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Abstract

Backoff algorithms are used in many distributed systems where multiple devices con-
tend for a shared resource. For the classic balls-into-bins problem, the number of
singletons—those bins with a single ball—is important to the analysis of several back-
off algorithms; however, existing analyses employ advanced probabilistic tools. Here,
we show that standard Chernoff bounds can be used instead, and the simplicity of this
approach is illustrated by re-analyzing some well-known backoff algorithms.
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1. Introduction

Backoff algorithms address the general problem of how to share a resource among
multiple devices. A popular application is IEEE 802.11 (WiFi) networks [1, 2, 3],
where the resource is a wireless channel used by devices to send packets. Any single
packet sent uninterrupted over the channel is likely to be received, but if the sending5

times of two or more packets overlap, communication often fails due to destructive
interference at the receiver (i.e., a collision). An important performance metric is the
time required for all packets to be successfully sent, and this was originally analyzed
for several well-known backoff algorithms by Bender et al. [4].
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Here, we revisit several of these results, showing that a standard probabilistic tool—10

the Chernoff bound—is applicable, and illustrating how its use simplifies the analysis.
A version of this work appeared at the 10th International Conference on Fun with Al-
gorithms (FUN 2020) under the simplification of algorithms topic of interest.

Formal Model. Time proceeds in discrete slots, and each packet can be transmitted
within a single slot. Starting from the first slot, a batch of n packets is ready to be trans-15

mitted on a shared channel. Each packet can be viewed as originating from a different
source device, and going forward we speak only of packets, rather than devices.

For any fixed slot, if a single packet sends, then the packet succeeds; however, if
two or more packets send, then all corresponding packets fail. A packet that attempts
to send in a slot learns whether it succeeded and, if so, the packet takes no further20

action; otherwise, the packet learns that it failed in that slot, and must try again at a
later time. The number of slots required until all packets are successfully sent is known
as the makespan.

Background. Binary exponential backoff (BEB) is a popular randomized algorithm
for resource sharing. Originally introduced by Metcalf and Boggs [5] several decades25

ago, BEB is ubiquitous today, most notably in WiFi networks. Execution occurs over
disjoint, consecutive sets of slots called windows. In every window, each packet that
has not yet succeeded selects a single slot uniformly at random in which to send. If the
packet succeeds, then it leaves the system; otherwise, the failed packet waits for the
next window to begin and repeats this process. For BEB, the ith window consists of 2i30

slots, for i ≥ 0. As we discuss later in Section 5.1, other windowed backoff algorithms
exist, where a different function of i governs the corresponding window size.

A natural question is the following: For a batch of n packets and a given windowed
backoff algorithm, what is the makespan?

Interestingly, there is a close relationship between the makespan and the well-35

known balls-in-bins problem. In the latter, N balls are dropped uniformly at random
into B bins. Associating the balls with packets, and the bins with the slots of a window,
we are interested in the number of bins containing a single ball, which are sometimes
referred to as singletons [6].

The makespan of backoff algorithms was first addressed by Bender et al. [4] who40

analyze several algorithms where windows monotonically increase in size. Despite
their simple specification, these algorithms require a surprisingly intricate makespan
analysis. In particular, obtaining concentration bounds on the number of slots (or bins)
that contain a single packet (or ball)—which we will also refer to as singletons—
is complicated by dependencies that rule out the immediate application of Chernoff45

bounds. This is unfortunate given that Chernoff bounds are often one of the first pow-
erful probabilistic tools that researchers learn, and they are standard content in a ran-
domized algorithms course.

The makespan results in Bender et al. [4] are derived via delay sequences [7, 8],
which are arguably a less-common topic of instruction. Alternative tools for handling50

dependencies include Poisson-based approaches by Mizenmacher [9] and Mitzenmacher
and Upfal [10], and martingales [11], but to the best of our knowledge, these have not
been applied to the analysis of windowed backoff algorithms.
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Our Goal. We aim for a simpler way to derive the makespan of windowed backoff
algorithms. This is accomplished in two parts: we show (1) that a standard Chernoff55

bound can be used in the analysis, and (2) that this yields a straightforward approach to
deriving the makespan. Our hope is that this work may improve accessibility to backoff
algorithms for researchers learning about the area.

Benefits of Our Approach. We note that claims of simplicity can be a matter of taste.
There is work involved in showing that Chernoff bounds can be applied to this problem.60

However, in our opinion, this does not add much overhead to a rigorous introduction of
Chernoff bounds that many researchers receive, and it is arguably less complex than the
alternatives. For instance, Dhubashi and Panconesi [11] derive Chernoff bounds almost
immediately, starting on page 3. In contrast, their discussion of negative dependence
occurs in Chapter 3, while martingales and related tools for handling dependent random65

variables are deferred until Chapter 5.3

So, Chernoff bounds are often one of the first powerful probabilistic tools that re-
searchers learn as they become involved in algorithms research. And what if we can
deploy them to analyze singletons? Then, as we show here, the makespan analysis dis-
tills to proving the correctness of a “guess” regarding a recursive formula describing70

the number of packets remaining after each window, and that this guess has small error
probability. Thus, once we can use Chernoff bounds, the approach for analyzing these
backoff algorithms becomes simple and intuitive.

Finally, showing that another problem, especially one that has such a wide range of
applications, succumbs to Chernoff bounds is aesthetically satisfying.75

1.1. Our Results

We show that Chernoff bounds can indeed be used as proposed above. Our ap-
proach involves an argument that the indicator random variables for counting single-
tons satisfy the following property from [12]:

Property 1. Given a set of n indicator random variables {X1, · · · , Xn}, for all sub-
sets S ⊂ {1, · · · , n} the following is true:

Pr

∧
j∈S

Xj = 1

 ≤∏
j∈S

Pr [Xj = 1] . (1)

We prove the following:80

Theorem 1. Consider N balls dropped uniformly at random into B bins. Let Ij = 1 if
bin j contains exactly 1 ball, and Ij = 0 otherwise, for j = 1, · · · , B. IfB ≥ N+

√
N

or B ≤ N −
√
N , then {I1, · · · , IB} satisfy the Property 1.

