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In weakly collisional and collisionless magnetized plasmas, the pressure-strain in-9

teraction describes the rate of conversion between bulk flow and thermal energy10

density. In this study, we derive an analytical expression for the pressure-strain in-11

teraction in a coordinate system with an axis aligned with the local magnetic field.12

The result is eight groups of terms corresponding to di↵erent physical mechanisms13

that can contribute to the pressure-strain interaction. We provide a physical de-14

scription of each term. The results are immediately of interest to weakly collisional15

and collisionless magnetized plasmas and the fundamental processes that happen16

therein, including magnetic reconnection, magnetized plasma turbulence, and colli-17

sionless shocks. The terms in the field-aligned coordinate decomposition are likely18

accessible to measurement with satellite observations.19
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I. INTRODUCTION22

The pressure-strain interaction describes the rate of the direct conversion of energy be-23

tween bulk flow and thermal (internal) energy density in neutral fluids or plasmas1. It is24

written as �(P · r) · u (with the minus sign), where P is the pressure tensor and u is25

the bulk flow velocity. It was underutilized as a quantity of merit in plasma physics un-26

til recently2–5. Since then, it has been the subject of intense scrutiny, primarily because27

it can be reliably measured using Magnetospheric Multiscale (MMS) mission6 satellites.28

This has made the observational study of energy conversion into thermal energy in systems29

out of local thermodynamic equilibrium accessible7–12. The pressure-strain interaction has30

also been studied in numerical simulations of magnetic reconnection (including magnetotail31

dipolarization fronts) and magnetized plasma turbulence2,5,13–23.32

This study is the second in a three-part series on the pressure-strain interaction. In Ref.2433

(“Paper I”), it was shown that while the commonly-used decomposition of the pressure-34

strain interaction into the pressure dilatation and the term known as Pi�D separates35

the compressible and incompressible energy conversion1, it does not separate the e↵ects of36

converging/diverging flow from flow shear. A di↵erent decomposition was derived that does37

separate these e↵ects. A kinetic description of the terms making up the pressure-strain38

interaction was provided.39

In this study, we present a decomposition of the pressure-strain interaction in a coor-40

dinate system with an axis aligned with the local magnetic field. The motivation is that41

the magnetic field often organizes the dynamics in magnetized plasmas, and therefore the42

magnetic field-aligned coordinate system can give a more direct indication of the physics at43

play (see also Ref.25). The only other studies we are aware of that organized pressure-strain44

interaction relative to the magnetic field was a decomposition of the deviatoric pressure45
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into a “gyrotropic” and “non-gyrotropic” part in MMS observations12 and studies on en-46

ergy conversion in a strongly magnetized plasma (e.g., Refs.26,27). The result of the present47

study is eight sets of terms that can contribute to the pressure-strain interaction due to48

compression/expansion and flow shear, with the additional result that they can be caused49

either by a direct strain of the bulk flow relative to the magnetic field or by a strain of the50

bulk flow caused by the geometry of the magnetic field. (We emphasize that the contribu-51

tion to pressure-strain interaction due to the geometry of the magnetic field does not imply52

that the magnetic field itself is the direct cause of heating2). We discuss the physical causes53

of each mechanism, which should be useful for interpreting measurements in simulations54

and satellite observations. (In what follows, we refrain from referring to a contribution55

to the pressure-strain interaction as “heating” or “cooling” because there are a number of56

e↵ects beyond the pressure-strain interaction that can cause a change to the thermal en-57

ergy density.) In Ref.28 (“Paper III”), we display the terms making up the pressure-strain58

interaction in both Cartesian and field-aligned coordinates for a particle-in-cell simulation59

of two-dimensional reconnection. We use the results to identify the physical causes of the60

conversion of bulk flow energy to thermal energy during the reconnection process.61

The layout of this manuscript is as follows. A derivation of the pressure-strain interaction62

in magnetic field-aligned coordinates is provided in Sec. II. The physical explanation of each63

term is provided in Sec. III. Section IV includes a discussion and conclusions.64

