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Abstract. This article constructs a surface whose Neumann-Poincaré (NP) integral operator
has infinitely many eigenvalues embedded in its essential spectrum. The surface is a sphere per-
turbed by smoothly attaching a conical singularity, which imparts essential spectrum. Rotational
symmetry allows a decomposition of the operator into Fourier components. Eigenvalues of infin-
itely many Fourier components are constructed so that they lie within the essential spectrum of
other Fourier components and thus within the essential spectrum of the full NP operator. The
proof requires the perturbation to be sufficiently small, with controlled curvature, and the conical
singularity to be sufficiently flat.

1. Introduction

Let Γ ⊂ R3 be a connected Lipschitz surface with surface measure dσ, enclosing a bounded open
domain. The adjoint of the Neumann-Poincaré operator is defined by

KΓf(r) =
1

2π

∫
Γ

KΓ(r, r′)f(r′) dσ(r′), r ∈ Γ,

where the kernel is

(1) KΓ(r, r′) =
〈r− r′,νr〉
|r− r′|3

.

The adjoint operator K∗Γ is the direct (principal) value of the double-layer potential on Γ. The
single-layer operator is defined by

SΓf(r) =
1

2π

∫
Γ

SΓ(r, r′)f(r′) dσ(r′), r ∈ Γ,

where the kernel is
SΓ(r, r′) =

1

|r− r′|
.

While the kernel KΓ(r, r′) is symmetric only if Γ is a sphere, there is a natural framework that
uncovers the intrinsic symmetry of the operator KΓ [9, 13]. Consider the inner product

〈f, g〉SΓ
:= 〈f, SΓg〉L2(Γ),

with corresponding norm ‖f‖SΓ
=
√
〈f, f〉SΓ

. The energy space E = E(Γ) is the completion of
L2(Γ) under the ‖·‖SΓ-norm. Then KΓ : E → E is self-adjoint. For a fixed surface Γ, the space E
and the Sobolev space H−1/2(Γ) consist of the same distributions and the norms ‖·‖SΓ

and ‖·‖H−1/2

are equivalent.
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The main goal of the present work is to provide a surface Γ with a conical point such that
KΓ : E → E has infinitely many eigenvalues embedded in the essential spectrum arising from the
conical singularity. An equivalent formulation is that the Neumann–Poincaré operator K∗Γ : E ′ → E ′
has infinitely many eigenvalues embedded in its essential spectrum, where E ′ ' H1/2(Γ) is the
natural dual space of E . The surface will be constructed by smoothly adding a conical singularity
to a sphere in such a way that rotational symmetry is preserved.

For the NP operator on certain reflectionally symmetric closed curves in R2 with a corner, it was
proved in [10] that finitely many eigenvalues are embedded in the essential spectrum. Numerical
evidence of embedded eigenvalues and complex resonances had previously been demonstrated in [6],
and numerical analysis of these phenomena appeared in [5] as applied to surface plasmons on
subwavelength particles. In 2D, the essential spectrum produced by a corner is an angle-dependent
interval of absolutely continuous spectrum of multiplicity 1 [1, 8, 12, 14]. Reflectional symmetry
additionally induces a decomposition of the operator into even and odd components; and for the
curves featured in [10], non-embedded eigenvalues of one component are embedded in the continuous
spectrum of the other component.

The main result of the present work is the following.

Theorem 1. Let Γ0 be the unit sphere in R3. There exists a conical perturbation Γ of Γ0 such that
KΓ : E → E has infinitely many eigenvalues within its essential spectrum.

These are the main elements of the proof.
(a) By rotational symmetry, KΓ decomposes into Fourier components Kn

γ , n ∈ Z.
(b) For the unit sphere Γ0, the largest eigenvalue of Kn

γ0
is λn = 1/(2|n|+ 1).