3An alternative route may involve negative dependence; this can be used to analyze the occupancy num-
bers of the balls-in-bins problem, although this is not what we need here. Alternatively, the Method of
Bounded Differences (Corollary 5.2 in [11]), or more powerful tools, can be used to prove bounds that
would allow us to analyze makespan, but the derivation is involved.
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The proof of Property 1 permits the use of standard Chernoff bounds (defined in
Theorem 3). This implication is posed as an exercise by Dubhashi and Panconesi [11]85

(Problem 1.8), but no solution is provided [11]. We fill in this gap with our own ar-
gument. However, in order to avoid interrupting the flow of our main arguments for
makespan analysis, we defer our discussion and proof until the appendix.

We then show how to use Chernoff bounds to obtain asymptotic makespan results
for some of the algorithms previously analyzed by Bender et al. [4]: BINARY EXPO-90

NENTIAL BACKOFF (BEB), FIXED BACKOFF (FB), and LOG-LOG BACKOFF (LLB).
Additionally, we re-analyze the asymptotically-optimal (non-monotonic) SAWTOOTH
BACKOFF (STB) from [13, 14]. These algorithms are specified in Section 5.1, but our
makespan results are stated below.

Theorem 2. For a batch of n packets, the following holds with probability at least95

1−O(1/n):

• FB has makespan at most n lg lg n+O(n).

• BEB has makespan at most 512n lg n+O(n).

• LLB has makespan O(n lg lg n/ lg lg lg n).

• STB has makespan O(n).100

We highlight that both of the cases in Theorem 1,B ≤ N−
√
N andB ≥ N+

√
N ,

are useful. Specifically, the analysis for BEB, FB, and STB uses the first case, while
LLB uses both.

1.2. Related Work
A preliminary version of this work appeared in the proceedings of the 10th Interna-105

tional Conference on Fun with Algorithms (FUN 2020) under the topic of interest FUN
with simplification of algorithms. Here, we include our full proofs, further simplify
parts of the analysis, and provide an expanded exposition.

Several prior results address dependencies and their relevance to Chernoff bounds
and load-balancing in various balls-in-bins scenarios. In terms of analyzing backoff110

algorithms, the literature is vast. In both cases, we summarize closely-related works.

Dependencies, Chernoff Bounds, & Ball-in-Bins. Backoff is closely-related to balls-
and-bins problems [15, 16, 17, 18], where balls and bins correspond to packets and
slots, respectively. Balls-in-bins analysis often arises in problems of load balancing
(for examples, see [19, 20, 21]). Dubhashi and Ranjan [12] prove that the occupancy115

numbers — random variables Ni denoting the number of balls that fall into bin i —
are negatively associated. This result is used by Lenzen and Wattenhofer [22] use
it to prove negative association for the random variables that correspond to at most
k ≥ 0 balls. Czumaj and Stemann [23] examine the maximum load in bins under
an adaptive process where each ball is placed into a bin with minimum load of those120

sampled prior to placement. Finally, Dubhashi and Ranjan [12] also show that Chernoff
bounds remain applicable when the corresponding indicator random variables that are
negatively associated. The same result is presented in Dubhashi and Panconesi [11].

4



Backoff Algorithms. As summarized in Section 1, for a batch of n packets, a generic
backoff algorithm executes over windows. For every window, each packet that has125

not yet succeeded selects a single slot uniformly at random in which to send. If the
packet succeeds, then it leaves the system; otherwise, the failed packet waits for the
next window to begin and repeats this process. Backoff algorithms differ in the way
that they change their window size, and we further details in Section 5.1.

Many early results on backoff are given in the context of statistical queuing-theory130

(see [24, 25, 26, 27, 24, 28]) where a common assumption is that packet-arrival times
are Poisson distributed.

In contrast, for a batch of packets, backoff algorithms with monotonically-increasing
window sizes has been analyzed in [4], and with packets of different sizes in [29]. A
windowed, non-monotonic backoff algorithm that is asymptotically optimal for a batch135

of packets is provided in [30, 13, 31].
A related problem is contention resolution, which addresses the time until the first

packet succeeds [32, 33, 34, 35]. This has close ties to the well-known problem of
leader election (for examples, see [36, 37]).

Several results examine the dynamic case where packets arrive over time as sched-140

uled in a worst-case fashion [38, 39, 40, 41]. A similar problem is that of wake-
up [42, 43, 44, 45, 46, 47], which addresses how long it takes for a single transmission
to succeed when packets arrive under the dynamic scenario.

Finally, several results address the case where the shared communication channel
is unavailable at due to malicious interference [48, 49, 50, 51, 52, 53, 54, 55].145

2. Analysis for Property 1

We present our results on Property 1. Since we believe this result may be useful
outside of backoff, our presentation in this section is given in terms of the well-known
balls-in-bins terminology, where we have N balls that are dropped uniformly at ran-
dom into B bins.150

2.1. Preliminaries
Throughout, we often employ the following inequalities (see Lemma 3.3 in [51]),

and we will refer to the left-hand side (LHS) or right-hand side (RHS) when doing so.

Fact 1. For any 0 < x < 1, e−x/(1−x) ≤ 1− x ≤ e−x.

Knowing that indicator random variables (i.r.v.s) satisfy Property 1 is useful since the155

following Chernoff bounds can then be applied.

