INFINITELY MANY EMBEDDED EIGENVALUES
FOR THE NEUMANN-POINCARE OPERATOR IN 3D

WEI LI, KARL-MIKAEL PERFEKT, AND STEPHEN P. SHIPMAN

AsstrAcT. This article constructs a surface whose Neumann-Poincaré (NP) integral operator
has infinitely many eigenvalues embedded in its essential spectrum. The surface is a sphere per-
turbed by smoothly attaching a conical singularity, which imparts essential spectrum. Rotational
symmetry allows a decomposition of the operator into Fourier components. Eigenvalues of infin-
itely many Fourier components are constructed so that they lie within the essential spectrum of
other Fourier components and thus within the essential spectrum of the full NP operator. The
proof requires the perturbation to be sufficiently small, with controlled curvature, and the conical
singularity to be sufficiently flat.

1. INTRODUCTION

Let I' € R? be a connected Lipschitz surface with surface measure do, enclosing a bounded open
domain. The adjoint of the Neumann-Poincaré operator is defined by

Krf(r /Kp r,v')f(r')do(r'), reT,
where the kernel is
(r—r',v,)
W Kl = S

The adjoint operator K7 is the direct (principal) value of the double-layer potential on I'. The
single-layer operator is defined by

Srf(r /Srrr (r')do(r'), rer,

where the kernel is )

S -
o(r,r) = v —r/|
While the kernel Kr(r,r’) is symmetric only if T' is a sphere, there is a natural framework that

uncovers the intrinsic symmetry of the operator Kt [9, 13]. Consider the inner product
<f7 g>$’r = <f7 SFg>L2 ()

with corresponding norm || f|| s, (f, f)sp - The energy space £ = E(T") is the completion of
L*(T) under the |-||sp.-norm. Then Kr: & — £ is self-adjoint. For a fixed surface I', the space £
and the Sobolev space H~/2(T) consist of the same distributions and the norms ||| s, and ||| -1z
are equivalent.
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The main goal of the present work is to provide a surface I' with a conical point such that
Kr: & — &£ has infinitely many eigenvalues embedded in the essential spectrum arising from the
conical singularity. An equivalent formulation is that the Neumann-Poincaré operator Kj:: & — &’
has infinitely many eigenvalues embedded in its essential spectrum, where & ~ H'/ 2(T) is the
natural dual space of £. The surface will be constructed by smoothly adding a conical singularity
to a sphere in such a way that rotational symmetry is preserved.

For the NP operator on certain reflectionally symmetric closed curves in R? with a corner, it was
proved in [10] that finitely many eigenvalues are embedded in the essential spectrum. Numerical
evidence of embedded eigenvalues and complex resonances had previously been demonstrated in [6],
and numerical analysis of these phenomena appeared in [5] as applied to surface plasmons on
subwavelength particles. In 2D, the essential spectrum produced by a corner is an angle-dependent
interval of absolutely continuous spectrum of multiplicity 1 [1, 8, 12, 14]. Reflectional symmetry
additionally induces a decomposition of the operator into even and odd components; and for the
curves featured in [10], non-embedded eigenvalues of one component are embedded in the continuous
spectrum of the other component.

The main result of the present work is the following.

Theorem 1. Let Iy be the unit sphere in R3. There exists a conical perturbation T of T'g such that
Kr: & = & has infinitely many eigenvalues within its essential spectrum.

These are the main elements of the proof.

(a) By rotational symmetry, Kt decomposes into Fourier components KJ,nelZ.

(b) For the unit sphere T'g, the largest eigenvalue of K7 is A\, = 1/(2|n[ +1).

(c¢) Perturbing the sphere by a conical singularity imparts an interval of essential spectrum of
size O(1/|n|) to K.

(d) If the angle of the perturbation is flat enough and n is large, the essential spectrum of K
does not overlap A,.

(e) If the perturbation is sufficiently small and shallow, with controlled curvature, then for
infinitely many n, A, gets perturbed to an eigenvalue of K, while avoiding its essential
spectrum.

(f) Infinitely many of the perturbed eigenvalues will be embedded in the essential spectrum of
each of the Fourier components.

Point (e) presents the greatest challenge, and most of the analysis is dedicated to it. To achieve
control over the perturbed eigenvalues for infinitely many n, one of the requirements is a uniform
bound on the curvature of the perturbed profile. This is accomplished by coordinating the angle «
of the conical perturbation and its size e.

The background to our work is provided by [7], where the essential spectrum of Kr: & — & was
computed for surfaces I' with rotationally symmetric conical points; see Theorem 4. As we need to
refine the associated estimates, we will revisit a number of the calculations from [7].

The paper is organized as follows. In Section 2 we discuss the structure of K for rotationally
symmetric surfaces I'. In Section 3 we outline the proof of Theorem 1. Many of the details of the
proof are deferred to the more technical Section 4.

2. PRELIMINARIES

This section describes the following preliminary material: (i) The Fourier decomposition of the
adjoint of the NP operator on rotationally symmetric surfaces and special-function representations
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of the associated kernels, needed for the subsequent perturbation analysis, (ii) the essential spectrum
of the Fourier components for a surface with a conical singularity, and (iii) the spectrum for the
sphere.

Notation. For two non-negative quantities a = a(g) and b = b(g) that depend on the choice of
an object g € G within some collection of objects G (such as a class of admissible curves), the
expression a < b means that there exists a constant C' > 0 such that a(g) < Cb(g) for every object
geG. Ifa<band b < a, we write a & b.

