s

magnetosphere. In the magnetosphere, reconnection leads to the release of 1015 J of energy

over just a few minutes6 – enough to supply New York City for an entire year7. Even though

energy conversion occurs at global scales, dissipation at electron scales contributes greatly8.

Several scalar, reference-frame-invariant parameters were proposed as a means of locating

reconnection sites9–15 to identify and understand the dissipation processes. However, elec-

tron scales remained inaccessible to observations until the launch of the Magnetospheric

Multiscale (MMS) mission16, which now allows us to investigate kinetic processes that lead

to dissipation and test aspects of kinetic theory, including kinetic entropy.

The importance of entropy is captured by the Second Law of Thermodynamics – in

a closed, isolated system in which energy is conserved, entropy never decreases. From a

thermodynamic perspective, high entropy is synonymous with a lack of energy that can be

converted into mechanical work. From a kinetic theory perspective, entropy describes the

disorder inherent to the system. The more ordered a system, the lower its entropy and the

more e↵ective the stored energy is able to perform mechanical work. As an example, in the

electron di↵usion region (EDR) of magnetic reconnection, electromagnetic fields do work

on charged particles. This alters their particle distribution functions, often making them

more ordered than Maxwellian distributions. non-Maxwellian distributions can be used to

identify locations of electromagnetic energy dissipation17–21 and may indicate that further

dissipation of kinetic energy to thermal energy may occur. Entropy and non-Maxwellianity,

therefore, should be able to identify locations like the EDR where key kinetic-scale energy

conversion processes take place22.

By comparing the current state of a system to its equilibrium, Maxwellianized state, non-

Maxwellianity measures were developed. One contains the quadratic di↵erence in distribu-
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tion functions14,15 while others contain the di↵erence in entropies23,24. These were used to

study dissipation in solar wind turbulence14,15; Earth’s bow shock25, dayside regions26; mag-

netotail plasma sheet23; collisional magnetic reconnection27, and numerical simulations of

collisionless magnetic reconnection24. It was shown that the form involving the di↵erence in

entropies, or the Kaufmann and Paterson non-Maxwellianity23, can increase without bound

the worse the velocity-space bins over- or under-resolve the distribution function24. An inad-

equate velocity-space bin size in simulations can lead to unphysical results for dissipation22

even though the simulations are able to reproduce macroscopic properties of reconnection.

In perfectly collisionless systems, there is no dissipation —ideal kinetic physics is re-

versible. This was demonstrated in gyrokinetic simulations of magnetic reconnection in

which the plasma has a reduced number of degrees of freedom28; however, reconnection

becomes less reversible in fully kinetic simulations with decreasing guide field (increasing

degrees of freedom)29. Irreversibility and non-conservation of entropy in simulations is tied

to phase mixing30 and numerical noise31. Numerical noise, however, is not present in real

systems, yet observations of reconnection at the magnetopause revealed an unmeasured

“residual” dissipation potentially linked to wave activity32, which can lead to irreversible

anomalous dissipation due to Landau damping33.

Without collisions, the distribution function in kinetic plasmas can take on highly non-

Maxwellian shapes. Elongated and striated distributions can be present near reconnection

X-lines10,34, while other shapes map to di↵erent regions and processes of reconnection17,35–38,

and are tied to energy dissipation39,40 via scalar energy conversion parameters11,41. As

mentioned, though, only entropy uniquely identifies irreversible dissipation. As the dis-

tributions become more structured, the number of arrangements that lead to the same

distribution decreases, resulting in an increased non-Maxwellianity and decreased entropy31.

non-Maxwellianity, structured distributions, and the processes that lead to dissipation, then,

are all intricately related.

In this paper, we study the local velocity-space kinetic entropy in a magnetotail EDR dur-

ing magnetic reconnection using electron-scale measurements from MMS. To do so, we derive

a generalized kinetic entropy for arbitrary velocity-space grids, in particular the logarithmic

spherical energy grid used by experimental plasma instruments. We show that kinetic en-

tropy density and entropy-based non-Maxwellianity measures are in good agreement with

a dedicated 2.5D particle-in-cell (PIC) simulation and that the non-Maxwellianity measure
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is capable of identifying non-Maxwellian distributions in the MMS data. We further show

that the entropy-based non-Maxwellianity calculated using kinetic entropy density is not

positive definite as it should be, and that this is caused by the inappropriate velocity-space

grid scale resolution. The velocity-space kinetic entropy captures the role of the velocity-

space grid and gives physically meaningful results. We describe their di↵erence in terms

of a new concept, “information loss”, which is used to quantify the extent to which the

velocity-space grid over- or under-resolves the distribution function in velocity-space. We

show that information loss is important for MMS observations.

There are a number of important consequences of the present study. First, the good

agreement of kinetic entropy densities in MMS observations (in an open naturally occurring

system) and PIC simulations (in a closed system) shows that closed simulations can be useful

to help interpret observations in naturally occurring open systems. Second, we argue that

knowledge of information loss is an important consideration for future satellite instrument

development. Third, we argue that information loss is likely important in other attempts to

measure non-Maxwellianity using observational data, potentially jeopardizing the accuracy

of the measurement. This implies that a source of apparent irreversibility in observations is

the amount of information lost by not properly resolving the distribution function.

The paper is organized as follows: Section II reviews the theoretical development of ki-

netic entropy, then generalizes the theory to non-uniform velocity space grids and transforms

the equations to spherical energy space to be applied to satellite observations. Section III

describes the in-situ data used in the study (§III A), gives an overview of the reconnection

event being analyzed (§III B), and describes the PIC simulations carried out (§III C). Sec-

tion IV describes our results; beginning with a Maxwellian look-up table used to minimize

errors between the observed distribution and its associated Maxwellianized version needed

to calculate non-Maxewllianity (§IVA); followed by a comparison between observations and

PIC simulations (§IVB); and ending with a look at kinetic entropy, non-Maxwellianity,

and their connection to distribution functions that represent di↵erent dissipation processes

(§IVC). Section V demonstrates how course-graining velocity-space can lead to a loss of

information regarding dissipation. Finally, Section VI discusses our results and Section VII

presents a summary of our conclusions.
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II. KINETIC ENTROPY: THEORY

In this section, we review the theory of velocity-space kinetic entropy and non-Maxwellianity,

following closely the steps outlined in Appendix A of Liang et al. 22 , then generalize the

theory to satellite applications that use non-uniform velocity space bins and require a trans-

formation to logarithmic, spherical energy coordinates. More complete derivations of the

kinetic entropy parameters, along with other quantities used or discussed throughout the

paper, can be found in the supplementary material.

A. Review of Kinetic Entropy with a Uniform Velocity Space Grid

Kinetic entropy S as defined by Boltzmann42 is written as

S = kB ln⌦, (1)

where kB is Boltzmann’s constant, ⌦ = Ntot!/
Q

j,k Nj,k! is the total number of microstates

that correspond to a given macrostate, Ntot is the total number of particles in the system,

Nj,k is the number of particles in the j, k’th cell of phase space, and the product over j and

k is over all position- and velocity-space cells, respectively. We suppress writing a possible

time t dependence here and throughout for simplicity. We call this form “combinatorial

entropy” because of how the microstates are counted.

By breaking up phase space into discrete bins and applying Stirling’s approximation,

combinatorial entropy can be written in terms of the particle distribution function f(r,v) =

Nj,k/(�3r�3v) as22,42

S = kB

⇢
Ntot ln

✓
Ntot

�3r�3v

◆
�
Z

d3r

Z
d3vf(r,v) ln [f(r,v)]

�
. (2)

where the small phase space cells have uniform dimensions of size �3r and �3v. In writing

this expression, the phase space volume has been written as infinitesimals d3rd3v in the

integral in the second term but remains �3r�3v in the first term. This implies that Eq. 2 is

only semi-continuous and that the finite grid size of any practical simulation or measurement

device factors into the total entropy22,24.

