Kinetic Entropy in an EDR

Theory, Observations, and Simulations of Kinetic Entropy in a Magnetotail Electron

Diffusion Region

M. R. Argall,}:® M. H. Barbhuiya,? P. A. Cassak,? S. Wang,® J. Shuster,® H. Liang,* D.
J. Gershman,® R. B. Torbert,! and J. L. Burch®

D Space Science Center, Institute for the Study of FEarth, Oceans,

and Space, Unwversity of New Hampshire, Durham, NH 03824,

USA

2 Department of Physics and Astronomy and Center for KINETIC Plasma Physics,
West Virginia University, Morgantown, WV 26506, USA

3) Goddard Space Flight Center, NASA, Greenbelt, MD 20771,

USA

Y Center for Space Plasma and Aeronomic Research, University of Alabama in
Huntswville, Huntsville, AL 35899, USA

5 Space Science and Engineering Division, Southwest Research Institute,

San Antonio, TX 78238, USA

(Dated: 11 January 2022)



Kinetic Entropy in an EDR

We examine velocity-space kinetic entropy, a spatially local measure of entropy for
systems out of thermal equilibrium, during an encounter of an electron diffusion
region (EDR) at a magnetic reconnection site in Earth’s magnetotail by the Magne-
tospheric Multiscale (MMS) mission. We start by generalizing the theory of kinetic
entropy to the case of non-uniform velocity space grids and transforming the equa-
tions into spherical energy coordinates useful to experimental plasma detectors. The
theory is then applied to MMS data and compared to particle-in-cell simulations of re-
connection. We demonstrate that the entropy based non-Maxwellianity measure from
the MMS data is of sufficiently high precision to reliably identify non-Maxwellian dis-
tributions, and therefore the measurements when kinetic effects are most significant.
By comparing two different non-Maxwellian measures, we show that total entropy
density suffers from “information loss” because it lacks a dependence on the velocity
space grid, and so has lost information about how well a distribution function is
resolved. Local velocity-space kinetic entropy density recovers this information. We
quantify information loss and argue that the considerations needed to minimize it

are crucial for instruments designed to measure distribution functions in-situ.
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I. INTRODUCTION

Energy at large scales gets dissipated at small scales in essentially all plasmas, and
how this conversion and dissipation occurs often impacts the plasma dynamics at the large
scales'. For example, the evolution of collisionless shocks”, plasma turbulence’, and mag-
netic reconnection” all influence — and are influenced by — small scale energy conversion and
dissipation processes. Magnetic reconnection, where a change in magnetic field topology
facilitates a rapid release of magnetic energy’, plays a central role in the spoiling of confine-
ment in tokamaks, the release of energy in solar flares, and the energy cycle within Earth’s
magnetosphere. In the magnetosphere, reconnection leads to the release of 10 J of energy
over just a few minutes” — enough to supply New York City for an entire year'. Even though
energy conversion occurs at global scales, dissipation at electron scales contributes greatly".
Several scalar, reference-frame-invariant parameters were proposed as a means of locating
reconnection sites” "~ to identify and understand the dissipation processes. However, elec-
tron scales remained inaccessible to observations until the launch of the Magnetospheric
Multiscale (MMS) mission'”, which now allows us to investigate kinetic processes that lead

to dissipation and test aspects of kinetic theory, including kinetic entropy.

The importance of entropy is captured by the Second Law of Thermodynamics — in
a closed, isolated system in which energy is conserved, entropy never decreases. From a
thermodynamic perspective, high entropy is synonymous with a lack of energy that can be
converted into mechanical work. From a kinetic theory perspective, entropy describes the
disorder inherent to the system. The more ordered a system, the lower its entropy and the
more effective the stored energy is able to perform mechanical work. As an example, in the
electron diffusion region (EDR) of magnetic reconnection, electromagnetic fields do work
on charged particles. This alters their particle distribution functions, often making them
more ordered than Maxwellian distributions. non-Maxwellian distributions can be used to
identify locations of electromagnetic energy dissipation ~°' and may indicate that further
dissipation of kinetic energy to thermal energy may occur. Entropy and non-Maxwellianity,
therefore, should be able to identify locations like the EDR where key kinetic-scale energy

conversion processes take place

By comparing the current state of a system to its equilibrium, Maxwellianized state, non-

Maxwellianity measures were developed. One contains the quadratic difference in distribu-
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tion functions' '’ while others contain the difference in entropies””“". These were used to
study dissipation in solar wind turbulence '’; Earth’s bow shock™’, dayside regions™"; mag-
netotail plasma sheet”’; collisional magnetic reconnection”’, and numerical simulations of
collisionless magnetic reconnection”". It was shown that the form involving the difference in
entropies, or the Kaufmann and Paterson non-Maxwellianity””, can increase without bound
the worse the velocity-space bins over- or under-resolve the distribution function”". An inad-
equate velocity-space bin size in simulations can lead to unphysical results for dissipation

even though the simulations are able to reproduce macroscopic properties of reconnection.

In perfectly collisionless systems, there is no dissipation —ideal kinetic physics is re-
versible. This was demonstrated in gyrokinetic simulations of magnetic reconnection in
which the plasma has a reduced number of degrees of freedom™; however, reconnection
becomes less reversible in fully kinetic simulations with decreasing guide field (increasing
degrees of freedom)”’. Irreversibility and non-conservation of entropy in simulations is tied
to phase mixing”’ and numerical noise’ . Numerical noise, however, is not present in real
systems, yet observations of reconnection at the magnetopause revealed an unmeasured
“residual” dissipation potentially linked to wave activity ™, which can lead to irreversible
anomalous dissipation due to Landau damping

Without collisions, the distribution function in kinetic plasmas can take on highly non-
Maxwellian shapes. Elongated and striated distributions can be present near reconnection
X-lines """, while other shapes map to different regions and processes of reconnection' """
and are tied to energy dissipation’” " via scalar energy conversion parameters . As
mentioned, though, only entropy uniquely identifies irreversible dissipation. As the dis-
tributions become more structured, the number of arrangements that lead to the same
distribution decreases, resulting in an increased non-Maxwellianity and decreased entropy
non-Maxwellianity, structured distributions, and the processes that lead to dissipation, then,
are all intricately related.

In this paper, we study the local velocity-space kinetic entropy in a magnetotail EDR dur-
ing magnetic reconnection using electron-scale measurements from MMS. To do so, we derive
a generalized kinetic entropy for arbitrary velocity-space grids, in particular the logarithmic
spherical energy grid used by experimental plasma instruments. We show that kinetic en-
tropy density and entropy-based non-Maxwellianity measures are in good agreement with

a dedicated 2.5D particle-in-cell (PIC) simulation and that the non-Maxwellianity measure
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is capable of identifying non-Maxwellian distributions in the MMS data. We further show
that the entropy-based non-Maxwellianity calculated using kinetic entropy density is not
positive definite as it should be, and that this is caused by the inappropriate velocity-space
grid scale resolution. The velocity-space kinetic entropy captures the role of the velocity-
space grid and gives physically meaningful results. We describe their difference in terms
of a new concept, “information loss”, which is used to quantify the extent to which the
velocity-space grid over- or under-resolves the distribution function in velocity-space. We

show that information loss is important for MMS observations.

There are a number of important consequences of the present study. First, the good
agreement of kinetic entropy densities in MMS observations (in an open naturally occurring
system) and PIC simulations (in a closed system) shows that closed simulations can be useful
to help interpret observations in naturally occurring open systems. Second, we argue that
knowledge of information loss is an important consideration for future satellite instrument
development. Third, we argue that information loss is likely important in other attempts to
measure non-Maxwellianity using observational data, potentially jeopardizing the accuracy
of the measurement. This implies that a source of apparent irreversibility in observations is

the amount of information lost by not properly resolving the distribution function.