2.1. Rotational symmetry. Consider a connected rotationally symmetric Lipschitz surface I’
with parametrization
r(t,0) = (y1(t) cos 0,71 (t) sinb,v(t)), 0 €[0,2x], te][0,1],

for two Lipschitz functions v; and 2. We say that I is generated by v(t) = (y1(¢),72(¢)). We use this
parametrization to Work with functions f: I' — C and integral kernels by writing f ( 0) := f(r(t,0))
and Kr(t,0,t,60") .= Kr(r(t,6),r(t',0")). Then

27 pl
Krf(t,0) = ;ﬁ/ Kr(t, 0,0 f(t',0") v ()| ()| dt’ db’.
0

Let f™(t) be the nth Fourier coefficient of f(t,0),

2#_6
[ () _\/ﬂ/ f(t,0)ds, te(o,1].

This Fourier transform f(r) — {f™(¢)} provides the decomposition

(U, do) ~ EL*([0,1], n(®)|y ()] dt),
neZ

where ~ denotes unitary equivalence, under which

f(t 9 Z fn 1719

and
JUCIRED /U”\%UWUW
Due to rotational invariance, the Fourier transform of the adjoint NP kernel,
1 2m »
KI(t,t) = o ), ¢ "EKR(t,0,t',0)d0, t,t' €][0,1],

realizes the decomposition of Kt into integral operators acting on Fourier components,

(Kefy') = [ KiaOr @ m@p @l
Similarly, the kernels

1 27 i
"t t) = — ~in0 51 (t,0,t',0) do
S’y(? ) 271_/0 € SF(a ) 30)
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decompose the single-layer operator. Denote the component operators with the same symbol as
their kernels:

=LA KN (6, 6)g(# ) ()Y ()] dt', (ST t/ St ) gy ()Y (1) d’,

acting in L ([0, 1], 1 (¢)[7/(t)| dt). Letting &, = &£,(y) be the completion of L%([0, 1], v1 (¢)|7/(t)] dt)
with respect to the norm ||g[|2, := (SZ'g,g) [7, Sec.7.1], one obtains the unitary equivalence
Y

(1) ~ P &)
nez

The decompositions of both L?(T',do) and £(T) induce corresponding decompositions of the oper-

ators
Kr~@PEKr,  Sc~Ps.

nez ne”Z
The kernels K7 (¢,t") and S7(¢,t') can be expressed in terms of special functions; see the Appendix
of [7] for more details. For n > 0,

(2) , .
t
KMt 1) = [ 72 Q,_ T R,(x)) = [y(t) — ()| Kr(t,0,¢,0)R,,
3 (t,t) T ) 2O ] (Qn-1/2(x) (X)) = Iv(8) = () Kr( )% (X)
and )
SH(tt) = —m———=Qn1/2(0)
’ e (@)
where )
_ ’
INCTORS T
2 () (')
Q,,_1/2 is a half-integer degree Legendre function of the second kind,
cos (n)dé T e dg
Qn1/2(x ——,
—m 4/8(x — cos(d —x /8(x — cos(0))
and
2n —1

mn(X) = +1 (XQn 1/2( )_971—3/20())'

For n < 0, we have KI/(t,t') = K" (t,t ).
The following lemma will be proved in Section 4.1. Note that Q,_1/5(1+ §2) > 0 for every § > 0
and n > 0.

Lemma 2. Letn € N and § > 0. If§ > 1, then

1 1
Qn71/2(1+62) S W? |mn(1+52)| Sx W
If 6 < 2, then
1 1
_12(146%) < (1463 <
Qn 1/2( + ) ~ (77,5)27 |% ( + )| ~ (n5)2

If nd < 1/2, then

1
1+6%) < log— 1+6%)| < log—.
Qn71/2( +4 ) ~ log o’ |mn( +4 )| ~ Ogn
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Remark 3. By successive integrations by part, it can actually be shown that if § > 1, then

1
a1+ S s,

Qno12(1+6%) < pyss

for any A > 0.

2.2. The essential spectrum from a conical singularity. Suppose that I' is obtained by rev-
olution of a C® curve «, and that I' is C' except for one conical singularity that forms an angle o
with the rotational axis. An angle o € (0, §) corresponds to a conical singularity pointing outward,
and an angle a € (F,7) corresponds to an inward-pointing conical singularity.

The essential spectra of Kr: & — £ and Kr: L?(I') — L*(T) were characterized in [7]. To state

the result, let I, n € Z, denote the holomorphic function
B P (cos ) P"L (= cos ) — PI™L (= cos a) PI™, (cos )

a le71|2(— cos a)lerig (cosa) + Pﬁg (cos oz)]bzhi‘2 (—cosa)

(3) 7 (2) , 0<Rez <3,

where PZ‘ﬁIQ(a:) denotes an associated Legendre function of the first kind, and lerig(x) its derivative
with respect to x.

Theorem 4 (|7, Theorems 5.5 and 6.3]). Let n € Z. The essential spectrum of KZ: &, — &, is a
real interval,

Tess (K, En) = {TI5(3/2 + i) : —00 < & < oo}

The essential spectrum of K2': L*([0,1], v (t)|y/(t)| dt) — L2([0,1], v (t)|7/(t)| dt) is a complex
curve,

Tess (K, L2 ([0, 1], (&)Y ()] dt)) = {II5(1 +i€)  —00 < & < oo}

It follows from [4, Theorem 7.5] that oess(Kr, &) C [0,1] when 0 < a < § and 0es(KT, &) C
[—1,0] when § < a < m; the link between the problem studied in [4, Theorem 7.5] and the spectral
theory of Kt can be found in [1, Section 2|. That is, for each n € Z, UESS(K,TYL,é'n) is a positive
interval containing 0 when 0 < o < 7, and a negative interval containing 0 when § < a <.