By considering the permutation of particles in position- and velocity-space separately, the

total combinatorial entropy can be decomposed into position-space combinatorial entropy
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Sr and velocity-space combinatorial entropy SV , each of which has a semi-continuous repre-

sentation similar to Eq. 222,43. It is illustrative to note that the same semi-continuous forms

of position- and velocity-space entropy can be derived directly from Eq. 2. After adding and

subtracting
R
d3rn(r) ln [n(r)] and some simplification, Eq. 2 becomes

S = Sr + SV (3)

where

Sr = kB

⇢
Ntot ln

✓
Ntot

�3r

◆
�
Z

d3rn(r) ln [n(r)]

�
(4)

SV =

Z
d3rsV (r) (5)

sV (r) = kB

⇢
n(r) ln


n(r)

�3v

�
�
Z

d3vf(r,v) ln [f(r,v)]

�
(6)

The second term in Eq. 6 is often referred to as the total kinetic entropy density s(r),

s = �kB

Z
d3vf(v) ln [f(v)] , (7)

where we begin to suppress the r dependence except where it is important to retain. This

is the density of S because its position space integral gives the total kinetic entropy S in

Eq. 2 (up to a constant).

For a drifting Maxwellian distribution of the form

fM(v) = n

✓
m

2⇡kBT

◆3/2

e�m(v�u)2/2kBT , (8)

where m is the mass of the particles, n is the number density, u is the bulk flow velocity,

and T is the temperature, Eq. 7 is exactly solvable, and gives the kinetic entropy density

sM of a Maxwellian distribution:

sM =
3

2
kBn


1 + ln

✓
2⇡kBT

mn2/3

◆�
. (9)

Substituting this into Eq. 6 gives

sM,V =
3

2
kBn

"
1 + ln

 
2⇡kBT

m (�3v)2/3

!#
, (10)

the velocity-space entropy density of a Maxwellian distribution.

Because the Maxwellian distribution describes a plasma in local thermodynamic equilib-

rium, and because that equilibrium state has the highest entropy of all distributions with
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the same energy and number of particles42, the di↵erence in kinetic entropy density between

an observed distribution and its associated Maxwellian, or the non-Maxwellianity of the

distribution23,

M̄KP =
sM � s

(3/2)kBn
, (11)

is a measure of the departure from Maxwellianity of a local distribution function and gives

a measure for the possibility for dissipation to occur. Eq. 11 was defined by Kaufmann and

Paterson 23 and is normalized by 3
2kBn = cvn, where cv is the specific heat per particle at

constant volume for an ideal gas, to make M̄KP dimensionless.

One disadvantage of M̄KP is that it is not bounded, making its interpretation di�cult24.

To remedy this, a new non-Maxwelllianity measure formed from the velocity-space entropy

density (Eq. 6) was introduced24

M̄ =
sM,V � sV

sM,V
. (12)

Provided the velocity space grid is chosen appropriately, as discussed in Liang et al. 24 , this

measure is not only dimensionless, positive definite, and vanishes when the distribution is

a Maxwellian (similar to M̄KP ), but is also bounded. It can be written in terms of total

entropy density s (Eq. 7)

M̄ =
sM � s

sM + kBn ln (n/�3v)

but we will evaluate it in terms of M̄KP (Eq. 11)24

M̄ =
M̄KP

1 + ln
n
(2⇡kBT )/

h
m (�3v)2/3

io . (13)

because this allows us to isolate the e↵ects that discretizing phase space has on our ability

to measure entropy and non-Maxwellianity. We will explore these e↵ects further in §V and

§VI.

B. Generalization to non-Uniform Velocity Space Grids

We now consider the velocity-space kinetic entropy and non-Maxwellianity in the context

of observations by the MMS mission. The derivations in the previous subsection were per-

formed assuming uniformly sized velocity-space bins. In practice, however, the instruments

that measure the particle distribution functions, such as the Fast Plasma Investigation44

(FPI) on MMS, have logarithmically-spaced energy bins, meaning �3v is not a constant and
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cannot be pulled out of the summation that leads to the first term in Eqs. 2 and 6. We

now follow the same procedure as for Equations 1-6, deriving the combinatorial form of Sr

and SV but with the velocity-space bin size represented by �vk to indicate it is di↵erent for

every velocity-space cell. Focusing on the velocity-space entropy, we obtain

SV =
X

j

kB
n
n(rj)�

3r ln
⇥
n(rj)�

3r
⇤

�
X

k

�
f(rj, vk)�

3r�3vk ln [f(rj, vk)]
�

(14)

�
X

k

⇥
f(rj, vk)�

3r�3vk ln
�
�3r�3vk

�⇤
)
.

Now we split the �3r�3vk pairs, bringing the constant �3r outside of the summations,

let SV =
P

j sV�
3r, and take the limit of small velocity-space bin sizes to get

sV = s+ kBn lnn� kB

Z
d3v(v)f(v) ln

⇥
d3v(v)

⇤
, (15)

where we write an explicit dependence of d3v on v, and s is the entropy density from Eq. 7

with d3v replaced by d3v(v). This is the generalization of Eq. 6 for the case of non-uniform

velocity bins. From here onward, when we are developing the theory, the velocity-space

element will be referred to as d3v(v), but for discussions of the theory, which applies to

satellite instrumentation, we will refer to it as �3vk. If �3vk were constant, it could be

pulled out of the integral and the resulting �n ln(�3v) combines with the second term to

recover Eq. 6.

To calculate M̄ , we replace �3v with �3vk in Eq. 10, take the limit of small bin size,

substitute the result and Eq. 15 into Eq. 12, then simplify to get

M̄ =
sM � s� kB

R
d3v(v) ln [d3v(v)] [fM(v)� f(v)]

sM + kBn lnn� kB
R
d3v(v) ln [d3v(v)] fM(v)

. (16)

Substituting Eq. 9 into the denominator and factoring out 3
2kBn gives

M̄ =
M̄KP � 2/(3n)

R
d3v(v) ln [d3v(v)] [fM(v)� f(v)]

1 + ln (2⇡kBT/m)� 2/(3n)
R
d3v(v) ln [d3v(v)] fM(v)

(17)

Note that the densities of f(v) and fM(v) are equal by definition. This means that if �3vk

were constant, the final term in the numerator of Eq. 17 would vanish and the third term

in the denominator would reduce to � ln(�3v)2/3, which recovers Eqs. 11 and 12.
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The prior expressions are valid regardless of the velocity space grid sizes. Here, we derive

expressions for spherical energy space coordinates that particle detectors use. For the case

of MMS-FPI, an additional step is needed; the particle energy E is normalized via

U =
E

E0 + E
, (18)

where E0 is a constant used to bound the energy integration limits of the distribution

function between 0 and 1 (more on this in §III A). To perform the coordinate transformations,

we assume a non-relativistic system and follow the notation of Moseev and Salewski 45 . First,

we establish the relationship between v, E, and U :

v =

r
2E

m
dv =

dEp
2mE

v =

r
2E0

m

r
U

1� U
dv =

r
E0

2m

dUp
U(1� U)3/2

E =
E0U

1� U
dE =

E0

(1� U)2
dU.

Next, we find the Jacobians of the transformations as

Jvx,vy ,vz!�,✓,v = det
���@(vx,vy ,vz)@(�,✓,v)

���= v2dvd⌦ (19)

Jvx,vy ,vz!�,✓,E = det
���@(vx,vy ,vz)@(�,✓,E)

���=
p
2

m3/2

p
EdEd⌦ (20)

Jvx,vy ,vz!�,✓,U = det
���@(vx,vy ,vz)@(�,✓,U)

���=
p
2

✓
E0

m

◆3/2 p
U

(1� U)5/2
dUd⌦, (21)

where d⌦ = sin ✓d✓d� is an element of solid angle in velocity space, and � and ✓ are the

azimuth and polar angles, respectively.