The paper is organized as follows: Section II reviews the theoretical development of ki-
netic entropy, then generalizes the theory to non-uniform velocity space grids and transforms
the equations to spherical energy space to be applied to satellite observations. Section III
describes the in-situ data used in the study (§III A), gives an overview of the reconnection
event being analyzed (§1IIB), and describes the PIC simulations carried out (§III C). Sec-
tion IV describes our results; beginning with a Maxwellian look-up table used to minimize
errors between the observed distribution and its associated Maxwellianized version needed
to calculate non-Maxewllianity (§IV A); followed by a comparison between observations and
PIC simulations (§IV B); and ending with a look at kinetic entropy, non-Maxwellianity,
and their connection to distribution functions that represent different dissipation processes
(§IV C). Section V demonstrates how course-graining velocity-space can lead to a loss of
information regarding dissipation. Finally, Section VI discusses our results and Section VII

presents a summary of our conclusions.
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II. KINETIC ENTROPY: THEORY

In this section, we review the theory of velocity-space kinetic entropy and non-Maxwellianity,
following closely the steps outlined in Appendix A of Liang et al.””, then generalize the
theory to satellite applications that use non-uniform velocity space bins and require a trans-
formation to logarithmic, spherical energy coordinates. More complete derivations of the
kinetic entropy parameters, along with other quantities used or discussed throughout the

paper, can be found in the supplementary material.

A. Review of Kinetic Entropy with a Uniform Velocity Space Grid

Kinetic entropy S as defined by Boltzmann - is written as
S =kpnQ, (1)

where kg is Boltzmann’s constant, 0 = Ny,!/ vak N; ;! is the total number of microstates
that correspond to a given macrostate, Ny is the total number of particles in the system,
Nj i, is the number of particles in the j, k'th cell of phase space, and the product over j and
k is over all position- and velocity-space cells, respectively. We suppress writing a possible
time ¢t dependence here and throughout for simplicity. We call this form “combinatorial
entropy” because of how the microstates are counted.

By breaking up phase space into discrete bins and applying Stirling’s approximation,

combinatorial entropy can be written in terms of the particle distribution function f(r,v) =

N, i/ (ArAdv) as”™

S = kg {Nm In (#X%) - /dST/d3vf(r,v) In [f(r,v)]}. (2)

where the small phase space cells have uniform dimensions of size A3r and A%v. In writing
this expression, the phase space volume has been written as infinitesimals d®rd®v in the
integral in the second term but remains A3rA3v in the first term. This implies that Eq. 2 is
only semi-continuous and that the finite grid size of any practical simulation or measurement
device factors into the total entropy

By considering the permutation of particles in position- and velocity-space separately, the

total combinatorial entropy can be decomposed into position-space combinatorial entropy
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S, and velocity-space combinatorial entropy Sy, each of which has a semi-continuous repre-
sentation similar to Eq. 277", It is illustrative to note that the same semi-continuous forms
of position- and velocity-space entropy can be derived directly from Eq. 2. After adding and

subtracting [ d®rn(r)In[n(r)] and some simplification, Eq. 2 becomes
S=25+S5y (3)

where

S, = kg {Nm In (Z—g;) - / dra(r) In [n(r)]} (4)

Sy = / dPrsy (r) (5)

sv0) = ha {1 | 52| = [ @ose vl v} (6)

The second term in Eq. 6 is often referred to as the total kinetic entropy density s(r),

s=—kp / Pof(v)In [f(v)], (7)

where we begin to suppress the r dependence except where it is important to retain. This
is the density of S because its position space integral gives the total kinetic entropy S in
Eq. 2 (up to a constant).

For a drifting Maxwellian distribution of the form

3/2
— m —m(v—u)?/2kgT ]
fut) =n (5 ) e , ®)

where m is the mass of the particles, n is the number density, u is the bulk flow velocity,
and T is the temperature, Eq. 7 is exactly solvable, and gives the kinetic entropy density

sy of a Maxwellian distribution:

3 2rkpT

Substituting this into Eq. 6 gives

the velocity-space entropy density of a Maxwellian distribution.
Because the Maxwellian distribution describes a plasma in local thermodynamic equilib-

rium, and because that equilibrium state has the highest entropy of all distributions with
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the same energy and number of particles ”, the difference in kinetic entropy density between
an observed distribution and its associated Maxwellian, or the non-Maxwellianity of the

distribution™’,
Sp— S

(3/2)knn’ (11)

is a measure of the departure from Maxwellianity of a local distribution function and gives

Myp =

a measure for the possibility for dissipation to occur. Eq. 11 was defined by Kaufmann and
Paterson’ and is normalized by %k‘Bn = ¢,n, where ¢, is the specific heat per particle at
constant volume for an ideal gas, to make My p dimensionless.

One disadvantage of M p is that it is not bounded, making its interpretation difficult
To remedy this, a new non-Maxwelllianity measure formed from the velocity-space entropy
density (Eq. 6) was introduced

- SMyv — Sv

M = (12)

SM,V
Provided the velocity space grid is chosen appropriately, as discussed in Liang et al.”", this
measure is not only dimensionless, positive definite, and vanishes when the distribution is
a Maxwellian (similar to Mgp), but is also bounded. It can be written in terms of total

entropy density s (Eq. 7)
v S — S
sy + kpnlin (n/A3)

but we will evaluate it in terms of Myp (Eq. 11)
Micp

M= 1+1In {(mBT) / [m (A%)Q/S} }

(13)

because this allows us to isolate the effects that discretizing phase space has on our ability

to measure entropy and non-Maxwellianity. We will explore these effects further in §V and

§VI.

B. Generalization to non-Uniform Velocity Space Grids

We now consider the velocity-space kinetic entropy and non-Maxwellianity in the context
of observations by the MMS mission. The derivations in the previous subsection were per-
formed assuming uniformly sized velocity-space bins. In practice, however, the instruments
that measure the particle distribution functions, such as the Fast Plasma Investigation

(FPI) on MMS, have logarithmically-spaced energy bins, meaning A3v is not a constant and
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cannot be pulled out of the summation that leads to the first term in Eqs. 2 and 6. We
now follow the same procedure as for Equations 1-6, deriving the combinatorial form of .S,
and Sy but with the velocity-space bin size represented by Awvy to indicate it is different for

every velocity-space cell. Focusing on the velocity-space entropy, we obtain
Sy = ZkB { n(r;)A%rIn [n(r;) A%

_ Z 7’37’Uk A TA?’Uk In [f(’f’j, Uk)]) (14)

— Z (rj, ve)A 3rA3v, In (A37"A3 )]}

Now we split the A3rA3v, pairs, bringing the constant A3r outside of the summations,

let Sy =5 ; sy A3r, and take the limit of small velocity-space bin sizes to get
sy =s+kpnlnn — kg / dPv(v)f(v)In [dPv(v)], (15)

where we write an explicit dependence of d®v on v, and s is the entropy density from Eq. 7
with d3v replaced by dv(v). This is the generalization of Eq. 6 for the case of non-uniform
velocity bins. From here onward, when we are developing the theory, the velocity-space
element will be referred to as d®v(v), but for discussions of the theory, which applies to
satellite instrumentation, we will refer to it as A3v,. If A3v, were constant, it could be
pulled out of the integral and the resulting —nIn(A3v) combines with the second term to
recover Eq. 6.