II. THEORY65

A. Pressure-Strain Interaction in Magnetic Field-Aligned Coordinates66

Consider a magnetized plasma with magnetic field B. If the magnetic field is straight67

everywhere, the coordinate system can be chosen with a cardinal direction along the field,68

and the pressure-strain interaction can be decomposed in Cartesian coordinates as discussed69

in Paper I. If the magnetic field is not straight everywhere, we employ a local magnetic field-70

aligned orthonormal coordinate system, also used in Ref.25.71

We define the unit vectors of the field-aligned coordinate system as the parallel direction72

b̂, the curvature direction ̂, and the binormal direction n̂. (In di↵erential geometry, these73

vectors are referred to as the tangent t̂, normal n̂, and binormal b̂ directions, respectively;74

our notation facilitates the identification of the magnetic field direction.) The parallel unit75

vector b̂ = B/B is along the local magnetic field, where B = |B| is the magnitude of76

B. The magnetic field curvature vector  = (b̂ · r)b̂ = rkb̂ is defined in the standard77

way29, where rk = b̂ ·r is the gradient in the parallel direction. The unit vector ̂ in the78

direction of the curvature is defined as ̂ = /, where  = || = 1/R and R is the local79

radius of curvature of the magnetic field line. As is known, b̂ · ̂ = 0, which follows because80

0 = rk(b̂ · b̂) = 2b̂ ·rkb̂ = 2b̂ · . The right-handed coordinate system is completed by81

defining n̂ = b̂⇥ ̂, which is normal to both the magnetic field and the curvature.82

We now calculate the pressure-strain interaction �(P ·r) ·u in field-aligned coordinates.83

We let Greek indices ↵,�, . . . refer to the b,, n directions, and we let e↵ be the unit vector84

in the ↵ direction. The quantities in the pressure-strain interaction are written in terms85

of their elements in field-aligned coordinates as P = P↵�e↵e� , r = e↵r↵, and u = e�u� .86

Then, the pressure-strain interaction (using the Einstein summation convention) is87

�(P ·r) · u = �[(P↵�e↵e�) · (e�r�)] · (e�u�) (1a)88

= �P↵�(r↵u�)� P↵�u�[e� · (r↵e�)] (1b)89

since e↵ · e� = �↵� , where �↵� is the Kroenecker delta. The first term includes compres-90

sion/expansion and shear in the standard sense of being related to gradients of the bulk91

flow with respect to the cardinal directions of the coordinate system, while the second term92

represents what we call geometrical compression/expansion and geometrical shear because93

they are caused by gradients of the bulk flow due to the geometry of the magnetic field. We94
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discuss each in turn in what follows, grouping them into eight sets of terms we call �PSj95

(with the minus sign) for j = 1, . . . , 8.96

For the first term �P↵�(r↵u�), ↵ = � and ↵ 6= � are treated separately. There are three97

terms with ↵ = �, given by98

�PS1 = �Pk(rkuk), (2)99

where Pk = Pbb = b̂·P·b̂ = Pklbkbl is the diagonal pressure element in the parallel direction100

and k and l are indices in Cartesian coordinates and uk = ub, and101

�PS2 = �P(ru)� Pnn(rnun). (3)102

�PS1 describes compression/expansion in the parallel direction, while �PS2 describes com-103

pression/expansion in the plane normal to the parallel direction. For ↵ 6= �, we collect two104

of the six terms as105

�PS3 = �Pb(ruk)� Pnb(rnuk), (4)106

and the other four are107

�PS4 = �Pb(rku)� Pbn(rkun)� Pn(run)� Pn(rnu). (5)108

�PS3 describes bulk flow velocity shear of the parallel flow in either perpendicular direction;109

�PS4 describes bulk flow velocity shear of the flow perpendicular to the field that varies in110

either the parallel (first two terms) or perpendicular (last two terms) direction.111

Finally, we need to simplify the geometric term in Eq. (1b), which depends on directional112

derivatives of unit vectors e� · (r↵e�) and is related to the Christo↵el symbol in di↵erential113

geometry. We first consider parallel gradients of each of the unit vectors. These are given114

by the Frenet-Serret formulae from di↵erential geometry25,30,31, which in our notation are115

rkb̂ = ̂, (6a)116

rk̂ = ⌧ n̂� b̂, (6b)117

rkn̂ = �⌧ ̂, (6c)118

where ⌧ = �̂ ·rkn̂ is the torsion, which is a measure of the degree to which the magnetic119

field line is not confined to a plane. While  is non-negative by definition, ⌧ can be positive,120

negative, or zero. The first relation follows by definition of . To get the form of the second,121

one notes 0 = rk(̂ · ̂) = 2̂ · rk̂, so rk̂ can only have components in the b̂ and n̂122

directions. The third then follows from writing rkn̂ = rk(b̂ ⇥ ̂) = b̂ ⇥ rk̂ and using123