These relationships can then be used to transform the kinetic entropy equations into

spherical, normalized energy coordinates. Starting with the Maxwellian distribution (Eq. 8):

fM(�, ✓, U) =
n

(⇡kBT )3/2

⇣m
2

⌘3 E0U

1� U
exp

2

64
�
⇣q

E0U
1�U sin ✓ cos��

q
1
2mux

⌘2

kBT

3

75

exp

2

64
�
⇣q

E0U
1�U sin ✓ sin��

q
1
2muy

⌘2

kBT

3

75

exp

2

64
�
⇣q

E0U
1�U cos ✓ �

q
1
2muz

⌘2

kBT

3

75

(22)
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where fM has been written such that n =
R
fMdUd⌦. Next, we do the same for Equations 7,

15, 16, and 17 to get:

s =� kB
p
2

✓
E0

m

◆3/2 Z p
U

(1� U)5/2
f(�, ✓, U) ln [f(�, ✓, U)] dUd⌦ (23)

sV =s+ kBn ln

"
np
2

✓
m

E0

◆3/2
#

� kB
p
2

✓
E0

m

◆3/2 Z p
U

(1� U)5/2
ln

" p
U

(1� U)5/2
dUd⌦

#
f(�, ✓, U)dUd⌦

(24)

M̄ =
sM � s� E0kB

R
UdUd⌦ ln (UdUd⌦) [fM(�, ✓, U)� f(�, ✓, U)]

sM � kBn [lnn� E0 ln (E0)]� E0kB
R
UdUd⌦ ln (UdUd⌦) fM(�, ✓, U)

(25)

M̄ =
M̄KP � 1

3n

�
2E0
m

�3/2 R p
U

(1�U)5/2
ln
h p

U
(1�U)5/2

dUd⌦
i
[fM(�, ✓, U)� f(�, ✓, U)] dUd⌦

1 + ln
⇣

22/3⇡kBT
E0

⌘
� 1

3n

�
2E0
m

�3/2 R p
U

(1�U)5/2
ln
h p

U
(1�U)5/2

dUd⌦
i
fM(�, ✓, U)dUd⌦

. (26)

We made the substitutions E0 =
p
2
�
E0
m

�3/2
and U =

p
U

(1�U)5/2
in Eq. 25 to save space and we

continue to suppress the dependence of the distribution function on r. An additional note

is that if the roles of v and r were switched, one could arrive at a position-space entropy

density that is local in velocity space and its equivalent expression for non-Maxwellianity.

We do not pursue this line of thought on practical grounds.

III. DATA

A. MMS

Kinetic entropy and non-Maxwellianity are explored using data from the Dual Electron

Spectrometer (DES) from the Fast Plasma Investigation (FPI)44 on the MMS mission16.

DES measures the full 3D electron distribution function every 30ms in burst mode. We

integrate the distribution using the new theory of §II B to calculate kinetic entropy param-

eters. For consistency in results (e.g., calculations of sM using Eq. 9 vs. Eq. 7 with Eq. 8),

we perform our own numerical integration of the distribution function for both the kinetic

entropy parameters and the plasma moments using the method prescribed by the FPI team.

This involves 1) removing photoelectrons generated by sunlight entering the instrument

aperture, 2) correcting for the spacecraft potential that acts as a barrier to cold particles
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and changes the energy of incoming plasma, and 3) preconditioning the distribution, which

entails normalizing the energy range according to Equation 18 and extrapolating the �, ✓,

and U integration limits so that � is cyclic, ✓ ranges from [0, ⇡], and U ranges from [0, 1].

The value of E0, conditions for energy extrapolation, and energy integration limits are pro-

vided in the metadata of the o�cial DES moments files available through the MMS Science

Data Center46. Finally, trapezoidal integration is performed in spherical, normalized energy

coordinates.

In addition to DES data, we also make use of the FIELDS instrument suite47, which con-

tains the Fluxgate Magnetometer (FGM)48 and the Electric Field Double Probes (EDP)49,50

instruments that measure the magnetic and electric fields, respectively. Vector data is

displayed in the LMN boundary normal coordinate system obtained via a minimum vari-

ance analysis of the electron bulk velocity (MVA-Ve) within the EDR51,52. In this system,

êL points along the Earthward exhaust, êN points North toward the inflow region, and

êM = êN ⇥ êL points along the reconnecting current. This coordinate system results in a

reliable reconnection rate52.

B. Event Overview

Measurements from July 11, 2017, around 22:34:00 Universal Time (UT), are shown in

Figure 1. The MMS satellites16 were embedded in the central magnetotail plasma sheet,

as indicated by the hot, dense ion and electron populations in Figure 1b,c,d. As MMS3

traversed the plasma sheet from the Southern to the Northern hemisphere, it observed

a rotation of the reconnecting magnetic field BL (Fig. 1a), a reversal of an ion jet Vi,L

(Fig. 1e), and a reversal of an electron jet Ve,L (Fig. 1f), indicating that MMS crossed

from the earthward to the tailward exhausts of a reconnection site. Hall electric fields EN

(Fig. 1g) signal the separation of charge within the ion di↵usion region. The strong out-of-

plane electron flow Ve,M co-incident with the electron jet reversal was found to be caused

by accelerated, meandering electrons accelerated by the reconnection electric field EM in

the EDR. The EDR is further identified by the departure of the perpendicular electron bulk

flow from the ExB drift velocity, indicating a violation of the frozen-in condition39. Farther

into the tailward exhaust, MMS encountered electron-scale vortices53 within ion-scale flux

ropes53,54 (not shown) associated with a turbulent exhaust structure.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 1. MMS encounter with an electron di↵usion region
39
. (a) Magnetic field components and

magnitude, (b) ion and (c) electron energy spectrograms, (d) electron number density, (e) ion and

(f) electron bulk velocity, and (g) electric field components. Data is shown in the LMN-coordinate

system of Nakamura et al. 55

The EDR for this event has been studied extensively. Some of the primary conclusions

from previous studies were that this symmetric magnetotail reconnection event with weak

guide field is characterized by a 2D, laminar process39,51, the normalized reconnection rate

was 0.1-0.2239,52,55,56, the structure of the X-line is supported by electron nongyrotropy51,56,57,

and electrons are accelerated to super-Alfvénic velocities after spending at least three gy-

roperiods in the current sheet39. In addition, Torbert et al. 39 describes a ⇥2 calibration
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factor that has been applied to the ion velocities in Figure 1e. For more detailed analysis of

this event, readers are referred to the cited papers.

C. Simulation

The observed reconnection event was nearly symmetric and reasonably laminar, and

previous studies employing 2.5D PIC simulations have shown good agreement with the

observations39,51,55,57. We therefore also employ 2.5D PIC simulations to compare with the

observations. We use the massively parallel PIC code P3D58, where particles are stepped

forward in time using the relativistic Boris particle stepper59 and electromagnetic fields are

stepped forward using the trapezoidal leapfrog method60; the fields can have a smaller time-

step than that of the particles. P3D employs the multigrid approach to clean the electric

field, E, to enforce r · E = ⇢/✏0, where ⇢ is the net charge density, every 10 particle time-

steps. We employ periodic boundary conditions in both directions with a large enough

computational domain that the boundaries are not expected to play much of a role in

the region of interest at the time examined. A motivation for choosing periodic boundary

conditions over open ones is to see if the local kinetic entropy densities obtained in a closed

system are representative of the local kinetic entropy obtained in the (open) real system.

The initial setup of the simulation has two Harris current sheets (CS) and a uniform

background (BG) plasma population for which the density nBG and temperature Ts,BG for

species s (either e for electrons or i for ions) can be chosen independently from the Harris

sheet parameters. The initial magnetic field profile is BL(N) = B0[tanh [(N � lN/4)/w0]�

tanh [(N � 3lN/4)/w0]� 1], where B0 is the asymptotic reconnecting magnetic field far up-

stream, w0 is the half-thickness of the current sheet and lN is the width of the computational

domain in the êN direction. Initially, the electrons and ions in the Harris sheets have the

same density profile, nCS(N) = n0

�
sech2 [(N � lN/4)/w0] + sech2 [(N � 3lN/4)/w0]

�
, where

n0 = B2
0/[8⇡kB(Te,CS+Ti,CS)] and Ts,CS are the temperatures of the current sheet population

for each species.

For the plasma parameters in the simulations, we employ the same values used by Naka-

mura et al. 55 The upstream (lobe) magnetic field is B0 = 12nT and the density at the center

of the initial CS is n0 = 0.0896 cm�3. The electron CS temperature Te,CS = 1.053 keV =

0.125T0 and ion CS temperature Ti,CS = 3Te,CS, where T0 = miV 2
Ai0/kB = 8.424 keV and
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VAi0 = 875 km/s is the Alfvén speed based on n0 and B0. The background (lobe) elec-

tron temperature Te,BG = 0.351 keV = 0.04167T0 and the background ion temperature

Ti,BG = 3Te,BG. The BG density is nBG = 0.0296 cm�3 = 0.33n0. These parameters result

in an upstream electron Debye length of �De = 0.018di0 = 1.37⇥ 104m, and upstream total

beta of � = 0.11.