Theorem 3. (Dubhashi and Panconesi [11])4 Let X =
∑
iXi where X1, ..., Xm are

i.r.v.s that satisfy Property 1 . For 0 < ε < 1, the following holds:

Pr[X > (1 + ε)E[X]] ≤ exp

(
−ε

2

3
E[X]

)
(2)

Pr[X < (1− ε)E[X]] ≤ exp

(
−ε

2

2
E[X]

)
(3)

4This is stated in Problem 1.8 in [11], and we present a proof in Appendix A .
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We are interested in the i.r.v.s Ij , where:

Ij =

{
1, if bin j contains exactly 1 ball.
0, otherwise.

Unfortunately, there are cases where the Ijs fail to satisfy Property 1. For example,
consider N = 2 balls and B = 2 bins. Then, Pr(I1 = 1) = Pr(I2 = 1) = 1/2, so160

Pr(I1 = 1) · Pr(I2 = 1) = 1/4, but Pr(I1 = 1 ∧ I2 = 1) = 1/2.
A naive approach (although, we have not seen it in the literature) is to leverage

the result in [22], that the variables used to count the number of bins with at most k
balls are negatively associated. We may bound the number of bins that have at most 1
ball, and the number of bins that have (at most) 0 balls, and then take the difference.165

However, this is a cumbersome approach, and our result is more direct.
Returning briefly to the context of packets and time slots, another approach is to

consider a subtly-different algorithm where a packet sends with probability 1/w in
each slot of a window with w slots, rather than selecting uniformly at random a single
slot to send in. However, as Bender et al. [4] point out, when n is within a constant170

factor of the window size, there is a constant probability that the packet will not send
in any slot. Consequently, the number of windows required for all packets to succeed
increases by a log n-factor, whereas only O(log log n) windows are required under the
model used here.

2.2. Property 1 and Bounding Singletons175

To prove Theorem 1, we establish the following Lemma 1. For j = 1, · · · , B − 1,
define:

Pj = Pr [Ij+1 = 1 | I1 = 1, · · · , Ij = 1]

which is the conditional probability that bin j + 1 contains exactly 1 ball given each
of the bins {1, · · · , j} contains exactly 1 ball. Note that Pr[Ij = 1] is same for any
j = 1, · · · , B, and let:

P0 , Pr[Ij = 1] = N

(
1

B

)(
1− 1

B

)N−1
. (4)

Lemma 1. If B ≥ N +
√
N or B ≤ N −

√
N , the conditional probability Pj is a

monotonically non-increasing function of j, i.e., Pj ≥ Pj+1, for j = 0, · · · , B − 2.

Proof. First, for j = 1, · · · ,min{B,N} − 1, the conditional probability can be ex-
pressed as

Pj = (N − j)
(

1

B − j

)(
1− 1

B − j

)N−j−1
. (5)

Note that P0 in (4) is equal to (5) with j = 0.
ForB ≥ N+

√
N , we note that beyond the range j = 1, ...,min{B,N}−1, it must

be that Pj = 0. In other words, Pj = 0 for j = N,N + 1, · · · , B − 1 since all balls180

have already been placed. Thus, we need to prove Pj ≥ Pj+1, for j = 0, · · · , N − 2.
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On the other hand, if B ≤ N −
√
N , we need to prove Pj ≥ Pj+1, for j =

0, · · · , B − 2. Thus, this lemma is equivalent to prove if B ≥ N +
√
N or B ≤

N −
√
N , the ratio Pj/Pj+1 ≥ 1, for j = 0, · · · ,min{B,N} − 2.

Using the Equation (5), the ratio can be expressed as:

Pj
Pj+1

=
(N − j)

(
1

B−j

)(
1− 1

B−j

)N−j−1
(N − j − 1)

(
1

B−j−1

)(
1− 1

B−j−1

)N−j−2 =

(
1 + 1

(B−j)(B−j−2)

)N−j−1
(N−j−1)(B−j)
(N−j)(B−j−2)

.

185

Let a = N − j, then 2 ≤ a ≤ N ; and let y = B − N . Thus, the ratio becomes
Pj
Pj+1

=
[1+ 1

(a+y)(a+y−2) ]
a−1

(a−1)(a+y)
a(a+y−2)

. By the Binomial theorem, we have:

[
1 +

1

(a+ y)(a+ y − 2)

]a−1

=1+
a− 1

(a+ y)(a+ y − 2)
+

a−1∑
k=2

(
a− 1

k

)[
1

(a+ y)(a+ y − 2)

]k
.

Thus, the ratio can be written as:

Pj

Pj+1
= 1 +

y2 − a

(a+ y)2(a− 1)
+

∑a−1
k=2

(
a−1
k

) [
1

(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

. (6)

Note that because 0 ≤ j ≤ min{B,N} − 2, then a + y = B − j ≥ 2. Thus, the
third term in (6) is always non-negative. If y = B − N ≥

√
N or y ≤ −

√
N , then190

y2 ≥ N ≥ a for any 2 ≤ a ≤ N . Consequently, the ratio Pj/Pj+1 ≥ 1.

We can now give our main argument:

Proof of Theorem 1. Let s denote the size of the subset S ⊂ {1, · · · , B}, i.e. the
number of bins in S. First, note that if B ≥ N +

√
N , when s > N (i.e., more bins

than balls), the probability on the left hand side (LHS) of (1) is 0, thus, the inequality195

(1) holds. In addition, shown above Pr[Ij = 1] = P0 for any j = 1, · · · , B. Thus, the
right hand side of (1) becomes Ps0 . Thus, we need to prove for any subset, denoted as
S = {j1, · · · , js} with 1 ≤ s ≤ min{B,N}

Pr

[
s∧

k=1

Ijk = 1

]
≤ Ps0 .

The LHS can be written as:

= Pr

[
Ijs = 1 |

s−1∧
k=1

Ijk = 1

]
Pr

[
s−1∧
k=1

Ijk = 1

]

= Ps−1Pr

[
s−1∧
k=1

Ijk = 1

]
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200

= Ps−1Pr

[
Ijs−1

= 1 |
s−2∧
k=1

Ijk = 1

]
Pr

[
s−2∧
k=1

Ijk = 1

]

= Ps−1Ps−2Pr

[
s−2∧
k=1

Ijk = 1

]
...