(c) Perturbing the sphere by a conical singularity imparts an interval of essential spectrum of
size O(1/|n|) to Kn

γ .
(d) If the angle of the perturbation is flat enough and n is large, the essential spectrum of Kn

γ

does not overlap λn.
(e) If the perturbation is sufficiently small and shallow, with controlled curvature, then for

infinitely many n, λn gets perturbed to an eigenvalue of Kn
γ , while avoiding its essential

spectrum.
(f) Infinitely many of the perturbed eigenvalues will be embedded in the essential spectrum of

each of the Fourier components.
Point (e) presents the greatest challenge, and most of the analysis is dedicated to it. To achieve

control over the perturbed eigenvalues for infinitely many n, one of the requirements is a uniform
bound on the curvature of the perturbed profile. This is accomplished by coordinating the angle α
of the conical perturbation and its size ε.

The background to our work is provided by [7], where the essential spectrum of KΓ : E → E was
computed for surfaces Γ with rotationally symmetric conical points; see Theorem 4. As we need to
refine the associated estimates, we will revisit a number of the calculations from [7].

The paper is organized as follows. In Section 2 we discuss the structure of KΓ for rotationally
symmetric surfaces Γ. In Section 3 we outline the proof of Theorem 1. Many of the details of the
proof are deferred to the more technical Section 4.

2. Preliminaries

This section describes the following preliminary material: (i) The Fourier decomposition of the
adjoint of the NP operator on rotationally symmetric surfaces and special-function representations
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of the associated kernels, needed for the subsequent perturbation analysis, (ii) the essential spectrum
of the Fourier components for a surface with a conical singularity, and (iii) the spectrum for the
sphere.

Notation. For two non-negative quantities a = a(g) and b = b(g) that depend on the choice of
an object g ∈ G within some collection of objects G (such as a class of admissible curves), the
expression a . b means that there exists a constant C > 0 such that a(g) ≤ Cb(g) for every object
g ∈ G. If a . b and b . a, we write a ≈ b.

2.1. Rotational symmetry. Consider a connected rotationally symmetric Lipschitz surface Γ
with parametrization

r(t, θ) = (γ1(t) cos θ, γ1(t) sin θ, γ2(t)), θ ∈ [0, 2π], t ∈ [0, 1],

for two Lipschitz functions γ1 and γ2. We say that Γ is generated by γ(t) = (γ1(t), γ2(t)). We use this
parametrization to work with functions f : Γ→ C and integral kernels by writing f(t, θ) := f(r(t, θ))
and KΓ(t, θ, t′, θ′) := KΓ(r(t, θ), r(t′, θ′)). Then

KΓf(t, θ) =
1

2π

∫ 2π

0

∫ 1

0

KΓ(t, θ, t′, θ′)f(t′, θ′) γ1(t′)|γ′(t′)| dt′ dθ′.

Let fn(t) be the nth Fourier coefficient of f(t, θ),

fn(t) :=
1√
2π

∫ 2π

0

e−inθf(t, θ)dθ, t ∈ [0, 1].

This Fourier transform f(r) 7→ {fn(t)} provides the decomposition

L2(Γ, dσ) '
⊕
n∈Z

L2
(
[0, 1], γ1(t)|γ′(t)| dt

)
,

where ' denotes unitary equivalence, under which

f(t, θ) =
1√
2π

∞∑
n=−∞

fn(t)einθ,

and ∫
Γ

|f(r)|2dσ(r) =

∞∑
n=−∞

∫ 1

0

|fn(t)|2γ1(t)|γ′(t)|dt.

Due to rotational invariance, the Fourier transform of the adjoint NP kernel,

Kn
γ (t, t′) :=

1

2π

∫ 2π

0

e−inθKΓ(t, θ, t′, 0)dθ, t, t′ ∈ [0, 1],

realizes the decomposition of KΓ into integral operators acting on Fourier components,

(KΓf)n(t) =

∫ 1

0

Kn
γ (t, t′)fn(t′) γ1(t′)|γ′(t′)|dt′.

Similarly, the kernels

Snγ (t, t′) =
1

2π

∫ 2π

0

e−inθSΓ(t, θ, t′, 0) dθ
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decompose the single-layer operator. Denote the component operators with the same symbol as
their kernels:

(Kn
γ g)(t) =

∫ 1

0

Kn
γ (t, t′)g(t′)γ1(t′)|γ′(t′)| dt′, (Snγ g)(t) =

∫ 1

0

Snγ (t, t′)g(t′)γ1(t′)|γ′(t′)| dt′,

acting in L2
(
[0, 1], γ1(t)|γ′(t)| dt

)
. Letting En = En(γ) be the completion of L2([0, 1], γ1(t)|γ′(t)| dt)

with respect to the norm ‖g‖2Snγ := 〈Snγ g, g〉 [7, Sec. 7.1], one obtains the unitary equivalence

E(Γ) '
⊕
n∈Z
En(γ).