To calculate M, we replace A%v with A%y, in Eq. 10, take the limit of small bin size,
substitute the result and Eq. 15 into Eq. 12, then simplify to get

—_ su—s—kp [ d*v(v)In[dv(v)][fu(v) = f(v)]

M = . 16
sy + kpnlnn — kad3 )In [d3o(v)] far(v) (16)

Substituting Eq. 9 into the denominator and factoring out %/{;Bn gives
o Wp = 2/@n) [ do(v) @) i (v) = (V) -

1+ In(2rkpgT/m) —2/( 3n ) [ o(v)In[dPo(v)] far(v)

Note that the densities of f(v) and fy;(v) are equal by definition. This means that if A3y

were constant, the final term in the numerator of Eq. 17 would vanish and the third term

2/3

in the denominator would reduce to —In(A3v)%3, which recovers Eqgs. 11 and 12.
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The prior expressions are valid regardless of the velocity space grid sizes. Here, we derive
expressions for spherical energy space coordinates that particle detectors use. For the case

of MMS-FPI, an additional step is needed; the particle energy E is normalized via

E

U= ———
E,+ E’

(18)

where FEj is a constant used to bound the energy integration limits of the distribution
function between 0 and 1 (more on this in §IIT A). To perform the coordinate transformations,
we assume a non-relativistic system and follow the notation of Moseev and Salewski . First,

we establish the relationship between v, F, and U:
[2F p dE
v = _— v =
m V2mE

Vo [ [T oo JB
SV m V1-U a 2m \/U(1 — U)3/2
EyU

E
E=1"F dE = ﬁdU
Next, we find the Jacobians of the transformations as
oy yve i = det | 25208 | — o2 dpd() (19)
o vy weso g = det | Zetusd | — n;/j? VEdEdQ (20)
Towvgwesany = det | Zetsd | — /2 <%>3/2 %d(]da, (21)

where d2 = sin0dfd¢ is an element of solid angle in velocity space, and ¢ and 6 are the
azimuth and polar angles, respectively.
These relationships can then be used to transform the kinetic entropy equations into

spherical, normalized energy coordinates. Starting with the Maxwellian distribution (Eq. 8):

[ . 2
fu(e,0,U) = m <@>3 1E_0(?] exp - (\/ﬁsmegj? — \/%Tnux)
- (\/%Sm Q;;HTqﬁ - \/;muy)z (22)

2

exp

exp

10
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where fy; has been written such that n = [ f;,dUdQ). Next, we do the same for Equations 7,
15, 16, and 17 to get:

B\ JT
S= k3 (E) / Tl (0.0.0)m(f(0.0.U)] dUde (23)

—U)3/2
()]

sy =s+ kpnln

(24)
E 3/2 \/U \/U
— kpV?2 (ﬁ) / (EGTE In iz U)5/2dUdQ f(6,0,U)dUdS
i — _ Su— 5= &bk [UAUAQ In (UAUAQ) [far(),0,U) — f(6,60,0)] .
sy —kpn[lnn — &1 (&)] — ks [UAUAQIn (UAUAQ) far(¢,6,U) (25)
o Mier = 55 () [ 2 n [ U] (6.6, U) — £16.0,0)) dUdo o)

1+1In (‘”gM) — () [ T [( VU dUdQ} Far(6,0,0)dUdQ

3n \'m 1-U)5/2

We made the substitutions & = /2 (%)3/2 and U = % in Eq. 25 to save space and we
continue to suppress the dependence of the distribution function on r. An additional note
is that if the roles of v and r were switched, one could arrive at a position-space entropy
density that is local in velocity space and its equivalent expression for non-Maxwellianity.

We do not pursue this line of thought on practical grounds.

III. DATA
A. MMS

Kinetic entropy and non-Maxwellianity are explored using data from the Dual Electron
Spectrometer (DES) from the Fast Plasma Investigation (FPI)™" on the MMS mission'".
DES measures the full 3D electron distribution function every 30 ms in burst mode. We
integrate the distribution using the new theory of §II B to calculate kinetic entropy param-
eters. For consistency in results (e.g., calculations of sy, using Eq. 9 vs. Eq. 7 with Eq. 8),
we perform our own numerical integration of the distribution function for both the kinetic
entropy parameters and the plasma moments using the method prescribed by the FPI team.
This involves 1) removing photoelectrons generated by sunlight entering the instrument

aperture, 2) correcting for the spacecraft potential that acts as a barrier to cold particles
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and changes the energy of incoming plasma, and 3) preconditioning the distribution, which
entails normalizing the energy range according to Equation 18 and extrapolating the ¢, 6,
and U integration limits so that ¢ is cyclic, f ranges from [0, 7], and U ranges from [0, 1].
The value of Ej, conditions for energy extrapolation, and energy integration limits are pro-
vided in the metadata of the official DES moments files available through the MMS Science
Data Center". Finally, trapezoidal integration is performed in spherical, normalized energy
coordinates.

In addition to DES data, we also make use of the FIELDS instrument suite ', which con-
tains the Fluxgate Magnetometer (FGM) " and the Electric Field Double Probes (EDP) "
instruments that measure the magnetic and electric fields, respectively. Vector data is
displayed in the LMN boundary normal coordinate system obtained via a minimum vari-
ance analysis of the electron bulk velocity (MVA-V,) within the EDR”""*. In this system,
é;, points along the Earthward exhaust, éy points North toward the inflow region, and
ey = én X ér points along the reconnecting current. This coordinate system results in a

reliable reconnection rate

B. Event Overview

Measurements from July 11, 2017, around 22:34:00 Universal Time (UT), are shown in
Figure 1. The MMS satellites " were embedded in the central magnetotail plasma sheet,
as indicated by the hot, dense ion and electron populations in Figure 1b,c,d. As MMS3
traversed the plasma sheet from the Southern to the Northern hemisphere, it observed
a rotation of the reconnecting magnetic field By (Fig. la), a reversal of an ion jet V;
(Fig. le), and a reversal of an electron jet V., (Fig. 1f), indicating that MMS crossed
from the earthward to the tailward exhausts of a reconnection site. Hall electric fields En
(Fig. 1g) signal the separation of charge within the ion diffusion region. The strong out-of-
plane electron flow V, s co-incident with the electron jet reversal was found to be caused
by accelerated, meandering electrons accelerated by the reconnection electric field F,; in
the EDR. The EDR is further identified by the departure of the perpendicular electron bulk
flow from the ExB drift velocity, indicating a violation of the frozen-in condition™. Farther
into the tailward exhaust, MMS encountered electron-scale vortices”” within ion-scale flux

ropes’ " (not shown) associated with a turbulent exhaust structure.
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FIG. 1. MMS encounter with an electron diffusion region™. (a) Magnetic field components and
magnitude, (b) ion and (c) electron energy spectrograms, (d) electron number density, (e) ion and
(f) electron bulk velocity, and (g) electric field components. Data is shown in the LMN-coordinate

system of Nakamura et al.””

The EDR for this event has been studied extensively. Some of the primary conclusions

from previous studies were that this symmetric magnetotail reconnection event with weak

39,51

guide field is characterized by a 2D, laminar process’’', the normalized reconnection rate

EE R

was 0.1-0.227%°%

290 the structure of the X-line is supported by electron nongyrotropy ™",
and electrons are accelerated to super-Alfvénic velocities after spending at least three gy-

roperiods in the current sheet”. In addition, Torbert et al.” describes a x2 calibration
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factor that has been applied to the ion velocities in Figure le. For more detailed analysis of

this event, readers are referred to the cited papers.

C. Simulation

The observed reconnection event was nearly symmetric and reasonably laminar, and
previous studies employing 2.5D PIC simulations have shown good agreement with the
observations™ """, We therefore also employ 2.5D PIC simulations to compare with the
observations. We use the massively parallel PIC code P3D"", where particles are stepped
forward in time using the relativistic Boris particle stepper’” and electromagnetic fields are
stepped forward using the trapezoidal leapfrog method""; the fields can have a smaller time-
step than that of the particles. P3D employs the multigrid approach to clean the electric
field, E, to enforce V - E = p/ey, where p is the net charge density, every 10 particle time-
steps. We employ periodic boundary conditions in both directions with a large enough
computational domain that the boundaries are not expected to play much of a role in
the region of interest at the time examined. A motivation for choosing periodic boundary
conditions over open ones is to see if the local kinetic entropy densities obtained in a closed
system are representative of the local kinetic entropy obtained in the (open) real system.

The initial setup of the simulation has two Harris current sheets (CS) and a uniform
background (BG) plasma population for which the density npq and temperature T g for
species s (either e for electrons or i for ions) can be chosen independently from the Harris
sheet parameters. The initial magnetic field profile is B (N) = By[tanh [(N — Ix/4)/wo] —
tanh [(N — 3lx/4)/wo] — 1], where By is the asymptotic reconnecting magnetic field far up-
stream, wy is the half-thickness of the current sheet and [ is the width of the computational
domain in the éy direction. Initially, the electrons and ions in the Harris sheets have the
same density profile, nog(N) = ng (sech® [(N — Iy /4) /wo] 4 sech® [(N — 31y /4) /wo]), where
no = B2 /[87kp(T.cs+T;cs)] and Ty cs are the temperatures of the current sheet population
for each species.