= Ps−1Ps−2 · · · P0

Lemma 1 shows that if B ≥ N +
√
N or B ≤ N −

√
N , Pj is a decreasing function

of j = 0, · · · , B − 1. Consequently, P0 ≥ Pj , for j = 1, · · · , B − 1. Thus:

Pr

[
s∧

k=1

Ijk = 1

]
≤ Ps0 ,

and so the bound in Equation (1) holds.

The standard Chernoff bounds of Theorem 3 now apply, and we use them obtain
bounds on the number of singletons. For ease of presentation, we occasionally use
exp(x) to denote ex.

Lemma 2. For N balls that are dropped into B bins where B ≥ N +
√
N or B ≤205

N −
√
N , the following is true for any 0 < ε < 1.

• The number of singletons is at least (1−ε)N
eN/(B−1) with probability at least 1− e

−ε2N
2 exp(N/(B−1)) .

• The number of singletons is at most (1+ε)N
e(N−1)/B with probability at least 1−e

−ε2N
3 exp(N/(B−1)) .

Proof. We begin by calculating the expected number of singletons. Let Ii be an indi-
cator random variable such that Ii = 1 if bin i contains a single ball; otherwise, Ii = 0.210

Note that:

Pr(Ii = 1) =

(
N

1

)(
1

B

)(
1− 1

B

)N−1
≥

(
N

1

)(
1

B

)(
1− 1

B

)N
≥ N

Be(N/(B−1))
(7)

where the last line follows from the LHS of Fact 1. Let I =
∑B
i=1 Ii be the number of

singletons. We have:

E[I] =
B∑
i=1

E[Ii] by linearity of expectation

≥ N

e(N/(B−1))
by Equation (7)
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Next, we derive a concentration result around this expected value. SinceB ≥ N+
√
N

or B ≤ N −
√
N , Theorem 1 guarantees that the Iis are negatively associated, and we215

may apply the Chernoff bound in Equation 3 to obtain:

Pr

(
I < (1− ε) N

e(N/(B−1))

)
≤ exp

(
− ε2N

2e(N/(B−1))

)

which completes the lower-bound argument.
For the upper bound, we have:

Pr(Ii = 1) =

(
N

1

)(
1

B

)(
1− 1

B

)N−1
≤

(
N

B

)
e−(N−1)/B

(8)

where the inequality follows from the RHS of Fact 1. The expected value calculation
and the application of Chernoff bounds follow by a nearly identical argument to the220

one presented above.

We note that our makespan analysis makes use of the lower bound given in Lemma 2,
since we are concerned with ensuring singletons occur. Throughout, we assume this
lower bound is being used when Lemma 2 is invoked. The upper bound is given for
completeness and may be useful for proving lower bounds on makespan, as mentioned225

in Section 6.

3. Bounding Remaining Packets

In this section, we derive tools for bounding the number of packets that remain as
we progress from one window to the next.

All of our results hold for sufficiently large n > 0. Let wi denote the number of230

slots in window i ≥ 0. Let mi be the number of packets at the start of window i ≥ 0.
We index windows starting from 0, but this does not necessarily correspond to the

initial window executed by a backoff algorithm. Rather, in our analysis, window 0
corresponds to the first window where packets start to succeed in large numbers; this
is different for different backoff algorithms.235

For example, BEB’s initial window consists of a single slot, and does not play an
important role in the makespan analysis. Instead, we apply Chernoff bounds once the
window size is at least n +

√
n, and this corresponds to window 0. In contrast, for

FB, the first window (indeed, each window) has size Θ(n), and window 0 is indeed
this first window for our analysis. This indexing is useful for our inductive arguments240

presented in Section 4.
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3.1. Analysis
Our method for upper-bounding the makespan operates in three stages. First, we

apply an inductive argument—employing Case 1 in Corollary 1 below—to cut down
the number of packets from n to less than n7/10. Second, Case 2 of Corollary 1 is used245

to reduce the number of remaining packets to O(n2/5). Third, we hit the remaining
packets with a constant number of calls to Lemma 3; this is the essence of Lemma 4.

Intuition for Our Approach. There are a couple things worth noting. To begin, why
not carry the inductive argument further to reduce the number of packets to O(n2/5)
directly (i.e., skip the second step above)? Informally, our later inductive arguments250

show that mi+1 is roughly at most n/22
i

, and so i ≈ lg lg(n) windows should be
sufficient. However, lg lg(n) is not necessarily an integer and we may need to take its
floor. Given the double exponential, taking the floor (subtracting 1) results in mi+1 ≥√
n. Therefore, the equivalent of our second step will still be required. Our choice of

n7/10 is not the tightest, but it is chosen for simpicity.255

The second threshold of O(n2/5) is also not completely arbitrary. In the (common)
case wherew0 ≥ n+

√
n, note that we requireO(n1/2−δ) packets remaining, for some

constant δ > 0, in order to get a useful bound from Lemma 3. It is possible that after
the inductive argument, that this is already satisfied; however, if not, then Case 2 of
Corollary 1 enforces this. Again, O(n2/5) is chosen for ease of presentation; there is260

some slack.

Corollary 1. Forwi ≥ n+
√
n, the following is true with probability at least 1−1/n2:

• Case 1. If mi ≥ n7/10, then mi+1 <
(5/4)m2

i

n .

• Case 2. Ifn2/5≤mi<n
7/10, then mi+1=O(n2/5).