In Section 4 we will clarify some of the calculations of [7] further. In accordance with Theorem 4,
let |0y,,o| denote the essential spectral radius of K7: &, — &,

om0l = sup{[II5(3/2 +i€)[ : —oo < ¢ < oo},
and let |5, o| denote the essential spectral radius of K7 acting on L?([0,1], 1 (t) |7/ (¢)| dt),
0.0l = sup{[TI5 (1 +i§)[ : —00 < § < oo}
Lemma 5. For 0 < a < § we have that |og.q| = I12,(3/2) and
(4) Oess (K, &) = [0, |o0,al]-
For 3 < o < m we instead have that |ogo| = —112,(3/2) and oess(Kr, E) = [~|00,al,0].
For every n € Z and o # /2, we have that
|Jn,a| < |C~7n,a|-
Furthermore, for every co € (0, %) there exists a constant Cy such that if o — 5| < co, then
o —7/2]

5 ~na§C 9
() |00l Tl

n € 7.
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Suppose that I is perturbed smoothly so that the conical singularity is retained but the rotational
symmetry is destroyed, by applying a smooth diffeomorphism 1 of R3 which is conformal at the
vertex of ', IV = ¢(T'). Then the techniques of [11] can be adapted to the L2-setting to view
Kri: L*(T") — L?(I") as a compact perturbation of an operator similar to Kr: L?(T') — L*(T).
Appealing to extrapolation of compactness as in [2, Theorem 5.22|, the same statement is true when
L?(I”) and L*(T) are replaced by £(I") and &(T'), respectively. Equation (4) therefore remains valid
for the perturbed surface I''. However, we expect any embedded eigenvalues to disappear in general,
since symmetry is instrumental for their construction.

2.3. The spectrum for a sphere. Let [y be the unit sphere, obtained by revolution of 5. The
spherical harmonics are in spherical coordinates defined as
2041 (£ —m)!

Y;"(B,6) = o mPg”(cosﬁ)eime, (>0, 4<m</(0<B<m0<0<2m.

They form an orthonormal Hilbert-space basis for L?(T),

Yvém (67 0)}/[7/71/ (ﬁa 9) do = 5m7m’5€7€’ .
o
Note that Y,” belongs to the mth Fourier space.
Since I'g is smooth, the spectrum of K7 is the same whether considered as an operator on

L2([0,1], 70,1 (t) 16 (#) dt) or on &, [9],

1
Kl )=q——F : {> U{0}.
o(w5) = { gy 0= WU )
The eigenvalue ﬁ of K¥ has eigenfunction Y/ (-,0). The point 0 of the spectrum is not an
eigenvalue.

In our analysis, we will additionally rely on a very special property for the sphere, namely that

Sr, = 2Kr,,
and therefore that S;‘O = 2K§‘0 for all n € Z.

3. THE NP OPERATOR ON PERTURBATIONS OF THE UNIT SPHERE

This section introduces small conical perturbations of the sphere and investigates the correspond-
ing perturbation of eigenvalues. It concludes with a proof of the main Theorem 1, up to a number
of technical estimates deferred to the next section.

3.1. Perturbation and parametrization. This subsection sets the notation for our perturbations
of the sphere. The type of perturbation that we will consider amounts to the smooth addition of
a small rotationally symmetric conical singularity with a shallow angle. The notation established
here is maintained throughout.

Let Ty C R3 be the unit sphere. We fix a parametrization vo(t) = (70.1(t),70,2(t)), 0 <t < 1, of
its generating curve that satisfies the following requirements:

A-1. 70,2(0) = =1 and 7,2(1) = 1

A-2. vp,1 and vp,2 are smooth;

A-3. Near ¢ = 0 the parametrization is of the form of a graph: vo(t) = (t,70,2(t)), t € [0, £];

A4 [Y(t)] € [3.4] for t € ]0,1].
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FIGURE 1. The profile of the unit sphere I'y.

Remark 6. With this parametrization, the Euler angle representing the tilt 8 is a function of t.
We denote this function by B(t). By A-3, yo2(t) = —V1—12 for t € [0, 1].

Next we perturb 7p in a small neighborhood of ¢ = 0. For a given angle o, we let ¢ = 1|a — T|.
Let co > 0 be so small that whenever | — Z| < co, it holds that
1 6e 9 us
6 6 < =, ) o(6e) = ———— < |cota <\/§,andcota§f‘a——‘.
©) § Thalt) = S <feotal cotal < a3
Definition 7. Let 'y be the unit sphere with a parametrization satisfying Assumptions A-1 through
A-4. Let o and € satisfy o — 5| < co and € = %\a — 5|. We say that T is an (o, €)-perturbation of
the unit sphere Ty if its generating curve 7y satisfies
B-1. 71,72 € COO([O? 1])7
B-2. y(t) = 0(t) fort € [g,1];
B-3. 4(t) = (t,72(t)) fort € [0,
B-4. 75(t) = cot(a) fort 0, 5]
B-5. |yy(t)] < |cotal fort € [5,¢];
B-6. |45 (t)] < 40 fort € [0,¢];

I;

The definition implies that the curvature of v is uniformly bounded by 40 and that |/ (¢)| € [4,4]
for t € [0, 1]. The surface I" obtained by revolving ~ has a conical singularity pointing outward when
0 < a < 7/2, and a conical singularity pointing inward when 7/2 < a < 7.

Note that (o, €)-perturbations of I'g exist for every a satisfying |a — 5| < co. In particular, it
is possible to satisfy B-6 because v} needs to change by at most 2|cota| < 9o — Z| within the
interval [¢/2,€] of length § = L|a — Z|.

Remark 8. The parameters ¢ and o are tied through ¢ = %|o¢ — 5| in order to control the curvature
of the perturbation. Nevertheless, we distinguish the two parameters in our results in order to
separate their roles in the analysis.