For the plasma parameters in the simulations, we employ the same values used by Naka-
mura et al.”” The upstream (lobe) magnetic field is By = 12nT and the density at the center
of the initial CS is ng = 0.0896 cm™3. The electron CS temperature T, cs = 1.0563keV =
0.125T, and ion CS temperature T;cs = 3T, cg, where Ty = m; V3, /kp = 8.424keV and

14
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Vaio = 875km/s is the Alfvén speed based on ny and By. The background (lobe) elec-
tron temperature T, gz = 0.351keV = 0.041677, and the background ion temperature
T e = 3T, pa. The BG density is npg = 0.0296 cm ™3 = 0.33ng. These parameters result
in an upstream electron Debye length of Ap, = 0.018d,y = 1.37 x 10* m, and upstream total
beta of g = 0.11.

The speed of light ¢ is 1.75 x 10* km /s which is smaller than that of Nakamura et al.”” but
is sufficiently larger than other speeds of our system. The initial current sheet half-thickness
wy = 456 km = 0.6 d;p, where djp = ¢/wpio = 760km is the ion inertial length based on ny,
wpio = (noe?/ €om;)'/? is the ion plasma frequency, and e is the proton charge, which is the
same as in Nakamura et al.””. The electron to ion mass ratio is m./m; = 0.01 which is
larger than in Nakamura et al.”” and is a factor of 18.36 larger than the realistic value. This
means the electron-to-ion inertial length ratio in the simulations is a factor of 4.28 larger than
the realistic length ratio. This difference will be noted while drawing comparisons between
observation and simulation results, but we do not expect that electron scale properties of
the reconnection region are altered when properly normalized to a realistic value.

The length of the computational domain is I;, = 2.66 x 10*km = 35d;, and its width is
Iy = 1.33 x 10*km = 17.5d;y. The system size is smaller than that of Nakamura et al.
but since the focus of our study is a trajectory which passes very close to the electron
diffusion region, a smaller system size is sufficient; our system size is not large enough for
ions to fully couple to the reconnected field downstream of the X-point, but this is not
expected to affect dynamics at the electron scale that are the focus of this study. The
grid-length A in both directions = 6.5km = 0.008545 d;o, which is chosen to be smaller
than the smallest length scale of the system (the electron Debye length). The time-step
At = 0.652ms = 0.00075Q, is chosen to be smaller than the smallest time scale of the
system (the electron plasma frequency), where €2 is the ion cyclotron frequency based on
By. The time step for electromagnetic fields is half of that for the particles. There are
4096 x 2048 grid cells which are initialized with 100 weighted particles per grid (PPG). To
initiate reconnection, an X point/O point pair are seeded in both current sheets using a
weak magnetic field perturbation of the form §B; = —0.08 By sin (27 L/l;) sin (47N /lx) and
dBNn = 0.08By[ln/(2l)] cos (2w L/lL)[1 — cos (47N /ly)].

Kinetic entropy is calculated in the simulations employing the implementation from Liang

et al.~~ with one noteworthy difference. The velocity-space grid scale Awv; for ions and Aw,
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for electrons was imposed to be equal to each other in previous works ~“". In the present
study, we allow Awv; and Awv, to be chosen independently. Moreover, this study employs
two populations in the initial Harris sheet profile, compared to a single drifting Maxwellian
distribution in previous works. Therefore, we optimize the velocity-space grid scale analo-
gously to the previous works, but specifically check the agreement between kinetic entropy
density calculated by the simulation and the theoretical value in both the background plasma
and the current sheet center simultaneously. We calculate the kinetic entropy density for
each species in the simulations with varying velocity-space grids in order to find the optimal
velocity-space grid scale at t = 0. This is an important step because if the velocity space grid
is too small, the distribution is over-resolved, meaning there is not a statistically significant
number of particles per grid cell. Meanwhile, if the grid size is too large, the distribution is
under-resolved and important structures are lost. (See §V for a detailed explanation.) The
kinetic entropy density for either species is given by Eq. 7 with f = fos + fBa, consisting of
both the current sheet and background populations at ¢ = 0. Since these integrals cannot
be done analytically, we carry out these integrals numerically. After we choose a (Cartesian)
velocity-space grid scale for electrons, we numerically compute the entropy and compare
it to the theoretical value. This results in agreement to within 1% in the upstream re-
gion and +2% at the center of the current sheet. The optimal velocity-space grid scale
for each species is 60 — 65% of the smaller of the background and current sheet thermal
speeds. For electrons, each velocity-space direction is binned from (—1.67,1.67) x 10* km/s
=(-18.71, 18.71) V4;o with 22 bins of size Av, = 1.48 x 103km/s=1.7005 V. For ions,
the binning range is (—7.34,7.34) x 10* km/s=(-8.38, 8.38) Vi;o with 54 bins with bin-size
Av; = 2.72 x 10% km /s=0.3105 V9.

Previous simulation studies””"" employed a look-up table similar to the one discussed in
§IV A to calculate the Maxwellianized entropy sp;. A look-up table for the simulation is
advantageous because the simulated plasma has PIC noise while the analytical expression
does not. Using raw density and temperature values with an analytical expression for the
Maxwellianized entropy leads to disagreement with the theoretical value. The look-up table
allows comparable amounts of error in the simulated and theoretical values, which improves

the agreement with theory.

For the present study, we find that unlike in Liang et al.~, the results for s;; when using

a look-up table are significantly different than when not using one. The reason for the dis-
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agreement is mixing between macroparticles of different numerical weight; previous studies
employed a look-up table that assumed the weights were the same for all macroparticles. As
macroparticles of different weight mix, the look-up table becomes less accurate. This could
be addressed by including a third axis of the look-up table to incorporate particle weight,
but that is not undertaken for the present study. We therefore directly calculate s,; to get

simulated values of the non-Maxwellianity parameters.

The simulation results we present are carried out with no initial out of plane (guide)
magnetic field B,. It is important to put this choice in the context of previous numerical
simulations of the observed event that employed a weak initial guide field””"". We perform
and compare results from test simulations with and without a weak initial guide field of
B, = —0.36 nT = —0.03B8y. Figure 2 shows 2D plots of the out-of-plane magnetic field
component By, where the X-line is located at (0,0) and the separatrices are the black
curves. In the presence of the weak guide field (Fig. 2a), we find that By, has a value of
about —0.6 nT = —0.05 Bj in the vicinity of the EDR. This is not seen in MMS3 data
(see Figure 4e; By, does not become appreciably negative in the shaded region). In our
simulations without an initial guide field (Fig. 2b) we find that B, is again negative in
the vicinity of the X-line along the virtual spacecraft trajectory marked by the thick black
curve, but has a smaller value of —0.24 nT = —0.02By, closer to the MMS3 observations.
We find no comparable virtual trajectory in the simulation with an initial guide field that
reproduces the signature of Bjs observed by MMS3, so we use the B, = 0 simulation for
this study. Egedal et al.”" also used a guide field weaker than that of Nakamura et al.”” for

similar reasons.

Finally, we note that the virtual spacecraft trajectory is selected from a set of possible
trajectories, chosen by eye (as opposed to using more systematic approaches to determine
the trajectory’»”"""). The selected trajectory is one which produces qualitatively similar
trends of magnetic field and electron flow speeds when compared with MMS3 observations.
We do not anticipate significantly different values by employing more systematic approaches.
In what follows, all plots are made from the lower current sheet at the simulation time of

23.4s = 27, when the system has achieved a steady-state reconnection rate (not shown).
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FIG. 2. Out of plane magnetic field By from simulations (a) with and (b) without an initial guide
field of B; = —0.36 nT = 0.03By. The separatrices are thick black curves and the thick black line

in (b) is our selected virtual spacecraft trajectory.