Proof. For Case 1, we apply the first result of Lemma 2 with ε =
√
4e lnn
n1/3 , which265

implies with probability at least 1 − exp(− 4e lnn
n2/3

n7/10

2 ) ≥ 1 − exp(−2 lnn) ≥ 1 −
1/n2:

mi+1 ≤ mi −
(1− ε)mi

emi/(wi−1)

≤ mi

(
1− 1

emi/(wi−1)
+ ε

)
≤ mi

(
mi

wi − 1
+ ε

)
by RHS of Fact 1

≤ m2
i

n
+miε since wi ≥ n+

√
n

≤ m2
i

n
+
( mi

n1/3

)√
4e lnn (9)

<
(5/4)m2

i

n
since mi ≥ n7/10

where 5/4 is chosen for ease of presentation.
For Case 2, the two terms in Equation 9 are n2/5 and O(n(7/10)−(1/3)

√
lnn), re-

spectively, for the any n2/5 ≤ mi ≤ n7/10; thus, mi+1 = O(n2/5), as claimed.270
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The following lemma is useful for achieving a with-high-probability guarantee when
the number of balls is small relative to the number of bins.

Lemma 3. Assume wi > 2mi. With probability at least 1 − m2
i

wi
, all packets succeed

in window i.

Proof. Consider placements of packets in the window that yield at most one packet per275

slot. Note that once a packet is placed in a slot, there is one less slot available for each
remaining packet yet to be placed. Therefore, there are wi(wi − 1) · · · (wi −mi + 1)
such placements.

Since there are wmii ways to place mi packets in wi slots, it follows that the prob-
ability that each of the mi packets chooses a different slot is:280

wi(wi − 1) · · · (wi −mi + 1)

wmii
.

We can lower bound this probability:

=
wmii (1− 1/wi) · · · (1− (mi − 1)/wi)

wmii

≥ e
−

∑mi−1

j=1
j

wi−j by LHS of Fact 1

≥ e
−

∑mi−1

j=1
2j
wi since wi > 2mi > 2j which

leads to j
wi−j <

2j
wi

= e−(1/wi)(mi−1)mi by sum of natural numbers

≥ 1− m2
i

wi
+
mi

wi
by RHS of Fact 1

> 1− m2
i

wi

as claimed.

Lemma 4. Assume a batch of mi < n7/10 packets that execute over a window of size
wi, where wi ≥ n +

√
n for all i. Then, with probability at least 1 − O(1/n), any

monotonic backoff algorithm requires at most 6 additional windows for all remaining285

packets to succeed.

Proof. If mi ≥ n2/5, then Case 2 of Corollary 1 implies mi+1 = O(n2/5); else, we
do not need to invoke this case. By Lemma 3, the probability that any packets remain
by the end of window i+ 1 is O(n4/5/n) = O(1/n1/5); refer to this as the probability
of failure. Subsequent windows increase in size monotonically, while the number of290

remaining packets decreases monotonically. Therefore, the probability of failure is
O(1/n1/5) in any subsequent window, and the probability of failing over all of the
next 5 windows is less than O(1/n). It follows that at most 6 windows are needed for
all packets to succeed.

11



4. Inductive Arguments295

We present two inductive arguments for establishing upper bounds on mi. Later
in Section 5, these results are leveraged in our makespan analysis, and extracting them
here allows us to modularize our presentation. Lemma 5 applies to FB, BEB, and
LLB, while Lemma 6 applies to STB. We highlight that a single inductive argument
would suffice for all algorithms — allowing for a simpler presentation — if we only300

cared about asymptotic makespan. However, in the case of FB we wish to obtain a
tight bound on the first-order term, which is one of the contributions in [4].

In the following lemmas, it is worth noting that we specify m0 ≤ n instead of
m0 = n, since some packets may have succeeded prior to window 0; recall, this is
the window where a large number of packets are expected to succeed. That said, the305

following inductive arguments apply so long as m0 ≥ n7/10.
We also highlight the error probability present in each of the following lemmas;

that is, the decrease in the number of remaining packets specified in these lemmas fails
to hold with some probability. However, this probability is polynomially small in n,
and this is what allows us to bound the total error over the O(log log n) applications of310

these lemmas in Section 5.2.

Lemma 5. Consider a batch of m0 ≤ n packets that execute over windows wi ≥
m0 +

√
m0 for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

22i lg(5/4)
with error

probability at most (i+ 1)/n2.

Proof. We argue by induction on i ≥ 0.315

Base Case. Let i = 0. Using Lemma 2:

m1 ≤ m0 −
(1− ε)m0

em0/(w0−1)

≤ m0

(
1− 1

em0/(w0−1)
+ ε

)
≤ m0

(
1− 1

e
+ ε

)
≤ (16/25)m0

where the last line follows by setting ε =
√
4e lnn
n1/3 , and assuming n is sufficiently

large; this gives an error probability of at most 1/n2 . The base case is satisfied since
(4/5) m0

22i lg(5/4)
= (4/5) m0

2lg(5/4)
= (16/25)m0.

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0

22i−1 lg(5/4)
with error320

probability at most i/n2.

Induction Step. For window i ≥ 1, we wish to show thatmi+1 ≤ (4/5) m0

22i lg(5/4)
with
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an error bound of (i+ 1)/n2. Addressing the number of packets, we have:

mi+1 ≤
(5/4)m2

i

wi

≤
(

4m0

5 · 22i−1 lg(5/4)

)2(
5

4wi

)
≤
(

4m0

5 · 22i lg(5/4)

)(
m0

wi

)
<

(
4m0

5 · 22i lg(5/4)

)
since wi > m0

The first line follows from Case 1 of Corollary 1, which we may invoke since wi ≥
m0 +

√
m0 for all i ≥ 0, and mi ≥ n7/10 by assumption. This yields an error of at325

most 1/n2, and so the total error is at most i/n2 + 1/n2 = (i+ 1)/n2 as desired. The
second line follows from the IH.

A nearly identical lemma is useful for upper-bounding the makespan of STB. The
main difference arises from addressing the decreasing window sizes in a run, and this
necessitates the condition that wi ≥ mi +

√
mi rather than wi ≥ m0 +

√
m0 for all330

i ≥ 0. Later in Section 5, we start analyzing STB when the window size reaches 4n;
this motivates the condition that wi ≥ 4n/2i our next lemma.