The speed of light c is 1.75⇥104 km/s which is smaller than that of Nakamura et al. 55 but

is su�ciently larger than other speeds of our system. The initial current sheet half-thickness

w0 = 456 km = 0.6 di0, where di0 = c/!pi0 = 760 km is the ion inertial length based on n0,

!pi0 = (n0e2/✏0mi)1/2 is the ion plasma frequency, and e is the proton charge, which is the

same as in Nakamura et al. 55 . The electron to ion mass ratio is me/mi = 0.01 which is

larger than in Nakamura et al. 55 and is a factor of 18.36 larger than the realistic value. This

means the electron-to-ion inertial length ratio in the simulations is a factor of 4.28 larger than

the realistic length ratio. This di↵erence will be noted while drawing comparisons between

observation and simulation results, but we do not expect that electron scale properties of

the reconnection region are altered when properly normalized to a realistic value.

The length of the computational domain is lL = 2.66 ⇥ 104 km = 35 di0 and its width is

lN = 1.33 ⇥ 104 km = 17.5 di0. The system size is smaller than that of Nakamura et al. 55

but since the focus of our study is a trajectory which passes very close to the electron

di↵usion region, a smaller system size is su�cient; our system size is not large enough for

ions to fully couple to the reconnected field downstream of the X-point, but this is not

expected to a↵ect dynamics at the electron scale that are the focus of this study. The

grid-length � in both directions = 6.5 km = 0.008545 di0, which is chosen to be smaller

than the smallest length scale of the system (the electron Debye length). The time-step

�t = 0.652ms = 0.00075⌦�1
ci0 is chosen to be smaller than the smallest time scale of the

system (the electron plasma frequency), where ⌦ci0 is the ion cyclotron frequency based on

B0. The time step for electromagnetic fields is half of that for the particles. There are

4096⇥ 2048 grid cells which are initialized with 100 weighted particles per grid (PPG). To

initiate reconnection, an X point/O point pair are seeded in both current sheets using a

weak magnetic field perturbation of the form �BL = �0.08B0 sin (2⇡L/lL) sin (4⇡N/lN) and

�BN = 0.08B0[lN/(2lL)] cos (2⇡L/lL)[1� cos (4⇡N/lN)].

Kinetic entropy is calculated in the simulations employing the implementation from Liang

et al. 22 with one noteworthy di↵erence. The velocity-space grid scale �vi for ions and �ve
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for electrons was imposed to be equal to each other in previous works22,24. In the present

study, we allow �vi and �ve to be chosen independently. Moreover, this study employs

two populations in the initial Harris sheet profile, compared to a single drifting Maxwellian

distribution in previous works. Therefore, we optimize the velocity-space grid scale analo-

gously to the previous works, but specifically check the agreement between kinetic entropy

density calculated by the simulation and the theoretical value in both the background plasma

and the current sheet center simultaneously. We calculate the kinetic entropy density for

each species in the simulations with varying velocity-space grids in order to find the optimal

velocity-space grid scale at t = 0. This is an important step because if the velocity space grid

is too small, the distribution is over-resolved, meaning there is not a statistically significant

number of particles per grid cell. Meanwhile, if the grid size is too large, the distribution is

under-resolved and important structures are lost. (See §V for a detailed explanation.) The

kinetic entropy density for either species is given by Eq. 7 with f = fCS + fBG, consisting of

both the current sheet and background populations at t = 0. Since these integrals cannot

be done analytically, we carry out these integrals numerically. After we choose a (Cartesian)

velocity-space grid scale for electrons, we numerically compute the entropy and compare

it to the theoretical value. This results in agreement to within ±1% in the upstream re-

gion and ±2% at the center of the current sheet. The optimal velocity-space grid scale

for each species is 60 � 65% of the smaller of the background and current sheet thermal

speeds. For electrons, each velocity-space direction is binned from (�1.67, 1.67)⇥ 104 km/s

=(-18.71, 18.71)VAi0 with 22 bins of size �ve = 1.48 ⇥ 103 km/s=1.7005 VAi0. For ions,

the binning range is (�7.34, 7.34) ⇥ 103 km/s=(-8.38, 8.38)VAi0 with 54 bins with bin-size

�vi = 2.72⇥ 102 km/s=0.3105VAi0.

Previous simulation studies22,24 employed a look-up table similar to the one discussed in

§IVA to calculate the Maxwellianized entropy sM . A look-up table for the simulation is

advantageous because the simulated plasma has PIC noise while the analytical expression

does not. Using raw density and temperature values with an analytical expression for the

Maxwellianized entropy leads to disagreement with the theoretical value. The look-up table

allows comparable amounts of error in the simulated and theoretical values, which improves

the agreement with theory.

For the present study, we find that unlike in Liang et al. 24 , the results for sM when using

a look-up table are significantly di↵erent than when not using one. The reason for the dis-
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agreement is mixing between macroparticles of di↵erent numerical weight; previous studies

employed a look-up table that assumed the weights were the same for all macroparticles. As

macroparticles of di↵erent weight mix, the look-up table becomes less accurate. This could

be addressed by including a third axis of the look-up table to incorporate particle weight,

but that is not undertaken for the present study. We therefore directly calculate sM to get

simulated values of the non-Maxwellianity parameters.

The simulation results we present are carried out with no initial out of plane (guide)

magnetic field Bg. It is important to put this choice in the context of previous numerical

simulations of the observed event that employed a weak initial guide field55,57. We perform

and compare results from test simulations with and without a weak initial guide field of

Bg = �0.36 nT = �0.03B0. Figure 2 shows 2D plots of the out-of-plane magnetic field

component BM , where the X-line is located at (0, 0) and the separatrices are the black

curves. In the presence of the weak guide field (Fig. 2a), we find that BM has a value of

about �0.6 nT = �0.05B0 in the vicinity of the EDR. This is not seen in MMS3 data

(see Figure 4e; BM does not become appreciably negative in the shaded region). In our

simulations without an initial guide field (Fig. 2b) we find that BM is again negative in

the vicinity of the X-line along the virtual spacecraft trajectory marked by the thick black

curve, but has a smaller value of �0.24 nT = �0.02B0, closer to the MMS3 observations.

We find no comparable virtual trajectory in the simulation with an initial guide field that

reproduces the signature of BM observed by MMS3, so we use the Bg = 0 simulation for

this study. Egedal et al. 57 also used a guide field weaker than that of Nakamura et al. 55 for

similar reasons.

Finally, we note that the virtual spacecraft trajectory is selected from a set of possible

trajectories, chosen by eye (as opposed to using more systematic approaches to determine

the trajectory51,57,61). The selected trajectory is one which produces qualitatively similar

trends of magnetic field and electron flow speeds when compared with MMS3 observations.

We do not anticipate significantly di↵erent values by employing more systematic approaches.

In what follows, all plots are made from the lower current sheet at the simulation time of

23.4 s = 27⌦�1
ci0, when the system has achieved a steady-state reconnection rate (not shown).
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FIG. 2. Out of plane magnetic field BM from simulations (a) with and (b) without an initial guide

field of Bg = �0.36 nT = 0.03B0. The separatrices are thick black curves and the thick black line

in (b) is our selected virtual spacecraft trajectory.

IV. RESULTS

A. Maxwellian Look-up Table

In order to compute the non-Maxwellianity of a measured distribution f(v), it must be

compared to its associated Maxwellian —a Maxwellianized distribution fM(v) of the form

Eq. 8 with the same density and temperature as the measured distribution f(v). (The

bulk velocity need not be calculated because it does not factor into Eqs. 6 or 7.) For a

continuous, analytical function, the density and temperature of fM(v) are defined to be

equal to those of f(v). However, the distribution function f(�, ✓, E) measured by particle

instruments is discrete, not continuous, and is in spherical energy coordinates, not Cartesian

velocity coordinates. These di↵erences introduce numerical errors into calculations involving

the distribution function. Namely, the computed value of the Maxwellian kinetic entropy

density, sM , can be less than the kinetic entropy density calculated directly from MMS data,

s. Given that sM is the maximum entropy density for a fixed number of particles and total

energy, sM < s is unphysical..