IV. RESULTS

A. Maxwellian Look-up Table

In order to compute the non-Maxwellianity of a measured distribution f(v), it must be
compared to its associated Maxwellian —a Maxwellianized distribution fy;(v) of the form
Eq. 8 with the same density and temperature as the measured distribution f(v). (The
bulk velocity need not be calculated because it does not factor into Eqgs. 6 or 7.) For a
continuous, analytical function, the density and temperature of fy/(v) are defined to be
equal to those of f(v). However, the distribution function f(¢,6, F') measured by particle
instruments is discrete, not continuous, and is in spherical energy coordinates, not Cartesian
velocity coordinates. These differences introduce numerical errors into calculations involving
the distribution function. Namely, the computed value of the Maxwellian kinetic entropy
density, s,s, can be less than the kinetic entropy density calculated directly from MMS data,
s. Given that s,; is the maximum entropy density for a fixed number of particles and total
energy, s); < s is unphysical..

To create a Maxwellianized distribution, we write fj; (Eq. 8) in spherical velocity coor-
dinates. We then calculate fy/(¢, 8, v) at the same azimuth, polar, and velocity bin centers
as FPI and transform it to fy(¢, 0, U) using the steps outlined in §III A. In this way, the
Maxwellian distribution is treated the same as the measured distribution. The result is

Equation 22.
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Numerical errors between the measured distribution and its associated Maxwellian
prompted us to create a Maxwellian look-up table for the MMS observations. We start
by determining the range of observed densities and temperatures for the event. Then, we
create our look-up table coordinates n;,; and T, on a 2D grid in density- and temperature-
space that spans the observed ranges. For each value of n;,; and T}, in the look-up table,
we use a Monte Carlo approach to generate a Maxwellian distribution governed by Eq. 22
with u = 0, giving fu(¢,0,U) at each nyyy, Ty This constitutes the Maxwellian look-up
table. We note, however, that for any fu(¢,60,U) in the look-up table, its numerically
integrated density n,; and temperature Ty, are not necessarily equal to the ny,; and Ty,
used to produce it due to the coordinate transformations, discretization, and extrapolation
that fy; underwent.

Figure 3 shows the percent error in (a) density An/n = (ny; — nar) /M X 100% and (b)
temperature AT /T = (T — Tar) /T X 100% as a function of the look-up table coordinate
Ty during the EDR encounter on 2017-07-11" (§III B, Fig. 1). Errors in both density and
temperature are independent of density. Absolute errors in density are greater than 6.4%
for low temperatures and decrease monotonically and non-linearly to 1.9% with increas-
ing temperature. Similarly, absolute errors in temperature reach a maximum of 2.9% at
400 eV then decrease non-linearly to 1.1% at the upper limit of the temperature range. The
negative (positive) sign on the relative errors for density (temperature) indicates that the
Maxwellianized distribution consistently has a higher density and lower temperature than
the look-up density and temperature.

Adjustments in the look-up table method reduce the errors between the observed and
associated Maxwellian parameters. During the EDR encounter, the observed density and
temperature are used to look up the associated errors from Figures 3a,b, which are then
plotted as a function of time in Figures 3c¢,d (blue). To reduce the errors, instead of selecting
far at the grid point (ng., 1) that is closest to the observed values (n, T'), we select fu

at the grid point (n},,, T},,) that minimizes \/(An/n)2 + (AT/T)2. These adjusted results

are plotted in orange. While still noisy, the adjusted look-up values for ny, and T, result
in errors that are on average zero.

The effect of these adjustments on measures of kinetic entropy are shown in Figures 3e,f.
Because the Maxwellian distribution has the highest entropy of any distribution with the

same total number of particles and internal energy, it should be true that As/s < 0 and
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FIG. 3. Maxwellian look-up table illustrating the numerical errors introduced by coordinate system
transformations and how it is used to correct for those errors. (a) Density and (b) temperature
look-up tables relating the observed density and temperature to those of the equivalent Maxwellian
distribution. The error as a function of time during the period of interest for (c) density, (d)
temperature, (e) entropy density, and (f) velocity space entropy density without (blue) and with
(orange) using the look-up table. Look-up table results are validated by calculating the total

entropy analytically using Eq. 9 (the green curve in panel e).
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Asy /sy < 0. This is the case for As/s but not for Asy/sy. After adjusting the look-
up table method (orange curves), Asy /sy < 0 at all times, but As/s > 0 at times near
22:34:03. Both s and sy were calculated by integrating f(¢,0,U) and fy(¢,0,U) using
Eqgs. 23 and 24. We also compute s, via Eq. 9 using n and T" from the official FPI moments
and compare it to the observed s. This is the green curve in Figure 3e; it matches with our
adjusted values of As/s, which serves as validation of our methodology. The reason s gives
unphysical values is because, unlike sy,, s does not contain information about the velocity
space grid scale. This is just one of several reasons” that sy is a better choice for studying

kinetic entropy; we will discuss this further in §V.

B. Comparison between Observations and the PIC Simulation

Figure 4 shows a comparison between observations (left) and the PIC simulation (right) in
the same format as Figure 7 of Nakamura et al. ”” MMS3 passed closest to the reconnection X-
line and its data is plotted during the 5 second interval starting at 22:34:00 U'T because this is
the time interval surrounding the EDR most commonly shown in previous studies” >~
In this study, we focus on the electron entropy in and immediately surrounding the EDR
in the subinterval from 1.95s to 3.315s, which is highlighted by the gold box in the MMS
panels. Since the structure velocity is V, = —170km/s and the electron inertial length is
de = 30km™, the spacecraft traversed a distance of 7.7 d, during this time.

The corresponding path of the virtual spacecraft trajectory through the simulation is
5.3d;y = 30.64 d. long, where (no) subscript 0 indicates that the (current sheet density, ng)
upstream density was used. This would correspond to a path length of 7.1 d, in a simulation
with a realistic mass ratio (with m, 18.36 times lighter), which is nearly the same as the
path length in the observations. The data is taken at a single time after the simulation has
reached a steady state. We include simulation results both in normalized units (left vertical
axis) and physical units (right vertical axis), the latter of which allows for a quantitative
comparison with the MMS data.

Quantitatively, the density (Fig. 4a,b); electron temperature anisotropy A = T¢ /T, —1,
where T, | and T, | are the electron temperatures parallel and perpendicular to the magnetic
field (Fig. 4c,d); and magnetic field (Fig. 4e,f) are similar between observations and the

simulation. The electron bulk flow (Figure 4g,h) has similar structure but is smaller in
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the simulation by about a factor of 4; this is because the simulated electron mass is 18.36
times larger than the realistic value, so the electron Alfvén speed is 4.28 times smaller. The
electric field components in the simulation reference frame E and in the electron rest frame
E’ (Fig. 4i-n) all have similar profiles to the observations, but the L and N components are
about 2 times smaller in amplitude in the simulations than in the observations. Similarly,
the rate of energy conversion between the electric field and the electrons (Fig. 4o,p) is a
factor of about 4 lower in the simulations. We note that there is good agreement in the
normalized simulation values and those presented in Nakamura et al.”” (see their Figure 7),
so the quantitative differences with the observations seen here are consistent with previous
studies. The overall agreement between the simulation and observations gives us confidence
in our comparison and interpretations of entropy that follow (§IV C).

Some differences in density visible in Figure 4a,b can be attributed to the trajectory
of the virtual spacecraft through the simulation EDR. Along the trajectory, the density
profiles both increase, but the simulation profile exhibits a local minimum not present in
the observations. The density profile along a vertical cut through the EDR has a double
peak with the peaks appearing just upstream of the X-line at the turning points of the
meandering motion"". If our virtual trajectory began closer to, but still below, the central
current sheet and sloped gently downward, the density profile would gradually increase as
in the observations. However, the qualitative agreement between the fields and flows just
described would suffer. We choose to keep this trajectory because of the importance of
B and V. to reconnection. We will revisit this issue when comparing entropy in the next

section.