The decompositions of both L2(Γ, dσ) and E(Γ) induce corresponding decompositions of the oper-
ators

KΓ '
⊕
n∈Z

Kn
γ , SΓ '

⊕
n∈Z

Snγ .

The kernelsKn
γ (t, t′) and Snγ (t, t′) can be expressed in terms of special functions; see the Appendix

of [7] for more details. For n ≥ 0,
(2)

Kn
γ (t, t′) =

1√
2π3γ1(t)γ1(t′)

[
γ′2(t)

2γ1(t)|γ′(t)|
(
Qn−1/2(χ) + Rn(χ)

)
− |γ(t)− γ(t′)|KΓ(t, 0, t′, 0)Rn(χ)

]
and

Snγ (t, t′) =
1√

2π3γ1(t)γ1(t′)
Qn−1/2(χ),

where

χ = 1 +
|γ(t)− γ(t′)|2

2γ1(t)γ1(t′)
,

Qn−1/2 is a half-integer degree Legendre function of the second kind,

Qn−1/2(χ) =

∫ π

−π

cos(nθ) dθ√
8(χ− cos(θ))

=

∫ π

−π

einθ dθ√
8(χ− cos(θ))

,

and
Rn(χ) =

2n− 1

χ+ 1

(
χQn−1/2(χ)−Qn−3/2(χ)

)
.

For n < 0, we have Kn
γ (t, t′) = K−nγ (t, t′).

The following lemma will be proved in Section 4.1. Note that Qn−1/2(1+ δ2) ≥ 0 for every δ > 0
and n ≥ 0.

Lemma 2. Let n ∈ N and δ > 0. If δ ≥ 1, then

Qn−1/2(1 + δ2) .
1

n2δ3
, |Rn(1 + δ2)| . 1

n2δ3
.

If δ < 2, then

Qn−1/2(1 + δ2) .
1

(nδ)2
, |Rn(1 + δ2)| . 1

(nδ)2
.

If nδ < 1/2, then

Qn−1/2(1 + δ2) . log
1

nδ
, |Rn(1 + δ2)| . log

1

nδ
.
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Remark 3. By successive integrations by part, it can actually be shown that if δ ≥ 1, then

Qn−1/2(1 + δ2) .
1

nAδ3
, |Rn(1 + δ2)| . 1

nAδ3
,

for any A > 0.

2.2. The essential spectrum from a conical singularity. Suppose that Γ is obtained by rev-
olution of a C5 curve γ, and that Γ is C1 except for one conical singularity that forms an angle α
with the rotational axis. An angle α ∈ (0, π2 ) corresponds to a conical singularity pointing outward,
and an angle α ∈ (π2 , π) corresponds to an inward-pointing conical singularity.

The essential spectra of KΓ : E → E and KΓ : L2(Γ)→ L2(Γ) were characterized in [7]. To state
the result, let Πn

α, n ∈ Z, denote the holomorphic function

(3) Πn
α(z) =

P
|n|
z−2(cosα)Ṗ

|n|
z−2(− cosα)− P |n|z−2(− cosα)Ṗ

|n|
z−2(cosα)

P
|n|
z−2(− cosα)Ṗ

|n|
z−2(cosα) + P

|n|
z−2(cosα)Ṗ

|n|
z−2(− cosα)

, 0 < Re z < 3,

where P |n|z−2(x) denotes an associated Legendre function of the first kind, and Ṗ |n|z−2(x) its derivative
with respect to x.

Theorem 4 ([7, Theorems 5.5 and 6.3]). Let n ∈ Z. The essential spectrum of Kn
γ : En → En is a

real interval,
σess(K

n
γ , En) = {Πn

α(3/2 + iξ) : −∞ ≤ ξ ≤ ∞}.