Eq. (6b). Finally, taking rk̂ = rk(n̂⇥ b̂) and simplifying gives Eq. (6b). A key point is124

that the local geometry of the magnetic field is determined fully from the curvature  and125

the torsion ⌧ . Using the Frenet-Serret formulae provides all the directional derivatives in126

the parallel direction; the four non-zero ones are127

̂ ·rkb̂ = �b̂ ·rk̂ = , (7a)128

n̂ ·rk̂ = �̂ ·rkn̂ = ⌧, (7b)129

and the other five combinations all vanish.130

We also need the directional derivatives in the direction of ̂ and n̂. To find them, define131

the path length along the magnetic field line as s. Then, the coordinates of the magnetic field132

line can be parametrized by x(s), y(s), and z(s). The derivative of any function f(s) of s in133

an arbitrary Cartesian direction is given by the chain rule as @f(s)/@rj = (@s/@rj)(df/ds).134

This allows us to calculate the directional derivatives of f(s) as135

rkf(s) = b̂ ·rf(s) =
df(s)

ds
, (8a)136

rf(s) = ̂ ·rf(s) = (̂ ·rs)
df(s)

ds
, (8b)137

rnf(s) = n̂ ·rf(s) = (n̂ ·rs)
df(s)

ds
. (8c)138
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Each is proportional to df(s)/ds, and its coe�cient is purely geometrical depending on the139

trajectory of the magnetic field line. Defining the vector W with components Wb = b̂·rs =140

1,W = ̂ · rs, and Wn = n̂ · rs, we find the gradients in the curvature and binormal141

direction are142

r = Wrk, (9a)143

rn = Wnrk. (9b)144

Using these results and the parallel derivatives given in Eqs. (7a) and (7b), all of the145

remaining directional derivatives [e� · (r↵e�)] can be calculated in terms of the curvature 146

and torsion ⌧ . For example, ̂·rb̂ = ̂·Wrkb̂ = W and ̂·rnn̂ = ̂·Wnrkn̂ = �Wn⌧ .147

Continuing in this manner for all the directional derivatives in the geometrical term in148

Eq. (1b), we group terms with like factors of the components of u and the geometrical149

factors  or ⌧ to give150

�PS5 = u

�
Pk + PbW + PnbWn

�
 = uPb↵W↵, (10a)151

�PS6 = �u (Pbn + PnW + PnnWn) ⌧ = �uPn↵W↵⌧, (10b)152

�PS7 = �uk (Pb + PW + PnWn) = �ukP↵W↵, (10c)153

�PS8 = un (Pb + PW + PnWn) ⌧ = unP↵W↵⌧, (10d)154

where we consolidated terms using the vector W = e↵(e↵ · r)s = (b̂b̂ + ̂̂ + n̂n̂) · rs.155

We note that each of these terms depend on both diagonal and o↵-diagonal pressure tensor156

elements. We show in Sec. III that the terms proportional to u (�PS5 and�PS6) represent157

geometrical compression/expansion, while the terms proportional to uk and un (�PS7 and158

�PS8) represent geometrical shear. We emphasize that the dependence on bulk velocity159

without a spatial derivative in these expressions does not imply a velocity gradient is not160

needed to have a non-zero pressure-strain interaction; rather, these terms contribute to the161

pressure-strain interaction because of the geometry of the magnetic field.162

B. Example of Torsion for a Helical Magnetic Field163

In preparation for explaining the physical manifestation of each term in the pressure-strain164

interaction, we present a simple example displaying the physical meaning of the torsion ⌧ .165

Consider a circular helical magnetic field BH given in Cartesian coordinates by166