3.2. Approximate eigenpairs. In this section, for n > 1, let

1 n

™ X =
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FIGURE 2. The profile of an (o, ¢)-perturbation I" of the unit sphere T'y.

where () is the function defined in Remark 6. This defines an exact eigenpair for K. The goal
of this section is to show that, for infinitely many n, this is an approximate eigenpair for K7 for
(@, €)-perturbations with | — §| sufficiently small.

For convenience, we write

dpo(t) =01 (B @) dt,  dp(t) =y () ()] dt.
When T is an (a, £)-perturbation of T'g, the norms of L2([0, 1], du) and L?([0, 1], dpo) are equivalent,

1
47\|f||L2([o,1],duo) < fllz2qoanamy < 421N z2(0,11,du0)
Any operator T on L%([0,1], du), for example T' = K2, can therefore be understood as an operator

on L2([0,1],duo) of equivalent norm,

1
2Tl < Tl < 45T,

where ||'||u = ||'||LQ([O,l],du)aLQ([O,l],d;L) and H'Huo = ||'||L2([0,1},(1#)%1:2([0,1],@0)~
In particular, we consider K7 — K and S¥ — S as operators on L2([0,1],duo). Explicitly,

1 1
(K3 — K5 f(t) =/0 R () dpo(t'), (ST —S5)f(t) :/o &"(t,t')f (') duo(t'),
where the kernels are given by

iy oy — gengg oy LEN N o nip oy angg oy AN o,
&) 80 = B O @y~ e SO =S5O ey ()
Similarly, we consider Kr — Kr, and Sp — S, on L?(I'g) = L2([0,1] x [0,27), duo(t) df),
(KF_KFO)f(rO(tvO)):/ R(ro(t,0),ro(t',0)) f(ro(t',8")) duo(t) db,

To
(Sr — Sry) f(ro(t, 0)) = / S(ro(t,0),ro(t',0')) f(ro(t',0')) dpo(t) db.
T'o
Their kernels are given by

R(ro(t,0),ro(t',0)) = Kp(r(t,9),r(t’,0’));;11@?;);7;&2)| — Kr,(ro(t,0),ro(t',0")),

S(ro(t,0),ro(t',0")) = Sp(r(rf,9),r(t’,9’))’}le(:/,))r’;éz})| — Sty (ro(t,0),ro(t',0')).

Here r(t, ) and ro(t, 0) refer to the parametrizations of I' and I'y induced by ~ and ~p, respectively.
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FIGURE 3. Two pairs of partition of unity

Let x1 + x2 = X1 + X2 = 1 be two partitions of unity of [0,1] such that suppyxi C [0, 4e],
supp x2 C [3e,1], supp x1 C [0,2¢], and supp X2 C [e, 1], as in Figure 3. Since x28"x2 = 0 and
x26"x2 = 0, we have
(9) K" = x18" + x28"X1,

G" = x16" + x26"x;1.
We now state two technical lemmas, deferring their proofs to Section 4. Given a kernel ¥, we
also denote the operator it induces by <.

Lemma 9. There exists a constant C > 0 such that for every (a,e)-perturbation T' of Tg, the
operators x1 8" and x16" satisfy

—m/2
s, < 0= TATE

3
L €, < C5.

Lemma 10. For every (a,e)-perturbation T' of Ty, the operators x28x1 and x26x1 are in the
Schatten class S,(L*(Lg)) for some p < 1.

As a consequence of Lemmas 9 and 10, we have the following.

Lemma 11. There exists a constant C > 0 satisfying the following. For every («,e)-perturbation
' of I'g there exists an infinite set Z C N such that

n n |Oé—7T/2‘ +e
17— Ky < LT

o <
€
187 = 82, llue < €=,

for everyn € Z.

Proof. Every norm |x28"X1| ., appears as a singular value of x28X1, an operator on L?(I'g) =
L2([0,1] x [0,27), duo df). The same statement is also true with & in place of & From Lemma 10
we thus know that there is a p < 1 such that

> e ullh, <o, Y x2S xallh, < oo
n n
In particular, there are infinitely many n for which

N 1 5 1
28" X1 llw < —15  IXx26"X1llpo < —-

ne ne

The lemma now follows from (9) and Lemma 9. O

We can now prove the main result of this section. In the statement, A™ and f,, are as in (7), so
that K7 fn, = A" fn.
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Lemma 12. There exist c € (0,5) and C > 0 such that, for every (a,e)-perturbation I' of g with

la — 5| < ¢, there exist infinitely many n for which

o — /2| + ¢
n

£l

Proof. Let (-,-),, denote the inner product of L?*([0,1],du). By Lemma 11, there is a set Z =
Z(T") C N such that

IS = X fully = (ST KL — K3) fu, (K = K5) fa)u <
(10) NS5 (5 = E5) full ull (B = K3) fall + 1055 = S5)(BY = K5 fullull (K5 = K5 fallu <

I(K2 = A" fallsn < C 5.

1 (Joo — /2| + €)?
e — g gl < WO TR
whenever n € Z. In addition to Lemma 11, we have here made use the fact that
2

4 _ 14
1% I < 41185, o =45

which follows from the fact that S? : L*([0,1],duo) — L*([0,1],duo) is a non-negative operator
with 2/(2n + 1) as its largest eigenvalue (Section 2.3).
On the other hand, for n € Z,

2
ml\fnﬂi = (55 frs Fdu <S5 fus ) + 1055, = SY) Fallull fll
9

/S <S'7ylfnafn>,u + ﬁ”fn”Q

Here we have recalled that <Sf;'fn, fn) = |l fnl
we conclude that

2, >0. If |a — Z|, and thus ¢, is sufficiently small,
n

1fall2 € nllfullsy, me 2.