The essential spectrum of Kn
γ : L2

(
[0, 1], γ1(t)|γ′(t)| dt

)
→ L2

(
[0, 1], γ1(t)|γ′(t)| dt

)
is a complex

curve,
σess(K

n
γ , L

2
(
[0, 1], γ1(t)|γ′(t)| dt

)
) = {Πn

α(1 + iξ) : −∞ ≤ ξ ≤ ∞}.

It follows from [4, Theorem 7.5] that σess(KΓ, E) ⊂ [0, 1] when 0 < α < π
2 and σess(KΓ, E) ⊂

[−1, 0] when π
2 < α < π; the link between the problem studied in [4, Theorem 7.5] and the spectral

theory of KΓ can be found in [1, Section 2]. That is, for each n ∈ Z, σess(K
n
γ , En) is a positive

interval containing 0 when 0 < α < π
2 , and a negative interval containing 0 when π

2 < α < π.
In Section 4 we will clarify some of the calculations of [7] further. In accordance with Theorem 4,

let |σn,α| denote the essential spectral radius of Kn
γ : En → En,

|σn,α| = sup{|Πn
α(3/2 + iξ)| : −∞ ≤ ξ ≤ ∞},

and let |σ̃n,α| denote the essential spectral radius of Kn
γ acting on L2

(
[0, 1], γ1(t)|γ′(t)| dt

)
,

|σ̃n,α| = sup{|Πn
α(1 + iξ)| : −∞ ≤ ξ ≤ ∞}.

Lemma 5. For 0 < α < π
2 we have that |σ0,α| = Π0

α(3/2) and

(4) σess(KΓ, E) = [0, |σ0,α|].

For π
2 < α < π we instead have that |σ0,α| = −Π0

α(3/2) and σess(KΓ, E) = [−|σ0,α|, 0].
For every n ∈ Z and α 6= π/2, we have that

|σn,α| ≤ |σ̃n,α|.

Furthermore, for every c0 ∈ (0, π2 ) there exists a constant C0 such that if |α− π
2 | < c0, then

(5) |σ̃n,α| ≤ C0
|α− π/2|

1 + |n|
, n ∈ Z.
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Suppose that Γ is perturbed smoothly so that the conical singularity is retained but the rotational
symmetry is destroyed, by applying a smooth diffeomorphism ψ of R3 which is conformal at the
vertex of Γ, Γ′ = ψ(Γ). Then the techniques of [11] can be adapted to the L2-setting to view
KΓ′ : L

2(Γ′) → L2(Γ′) as a compact perturbation of an operator similar to KΓ : L2(Γ) → L2(Γ).
Appealing to extrapolation of compactness as in [2, Theorem 5.22], the same statement is true when
L2(Γ′) and L2(Γ) are replaced by E(Γ′) and E(Γ), respectively. Equation (4) therefore remains valid
for the perturbed surface Γ′. However, we expect any embedded eigenvalues to disappear in general,
since symmetry is instrumental for their construction.

2.3. The spectrum for a sphere. Let Γ0 be the unit sphere, obtained by revolution of γ0. The
spherical harmonics are in spherical coordinates defined as

Y m` (β, θ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cosβ)eimθ, ` ≥ 0, −` ≤ m ≤ `, 0 < β < π, 0 < θ < 2π.

They form an orthonormal Hilbert-space basis for L2(Γ0),∫
Γ0

Y m` (β, θ)Y m
′

`′ (β, θ) dσ = δm,m′δ`,`′ .

Note that Y m` belongs to the mth Fourier space.
Since Γ0 is smooth, the spectrum of Kn

γ0
is the same whether considered as an operator on

L2([0, 1], γ0,1(t)|γ′0(t)|dt) or on En [9],

σ(Kn
γ0

) =

{
1

2`+ 1
: ` ≥ |n|

}
∪ {0}.

The eigenvalue 1
2`+1 of Kn

γ0
has eigenfunction Y n` (·, 0). The point 0 of the spectrum is not an

eigenvalue.
In our analysis, we will additionally rely on a very special property for the sphere, namely that

SΓ0
= 2KΓ0

,

and therefore that Snγ0
= 2Kn

γ0
for all n ∈ Z.