C. Kinetic Entropy: Application

We now compare observations and simulation results of kinetic entropy parameters along
the satellite trajectory to a) determine if local kinetic entropy measurements in a large, open
system can be interpreted in a similar manner to those of a closed system and b) draw a link
between kinetic entropy and the dissipation processes of reconnection. Figure 5 again shows
the virtual satellite trajectory through the simulation domain during the gold highlighted
interval, as well as a 2D snapshot of M from Eq. 12. We then plot total and velocity-space

entropy densities s and sy along with their associated Maxwellianized values sy, and sy,
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FIG. 4. Comparison between MMS observations (left) and a PIC simulation (right) of a magnetotail
EDR encounter. MMS observations are shown over an extended region to provide context and
comparison to previous results (see text). The gold rectangle highlights the EDR and region of
overlap with simulation. Comparisons are made between (a,b) electron density, (c,d) electron
temperature anisotropy, (e,f) magnetic field, (g,h) electron bulk velocity, (i-n) electric field in the
spacecraft and electron rest frame, (o,p) total and M-component of the rate of energy conversion
between the electric field and the electrons. Simulation data is shown in real units (right-axis) on

the same scale as MMS observations with thg%xcep‘cion of panel (p), which is much smaller in

magcnitude. Overall. observations and simulations are in qualitative acreement.
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and the non-Maxwellianity measures M and My p from both MMS (left) and the simulation
(right) in the same format as Figure 4. We note that s and s;; do not have real units on
the right-axis because the units are not physical””. From 22:34:00-1.95 (the left-edge of the
gold box), MMS3 made a brief excursion into the inflow region” where entropy reaches a
maximum during the separatrix crossing and a minimum at the furthest excursion. During
the same interval, the non-Maxwellianity peaks in the inflow region, a characteristic that has
been noted in previous simulations of reconnection”’ . That non-Maxwellianity peaks outside
of the regions where energy is being dissipated will be discussed below in the context of the
electron distribution functions.

As MMS3 enters into the EDR (the gold box), passes southward of the X-line, and exits
into the tailward exhaust, entropy density gradually increases in the observations; however,
in the simulation, entropy density has a U-shaped profile with a minimum below the EDR.
As expected from Eq. 9, these traces have the same overall structure as the density profiles
in Figure 4a,i.

The non-Maxwellianity measure Mg p (Eq. 11, Fig. 5d,g) is computed using both s (Eq. 7,
blue) and sy (Eq. 15, green). The MMS observations result in unphysical values within the
EDR of the electron Kaufmann and Paterson non-Maxwellianity Mg ps.e based on s, where
it becomes negative. The Maxwellian distribution should have the highest entropy of any
distribution with the same number of particles and energy, so Mgp. should be positive.
The reason My Ps,e 15 negative will be explained in §V. In contrast, the electron Kaufmann
and Paterson non-Maxwellianity Myp,, . using the velocity space entropy density sy is
always positive, consistent with theoretical constraints.

The other non-Maxwellianity measure M (Fig. 4d,g, orange) is computed using the ap-
propriate version of Eq. 12 for MMS and the simulation. It is smaller in magnitude than
My p because its normalization term sy ensures that M is bounded to the range [0,1] for a
properly defined velocity space grid~". When comparing observations to simulations, both
M and Mg p have similar shapes within the EDR despite the fact that s and sy are differ-
ent. In addition, both values of M are more similar in magnitude than the values of Myp.
This implies that the local measure of kinetic entropy density sy as measured in the closed
simulation can be interpreted in the same manner as it is in the large, open magnetotail

system by MMS.

Now we relate kinetic entropy measurements to various kinetic processes that occur dur-
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FIG. 5. Kinetic entropy and non-Maxwellianity in an EDR and their relationship to structures in
the distribution function. (a) 2D plot of electron non-Maxwellianity M, in the PIC simulation, the
virtual satellite trajectory through the EDR, representative magnetic field lines, and the location
of the EDR distribution in panel o, marked by an “x”. (b,f) Total and (c,g) velocity space kinetic
entropy density for the measured (orange) and Maxwellianized (blue) distributions. (d,h) Kauf-
mann and Paterson non-Maxwellianity My p using total (blue) and velocity space (green) entropy
density. (e,i) Velocity space non-Maxwellianity M (orange). For (b)-(i), MMS data is in the left
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ing reconnection by examining the electron distribution functions in the MMS data (Fig. 5j-1)
and the PIC simulation (Fig. bm-o) at the times and locations indicated by vertical dashed
lines in Figures 5b-i and by the “x” in the EDR of Figure 5a. The simulated distributions
are on a different scale; as noted, multiplying the axes by \/W%KLB will give the proper
ranges for a real mass ratio simulation. The two simulated distributions corresponding to
the MMS observations outside the EDR were taken from representative upstream locations
in the simulation. The first distribution (Fig. 5j,m) is taken from the Earthward exhaust
after the electrons have re-magnetized and become mostly Maxwellian. The second distri-
bution (Fig. 5k,n) is from the inflow region where parallel potential structures generate a
temperature anisotropy”"". Here sy is lower, but the non-Maxwellianity is relatively large.
The third distribution (Fig. 5l,0) is from the heart of the EDR where meandering motion
in the current sheet creates crescents and striations’””"". Here, the non-Maxwellianity
is intermediate between the inflow and Maxwellian distributions. That regions of elevated
non-Maxwellianity in the MMS observations can be related to kinetic processes during recon-
nection is consistent with previous numerical simulations” and motivates the utility of the
entropy-based non-Maxwellianity measure as an indicator of kinetic-scale energy conversion

and dissipation processes that occur during reconnection.

V. INFORMATION LOSS

The differences in non-Maxwellianity measures demonstrated in Figure 5 come about
because of subtle differences in the combinatorial and semi-continuous forms of entropy
derived in § II. In the combinatorial form of entropy, we break up phase space into bins of
size A3rA3v and count the number of arrangements of particles within each bin. There is a
direct relationship between the number of particles and the grid scale that becomes apparent
when the bins become too small and Stirling’s approximation is no longer valid. In the semi-
continuous form of entropy, we coarse-grain phase space and represent the system of particles
with a distribution function, tacitly assuming that our choice of grid sizes is appropriate and
that the statistics in each cell are sufficient. In practice, however, there is no way to ensure
this assumption holds for every distribution of particles that we encounter. As a result of
the assumption, we lose the connection between the distribution function, the grid size, and

the actual number of particles within each bin. Two important consequences are that 1) the
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definition of total entropy density s defined in Eq. 7 lacks information connecting the grid
scale A%y to the number density n of particles within each cell and 2) the total Maxwellian
entropy density, sy, defined in Eq. 9, lacks information connecting the grid scale A3v to the
thermal velocity of the distribution vy, = \/m. This missing information results in
unphysical values for Mgp in Figure 5d. The definition of sy adds that information back
in, as represented by the n(r)/A3v in the first term of Eq. 6, and by the v2, /(A%v)?/3 factor
in the result for sy (Eq. 10). As a result, Mgp., is positive definite. The dependence on
A3y serves to regularize Myp to give M and is present in the denominator of Eq. 13 that
relates the two non-Maxwellianity measures™ . We interpret the denominator as the amount
of “information” lost when a grid scale is imposed on velocity space, and we investigate it
further here.

As a demonstration of the effect of the course-grained, non-uniform velocity-space grid
on the distribution function, we return to the discussion of why My ps.e < 0 within the EDR
but Mgps, . is always positive (shown again in Fig 6f,g). Looking at the final term of sy in
Eq. 15, we see a correction due to the non-uniformity of the velocity-space grid. This means
that, in the computation of s (Eq. 7), non-Maxwellian structures in the EDR are weighted
more heavily by the non-uniform velocity space bins than the associated populations in the
Maxwellianized distribution. By including the correction term, M KPsy.e > 0 throughout
the interval, as it should be on theoretical grounds.

To quantify the information loss as a result of discretizing velocity space, we write the

expressions for M for the MMS and simulation equations in the form
M = R(Mgp + Be,), (27)

where B,, is a bias and R is a regularization factor that arise from course graining velocity
space; in the simulations with a uniform velocity-space grid, B, = 0. Figure 6 shows the
information loss for the MMS data (Eq. 17), which has non-uniform velocity-space bins.
The first two MMS panels (a,b) show s and sy for the measured and associated Maxwellian
distributions for context. Panels (c-e) plot B,,, R, and RB,,, and panels (f-h) contain Myp
(Eq. 11) and M (Egs. 16 and 17) to facilitate understanding where the information loss
leads to issues in the calculated values of non-Maxwellianity.