Inserting this estimate into (10) yields the desired conclusion. O

3.3. Proof of Theorem 1. We can now give the proof of Theorem 1. Recall that the proofs of
Lemmas 2, 5, 9, and 10 have been deferred to the next section.

Proof. Let c and C be as in Lemma 12, and let I' be an (o, €)-perturbation of I'g with 0 < § —a < c.
Then Lemma 12 shows that there is an infinite set Z = Z(I') C N for which
of /2—a+e

dist(o(K,€4),1/(2n + 1)) < .

, MEZ.

By Lemma 5, we also know that the essential spectral radius of K2 E, — &, satisfies that

/2 —«
|Un,a| < CO/T

for some constant Cp. Hence, if 7 — «, and therefore ¢, is chosen sufficiently small, K7: &, — &,
must for every n € Z have an eigenvalue z,, satisfying

o 7T/2_a+€§2n§ 1 +C7T/2—a+5.
2n +1 n 2n+1 n

Every z, is an eigenvalue of Kr: £ — &, infinitely many of which are embedded in

Uess(KFag) = [07 |O'0,04H' O

|0l <
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Remark 13. By instead considering (o, €)-perturbations with 5 < o < 7, the same argument yields
examples I' where Ky: & — & exhibits infinitely many eigenvalues outside its essential spectrum,
which is negative in this case. Such an example has previously been observed numerically in [7,
Section 7.3.3].

4. KERNEL AND OPERATOR ESTIMATES

This section contains the proofs of Lemmas 2, 5, 9, and 10.
4.1. Proof of Lemma 2.

Proof. We first consider

o T ezn@ do _ ﬂ- cos(n@) df
Qn—1/2(1 +4 ) = ‘/_77 \/62 T (1 — COS(H)) - ‘/_77 \/52 + (]_ — COS(Q)) .

Integration by parts once, twice, and three times gives

5 1 (™ sin(ny)sin(y) dy
Qp-1/2(146%) = o / (02 + (1 — cos(y)))3/2
_ 1 T cos(ny)cos(y)dy 3 [T cos(ny) sin®(y) dy
(11) 2 J o (02 + (1= cos(y)))¥?  4n? J . (82 + (1 — cos(y)))?/
1 (™  sin(ny)sin(y) dy 3 [T sin(ny) cos(y) sin(y) dy

T3 ) (024 (L —cos(y))32 " 4nd ) . (82 + (1 — cos(y)))?/2
N 3 [T sin(ny)sin(y) cos(y)dy 15 [T sin(ny) (sin(y))* dy
23 J_o (024 (1 —cos(y)))>/2  8n3 J_ (62 + (1 —cos(y)))"/?

From the third line of (11) we see that

1 1 1
2
anl/Q(l +0 ) 5 n363 + n365 + n357 "

Thus, for § > 1, we obtain that

1 1
w5 =
Rescaling the integrals in the third line of (11), y — y/n, yields
1 ™  sin(y)sin(y/n)dy/n 3 (™ sin(y) cos(y/n)sin(y/n) dy/n
P / o (8 (L cos(y/m) PP an® |, (021 (1~ cos(y/m)))"?
3 [™ sin(y)sin(y/n)cos(y)dy/n 15 [ sin(y)(sin(y/n))® dy/n

T2 | @ (0 cosfu/m)PE 808 | (524 (1 cos(y/n)) 772

Since 1 — cos(y/n) = (y/n)?, for all n and y € (—7n,7n), we obtain that for § > 0,

(12) Qn12(1+6%) S

Dn 1/2(1 + 5 )

L[> dy/n 1 < lyl/ndy/n
Qno1/2(1+6%) S ﬁ/_ 0+ (y/n2y o O+ /n)?)
1 [ ndy/n 1 n)3dy/n
(13) v @ Iy{y/ny/ - 73/ yl/y/n 3/)/)7/2
1 1

~ n362 + n363 "
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Scaling instead the second line of (11), we obtain

™

™ . 2
Q, 1/2(1+6%) = L cos(y) cos(y/n)dy 3 cos(y) sin®(y/n) dy

2% ) (62 4 (1 = cos(y/n)))¥2  4n3 J_r, (6% + (1 — cos(y/n)))>/>

Thus for 6 > 0,

i/“ dy L A 700 L.
n? (82 + (y/m)2)2 " 03 | (82 + (y/m)2)>/2 ™ (nd)?
Scaling the first line of (11), we obtain

1 [m™ sin(y) sin(y/n) dy
Qn 1/2(1"'5 ) T/_Tm (52+(1 —cos(y/n)))?’/z.

Qn—l/?(l + 52) ,S

Thus for nd < 1/2,

) 1 sin(y) sin(y/n
Quo1/2(1+67) S n( y>1> W !
1! y?/ndy 1 ___lyl/ndy

(14) - /1 G+ w/mPP2 " 72 Jypor 52+ (/)72

B 2dy _ lyldy

- / ((nd)? +y)32 +/ ((n8)? +y?)3/2

1 1
~ lo gf—i—

e 5 log — .
nd  /n262 + no
We have now proved the desired estimates for Dn_l/Q(l +62).
Next we consider
2n —

Ro(x) = 7152 (521% 172(x) + Qu—172(x) = Qu—s/2(x)) -

Since 2n —1 ~ n and 2+ 6% > 1, it suffices to show that the three estimates in the lemma are
satisfied by

né?
m Qn71/2(X) and n (anl/Z(X) - Qn73/2(X)) :
Using (12), we obtain that for 6 > 1,
nd? 1 1
ppar 20 S = g
Using (13), we obtain that for § > 0,
nd? nd? 1 1 < 1 1