To create a Maxwellianized distribution, we write fM (Eq. 8) in spherical velocity coor-

dinates. We then calculate fM(�, ✓, v) at the same azimuth, polar, and velocity bin centers

as FPI and transform it to fM(�, ✓, U) using the steps outlined in §III A. In this way, the

Maxwellian distribution is treated the same as the measured distribution. The result is

Equation 22.
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Numerical errors between the measured distribution and its associated Maxwellian

prompted us to create a Maxwellian look-up table for the MMS observations. We start

by determining the range of observed densities and temperatures for the event. Then, we

create our look-up table coordinates nlut and Tlut on a 2D grid in density- and temperature-

space that spans the observed ranges. For each value of nlut and Tlut in the look-up table,

we use a Monte Carlo approach to generate a Maxwellian distribution governed by Eq. 22

with u = 0, giving fM(�, ✓, U) at each nlut, Tlut. This constitutes the Maxwellian look-up

table. We note, however, that for any fM(�, ✓, U) in the look-up table, its numerically

integrated density nM and temperature TM are not necessarily equal to the nlut and Tlut

used to produce it due to the coordinate transformations, discretization, and extrapolation

that fM underwent.

Figure 3 shows the percent error in (a) density �n/n = (nlut � nM)/nlut ⇥ 100% and (b)

temperature �T/T = (Tlut � TM)/Tlut ⇥ 100% as a function of the look-up table coordinate

Tlut during the EDR encounter on 2017-07-1139 (§III B, Fig. 1). Errors in both density and

temperature are independent of density. Absolute errors in density are greater than 6.4%

for low temperatures and decrease monotonically and non-linearly to 1.9% with increas-

ing temperature. Similarly, absolute errors in temperature reach a maximum of 2.9% at

400 eV then decrease non-linearly to 1.1% at the upper limit of the temperature range. The

negative (positive) sign on the relative errors for density (temperature) indicates that the

Maxwellianized distribution consistently has a higher density and lower temperature than

the look-up density and temperature.

Adjustments in the look-up table method reduce the errors between the observed and

associated Maxwellian parameters. During the EDR encounter, the observed density and

temperature are used to look up the associated errors from Figures 3a,b, which are then

plotted as a function of time in Figures 3c,d (blue). To reduce the errors, instead of selecting

fM at the grid point (nlut, Tlut) that is closest to the observed values (n, T ), we select fM

at the grid point (n0
lut, T

0
lut) that minimizes

p
(�n/n)2 + (�T/T )2. These adjusted results

are plotted in orange. While still noisy, the adjusted look-up values for nM and TM result

in errors that are on average zero.

The e↵ect of these adjustments on measures of kinetic entropy are shown in Figures 3e,f.

Because the Maxwellian distribution has the highest entropy of any distribution with the

same total number of particles and internal energy, it should be true that �s/s  0 and
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(a)
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FIG. 3. Maxwellian look-up table illustrating the numerical errors introduced by coordinate system

transformations and how it is used to correct for those errors. (a) Density and (b) temperature

look-up tables relating the observed density and temperature to those of the equivalent Maxwellian

distribution. The error as a function of time during the period of interest for (c) density, (d)

temperature, (e) entropy density, and (f) velocity space entropy density without (blue) and with

(orange) using the look-up table. Look-up table results are validated by calculating the total

entropy analytically using Eq. 9 (the green curve in panel e).
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�sV /sV  0. This is the case for �s/s but not for �sV /sV . After adjusting the look-

up table method (orange curves), �sV /sV  0 at all times, but �s/s > 0 at times near

22:34:03. Both s and sV were calculated by integrating f(�, ✓, U) and fM(�, ✓, U) using

Eqs. 23 and 24. We also compute sM via Eq. 9 using n and T from the o�cial FPI moments

and compare it to the observed s. This is the green curve in Figure 3e; it matches with our

adjusted values of �s/s, which serves as validation of our methodology. The reason s gives

unphysical values is because, unlike sV , s does not contain information about the velocity

space grid scale. This is just one of several reasons24 that sV is a better choice for studying

kinetic entropy; we will discuss this further in §V.

B. Comparison between Observations and the PIC Simulation

Figure 4 shows a comparison between observations (left) and the PIC simulation (right) in

the same format as Figure 7 of Nakamura et al. 55 MMS3 passed closest to the reconnection X-

line and its data is plotted during the 5 second interval starting at 22:34:00UT because this is

the time interval surrounding the EDR most commonly shown in previous studies39,51,52,55,56.

In this study, we focus on the electron entropy in and immediately surrounding the EDR

in the subinterval from 1.95 s to 3.315 s, which is highlighted by the gold box in the MMS

panels. Since the structure velocity is VL = �170 km/s and the electron inertial length is

de = 30 km39, the spacecraft traversed a distance of 7.7 de during this time.

The corresponding path of the virtual spacecraft trajectory through the simulation is

5.3 di0 = 30.64 de long, where (no) subscript 0 indicates that the (current sheet density, n0)

upstream density was used. This would correspond to a path length of 7.1 de in a simulation

with a realistic mass ratio (with me 18.36 times lighter), which is nearly the same as the

path length in the observations. The data is taken at a single time after the simulation has

reached a steady state. We include simulation results both in normalized units (left vertical

axis) and physical units (right vertical axis), the latter of which allows for a quantitative

comparison with the MMS data.

Quantitatively, the density (Fig. 4a,b); electron temperature anisotropy A = Te,k/Te,?�1,

where Te,k and Te,? are the electron temperatures parallel and perpendicular to the magnetic

field (Fig. 4c,d); and magnetic field (Fig. 4e,f) are similar between observations and the

simulation. The electron bulk flow (Figure 4g,h) has similar structure but is smaller in
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the simulation by about a factor of 4; this is because the simulated electron mass is 18.36

times larger than the realistic value, so the electron Alfvén speed is 4.28 times smaller. The

electric field components in the simulation reference frame E and in the electron rest frame

E0 (Fig. 4i-n) all have similar profiles to the observations, but the L and N components are

about 2 times smaller in amplitude in the simulations than in the observations. Similarly,

the rate of energy conversion between the electric field and the electrons (Fig. 4o,p) is a

factor of about 4 lower in the simulations. We note that there is good agreement in the

normalized simulation values and those presented in Nakamura et al. 55 (see their Figure 7),

so the quantitative di↵erences with the observations seen here are consistent with previous

studies. The overall agreement between the simulation and observations gives us confidence

in our comparison and interpretations of entropy that follow (§IVC).

Some di↵erences in density visible in Figure 4a,b can be attributed to the trajectory

of the virtual spacecraft through the simulation EDR. Along the trajectory, the density

profiles both increase, but the simulation profile exhibits a local minimum not present in

the observations. The density profile along a vertical cut through the EDR has a double

peak with the peaks appearing just upstream of the X-line at the turning points of the

meandering motion62. If our virtual trajectory began closer to, but still below, the central

current sheet and sloped gently downward, the density profile would gradually increase as

in the observations. However, the qualitative agreement between the fields and flows just

described would su↵er. We choose to keep this trajectory because of the importance of

B and Ve to reconnection. We will revisit this issue when comparing entropy in the next

section.

C. Kinetic Entropy: Application

We now compare observations and simulation results of kinetic entropy parameters along

the satellite trajectory to a) determine if local kinetic entropy measurements in a large, open

system can be interpreted in a similar manner to those of a closed system and b) draw a link

between kinetic entropy and the dissipation processes of reconnection. Figure 5 again shows

the virtual satellite trajectory through the simulation domain during the gold highlighted

interval, as well as a 2D snapshot of M̄ from Eq. 12. We then plot total and velocity-space

entropy densities s and sV along with their associated Maxwellianized values sM and sM,V ,
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FIG. 4. Comparison between MMS observations (left) and a PIC simulation (right) of a magnetotail

EDR encounter. MMS observations are shown over an extended region to provide context and

comparison to previous results (see text). The gold rectangle highlights the EDR and region of

overlap with simulation. Comparisons are made between (a,b) electron density, (c,d) electron

temperature anisotropy, (e,f) magnetic field, (g,h) electron bulk velocity, (i-n) electric field in the

spacecraft and electron rest frame, (o,p) total and M-component of the rate of energy conversion

between the electric field and the electrons. Simulation data is shown in real units (right-axis) on

the same scale as MMS observations with the exception of panel (p), which is much smaller in

magnitude. Overall, observations and simulations are in qualitative agreement.
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and the non-Maxwellianity measures M̄ and M̄KP from both MMS (left) and the simulation

(right) in the same format as Figure 4. We note that s and sM do not have real units on

the right-axis because the units are not physical22. From 22:34:00-1.95 (the left-edge of the

gold box), MMS3 made a brief excursion into the inflow region39 where entropy reaches a

maximum during the separatrix crossing and a minimum at the furthest excursion. During

the same interval, the non-Maxwellianity peaks in the inflow region, a characteristic that has

been noted in previous simulations of reconnection31. That non-Maxwellianity peaks outside

of the regions where energy is being dissipated will be discussed below in the context of the

electron distribution functions.