BH = �B0
yp

x2 + y2
x̂+B0

xp
x2 + y2

ŷ +Bgẑ, (11)167

where B0 � 0 is the magnitude of the in-plane magnetic field (which is uniform in this case)168

and Bg is the magnitude of the constant and uniform out-of-plane magnetic field. Then,169

B = |BH | = (B2
0 +B2

g
)1/2, and straight-forward calculations reveal the unit vectors are170

b̂ = �b0
yx̂� xŷp
x2 + y2

+ bgẑ, (12a)171

̂ =
�xx̂� yŷp

x2 + y2
, (12b)172

n̂ = bg
yx̂� xŷp
x2 + y2

+ b0ẑ, (12c)173

where b0 = B0/B and bg = Bg/B. We note for future reference that the direction of the174

curvature is in the xy plane (radially in, �r̂) for this magnetic field, but the parallel and175

binormal directions have both an in-plane (azimuthal ✓̂) and out-of-plane (ẑ) component.176

A brief derivation reveals that the curvature and torsion for this magnetic field are  =177

b20/r? and ⌧ = b0bg/r?, where r? =
p
x2 + y2 is the perpendicular distance from the z178
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axis. This exemplifies that ⌧ is positive for a right-handed helix (Bg > 0) and negative for a179

left-handed helix (Bg < 0). If Bg = 0, then ⌧ = 0, and the magnetic field lines are confined180

to planes. For this particular magnetic field, the torsion is proportional to the current181

helicity density through B · J = (cB2/4⇡)⌧ (in cgs units), where J = (c/4⇡)r ⇥ B is the182

current density, but this simple relation does not hold for general magnetic field profiles.183

III. PHYSICAL PICTURE OF THE PRESSURE-STRAIN INTERACTION IN184

FIELD-ALIGNED COORDINATES185

We now turn to the physical description of the contributions to the pressure-strain in-186

teraction in field-aligned coordinates. The analysis from the previous section showed that187

there are eight groups of terms. Sketches of representative examples of the general terms188

are given for each in Fig. 1. In each case, the magnetic field B is sketched using black189

arrows, while the bulk flow u is represented by red arrows. The curvature and binormal190

directions are depicted in green and blue, respectively. We treat each term in turn. The191

fluid description of the Cartesian analogue of the terms that arise in the absence of a heat192

flux was treated in Refs.2,5. We emphasize the kinetic description of each term, which com-193

plements the fluid description and makes no assumptions about the presence or absence of194

a heat flux. In so doing, when describing compression/expansion, we phrase it in terms195

of compression and analogous arguments can be used to describe expansion. We stress196

that the sketches are intended to give the simplest examples of the terms to illustrate the197

fundamental mechanism, while not intending to represent the general case.198

A. Parallel Flow Compression/Expansion: �PS1 = �Pk(rkuk)199

For �PS1 = �Pk(rkuk), the term describes compression due to a converging flow in200

the magnetic field direction b̂. A converging flow (rkuk < 0) is associated with a positive201

contribution to the pressure-strain interaction, while a diverging flow (rkuk > 0) is asso-202

ciated with a negative contribution. It is largely as expected from a fluid treatment, but203

the departure is that the term only depends on the parallel pressure Pk. This is sketched204

in Fig. 1(a), showing it for a straight magnetic field line and oppositely directed converging205

flows. However, this mechanism operates even for curved magnetic field lines provided there206

are converging/diverging flows in the parallel direction. Also, converging/diverging flows207

can occur without a change of direction of the flow.208

Kinetically, this term describes a fluid or plasma with an arbitrary phase space density,209

but only the parallel diagonal pressure element of its pressure contributes. The mechanism210

is analogous to parallel compressional heating in a Cartesian coordinate system, as displayed211

in Fig. 1(a) of Paper I. Briefly, the phase space density at a point where there is converging212

flow elongates in the parallel direction, which is the kinetic manifestation of heating, due213

to the o↵set of the nearby distributions from the bulk flow at the point of interest.214