< S
sz 1200 = 5 elam tae) S gt
Thus for § < 2,

nd? 1
mﬂn—1/2(x) S n2e2
Using (14), we obtain that for § < 3-,
nd? n262 1 1
mﬂn—uz()() = mﬂn—uz(){) < %Qn—l/Z(X) N log%.
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Therefore we are left to consider n (Q,,—1/2(x) — Qun—3/2(x)). From (12), for § > 1,
n |Dn—1/2(X) _Qn—3/2(X)| <n- 353 < 263"
For the other two bounds, we use the explicit expression
g eme(l — e’w) do
—x /62 + (1 —cos(0))
Y A ) /” (1 —e~")sin(6) df
e V2 (T —cos(h))  2.J_r (824 (1 —cos(6)))>/?
[T cos((n—1)0)db }/” cos(nf) sin”(6) df +1 /7T sin(nd)(1 — cos(0)) sin(0) db
02+ (1 —cos(0)) 2. 7 (02 + (1 —cos(9)))*? 2 (02 + (1 — cos(6)))3/2

The first term on the last line coincides with 2v/29,,_5 /2, which we have already handled. For the
second term,

/7r cos(nf) sin?(9) do 1 /’m cos(y) sin®(y/n) dy

2\f2n(5~1n—1/2 - Qn—3/2)(1 + 52) =n

e (24 (L=cos(0))>2 1) rp (6% + (1~ cos(y/n)))3/?

2 [™ sin(y) cos(y/n)sin(y/n)dy 3 1 / ™ sin(y) sin’(y/n) dy
n? J o (02 4+ (1—cos(y/n)))3/2 — 2n2 J_, (62 + (1 —cos(y/n)))>/?

Arguing as before, for nd < 1/2,
/’T cos(nf) sin?(0) do < /1 y? n y* d +/ id ~ lo 1
(T (T—cos(@))P2] ~ S (o2 + 9232 T (o2 + 22 YT e 2™ T s

For ¢ > 0, integrating by parts one more time yields

/’T cos(nf) sin®(6) do < /°° dy N /°° y2dy n /°° yidy
—r (024 (1 =cos(0)))3/2] ™~ J_oo ((n6)2+42)3/2  J_oo (n0)2 +42)5/2 ~ J_ ((nd)? 4 y2)7/2
1
= (no)?
The final term is dealt with in an identical manner. O

4.2. Proof of Lemmas 5 and 9. With the estimates of Lemma 2 in hand, we can now provide a
proof of Lemma 5.

Proof of Lemma 5. Let W, be the infinite straight cone obtained as the surface of revolution of the
half-line given by wq (t) = (sin(a)t, cos(a)t), t > 0. As in Section 2, for n € Z, let K}, denote the
corresponding modal operator with kernel

1 2m .

K (t,t") = —/ e M Ky (t,0,t,0)d0, t,t' >0.
& 2 0

Then the holomorphic function II7(z) of (3) is a Mellin transform,

o dt
(15) I (z) :sina/ tZKga(t,l)?, 0<Rez<3,
0

see [7, Section 3]. In particular, t’ "' K7 (¢,1) € L*((0,00)) for 0 < 3 < 3.
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If 0 < @ < /2, then the convexity of W, ensures that Ky, is a non-negative kernel, cf. (1). In
turn, KSJQ is non-negative, and therefore, by (15),

|00,o| = sup ’H3(3/2 + 25)‘ = Hg(3/2).
EER
Furthermore, for any £ € R and n € Z,

o dt
M3a/2-4 i) <sina [ O2YG, (61 F <126/,
0

so that |0y, | < |00,o|. On the other hand, the non-negativity of gess(K, ) and the continuity of
II7 guarantees that

UCSS(KZylngL) = [07 ‘O—H,Oé”'
We conclude that
Oess(K1,E) = [0, |00,0]-
A similar argument applies when 7/2 < o < 7.
The parity identity Pi"‘ = Pl_"z‘_1 for associated Legendre functions of the first kind implies that
M7 (z) = 117 (3 — z), and in particular that

|nal = sup [II5 (1 + i€)| = sup [II5(2 4 i€)| .
£ER £ER

By the Hadamard three lines theorem we thus have that
|on.al < |0n.al
Finally, in the special case of a straight cone, formula (2) takes for n > 0 the form
cos v Qn-172(x) + Rn(x)

Kg) t71 - )
(1) 2273 sin? o 13/2

(=1
2tsinZ o

Let

Bn(X) = (Qn-1/2 + [R]) (x)-

Suppose that ¢y € (0,7/2) is given and that | — 7/2| < ¢p. Then sin « is uniformly bounded from
below (depending on ¢g) and to prove (5) it is sufficient to show that

where xy = x(t) =1+

R d 1
[ oo T ezt
0 t n
Making the change of variable s? = 2(:8_1;32& for t <1 and for ¢t > 1, we find that it is equivalent to
show that - )
/ Po(l+s%)ds < —.
0 n
By Lemma 2,
b 1 [ ds 1
(14 5%)ds < = — < =,
/1 (’B ( +s ) SN n2 [ $3 ™~ n2
! ) I | 1
/ Po(l+s7)ds S — —ds~ —,
1/(2n) = Ji/(2n) S n
and

1/(2n) 1/(2n) 1 1
/ ‘Bn(l—i—sQ)dsf,/ log — ds ~ —.
0 0 ns n

The case when n < 0 is handled by symmetry. O
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Lemma 9 follows from similar estimates, applying the Schur test.