Lemma 6. Consider a batch of m0 ≤ n packets that execute over windows of size
wi ≥ mi +

√
mi and wi ≥ 4n/2i for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤

(4/5) m0

2i22i lg(5/4)
with error probability at most (i+ 1)/n2.335

Proof. We argue by induction on i ≥ 0.

Base Case. Nearly identical to the base case in proof of Lemma 5; note the bound on
mi+1 is identical for i = 0.

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0

2i−122i−1 lg(5/4)
with error

probability at most i/n2.340

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0

2i22i lg(5/4)

with an error bound of (i+ 1)/n2 (we use the same ε as in Lemma 5). Addressing the
number of packets, we have:

mi+1 ≤ (5/4)m2
i

wi

≤
(

4m0

5 · 2i−122i−1 lg(5/4)

)2(
5

4wi

)
≤

(
4m0

5 · 2i22i lg(5/4)

)(
m0

2i−2wi

)
≤

(
4m0

5 · 2i22i lg(5/4)

)
since wi ≥ 4n/2i
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Again, the first line follows from Case 1 of Corollary 1, which we may invoke since
wi ≥ m0 +

√
m0 for all i ≥ 0, and mi ≥ n7/10 by assumption. This gives the desired345

error bound of i/n2 + 1/n2 = (i+ 1)/n2. The second line follows from the IH.

5. Bounding Makespan

In this section, we pull together the results established earlier in order to bound the
makespan of several backoff algorithms.

5.1. Describing the Backoff Algorithms350

We begin by describing the windowed backoff algorithms FIXED BACKOFF (FB),
BINARY EXPONENTIAL BACKOFF (BEB), and LOG-LOG BACKOFF (LLB) analyzed
in [4]. Recall that, in each window, a packet selects a single slot uniformly at random to
send in. Therefore, we need only specify how the size of successive windows change.

FB is the simplest, with all windows having size Θ(n). The value of hidden con-355

stant does not appear to be explicitly specified in the literature, but we observe that
Bender et al. [4] use 3e3 in their upper-bound analysis. Here, we succeed using a
smaller constant; namely, any value at least 1 + 1/

√
n.

We let BEB use an initial window size of 1, although any constant will yield the
same asymptotic behavior. Under BEB, each successive window doubles in size.360

We let LLB use an initial window size of 4; again, any constant will yield the same
asymptotic behavior. For a current window size of wi, it executes dlg lg(wi)e windows
of that size before doubling; we call these sequence of same-sized windows a plateau.5

STB is non-monotonic and executes over a doubly-nested loop. The outer loop sets
the current window size w to be double that used in the preceding outer loop and each365

packet selects a single slot to send in; this is like BEB. Additionally, for each such
w, the inner loop executes over lgw windows of decreasing size: w,w/2, w/4, ..., 1;
this sequence of windows is referred to as a run. For each window in a run, a packet
chooses a slot uniformly at random in which to send.

5.2. Analysis370

The following results employ tools from the prior sections. In the following argu-
ments, it is easy to check that the number of times these tools are invoked yields a total
error probability which is at most O(1/n). Thus, our theorems on makespan below
hold with probability at least 1−O(1/n), and we omit further discussion of error.

Theorem 4. The makespan of FB with window size at least n +
√
n is at most375

n lg lg n+O(n).

Proof. Since wi ≥ n+
√
n for all i ≥ 0, by Lemma 5 less than n7/10 packets remain

after lg lg(n) + 1 windows; to see this, solve for i in (4/5) n

22i lg(5/4)
= n7/10. By

Lemma 4, all remaining packets succeed within 6 more windows. The corresponding
number of slots is (lg lg n+ 7)(n+

√
n) = n lg lg n+O(n).380

5As stated by Bender et al. [4], an equivalent specification (in terms of asymptotic bounds on makespan)
of LLB is that wi+1 = (1 + 1/ lg lg(wi))wi. This equivalence is elaborated on by Anderton et al. [56].

14



Theorem 5. The makespan of BEB is at most 512n lg n+O(n).

Proof. Let W be the first window of size at least n +
√
n (and less than 2(n +

√
n)).

Assume no packets finish before the start of W ; otherwise, this can only improve the
makespan. By Lemma 5 less than n7/10 packets remain after lg lg(n)+1 windows. By
Lemma 4 all remaining packets succeed within 6 more windows. SinceW has size less385

than 2(n+
√
n), the number of slots until the end of W , plus those for the lg lg(n) + 7

subsequent windows, is less than:lg(2(n+
√
n))∑

j=0

2j

+

lg lg(n)+7∑
k=1

2(n+
√
n)2k


= 512(n+

√
n) lg n+O(n)

by the sum of a geometric series.

Theorem 6. The makespan of STB is O(n).

Proof. Let W be the first window of size at least 4n. Assume no packets finish before390

the start of W , that is m0 = n; else, this can only improve the makespan.
While mi ≥ n7/10, our analysis examines the windows in the run starting with

window W , and so w0 ≥ 4n,w1 ≥ 2n, etc. To invoke Lemma 6, we must ensure that
the condition wi ≥ mi +

√
mi holds in each window of this run. This holds for i = 0,

since w0 = 4n ≥ n+
√
n.395

For i ≥ 1, we argue this inductively by proving mi ≤ (5/4)2
i−1−1 n

32i−1 . For
the base case i = 1, Lemma 2 implies that m1 ≤ n(1 − e−n/(4n−1) + ε) ≤ n(1 −
e−1/3 + ε) ≤ n/3, where ε is given in Lemma 6. For the inductive step, assume that
mi ≤ (5/4)2

i−1−1 n

32i−1 for all i ≥ 2. Then, by Case 1 of Corollary 1:

mi+1 ≤ (5/4)m2
i /n

≤ (5/4)
(

(5/4)2
i−1−1 n

32i−1

)2
/n

≤ (5/4)2
i−1 n

32i

where the second line follows from the assumption, and so the inductive step holds.400

On the other hand, at window i, wi ≥ 4n
2i >

4n

(5/2)·(12/5)2i−1 = 2 · (5/4)2
i−1−1 n

32i−1 ≥
2mi > mi +

√
mi holds.