B. Perpendicular Flow Compression/Expansion: �PS2 = �P(ru)� Pnn(rnun)215

For �PS2 = �P(ru)�Pnn(rnun), the two terms describe compression of the bulk216

flow in the plane perpendicular to the magnetic field. This again is as expected from a217

fluid treatment, but again shows that only the diagonal component of the pressure tensor218

parallel to the converging flow contributes. This is sketched in Fig. 1(b), showing it for a219

straight magnetic field line. This e↵ect also occurs regardless of the shape of the magnetic220

field line provided there are converging flows across it. The flows need not go to zero221

at the field line; they only need to converge or diverge. This mechanism is analogous222

to perpendicular compressional heating in a Cartesian coordinate system, for which the223

kinetic interpretation was displayed in Fig. 1(b) of Paper I. As with parallel compression224
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(a)

(b)

(c)

(d)

(g)

(e)

(f)

(h)

Flow Compression

Flow Shear

Geometrical Compression

Geometrical Shear

X

X

FIG. 1. Representative sketches of the eight sets of terms in the decomposition of the pressure-
strain interaction in field-aligned coordinates. Black arrows represent the magnetic field B. Green
and blue arrows denote the curvature and binormal directions, respectively. Red arrows denote the
bulk flow u. The eight sketches represent (a) parallel flow compression �PS1, (b) perpendicular
flow compression �PS2, (c) shear of parallel flow in the perpendicular direction �PS3, (d) shear
of perpendicular flow in the perpendicular and/or parallel directions �PS4, (e) perpendicular geo-
metrical compression �PS5, (f) torsional geometrical compression �PS6, (g) parallel geometrical
shear �PS7, and (h) torsional geometrical shear �PS8.
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(�PS1), diagonal elements of P are non-negative, so compression necessarily has a positive225

contribution to the pressure-strain interaction and expansion necessarily has a negative226

contribution.227

C. Parallel Flow Sheared in the Perpendicular Direction: �PS3 = �Pb

�
ruk

�
� Pbn

�
rnuk

�
228

For �PS3 = �Pb

�
ruk

�
�Pbn

�
rnuk

�
, these terms describe a parallel flow that varies in229

the plane normal to the magnetic field. A sketch exemplifying this term is given in Fig. 1(c).230

This mechanism does not require a curved magnetic field and depends on flow gradients, so231

it describes a bulk flow shear similar to expectations from a fluid picture. The key kinetic232

aspect is that this mechanism is non-zero only if there is a non-zero o↵-diagonal pressure233

tensor element in the direction of the magnetic field. Kinetically, this e↵ect is analogous234

to flow shear in a Cartesian coordinate system, as displayed in Fig. 2 of Paper I, i.e., it is235

associated with collisionless viscosity, so it can be positive or negative and is in principle236

reversible. This figure explains why the necessary o↵-diagonal pressure tensor elements need237

a component along the magnetic field. In a weakly collisional or collisionless plasma, the238

o↵-diagonal pressure tensor elements can be positive or negative, which determines whether239

a given flow profile has a positive or negative contribution to the pressure-strain interaction.240

D. Perpendicular Flow Shear: �PS4 = �Pb

�
rku

�
� Pbn

�
rkun

�
� Pn(run +rnu)241

For �PS4 = �Pb

�
rku

�
� Pbn

�
rkun

�
� Pn(run + rnu), the mechanisms are of242

two related varieties. They are similar to the heating mechanism in the previous subsection243

in that they do not rely on any curvature of the magnetic field, and as with �PS3 they244

require a shear in the bulk flow velocity. The first two terms describe a bulk flow in the plane245

perpendicular to the magnetic field that varies in the parallel direction. A representative246

sketch is given in the top of Fig. 1(d). The second two terms describe a flow perpendicular247

to the magnetic field that varies in the orthogonal perpendicular direction, as sketched in248

Fig. 1(d) on the bottom.249

As with �PS3, these terms correspond to the kinetic notion of collisionless viscosity,250

requiring o↵-diagonal pressure tensor elements. In each case, the o↵-diagonal pressure251

tensor element must have a component in the direction of the gradient of the flow. As with252