Proof of Lemma 9. We prove the first inequality; the second inequality can be proved in a nearly
identical fashion. We want to show that

L1 o @nswian| au < ("“‘”/2'*) | oo auo, g 22,
0 0 0

n
uniformly for all («,e)-perturbations T" of T'.
Let

It is equivalent to show that

/

where

2 2 1
din(t) < ("“W/Q'*) | ir@raa, 1 e )

n

/0 RO ) F(#)dpa (F)

dpn (t) = (M(1)) " duo(t),

R(t,t") = xa (t)R™ (¢, t )M (t) M (t').
By the Schur test, it suffices to verify that
1 1
—7/2
swp [ ROl () € PSRl 0) €
0 0

t€[0,1] n t'€[0,1]

Recalling from (8) that

o — /2| +¢
—

Yy (@)
.ty = kr ey DO EOL g gy
0 = K @]~ 1)

we consider
t/ / t/
Yo, ()75 ()]
The other term can be handled similarly. Let x1 + X2 = 1 be a partition of unity of [0, 1] such that
supp X1 C [0, %] and supp x2 C [%, 1]. It suffices to show that

Ri(tt) = xa()K2(tt)

1
. a—7/2|+¢€
s [ ROl () £ T2
te[0,4¢] Jo n
! AN / |O‘ B 77/2| +e€
sup [ Rt )0 ()ldin (6 5 ST
t’'efo,1] /0 n
(16) 5
! A / / |a B 7‘-/2| +e€
sup [Ba(t,t)2(t)|dua (') S ——————
te[0,4¢] JO n
! NG (4 |O‘ — 7T/2| te
sup [ Rt #)alt)dpun (6 S STEE
t'e[%,1]J0 n
By Definition 7, we have that
t/ / t/

Y1) o)
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Furthermore, there is a universal constant C7 such that
[y(t) = ()| Kr(t,0,t,0)] < C1, t,t" €[0,1].

The assumptions of Definition 7 ensure that |y(t) — v/(¢)| =~ |t — t/|. The estimate is thus a
consequence of the uniform bounds on ||, |7/| and the bound on the curvature of the generating
curve « of I'. Also note that

dus(t) =~ dt/t on [0,1], du(t) ~ dt/(1—1t) on [3,1].
(2

Applying these estimates together with (2) yields that the four integrals in (16) can be bounded

as follows:

00 [0 £ a0 [ ot 0 (@000 + 0o %

19 [ RO 5 60 [ eotal 0 @100 + a0

— dt’
\/7 (lcotal +€) (Qn-1/2(x) + 1R.(0)]) 1

1
(19) /O\Rlu,t’)xz(t'ndm( <t /

@) [ I OR@in® $ 5a) [ P o]+ (1200 + B 00) T
where
L b )P
T @)

We first consider (17). Note that there is a universal constant C; > 1 such that

=t _ hO =P _ =P
2t = 2 (O)m@t) 2t/

whenever ¢t € supp x1 C [0,4e] and ' € supp x1 C [0, %] For n > 1, let
(14 6%) = sup (Qn_l/g(l + k6%) + |Rn (1 + £6%)|), 6> 0,

1<kr<
so that
Qm1/2(x(1)) + [Ra(x(1)| < Hn(14s*), tE€suppxi, t' € supp X,
where
_ 412 t -1 2
o) P N (D

21t/ 2t [t

For fixed t, we understand (21) as two changes of variable from ¢ = ¢'/t to s2, one for t > 1 and
one for ¢t < 1,

v+t dt t+1dt
ds = +—n — = +—— =,
V8t t Vet t

Making the changes of variable in (17) yields, for ¢ € supp x1,

1
/ [Ru(t, ) x1(t)|dpa(t') S (lcotal +¢€) [ Hu(l+ %) ds.
0
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Note that Lemma 2 immediately implies that $),, satisfies the same estimates as Q,,_;/o. Hence
the same argument as in the proof of Lemma 5 shows that [~ $,(1 + s?)ds < 1/n. The integral
of (18) is treated in the same way.
Finally we consider (19) and (20). In this case t € suppx1 C [0,4¢] and ¢’ € supp X1 C [3,1],
and therefore
v (®) — ()2 1

2 (On@) "~ 1 —t)”

For (19), we find from Lemma 2 that

\%

cot | + € ! e(jcotal +¢€
sup / |Ry(t, ") X2 (t)|dur (') < % sup t/ (1—tYdt' < £(cot o] +¢) 2| ),
t€[0,4e] n te[0,4e] J 1L n
and for (20),
2 4e
R cotal+ € e(|cota| + €
O R e e A e 0
t'e[$,1]/0 n 0 n

4.3. Proof of Lemma 10.

Proof. 1t suffices to prove that x28x1, x26x1 € H*(I'g x T'y) for some p > 1. Because then, by [3,
Theorem 1], we have that x28%1 € S,(L%(S?)) for every p > n+2“, where n = 2 is the dimension
of FO = SQ.

Since x2 and y; are supported away from the south pole and the north pole, respectively, we
switch to an Euclidean coordinate chart (x,y) for points in the support of x2 and a chart (u,v) for
points in the support of y;. More precisely, we let (z,y) be given by stereographic projection from
the south pole, and (u,v) by projection onto the horizontal plane.