Lemma 6 implies that after lg lg n + O(1) windows in this run, less than n7/10

packets remain. Pessimistically, assume no other packets finish in the run. The next
run starts with a window of size at least 8n, and by Lemma 4, all remaining packets405

succeed within the first 6 windows of this run.
We have shown that STB terminates within at most dlg(n)e+O(1) runs. The total

number of slots over all of these runs is O(n) by a geometric series.

It is worth noting that STB has asymptotically-optimal makespan since we cannot
hope to finish n packets in o(n) slots.410
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Figure 1: Illustration of the argument used to prove the makespan for LLB.

Bender et al. [4] show that the optimal makespan for any monotonic windowed
backoff algorithm is O(n lg lg n/ lg lg lg n) and that LLB achieves this. We re-derive
the makespan for LLB.

Theorem 7. The makespan of LLB is O
(
n lg lg n
lg lg lg n

)
.

Proof. We consider four consecutive plateaus in our argument, denoted by P0, P1, P2,415

and P3. Recall that, for any fixed plateau, its windows are the same size; therefore, we
denote the window sizes for P0, P1, P2, and P3 by w0, w1, w2, and w3, respectively.
Within each plateau, we use mi to denote the number of packets at the start of ith

window of that plateau, for i ≥ 0.
For ease of presentation, we break our analysis into two parts. The first deals with420

P0, where we address windows of size at most mi −
√
mi, allowing us to leverage

Lemma 2. The second addresses P1, P2, and P3, where we show an eventual transition
to windows of size at least mi+

√
mi, again allowing us to invoke Lemma 2 and finish

the remaining packets. Figure 1 highlights the structure of our argument.

Part 1. Le P0 be the first plateau with window size w0 = cn/ ln ln lnn for some425

constant c ≥ 4. Pessimistically, assume that no packets succeed before P0; otherwise,
this can only improve the makespan.

In P0, consider those windows i ≥ 0 where mi satisfies w0 ≤ mi −
√
mi. By

Lemma 2, each such window finishes at least the following number of packets:

(1− ε)mi

e
mi

(cn/ ln ln lnn)−1

>
(1− ε)n

e
n

(cn/ ln ln lnn)−1 · ln ln lnn

≥ (1− ε)n
(ln lnn)

2
c · ln ln lnn

=
(1− ε)n

(ln lnn)
ln ln ln lnn
ln ln lnn + 2

c

>
n

(ln lnn)
3
c

where the first inequality follows noting that: mi ≤ n, which is placed in the exponent
of the denominator); and since w0 ≤ mi −

√
mi, we have mi > n/ ln ln lnn in the
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windows considered, and this value is used in the numerator. The third line holds since
(ln lnn)ln(ln ln lnn) = (ln ln lnn)ln(ln lnn), and the last line follows for sufficiently
large n. It suffices to set:

ε =

√
4e ln2(n)

n

in order to obtain an error probability at most:

exp

(
−4e ln2(n)

n
· n

2 ln ln ln(n)e
n

(cn/ ln ln lnn)−1

)
= O

(
1

n2

)
.

It follows that after n−n/ ln ln lnn
n/(ln lnn)3/c

< (ln lnn)3/4 windows in P0, the number of re-430

maining packets is O(n/ ln ln lnn). Also, for any window with index i ≥ (ln lnn)3/4

in P0, we have w0 > mi −
√
mi; note that this also implies wj > mi −

√
mi for

j = 1, 2, 3 and for any i, given that windows in subsequent plateaus are larger, and the
number of packets can only decrease.

Part 2. Most packets succeed in Part 1, and now we would now like to show that those435

remaining finish quickly. However, as established above, at some point in P0, we have
wj ≥ mi−

√
mi+1 for j = 1, 2, 3 and for any i. Therefore, we must wait for windows

of size at least mi+
√
mi, since this is the alternative condition for invoking Lemma 2,

which is crucial to our later lemmas for showing packets succeed.
Fortunately, we should not expect to wait too long, since the window size continues440

to increase, while the number of packets can only remain the same or decrease. In the
worst case, P1 contains windows of size w1 = mi −

√
mi + 1. Then, at the start of

P2, the window size becomes 2wi = 2mi − 2
√
mi + 2 ≥ mi +

√
mi for mi ≥ 4.

Therefore, we have at most one such “bad” plateau with P1, where pessimistically no
packets succeed, after which both w2 and w3 in P2 and P3, respectively, are at least445

mi +
√
mi for all i, so long as mi ≥ 9.

Starting with P2 and treating the remaining O(n/ ln ln lnn) packets as an “initial
batch”, we invoke Lemma 5, which implies that after at most lg lg(n) + 1 windows,
less than n7/10 packets will remain. Does P2 have enough windows? The number of
windows in P2 is lg lg(4cn/ ln ln lnn), and we note the upper and lower bounds:

lg lg(n)− 1 < lg lg

(
4cn

ln ln lnn

)
< lg lg(n) + 1.

Therefore, we must proceed into P3 to reduce the number of packets to less than n7/10.
Then, if at least n2/5 packets still remain, by Case 2 of Corollary 1, at most O(n2/5)
packets remain by the end of the next window, and they will finish within an additional
6 windows by Lemma 4.450

Finally, tallying up over the slots in P0 through P3, the makespan is O(ln lnn)×
O( n

ln ln lnn ) = O( n ln lnn
ln ln lnn ).