�PS3, whether a given term leads to a positive or negative contribution to the pressure-253

strain interaction depends on the flow shear and the sign of the o↵-diagonal pressure tensor254

element in question. Kinetically, the heating mechanism is analogous to the Cartesian255

coordinate system result displayed in Fig. 2 of Paper I, which explains why the particular256

o↵-diagonal pressure-tensor elements in the expressions are needed for this term to be non-257

zero.258

E. Perpendicular Geometrical Compression/Expansion: �PS5 = uPb↵W↵259

For �PS5 = uPb↵W↵, the contribution to the pressure-strain interaction requires a260

curved magnetic field (planar or not) and takes place in the plane of the curvature and the261

magnetic field. The bulk flow is in the direction of the curvature, which is perpendicular262

to the magnetic field lines. A simple example is shown in Fig. 1(f), with a positive u263

that need not vary as one traverses along the magnetic field. This mechanism is a form of264

geometrical compression, which results from the red arrows denoting the flow converging in265

the direction of the curvature, which is the cause of compression in the fluid sense. Unlike266

the four terms discussed in the previous subsections, this mechanism does not require a267

gradient in the bulk velocity component in field-aligned coordinates; instead the flow shear268

arises due to the curvature of the magnetic field.269
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There is an important aspect of this mechanism: it requires at least one of the pressure270

tensor elements in the b̂ direction to be non-zero since it is proportional to Pb↵. The reason271

for this is that if the plasma were perfectly cold in the b̂ direction, then all motion would272

be perpendicular to the magnetic field, so it would be in the direction of the flow. This273

would not cause any mixing in the direction normal to the flow, so there is no contribution274

to the pressure-strain interaction for such flow. If there is random particle motion in the b̂275

direction, mixing can occur that spreads the phase space density in the b̂ direction, which is276

therefore associated with a non-zero contribution to the pressure-strain interaction. More277

specifically, particles with positive or negative vk and positive v on the outer magnetic278

field line move inward to the middle field line in time, providing a population with non-279

zero vk > 0 and v > 0. Particles on the inner magnetic field line with non-zero vk280

and negative v move outward to the middle field line, providing a population with non-281

zero vk and v < 0. This changes the spread in the distribution at the middle field line,282

which is the kinetic manifestation of a change to the thermal energy. This mechanism for283

geometrical compression can lead to a positive or negative contribution to the pressure-284

strain interaction depending on the phase space density of the plasma, in contrast to bulk285

flow compression �PS1 or �PS2 which necessarily makes a positive contribution to the286

pressure-strain interaction.287

F. Torsional Geometrical Compression: �PS6 = �uPn↵W↵⌧288

For �PS6 = �uPn↵W↵⌧ , the mechanism is related to perpendicular geometrical com-289

pression discussed in the previous subsection, but it requires a non-planar magnetic field,290

i.e., a magnetic field with a non-zero torsion. The key is that in the absence of torsion,291

having a bulk flow in the curvature direction u means that the flow converges in the plane292

of the curvature and magnetic field, as shown in Fig. 1(e) for �PS5. Thus, all the plasma293

that is converging comes from the same plane initially.294

As an example of this mechanism in a magnetic field that has non-zero torsion, consider295

the simple case of a helical right-handed torsional magnetic field of the type discussed296

in Sec. II B. The oblique view in Fig. 1(f) shows the magnetic field twisting out of the297

plane, with the dashed line representing the xy plane that contains the curvature vector298

. If the flow in the  direction is converging, the particles in the xy plane that end299

up in the region of converging flow originate from regions of the magnetic field that are300

separated in the binormal n̂ direction. If the plasma is perfectly cold in the n̂ direction,301

the phase space density in the region of converging flow does not broaden and thus there302

is no contribution to the pressure-strain interaction due to shear [although there can be a303

contribution due to the b̂ direction from �PS5, as sketched in Fig. 1(e)]. If, however, there304

are any particles with random velocity in the n̂ direction, there is mixing in that direction305

and a compressional e↵ect gives a non-zero contribution to the pressure-strain interaction.306

This mechanism is purely due to the geometry of the magnetic field, so we call it torsional307

geometrical compression. This term is not positive definite as with the other geometrical308

terms, so it can be associated with positive or negative contributions to the pressure-strain309

interaction.310

G. Parallel Geometrical Shear: �PS7 = �ukP↵W↵311

For �PS7 = �ukP↵W↵, the mechanism requires a magnetic field line with curvature312