The bias term B,, significantly departs from 0 within the EDR; this is also where Mp <

0. For comparison, M > 0 in the same region. The reason is that the correction for non-
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FIG. 6. Analysis of information loss as a result of coarse graining velocity space in the MMS
observations. (a,b) Total s and velocity space sy entropy densities in the same format as Fig-
ure 5b,c. (c) Bias By, (d) regularization R, and (e) their product. non-Maxwellianity terms (f)

M p calculated using s and sy, and (g) M calculated from Equations 25 and 26.

uniform velocity-space grid in sy propagates into B.,. Given that

Buy= o [ o) [o()] [fuv) ~ ()], (23)

and noting that the density of the observed and Maxwellianized distributions are the same,
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it is the In [d®v(v)] factor that weighs the measured non-Maxwellian distribution structures
present in the EDR more heavily than the associated populations in the Maxwellianized
distribution. By correcting for the non-uniform velocity-space grid, B., makes M > 0.

The regularization term R serves to scale Myp into the range [0,1] so that M is nor-
malized for an appropriate velocity-space grid size’' (Fig. 6g). From Equation 17, the

regularization term Ry;pr¢ for MMS observations is

27rk;BT> 2 -1

2 / Po(v)In [E*o(v)] fu(v)| (29)

Ryvs = {1 +1In ( -
3n

m

which contains the natural log of the thermal velocity vy, = \/2kgT/m and the Maxwellian-
ized distribution weighted by the natural log of the bin volume. When d®v(v) is uniform,

we recover the regularization factor for a uniform velocity-space grid (Eq. 13, §II):
Rsim = (1 +1n [vah/(A?’v)Q/g])_l . (30)

The simulation regularization factor is plotted in Figure 7a as a function of distance along
the virtual spacecraft trajectory. As seen in Figure 5g, M is normalized in the simulations
such that its magnitude is similar to the observations.

Together, R and B,, represent the amount of information lost by coarse-graining velocity
space. B., depends only on the uniformity of the velocity-space grid, while R additionally
depends on the relative size of the velocity-space grid scale and the thermal speed
Consequently, it can be different for ions than for electrons. This has implications for
satellite missions like MMS that study dissipation processes, as discussed further in the next
section.

To better understand the dependence of information loss on velocity-space bin size and
the plasma environment being sampled, Figure 7b shows contours of Rg;,,(Av, vy,) on a log-
log scale. Information loss is minimized when Mgp = M, or when Rg;,, = 1 (green line); it
occurs where Av = /vy, and will be discussed in greater detail in the sections that follow.
When Av < /7oy, the distribution is over-resolved and there are too few particles per
bin. When Av >> /7vy,, the distribution is under-resolved and important structures can be
lost. In both of these limits, R — 0 to compensate for Myxp — co”'. Another critical point
is Av = y/mevy,. There, R — 400 indicating that M — +oo while Mgp remains finite.
This is because the choice of grid scale makes sy, — 0 such that the observed distribution

appears to be infinitely far from equilibrium.
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FIG. 7. (a) Variations in the regularization term variation as a function of distance along the virtual
spacecraft trajectory. (b) Contours of the regularization term R as a function of thermal speed vy,
and linear velocity space grid scale Av. Black dashed lines show the optimized bin size from Liang
et al.”*, dash-dotted and solid lines show the optimized bins with respect to the background and
current sheet populations, respectively, for our simulation. Data for ions and electrons are shown

in blue and red, respectively. Diamond data points show the logarithmically-spaced velocity space

bins used in MMS instruments.

In the PIC simulation presented here, the way we choose our velocity space grid-scale is
described in §IIT C. The black dashed line represents the approximate ideal velocity-space
grid size from Liang et al.”* The dashed lines are the optimal velocity-space ion (blue)
and electron (red) grid sizes for the background (dotted) and current sheet (solid line)

populations used in this study. The difference between these lines and the line Rg;,, = 1 is

30



Kinetic Entropy in an EDR

discussed below. Because the bin spacing is uniform, the grid scale falls on a line of constant
Rsim.

For comparison, the MMS ion (blue) and electron (red) velocity-space bin sizes are shown
in diamonds for the average thermal velocity ((vi,;) = 973km/s and (vi, ) = 14,997km/s
with (T;) = 4943eV and (T.) = 638¢V) within the EDR. Because of the non-uniform grid
spacing, each bin suffers from a different amount of information loss. The ion bin sizes
are somewhat evenly spaced around Rg;,, = 1 and overlap with the ideal simulation grid
sizes. The smallest bins overlap with the optimal velocity-space grid size in the simulations
but correspond to energy channels far below the bulk ion energy (Fig. 1b). Meanwhile, the
majority of electron bins over-resolve the distribution and none reach the line of Rg;,, = 1.
The highest energy bins overlap with the optimized simulation bin sizes, but these correspond
to the highest energy channels and extend beyond the upper edge of the energy distribution
(Fig. 1b). This means that MMS measurements suffer from information loss for both ions
and electrons due to its non-uniformly spaced velocity-space grid and because the velocity-
space bins that overlap with the energy spectra of the plasma are either too large or too

small, so that they under- or over-resolve the distribution function.

VI. DISCUSSION

Entropy in a closed, isolated system never decreases, so it can be thought of in terms of a
system’s approach to equilibrium via the possible dissipation of energy and the irreversibility
of the processes acting within it. A simulation with periodic boundary conditions is a closed
system, so this interpretation can be directly applied to the simulated process — magnetic
reconnection in our case. However, natural systems are open. In Earth’s magnetotail, at
the smallest scales, the electron diffusion region receives energy from the upstream inflow
region, and at the largest scale the magnetotail itself receives energy from the solar wind and
ionosphere. In such cases, a measurement of entropy can no longer be interpreted in terms
of the Second Law. This has led us to investigate local measures of entropy to determine
if such quantities in closed systems can be used to help interpret measurements in open
systems.

A local measure of entropy is also beneficial because spacecraft are unable to sample all

of the accessible position space of a system, but particle detectors are designed to sample
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all of velocity space. Instead of considering the macroscopic evolution of entropy as a
system approaches equilibrium, we consider how close the local distribution of plasma is to
equilibrium by comparing it to its Maxwellianized distribution. As we have seen, the parallel
potential in the inflow region and the reconnection electric field in the EDR both do work to
organize the distribution, reducing the number of available arrangements and producing low-
entropy, high non-Maxwellianity states (see also Liang et al. ). non-Maxwellianity indicates
the degree to which a distribution is organized and, therefore, can be used to identify regions
where dissipation processes take place, like the EDR. Recent work has shown a connection
between structures in the distribution and the Vlasov equation”” and could lead to deeper
insights into non-Maxwellianity.

Information loss arises from discretizing velocity space and can be enhanced when the bin
size is not uniform. The non-uniform velocity-space grid used by FPI weights accelerated,
non-gyrotropic structures in the distribution function more heavily than their associated
Maxwellianized populations. As a result, a bias correction term appears in M. This bias
is not present when velocity bins are uniformly spaced. Additional information loss occurs
if the velocity-space bin size is not chosen properly with respect to the thermal velocity
of the plasma. This loss is enhanced with non-uniformly spaced bins and is different for
ions and electrons. For ion and electron distributions of the same shape to have the same
value of velocity space kinetic entropy, sy, = sy, requires vy, ./Ave = vy, i/ Av;. A result
of information loss is that dissipation processes cannot be accurately measured ™, and the
reversibility of dissipation processes cannot be determined. With regard to MMS, an analysis
of the generalized Ohm’s law during magnetopause reconnection revealed an unmeasured,
residual amount of dissipated energy that was unaccounted for’*. Preliminary analysis shows
an intriguing similarity between information loss and this residue term.

Information loss is minimized if Myxp = M. This occurs most simply when the velocity
space grid is uniform, making B.; = 0 and reducing the regularization term Ry/s (Eq. 29) to
Rsim (Eq. 30); and when the Rg;,, is unity, i.e., when Av = /7y, &~ 1.77vy,. This suggests
that the ideal bin size is slightly larger than the thermal velocity; however, simulations
found best agreement with theoretical values when the bin size was Av ~ 0.69v,”. The
discrepancy here is likely related to particle noise in PIC simulations, as higher numbers of
particles per grid (> 100) would lead to better statistics at high speeds.