As MMS3 enters into the EDR (the gold box), passes southward of the X-line, and exits

into the tailward exhaust, entropy density gradually increases in the observations; however,

in the simulation, entropy density has a U-shaped profile with a minimum below the EDR.

As expected from Eq. 9, these traces have the same overall structure as the density profiles

in Figure 4a,i.

The non-Maxwellianity measure M̄KP (Eq. 11, Fig. 5d,g) is computed using both s (Eq. 7,

blue) and sV (Eq. 15, green). The MMS observations result in unphysical values within the

EDR of the electron Kaufmann and Paterson non-Maxwellianity M̄KP,s,e based on s, where

it becomes negative. The Maxwellian distribution should have the highest entropy of any

distribution with the same number of particles and energy, so M̄KP,s,e should be positive.

The reason M̄KP,s,e is negative will be explained in §V. In contrast, the electron Kaufmann

and Paterson non-Maxwellianity M̄KP,sV ,e using the velocity space entropy density sV is

always positive, consistent with theoretical constraints.

The other non-Maxwellianity measure M̄ (Fig. 4d,g, orange) is computed using the ap-

propriate version of Eq. 12 for MMS and the simulation. It is smaller in magnitude than

M̄KP because its normalization term sV ensures that M̄ is bounded to the range [0,1] for a

properly defined velocity space grid24. When comparing observations to simulations, both

M̄ and M̄KP have similar shapes within the EDR despite the fact that s and sV are di↵er-

ent. In addition, both values of M̄ are more similar in magnitude than the values of M̄KP .

This implies that the local measure of kinetic entropy density sV as measured in the closed

simulation can be interpreted in the same manner as it is in the large, open magnetotail

system by MMS.

Now we relate kinetic entropy measurements to various kinetic processes that occur dur-
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FIG. 5. Kinetic entropy and non-Maxwellianity in an EDR and their relationship to structures in

the distribution function. (a) 2D plot of electron non-Maxwellianity M̄e in the PIC simulation, the

virtual satellite trajectory through the EDR, representative magnetic field lines, and the location

of the EDR distribution in panel o, marked by an “x”. (b,f) Total and (c,g) velocity space kinetic

entropy density for the measured (orange) and Maxwellianized (blue) distributions. (d,h) Kauf-

mann and Paterson non-Maxwellianity M̄KP using total (blue) and velocity space (green) entropy

density. (e,i) Velocity space non-Maxwellianity M̄ (orange). For (b)-(i), MMS data is in the left

column and simulation data is in the right column. (j,m) Upstream, (k,n) inflow, and (l,o) EDR

electron distribution functions from MMS3 (j-l) and the PIC simulation (m-o).
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ing reconnection by examining the electron distribution functions in the MMS data (Fig. 5j-l)

and the PIC simulation (Fig. 5m-o) at the times and locations indicated by vertical dashed

lines in Figures 5b-i and by the “x” in the EDR of Figure 5a. The simulated distributions

are on a di↵erent scale; as noted, multiplying the axes by
p
mi/me⇡4.3 will give the proper

ranges for a real mass ratio simulation. The two simulated distributions corresponding to

the MMS observations outside the EDR were taken from representative upstream locations

in the simulation. The first distribution (Fig. 5j,m) is taken from the Earthward exhaust

after the electrons have re-magnetized and become mostly Maxwellian. The second distri-

bution (Fig. 5k,n) is from the inflow region where parallel potential structures generate a

temperature anisotropy63,64. Here sV is lower, but the non-Maxwellianity is relatively large.

The third distribution (Fig. 5l,o) is from the heart of the EDR where meandering motion

in the current sheet creates crescents and striations34,36,39. Here, the non-Maxwellianity

is intermediate between the inflow and Maxwellian distributions. That regions of elevated

non-Maxwellianity in the MMS observations can be related to kinetic processes during recon-

nection is consistent with previous numerical simulations31 and motivates the utility of the

entropy-based non-Maxwellianity measure as an indicator of kinetic-scale energy conversion

and dissipation processes that occur during reconnection.

V. INFORMATION LOSS

The di↵erences in non-Maxwellianity measures demonstrated in Figure 5 come about

because of subtle di↵erences in the combinatorial and semi-continuous forms of entropy

derived in § II. In the combinatorial form of entropy, we break up phase space into bins of

size �3r�3v and count the number of arrangements of particles within each bin. There is a

direct relationship between the number of particles and the grid scale that becomes apparent

when the bins become too small and Stirling’s approximation is no longer valid. In the semi-

continuous form of entropy, we coarse-grain phase space and represent the system of particles

with a distribution function, tacitly assuming that our choice of grid sizes is appropriate and

that the statistics in each cell are su�cient. In practice, however, there is no way to ensure

this assumption holds for every distribution of particles that we encounter. As a result of

the assumption, we lose the connection between the distribution function, the grid size, and

the actual number of particles within each bin. Two important consequences are that 1) the
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definition of total entropy density s defined in Eq. 7 lacks information connecting the grid

scale �3v to the number density n of particles within each cell and 2) the total Maxwellian

entropy density, sM defined in Eq. 9, lacks information connecting the grid scale �3v to the

thermal velocity of the distribution vth =
p

2kBT/m. This missing information results in

unphysical values for M̄KP in Figure 5d. The definition of sV adds that information back

in, as represented by the n(r)/�3v in the first term of Eq. 6, and by the v2th/(�
3v)2/3 factor

in the result for sM,V (Eq. 10). As a result, M̄KP,sV is positive definite. The dependence on

�3v serves to regularize M̄KP to give M̄ and is present in the denominator of Eq. 13 that

relates the two non-Maxwellianity measures24. We interpret the denominator as the amount

of “information” lost when a grid scale is imposed on velocity space, and we investigate it

further here.

As a demonstration of the e↵ect of the course-grained, non-uniform velocity-space grid

on the distribution function, we return to the discussion of why M̄KP,s,e < 0 within the EDR

but M̄KP,sV ,e is always positive (shown again in Fig 6f,g). Looking at the final term of sV in

Eq. 15, we see a correction due to the non-uniformity of the velocity-space grid. This means

that, in the computation of s (Eq. 7), non-Maxwellian structures in the EDR are weighted

more heavily by the non-uniform velocity space bins than the associated populations in the

Maxwellianized distribution. By including the correction term, M̄KP,sV ,e > 0 throughout

the interval, as it should be on theoretical grounds.

To quantify the information loss as a result of discretizing velocity space, we write the

expressions for M̄ for the MMS and simulation equations in the form

M̄ = R(M̄KP +Bcg), (27)

where Bcg is a bias and R is a regularization factor that arise from course graining velocity

space; in the simulations with a uniform velocity-space grid, Bcg = 0. Figure 6 shows the

information loss for the MMS data (Eq. 17), which has non-uniform velocity-space bins.

The first two MMS panels (a,b) show s and sV for the measured and associated Maxwellian

distributions for context. Panels (c-e) plot Bcg, R, and RBcg, and panels (f-h) contain M̄KP

(Eq. 11) and M̄ (Eqs. 16 and 17) to facilitate understanding where the information loss

leads to issues in the calculated values of non-Maxwellianity.