(planar or not) when there is a bulk flow with a component parallel or anti-parallel to the313

magnetic field. An example of this for a circular magnetic field line with uk > 0 is sketched314

in Fig. 1(g). In the fluid sense, this mechanism leads to shear because the inner field lines315

are shorter than the outer field lines, so a flow profile with uniform uk implies that there is316

a shear due to the plasma traversing the shorter curved field line further in azimuthal angle317

than along the longer field lines.318
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To understand this mechanism in kinetic theory, first suppose none of the particles have319

any velocity component in the ̂ direction, i.e., the plasma is perfectly cold in the ̂ direc-320

tion. This implies that all the motion of the particles is confined to the magnetic surfaces. In321

this case, in the next small increment in time, the particles remain confined to the magnetic322

surfaces. Therefore, there is no mixing of particles between di↵erent magnetic surfaces, and323

there is no contribution to pressure-strain interaction. This is why �PS7 is proportional to324

P↵, i.e., why random motion in the ̂ direction is necessary for this mechanism to occur.325

Now consider a phase space density such that there is a non-zero P, which means that326

particles have some random motion in the direction perpendicular to the magnetic surfaces.327

Consider the time evolution of a phase space density at the middle of the three magnetic328

field lines in Fig. 1(g). As the particles go around the curve in the magnetic field lines,329

particles with positive velocity v on the inner field line in Fig. 1(g) move outward in the330

next increment in time, showing up as a positive v population at the middle field line.331

Similarly, particles with negative v on the outer field line move inward, showing up as a332

negative v population at the middle field line. This broadens the phase space density at the333

middle field line in the ̂ direction, which is associated with an increase in thermal energy334

in the kinetic sense. This is an e↵ective shear due to the geometry of the magnetic field, so335

we refer to it as parallel geometric shear. We note as an application that this mechanism is336

important for a plasma in a magnetic mirror configuration.337

There are analogous mechanisms for distributions with non-zero Pb and Pn. Since338

these o↵-diagonal pressure tensor elements can be positive or negative, shear due to field339

line geometry can contribute to a positive or negative contribution to the pressure-strain340

interaction.341

H. Torsional Geometrical Shear: �PS8 = unP↵W↵⌧342

For �PS8 = unP↵W↵⌧ , the mechanism relies on the magnetic field having torsion, but343

the flow is in the binormal direction. We again appeal to the simple example of the right-344

handed circular helical field discussed in Sec. II B. To isolate the e↵ect of the torsion, we345

consider a flow with uniform un. (If it were not uniform, there would be a perpendicular346

flow shear as in �PS4 in addition to the geometrical shear.) A sketch of this is in Fig. 1(h).347

It was pointed out in Sec. II B that the binormal direction n̂ has components both in the348

axial ẑ and azimuthal ✓̂ directions. This can be seen from the red arrows in the sketch. The349

component of the bulk flow in the ẑ direction does not introduce shear because un is the350

same on all magnetic field lines in this configuration. Thus, the axial part is not associated351

with a contribution to the pressure-strain interaction.352

However, the component in the ✓̂ direction describes flow in the azimuthal direction. As353

with �PS7, the geometry of the curved magnetic field lines imposes that there is a shear354

e↵ect on the plasma because fluid elements with the same u✓ on di↵erent magnetic surfaces355

traverse the circular cross-section of the magnetic surface more rapidly for smaller magnetic356

surfaces than larger magnetic surfaces. If the phase space densities are perfectly cold in357

the ̂ direction, then all particles are confined to the magnetic surfaces, and therefore there358

is no mixing and no contribution to the pressure-strain interaction. If, however, there are359

particles with a random v, particles on di↵erent magnetic surfaces mix according to a flow360

shear-like mechanism in the kinetic description, so there is a change to the thermal energy361

density. This is why �PS8 is proportional to P↵. We refer to this as torsional geometrical362

shear. It can be positive or negative depending on the torsion, pressure tensor elements,363

and the flow direction.364

IV. DISCUSSION AND CONCLUSIONS365

In this study, we derive an expression for the pressure-strain interaction, the term de-366

scribing the rate of conversion of energy between bulk flow and thermal energy density,367
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in magnetic field-aligned coordinates for use in magnetized plasmas. As expected, there368

are contributions related to compression/expansion and bulk flow shear. However, in field-369

aligned coordinates, each e↵ect has contributions directly from the spatial dependence of370

the bulk velocity itself as well as contributions from velocity shear caused by the geometry371

imposed by the path of the magnetic field line. It is important to stress that the magnetic372

field itself and magnetic forces do not cause the pressure-strain interaction to be non-zero2,373

it is simply the flow pattern relative to the magnetic fields that contribute. The geomet-374

ric compression/expansion and geometric shear are parametrized in terms of the magnetic375

field curvature  and torsion ⌧ . The former is well-known in plasma physics; the latter is376

borrowed from di↵erential geometry and is much less employed in plasma physics25, and377

describes the extent to which the local magnetic field deviates from lying in a plane.378