The contour where Av = \/7vy, is associated with interesting characteristics of s, and
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syv. If Av is proportional to VT, as it is when Av = \/Tuy,, then the Maxwellian velocity-
space entropy density, sy in Eq. 10, is independent of temperature. If Av = /mvy, exactly,
then syry = %an = cyn, meaning s,y is proportional to the amount of energy required to
raise the temperature of an ideal gas in thermal equilibrium by one degree. Because there
is no free energy in either the initial or final equilibrium states, the external work used to
increase the temperature contributes directly to increasing the entropy. For this particularly
chosen grid scale, we see that Mg p = (sy — s)/sary, which is similar in form to M (Eq. 12)
and implies that sy — s = sy v — sy. Finally, Av = \/muy, is the point where the logarithm
in Rg;, transitions from positive to negative, which is a more intuitive point for indicating
that the distribution is over- or under-resolved.

Considerations for minimizing information loss have clear implications for the design of
particle instruments. In a simplified model, an electrostatic analyzer can be thought of as
a curved parallel plate capacitor. The voltage on each plate selects the range and center
energies Fj of the energy bins while the curvature of and separation between the plates
determines the range of energies AF}, of the particles that can pass through the capacitor.
For a given configuration, AE}y/FE}) is constant, meaning AFE} increases with energy. An
aperture can then be placed on the capacitor to limit the overall amount of flux into the
device, thereby determining the instrument’s geometric factor. A lot of care goes into
deciding the requirements on Ej, AFEj, and the geometric factor, but ultimately the choice
imposes a grid scale and count rate on the measured particle distribution. This means that
information loss is inherent to all measurements and that new design considerations need to
be taken into account to minimize it. The way to minimize it is to ensure that the velocity
space bin sizes, Avy = AEy/ V2mE}, does not greatly over- or under-resolve the thermal
velocity in the range of energies present in the energy distribution.

Other measures of non-Maxwellianity, including enstrophy ’, the Greco € parameter ",

and the Graham e parameter
Q= [d(f~ fw)

€Greco = \/f d3v f fM
€Graham — % fd3U |f - szM| 5

are not entropy-based and may not suffer as heavily from information loss as MKP. One rea-

son is that the In[f(v)] term in s enhances subtle variation in the distribution, similar to how
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the powers of v affect higher-order moments. Unfortunately, these other non-Maxwellian
parameters are all defined to be positive, meaning that unphysical negative values, like those
shown in Figure 5 for Mg p, are masked. While the € and e non-Maxwellianity parameters
are not entropy-based, there are approaches to calculating kinetic entropy in simulations
beyond what were described in this paper (Jara-Almonte and Ji”', and references therein).
More work is needed to quantify non-Maxwellianity and information loss using those ap-

proaches.

While reconnection transfers energy from the fields to the plasma, it is not clear if there
is an exchange of entropy between the particles and the electromagnetic fields. The fact
that the reversibility of reconnection depends on the strength of the guide field*"’ suggests
that changes in entropy are due solely to plasma dynamics. In a closed, collisionless system
(such as the simulation performed in this study) entropy is a conserved quantity; however,
simulations have shown that both total energy and kinetic entropy are conserved to within
numerical precision”, meaning that while electromagnetic energy is converted entirely into
particle kinetic energy, there is no similar exchange in entropy between the fields and the
plasma. Interestingly, as we showed in Figure 5, plasma entropy is a local minimum in
the EDR where structured distributions are found and electromagnetic energy is being dis-
sipated. This suggests that the electromagnetic fields do work to organize the inflowing
distribution (lowering the entropy) and that downstream processes thermalize it (increasing
entropy). But are the electromagnetic fields simply a reservoir of energy or do they also
exchange entropy? If plasma entropy is related to order and disorder, then similar con-
siderations for the fields might suggest that waves and turbulence increase electromagnetic
entropy. There exists a statistical description of radiation entropy that develops a quan-
tity similar to M as the deviation of the observed radiation from an ideal black body”’, a
Boltzmann H-theorem for classical wave modes that can be applied to waves often present
during reconnection”’, and a formulation of the Second Law to describe an ensemble of tur-
bulent eddies”. More work is needed to determine how such theories influence the evolution
of kinetic entropy. This is relevant to both laboratory experiments like PHASMA"” which
directly measure distribution functions non-perturbatively and future space missions like

HelioSwarm'” that study turbulent processes leading to dissipation.
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VII. SUMMARY

In this study, we examine kinetic entropy associated with dissipation processes occurring
within a magnetotail electron diffusion region using both in-situ observations and a PIC
simulation. We generalize the theory of kinetic entropy ="~ to the case of non-uniform
velocity space bins and transform them to spherical energy coordinates for application to
experimental datasets. In doing so, we implement a Maxwellian look-up table to reduce
numerical errors between the observed distribution and its associated Maxweillian. The
theory is then applied to MMS observations of a magnetotail EDR and compared to the
kinetic entropy density and non-Maxwellianity from a PIC simulation of the observed event.
Good agreement between observations and simulations indicates that the insights gained
from local kinetic entropy density and non-Maxwellianity measures in numerical simulations
in a closed domain can be useful when interpreting observations in a naturally occurring

open system.

We demonstrate that kinetic entropy density s leads to a non-Maxwellianity measure Mg p
that is not positive definite, as it should be on physical grounds, because it is biased by the
non-uniform velocity-space grid of MMS that weighs non-Maxwellian structures more heavily
than their associated Maxwellianized structures. A similar issue is likely to be happening
in previous observational studies using the quadratic non-Maxwellianity € measure ' »*"
The velocity-space kinetic entropy sy corrects for the non-uniform grid and results in a
non-Maxwellianity measure M KPs, that is positive definite, as it should be on theoretical
grounds. We quantify the reason that s leads to unphysical results while sy, does not by
introducing “information loss”; s lacks information connecting the grid scale to the number
of particles within each cell. This information is contained in s, and serves to regularize
Mpgp so that the resulting M is bounded. We show that M is capable of identifying non-
Maxwellian distributions indicative of kinetic effects and dissipation processes that occur

during reconnection.

The new concept of “information loss” is captured by two quantities, R and B,,, that
measure the extent to which the choice of velocity space grids affects measurements of
kinetic entropy. We show that to minimize information loss, the velocity space grid scale
needs to be chosen so that the thermal velocity of the plasma is not over- or under-resolved.

This involves having a uniform velocity space grid with Av ~ /7vy,. Unfortunately for
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experimental particle detectors, a uniform velocity space grid is not possible; however, the
energy resolution of the instrument AFE}y/FE}) can be optimized to minimize information loss
by having Avy = AE,/v/2mE), adequately resolve vy, within the energy range of the energy
distribution. Thus, entropy and information loss are important considerations for satellite

instrument development.

VIII. SUPPLEMENTARY MATERIAL

The Supplementary Material contains more complete derivations of the kinetic entropy
and other parameters derived and discussed in this work. This includes the alternate deriva-
tion of Eq. 2 described in §II A, the velocity-space kinetic entropy density, sy, for both
uniformly and non-uniformly spaced velocity-space grids (Egs. 6 and 15), the condition for
equal entropy for ions and electrons discussed in §VI, an alternate derivation of the rela-
tionship between M and Myp (Eq. 13), and M for the case of non-uniform velocity space
bins. It also contains transformations from (v, vy, v,) to (¢, 6,v), (¢,0, E), and (¢,0,U) for
fus s, sy, M, as well as the density, velocity, and temperature moments of the distribution.
Finally, it contains tables of the calculated moments and entropy parameters for a model,

measured, and Maxwellianized distribution to serve as an demonstration of the numerical

errors described in §IV A.
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IX. DATA AVAILABILITY

MMS data is publicly available at the MMS science data center (https://lasp.
colorado.edu/mms/sdc/public/)™”. MMS data was processed and visualized with the
help of the PyMMS Python library ™ Simulation data used in this manuscript is available
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on Zenodo (https://doi.org/10.5281/zenodo.5807744)
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