6. Summary and Future Work

We have argued that standard Chernoff bounds can be applied to analyze single-
tons, and we illustrate how they simplify the analysis of several backoff algorithms455
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under a batch of packets. We believe that the results presented here demonstrate the
benefits of this approach, but there are some obvious extensions that may be of inter-
est. First, we believe that lower bounds on the makespan of these backoff algorithms
can be proved using this approach. Second, a similar treatment is likely possible for
polynomial backoff or generalized exponential backoff (see [4] for the specification of460

these algorithms). Third, it may be interesting to examine whether this analysis can be
extended to the case where packets have different sizes, as examined in [29].
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Appendix

Appendix A. Chernoff Bounds and Property 1

In the derivation of Chernoff bounds given in Dubhashi and Panconesi [11], the
equality version for Equation A.2 is claimed in the line above Equation 1.3 on page 4
by invoking independence of the random variables. However, the indicator variables625

for counting singletons are dependent. We can show, in Claim 1 below, that Property 1
leads to Equation A.2, where the direction of the inequality aligns with the derivation
of Chernoff bounds.

Claim 1. Let X1, · · · , Xn be a set of indicator random variables satisfying the prop-
erty:

Pr

[∧
i∈S
{Xi = 1}

]
≤
∏
i∈S

Pr [Xi = 1] (A.1)

for all subsets S ⊂ {1, · · · , n}. Then the following holds:

E

[
n∏
i=1

eλXi

]
≤

n∏
i=1

E
[
eλXi

]
(A.2)

Proof. We will show that the both sides of equation (A.2) can be expressed as poly-
nomial functions of λ with a similar form. First, let us look at the left hand side
(LHS). By the Taylor expansion eλXi =

∑∞
k=0 λ

k X
k
i

k! , the product
∏n
i=1 e

λXi =∏n
i=1

(∑∞
k=0

λk

k!X
k
i

)
, which can be expressed as

∑∞
r=0 frλ

r with f0 = 1 and the
other coefficients fr, r ≥ 1, being functions of Xi’s. The expression of fr, r ≥ 1, is
given as fr =

∑min{r,n}
k=1

∑
(i1,i2,··· ,ik)⊂{1,··· ,n} fr(i1, · · · , ik) with

fr(i1, · · · , ik) =
∑

(d1,··· ,dk):d1≤d2≤···≤dk
d1+d2+···+dk=r

Xd1
i1

d1!

Xd2
i2

d2!
· · ·

Xdk
ik

dk!
, (A.3)

where d1, · · · , dk are positive integers. Equation (A.3) tells that given a subset of
size k, {Xi1 , · · · , Xik}, from {X1, · · · , Xn}, we choose all possible sets of increas-
ing positive integers d1, · · · , dk as the power for Xi1 , · · · , Xik while keeping their
sum equal to r. Here, we list the expressions of f1, f2, and f3 as illustrative exam-
ples: f1 =

∑n
i=1Xi, f2 =

∑n
i=1

X2
i

2! +
∑

1≤i1 6=i2≤nXi1Xi2 , and f3 =
∑n
i=1

X3
i

3! +∑
1≤i1 6=i2≤nXi1

X2
i2

2! +
∑

1≤i1 6=i2 6=i3≤nXi1Xi2Xi3 . With the expression of fr’s, the
LHS becomes

LHS = 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(i1,i2,··· ,ik)⊂{1,··· ,n}

E[fr(i1, · · · , ik)],

where E[fr(i1, · · · , ik)] =
∑

(d1,··· ,dk):d1≤d2≤···≤dk
d1+d2+···+dk=r

E
[
X
d1
i1
X
d2
i2
···Xdkik

]
d1!d2!···dk! .
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We use similar derivations on the right hand side (RHS), which becomes RHS =∏n
i=1

(∑∞
k=0 λ

k E[Xki ]
k!

)
= 1 +

∞∑
r=1

λr
min{r,n}∑
k=1

∑
(i1,i2,··· ,ik)⊂{1,··· ,n}

f̃r(i1, · · · , ik)

with

f̃r(i1, · · · , ik) =
∑

(d1,··· ,dk):d1≤d2≤···≤dk
d1+d2+···+dk=r

E[Xd1
i1

]

d1!

E[Xd2
i2

]

d2!
· · ·

E[Xdk
ik

]

dk!
.

Note that f̃r(i1, · · · , ik) is similar to fr(i1, · · · , ik) in equation (A.3) but replacesXdj
ij

,630

j = 1, · · · , k, with their expectations. Consequently, the relationship between the LHS
and RHS lies soly on the difference betweenE

[
Xd1
i1
· · ·Xdk

ik

]
andE

[
Xd1
i1

]
· · ·E

[
Xdk
ik

]
.

For indicator random variables, Xk
i = Xi for any positive integer k. Thus,

E
[
Xd1
i1
· · ·Xdk

ik

]
= E [Xi1 · · ·Xik ] andE

[
Xd1
i1

]
· · ·E

[
Xdk
ik

]
= E [Xi1 ] · · ·E [Xik ] .

In addition, E[Xi] = Pr[Xi = 1], so E [Xi1 ] · · ·E [Xik ] =
∏
j={i1,··· ,ik} Pr[Xj =

1]. On the other hand, E[Xi1 · · ·Xik ] = Pr
[∧

j={i1,··· ,ik}{Xi = 1}
]
.

Thus, if the property Pr
[ ∧
i∈S
{Xi = 1}

]
≤
∏
i∈S Pr [Xi = 1] is satisfied for all635

subsets S ⊂ {1, · · · , n}, E
[
Xd1
i1
· · ·Xdk

ik

]
≤ E

[
Xd1
i1

]
· · ·E

[
Xdk
ik

]
for all possible

(i1, · · · , ik) ⊂ {1, · · · , n}. Consequently, LHS ≤ RHS.
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