We provide a picture of the physical e↵ects contributing to the pressure-strain interaction379

using the kinetic theory description for each of the sets of terms �PS1 through �PS8 that380

arise from the analysis. The fluid description for plasmas in the absence of a heat flux was381

previously provided2,5. We emphasize that the two descriptions complement each other382

and must agree with each other when the same approximations are made in both pictures.383

The kinetic approach discussed here makes no assumptions about the presence of a heat384

flux. The physical mechanism of the parallel and perpendicular compression/expansion385

�PS1 and �PS2, and the shear in the bulk flow �PS3,�PS4,a, and �PS4,b are analogous386

to compression/expansion and bulk velocity shear in Cartesian coordinates5,24. In the387

kinetic description, the physical mechanism for geometric compression and geometric shear388

is random motion in the direction perpendicular to the flow in �PS5 through �PS8, which389

causes mixing of particles that gives rise to a pressure-strain interaction contribution.390

We expect these results, especially the simple sketches of the physical contributions to391

pressure-strain interaction in Fig. 1, will be useful in studying energy conversion in weakly392

collisional and collisionless magnetized plasmas. Physical systems where the pressure-strain393

interaction has been used to study energy conversion, and where the present results may394

be useful, include plasma turbulence and magnetic reconnection. We expect it to also be395

useful for the study of collisionless shocks. The quantities derived here can be readily396

calculated in kinetic simulations (particle-in-cell and Vlasov/Boltzmann in particular) of397

these phenomena. Moreover, recent observational studies32–36 using the MMS satellites398

have directly measured the magnetic field curvature , so this quantity of importance for399

the present study is accessible to measurement. We are unaware of any calculations of the400

magnetic field line torsion ⌧ using satellite data, but it is a simple extension of calculating401

the magnetic field and curvature directions, so it should be able to be calculated.402

We make three important points about the present results. First, the pressure-strain403

interaction �(P · r) · u is a scalar quantity, meaning it is invariant in di↵erent coor-404

dinate systems. Thus, whether the pressure-strain interaction is calculated in Cartesian405

coordinates (Paper I) or field-aligned coordinates, it remains the same. However, there is406

mixing between compression/expansion and flow shear when changing coordinate systems.407

Second, the results here rigorously provide the pressure-strain interaction contributions in408

field-aligned coordinates for applications to magnetized plasmas. However, we stress there409

are settings in magnetized plasmas where particles become demagnetized, and the direction410

of the magnetic field no longer organizes the dynamics37–39. Thus, caution is necessary to411

not assume the magnetic field direction is necessarily the direction that best organizes a412

general pressure tensor. Finally, the decomposition in field-aligned coordinates presented413

here does not use any properties of the magnetic field itself. Thus, if an application arises414

for which there is a di↵erent preferred direction other than the magnetic field, the analysis415

presented here remains valid with b̂ simply becoming the preferred direction. This under-416

scores the key point that the magnetic field and magnetic forces themselves do not give rise417

to the pressure-strain interaction, it is only the bulk flow gradients relative to the geometry418

set up by the magnetic field that gives rise to the pressure-strain interaction.419

In Paper III, we use the results obtained here and in Paper I to analyze the mechanisms by420

which the pressure-strain interaction describes the conversion of bulk flow energy density to421

thermal energy density during magnetic reconnection using two-dimensional particle-in-cell422
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simulations. For future work, it would be interesting to employ the decomposition of the423

pressure-strain interaction discussed here in observational data, especially using the MMS424

satellites. Applications of the results to plasma turbulence and collisionless shocks, as well425

as other manifestations of reconnection including three-dimensional systems, would also be426

very interesting.427
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