The bias term Bcg significantly departs from 0 within the EDR; this is also where M̄KP <

0. For comparison, M̄ > 0 in the same region. The reason is that the correction for non-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 6. Analysis of information loss as a result of coarse graining velocity space in the MMS

observations. (a,b) Total s and velocity space sV entropy densities in the same format as Fig-

ure 5b,c. (c) Bias Bcg, (d) regularization R, and (e) their product. non-Maxwellianity terms (f)

M̄KP calculated using s and sV , and (g) M̄ calculated from Equations 25 and 26.

uniform velocity-space grid in sV propagates into Bcg. Given that

Bcg = � 2

3n

Z
d3v(v) ln

⇥
d3v(v)

⇤
[fM(v)� f(v)] , (28)

and noting that the density of the observed and Maxwellianized distributions are the same,
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it is the ln [d3v(v)] factor that weighs the measured non-Maxwellian distribution structures

present in the EDR more heavily than the associated populations in the Maxwellianized

distribution. By correcting for the non-uniform velocity-space grid, Bcg makes M̄ > 0.

The regularization term R serves to scale M̄KP into the range [0, 1] so that M̄ is nor-

malized for an appropriate velocity-space grid size24 (Fig. 6g). From Equation 17, the

regularization term RMMS for MMS observations is

RMMS =


1 + ln

✓
2⇡kBT

m

◆
� 2

3n

Z
d3v(v) ln

⇥
d3v(v)

⇤
fM(v)

��1

, (29)

which contains the natural log of the thermal velocity vth =
p

2kBT/m and the Maxwellian-

ized distribution weighted by the natural log of the bin volume. When d3v(v) is uniform,

we recover the regularization factor for a uniform velocity-space grid (Eq. 13, §II):

RSim =
�
1 + ln

⇥
⇡v2th/(�

3v)2/3
⇤��1

. (30)

The simulation regularization factor is plotted in Figure 7a as a function of distance along

the virtual spacecraft trajectory. As seen in Figure 5g, M̄ is normalized in the simulations

such that its magnitude is similar to the observations.

Together, R and Bcg represent the amount of information lost by coarse-graining velocity

space. Bcg depends only on the uniformity of the velocity-space grid, while R additionally

depends on the relative size of the velocity-space grid scale and the thermal speed22,24.

Consequently, it can be di↵erent for ions than for electrons. This has implications for

satellite missions like MMS that study dissipation processes, as discussed further in the next

section.

To better understand the dependence of information loss on velocity-space bin size and

the plasma environment being sampled, Figure 7b shows contours of RSim(�v, vth) on a log-

log scale. Information loss is minimized when M̄KP = M̄ , or when RSim = 1 (green line); it

occurs where �v =
p
⇡vth and will be discussed in greater detail in the sections that follow.

When �v ⌧
p
⇡vth, the distribution is over-resolved and there are too few particles per

bin. When �v �
p
⇡vth, the distribution is under-resolved and important structures can be

lost. In both of these limits, R ! 0 to compensate for M̄KP ! 124. Another critical point

is �v =
p
⇡evth. There, R ! ±1 indicating that M̄ ! ±1 while M̄KP remains finite.

This is because the choice of grid scale makes sM,V ! 0 such that the observed distribution

appears to be infinitely far from equilibrium.
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FIG. 7. (a) Variations in the regularization term variation as a function of distance along the virtual

spacecraft trajectory. (b) Contours of the regularization term R as a function of thermal speed vth

and linear velocity space grid scale �v. Black dashed lines show the optimized bin size from Liang

et al. 22 , dash-dotted and solid lines show the optimized bins with respect to the background and

current sheet populations, respectively, for our simulation. Data for ions and electrons are shown

in blue and red, respectively. Diamond data points show the logarithmically-spaced velocity space

bins used in MMS instruments.

In the PIC simulation presented here, the way we choose our velocity space grid-scale is

described in §III C. The black dashed line represents the approximate ideal velocity-space

grid size from Liang et al. 22 The dashed lines are the optimal velocity-space ion (blue)

and electron (red) grid sizes for the background (dotted) and current sheet (solid line)

populations used in this study. The di↵erence between these lines and the line RSim = 1 is
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discussed below. Because the bin spacing is uniform, the grid scale falls on a line of constant

RSim.

For comparison, the MMS ion (blue) and electron (red) velocity-space bin sizes are shown

in diamonds for the average thermal velocity (hvth,ii = 973 km/s and hvth,ei = 14, 997 km/s

with hTii = 4943 eV and hTei = 638 eV) within the EDR. Because of the non-uniform grid

spacing, each bin su↵ers from a di↵erent amount of information loss. The ion bin sizes

are somewhat evenly spaced around Rsim = 1 and overlap with the ideal simulation grid

sizes. The smallest bins overlap with the optimal velocity-space grid size in the simulations

but correspond to energy channels far below the bulk ion energy (Fig. 1b). Meanwhile, the

majority of electron bins over-resolve the distribution and none reach the line of RSim = 1.

The highest energy bins overlap with the optimized simulation bin sizes, but these correspond

to the highest energy channels and extend beyond the upper edge of the energy distribution

(Fig. 1b). This means that MMS measurements su↵er from information loss for both ions

and electrons due to its non-uniformly spaced velocity-space grid and because the velocity-

space bins that overlap with the energy spectra of the plasma are either too large or too

small, so that they under- or over-resolve the distribution function.

VI. DISCUSSION

Entropy in a closed, isolated system never decreases, so it can be thought of in terms of a

system’s approach to equilibrium via the possible dissipation of energy and the irreversibility

of the processes acting within it. A simulation with periodic boundary conditions is a closed

system, so this interpretation can be directly applied to the simulated process – magnetic

reconnection in our case. However, natural systems are open. In Earth’s magnetotail, at

the smallest scales, the electron di↵usion region receives energy from the upstream inflow

region, and at the largest scale the magnetotail itself receives energy from the solar wind and

ionosphere. In such cases, a measurement of entropy can no longer be interpreted in terms

of the Second Law. This has led us to investigate local measures of entropy to determine

if such quantities in closed systems can be used to help interpret measurements in open

systems.

A local measure of entropy is also beneficial because spacecraft are unable to sample all

of the accessible position space of a system, but particle detectors are designed to sample
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all of velocity space. Instead of considering the macroscopic evolution of entropy as a

system approaches equilibrium, we consider how close the local distribution of plasma is to

equilibrium by comparing it to its Maxwellianized distribution. As we have seen, the parallel

potential in the inflow region and the reconnection electric field in the EDR both do work to

organize the distribution, reducing the number of available arrangements and producing low-

entropy, high non-Maxwellianity states (see also Liang et al. 24). non-Maxwellianity indicates

the degree to which a distribution is organized and, therefore, can be used to identify regions

where dissipation processes take place, like the EDR. Recent work has shown a connection

between structures in the distribution and the Vlasov equation65 and could lead to deeper

insights into non-Maxwellianity.

Information loss arises from discretizing velocity space and can be enhanced when the bin

size is not uniform. The non-uniform velocity-space grid used by FPI weights accelerated,

non-gyrotropic structures in the distribution function more heavily than their associated

Maxwellianized populations. As a result, a bias correction term appears in M̄ . This bias

is not present when velocity bins are uniformly spaced. Additional information loss occurs

if the velocity-space bin size is not chosen properly with respect to the thermal velocity

of the plasma. This loss is enhanced with non-uniformly spaced bins and is di↵erent for

ions and electrons. For ion and electron distributions of the same shape to have the same

value of velocity space kinetic entropy, sV,e = sV,i, requires vth,e/�ve = vth,i/�vi. A result

of information loss is that dissipation processes cannot be accurately measured22, and the

reversibility of dissipation processes cannot be determined. With regard to MMS, an analysis

of the generalized Ohm’s law during magnetopause reconnection revealed an unmeasured,

residual amount of dissipated energy that was unaccounted for32. Preliminary analysis shows

an intriguing similarity between information loss and this residue term.

Information loss is minimized if M̄KP = M̄ . This occurs most simply when the velocity

space grid is uniform, makingBcs = 0 and reducing the regularization term RMMS (Eq. 29) to

RSim (Eq. 30); and when the RSim is unity, i.e., when �v =
p
⇡vth ⇡ 1.77vth. This suggests

that the ideal bin size is slightly larger than the thermal velocity; however, simulations

found best agreement with theoretical values when the bin size was �v ' 0.69vth22. The

discrepancy here is likely related to particle noise in PIC simulations, as higher numbers of

particles per grid (> 100) would lead to better statistics at high speeds.