As the supports of x2 and x1 do not overlap, the functions

XQ(t(xa y))KFo (I‘o(x, y)7 I‘o(u, U))f(l (t(ua U)) and Xg(t(l', y))SFo (I‘o(x, y)? I‘o(u, U))f(l (t(u? U))
are then smooth on R*. Tt therefore suffices to show that the following two functions are in H*(R*)
for some pu > 1:

Y (E(w, 0)) | (H(w, 0))]
Xg(t(my))Kp(r(ac,y), r(uvv)),m 1(t(u,v))|'yo(t( 70))|X1(f(ua U))7
Y1 (t(u,v)) [y (t(u, )]
XQ(t(xay))SF(r(xvy)vr(uvv)),)/o’l( (va))lf}/o(t( ,’U)) Xl(t(u’v))
[

Using that v(t) = (¢,72(¢)) and yo(t) = (¢, 70,2(t)) for t € supp x1 C
be rewritten as

(2 5) — (1, 0), Ur(agy) Y1+ 75V T )2
e T

1 1+ BT+ )2

lr(z,y) — r(u,v)| \/1+702(\/m)

Away from (u,v) = (0,0), both expressions are smooth in all variables. In a neighborhood of
(u,v) = (0,0), r(u,v) = (u,v,cot(a)vVu?+v? + ¢), 1p(Vu? +v2) = cot a, and g o(Vu? +v?) =

Vu2+v?
Vi—u2—v2’

x1(Vu? +v?),

ootz y)

%Xﬂt( y)) (V2 +02).
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Both functions in (22) are therefore of the form

F(z,y,u,v) = G(x,y,u,v, Vuz + v?),
where G(x,y,u,v,w) is a smooth compactly supported function in R5. Let
G(x,y,u,v,w) = Go(x,y,u,v) + G1(z,y, u,v)w + Go(z,y, u, v)w? + G3(x,y, u, v, w)
be the Taylor expansion of G around w = 0, where Gy, ..., G3 are smooth and
105,000 G, y, 1, 0,w)| < Cojlw]*

Y, u,v

for j = 0,1,2, any multi-index o € N§, and some corresponding constants Cq,j. It is then clear
that

F(z,y,u,v) — G1(z,y,u,v)Vu2 +v2 € H*(R?).

To finish the proof, we therefore only need to check that G(z,y,u,v)vVu? +v2 € H*(R?*) for
© < 2, where G is a smooth compactly supported function in R*. By comparing this function with
G(z,y,u,v)(1 — e~ V***+¥") it is enough to note that e~V**+v* € H#(R?) for u < 2, as can be seen
from an explicit computation of its Fourier transform. O
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upon work supported by the National Science Foundation under Grant No. DMS-1814902 (S.P.
Shipman). The research of K.-M. Perfekt was supported by grant EP/S029486/1 of the UK Engi-
neering and Physical Sciences Research Council.

REFERENCES

1. Eric Bonnetier and Hai Zhang, Characterization of the essential spectrum of the Neumann-Poincaré operator in
2D domains with corner via Weyl sequences, Rev. Mat. Iberoam. 35 (2019), no. 3, 925-948.

2. Marta de Ledén-Contreras and Karl-Mikael Perfekt, The quasi-static plasmonic problem for polyhedra,
arXiv:2103.13071 (2021).

3. Julio Delgado and Michael Ruzhansky, Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal.
267 (2014), no. 3, 772-798.

4. Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, and Patrick Ciarlet Jr., T-coercivity for scalar interface problems
between dielectrics and metamaterials, ESAIM: Mathematical Modelling and Numerical Analysis 46 (2012), no. 6,
1363-1387.

5. Anne-Sophie Bonnet-Ben Dhia, Christophe Hazard, and Florian Monteghetti, Complex-scaling method for the
plasmonic resonances of planar subwavelength particles with corners, preprint, hal-02923259 archives ouvertes
(2020).

6. Johan Helsing, Hyeonbae Kang, and Mikyoung Lim, Classification of spectra of the Neumann-Poincaré operator
on planar domains with corners by resonance, Annales de 'Institut Henri Poincare (C) Nonlinear Analysis 34
(2017), no. 4, 991-1011.

7. Johan Helsing and Karl-Mikael Perfekt, The spectra of harmonic layer potential operators on domains with
rotationally symmetric conical points, J. Math. Pures Appl. (9) 118 (2018), 235-287.

8. Hyeonbae Kang, Mikyoung Lim, and Sanghyeon Yu, Spectral resolution of the Neumann-Poincaré operator on
intersecting disks and analysis of plasmon resonance, Archive for Rational Mechanics and Analysis 226 (2017),
no. 1, 83-115.

9. Dmitry Khavinson, Mihai Putinar, and Harold S. Shapiro, Poincaré’s variational problem in potential theory,
Archive for Rational Mechanics and Analysis 185 (2007), no. 1, 143-184.

10. Wei Li and Stephen P. Shipman, Embedded eigenvalues for the Neumann-Poincaré operator, J. Integral Equations
and Appl. 31 (2019), no. 4, 505-534.

11. Dagmar Medkova, The third boundary value problem in potential theory for domains with a piecewise smooth
boundary, Czechoslovak Math. J. 47(122) (1997), no. 4, 651-679.



INFINITELY MANY EMBEDDED EIGENVALUES FOR THE NEUMANN-POINCARE OPERATOR IN 3D 19

12. Karl-Mikael Perfekt, Plasmonic eigenvalue problem for corners: Limiting absorption principle and absolute
continuity in the essential spectrum, J. Math. Pures Appl. (9) (2020), in press.

13. Karl-Mikael Perfekt and Mihai Putinar, Spectral bounds for the Neumann-Poincaré operator on planar domains
with corners, Journal d’Analyse Mathématique 124 (2014), no. 1, 39-57.

, The essential spectrum of the Neumann-Poincaré operator on a domain with corners, Archive for

Rational Mechanics and Analysis 223 (2017), no. 2, 1019-1033.

14.

DEPARTMENT OF MATHEMATICAL SCIENCES, DEPAUL UNIVERSITY, CHIicAGO, IL, USA
E-mail address: wei.li@depaul.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, NORWEGIAN UNIVERSITY OF SCIENCE AND TEcHNOLOGY (NTNU),
NO-7491 TRONDHEIM, NORWAY
E-mail address: karl-mikael.perfekt@ntnu.no

DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY, BATON ROUucE, LA, USA
E-mail address: shipman@lsu.edu