The contour where �v =
p
⇡vth is associated with interesting characteristics of sV and
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sM,V . If �v is proportional to
p
T , as it is when �v =

p
⇡vth, then the Maxwellian velocity-

space entropy density, sM,V in Eq. 10, is independent of temperature. If �v =
p
⇡vth exactly,

then sM,V = 3
2kBn = cV n, meaning sM,V is proportional to the amount of energy required to

raise the temperature of an ideal gas in thermal equilibrium by one degree. Because there

is no free energy in either the initial or final equilibrium states, the external work used to

increase the temperature contributes directly to increasing the entropy. For this particularly

chosen grid scale, we see that M̄KP = (sM � s)/sM,V , which is similar in form to M̄ (Eq. 12)

and implies that sM � s = sM,V � sV . Finally, �v =
p
⇡vth is the point where the logarithm

in RSim transitions from positive to negative, which is a more intuitive point for indicating

that the distribution is over- or under-resolved.

Considerations for minimizing information loss have clear implications for the design of

particle instruments. In a simplified model, an electrostatic analyzer can be thought of as

a curved parallel plate capacitor. The voltage on each plate selects the range and center

energies Ek of the energy bins while the curvature of and separation between the plates

determines the range of energies �Ek of the particles that can pass through the capacitor.

For a given configuration, �Ek/Ek is constant, meaning �Ek increases with energy. An

aperture can then be placed on the capacitor to limit the overall amount of flux into the

device, thereby determining the instrument’s geometric factor. A lot of care goes into

deciding the requirements on Ek, �Ek, and the geometric factor, but ultimately the choice

imposes a grid scale and count rate on the measured particle distribution. This means that

information loss is inherent to all measurements and that new design considerations need to

be taken into account to minimize it. The way to minimize it is to ensure that the velocity

space bin sizes, �vk = �Ek/
p
2mEk, does not greatly over- or under-resolve the thermal

velocity in the range of energies present in the energy distribution.

Other measures of non-Maxwellianity, including enstrophy15, the Greco ✏ parameter14,

and the Graham ✏ parameter26

⌦ =
R
d3v (f � fM)2

✏Greco =
1
n

qR
d3v (f � fM)2

✏Graham = 1
2n

R
d3v |f � fbiM | ,

are not entropy-based and may not su↵er as heavily from information loss as MKP. One rea-

son is that the ln[f(v)] term in s enhances subtle variation in the distribution, similar to how
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the powers of v a↵ect higher-order moments. Unfortunately, these other non-Maxwellian

parameters are all defined to be positive, meaning that unphysical negative values, like those

shown in Figure 5 for M̄KP , are masked. While the ⌦ and ✏ non-Maxwellianity parameters

are not entropy-based, there are approaches to calculating kinetic entropy in simulations

beyond what were described in this paper (Jara-Almonte and Ji 27, and references therein).

More work is needed to quantify non-Maxwellianity and information loss using those ap-

proaches.

While reconnection transfers energy from the fields to the plasma, it is not clear if there

is an exchange of entropy between the particles and the electromagnetic fields. The fact

that the reversibility of reconnection depends on the strength of the guide field28,29 suggests

that changes in entropy are due solely to plasma dynamics. In a closed, collisionless system

(such as the simulation performed in this study) entropy is a conserved quantity; however,

simulations have shown that both total energy and kinetic entropy are conserved to within

numerical precision22, meaning that while electromagnetic energy is converted entirely into

particle kinetic energy, there is no similar exchange in entropy between the fields and the

plasma. Interestingly, as we showed in Figure 5, plasma entropy is a local minimum in

the EDR where structured distributions are found and electromagnetic energy is being dis-

sipated. This suggests that the electromagnetic fields do work to organize the inflowing

distribution (lowering the entropy) and that downstream processes thermalize it (increasing

entropy). But are the electromagnetic fields simply a reservoir of energy or do they also

exchange entropy? If plasma entropy is related to order and disorder, then similar con-

siderations for the fields might suggest that waves and turbulence increase electromagnetic

entropy. There exists a statistical description of radiation entropy that develops a quan-

tity similar to M̄ as the deviation of the observed radiation from an ideal black body66, a

Boltzmann H-theorem for classical wave modes that can be applied to waves often present

during reconnection67, and a formulation of the Second Law to describe an ensemble of tur-

bulent eddies68. More work is needed to determine how such theories influence the evolution

of kinetic entropy. This is relevant to both laboratory experiments like PHASMA69 which

directly measure distribution functions non-perturbatively and future space missions like

HelioSwarm70 that study turbulent processes leading to dissipation.
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VII. SUMMARY

In this study, we examine kinetic entropy associated with dissipation processes occurring

within a magnetotail electron di↵usion region using both in-situ observations and a PIC

simulation. We generalize the theory of kinetic entropy22,42 to the case of non-uniform

velocity space bins and transform them to spherical energy coordinates for application to

experimental datasets. In doing so, we implement a Maxwellian look-up table to reduce

numerical errors between the observed distribution and its associated Maxweillian. The

theory is then applied to MMS observations of a magnetotail EDR and compared to the

kinetic entropy density and non-Maxwellianity from a PIC simulation of the observed event.

Good agreement between observations and simulations indicates that the insights gained

from local kinetic entropy density and non-Maxwellianity measures in numerical simulations

in a closed domain can be useful when interpreting observations in a naturally occurring

open system.

We demonstrate that kinetic entropy density s leads to a non-Maxwellianity measure M̄KP

that is not positive definite, as it should be on physical grounds, because it is biased by the

non-uniform velocity-space grid of MMS that weighs non-Maxwellian structures more heavily

than their associated Maxwellianized structures. A similar issue is likely to be happening

in previous observational studies using the quadratic non-Maxwellianity ✏ measure14,15,26,71.

The velocity-space kinetic entropy sV corrects for the non-uniform grid and results in a

non-Maxwellianity measure M̄KP,sV that is positive definite, as it should be on theoretical

grounds. We quantify the reason that s leads to unphysical results while sV does not by

introducing “information loss”; s lacks information connecting the grid scale to the number

of particles within each cell. This information is contained in sV and serves to regularize

M̄KP so that the resulting M̄ is bounded. We show that M̄ is capable of identifying non-

Maxwellian distributions indicative of kinetic e↵ects and dissipation processes that occur

during reconnection.

The new concept of “information loss” is captured by two quantities, R and Bcg, that

measure the extent to which the choice of velocity space grids a↵ects measurements of

kinetic entropy. We show that to minimize information loss, the velocity space grid scale

needs to be chosen so that the thermal velocity of the plasma is not over- or under-resolved.

This involves having a uniform velocity space grid with �v ⇡
p
⇡vth. Unfortunately for
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experimental particle detectors, a uniform velocity space grid is not possible; however, the

energy resolution of the instrument �Ek/Ek can be optimized to minimize information loss

by having �vk = �Ek/
p
2mEk adequately resolve vth within the energy range of the energy

distribution. Thus, entropy and information loss are important considerations for satellite

instrument development.

VIII. SUPPLEMENTARY MATERIAL

The Supplementary Material contains more complete derivations of the kinetic entropy

and other parameters derived and discussed in this work. This includes the alternate deriva-

tion of Eq. 2 described in §II A, the velocity-space kinetic entropy density, sV , for both

uniformly and non-uniformly spaced velocity-space grids (Eqs. 6 and 15), the condition for

equal entropy for ions and electrons discussed in §VI, an alternate derivation of the rela-

tionship between M̄ and M̄KP (Eq. 13), and M̄ for the case of non-uniform velocity space

bins. It also contains transformations from (vx, vy, vz) to (�, ✓, v), (�, ✓, E), and (�, ✓, U) for

fM , s, sV , M̄ , as well as the density, velocity, and temperature moments of the distribution.

Finally, it contains tables of the calculated moments and entropy parameters for a model,

measured, and Maxwellianized distribution to serve as an demonstration of the numerical

errors described in §IVA.
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IX. DATA AVAILABILITY

MMS data is publicly available at the MMS science data center (https://lasp.

colorado.edu/mms/sdc/public/)72. MMS data was processed and visualized with the

help of the PyMMS Python library73,74 Simulation data used in this manuscript is available

on Zenodo (https://doi.org/10.5281/zenodo.5807744)75.
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