3. The NP operator on perturbations of the unit sphere

This section introduces small conical perturbations of the sphere and investigates the correspond-
ing perturbation of eigenvalues. It concludes with a proof of the main Theorem 1, up to a number
of technical estimates deferred to the next section.

3.1. Perturbation and parametrization. This subsection sets the notation for our perturbations
of the sphere. The type of perturbation that we will consider amounts to the smooth addition of
a small rotationally symmetric conical singularity with a shallow angle. The notation established
here is maintained throughout.

Let Γ0 ⊂ R3 be the unit sphere. We fix a parametrization γ0(t) = (γ0,1(t), γ0,2(t)), 0 ≤ t ≤ 1, of
its generating curve that satisfies the following requirements:

A-1. γ0,2(0) = −1 and γ0,2(1) = 1;
A-2. γ0,1 and γ0,2 are smooth;
A-3. Near t = 0 the parametrization is of the form of a graph: γ0(t) = (t, γ0,2(t)), t ∈ [0, 1

5 ];
A-4. |γ′0(t)| ∈ [ 1

4 , 4] for t ∈ [0, 1].
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t
0 1

5

t = 15

t = 1

Figure 1. The profile of the unit sphere Γ0.

Remark 6. With this parametrization, the Euler angle representing the tilt β is a function of t.
We denote this function by β(t). By A-3, γ0,2(t) = −

√
1− t2 for t ∈ [0, 1

5 ].

Next we perturb γ0 in a small neighborhood of t = 0. For a given angle α, we let ε = 1
8 |α−

π
2 |.

Let c0 > 0 be so small that whenever |α− π
2 | < c0, it holds that

(6) 6ε <
1

5
, γ′0,2(6ε) =

6ε√
1− (6ε)2

< |cotα| <
√

8, and |cotα| ≤ 9

8

∣∣∣α− π

2

∣∣∣ .
Definition 7. Let Γ0 be the unit sphere with a parametrization satisfying Assumptions A-1 through
A-4. Let α and ε satisfy |α− π

2 | < c0 and ε = 1
8 |α−

π
2 |. We say that Γ is an (α, ε)-perturbation of

the unit sphere Γ0 if its generating curve γ satisfies
B-1. γ1, γ2 ∈ C∞([0, 1]);
B-2. γ(t) = γ0(t) for t ∈ [ε, 1];
B-3. γ(t) = (t, γ2(t)) for t ∈ [0, ε];
B-4. γ′2(t) = cot(α) for t ∈ [0, ε2 ];
B-5. |γ′2(t)| ≤ | cotα| for t ∈ [ ε2 , ε];
B-6. |γ′′2 (t)| ≤ 40 for t ∈ [0, ε];

The definition implies that the curvature of γ is uniformly bounded by 40 and that |γ′(t)| ∈ [ 1
4 , 4]

for t ∈ [0, 1]. The surface Γ obtained by revolving γ has a conical singularity pointing outward when
0 < α < π/2, and a conical singularity pointing inward when π/2 < α < π.

Note that (α, ε)-perturbations of Γ0 exist for every α satisfying |α − π
2 | < c0. In particular, it

is possible to satisfy B-6 because γ′2 needs to change by at most 2| cotα| ≤ 9
4 |α −

π
2 | within the

interval [ε/2, ε] of length ε
2 = 1

16 |α−
π
2 |.

Remark 8. The parameters ε and α are tied through ε = 1
8 |α−

π
2 | in order to control the curvature

of the perturbation. Nevertheless, we distinguish the two parameters in our results in order to
separate their roles in the analysis.

3.2. Approximate eigenpairs. In this section, for n ≥ 1, let

(7) λn =
1

2n+ 1
, fn(t) = Y nn (β(t), 0),
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t

0 1
5ε 6ε

1
2 ε

γ0

γ

Figure 2. The profile of an (α, ε)-perturbation Γ of the unit sphere Γ0.

where β(t) is the function defined in Remark 6. This defines an exact eigenpair for Kn
γ0
. The goal

of this section is to show that, for infinitely many n, this is an approximate eigenpair for Kn
γ for

(α, ε)-perturbations with |α− π
2 | sufficiently small.

For convenience, we write

dµ0(t) := γ0,1(t)|γ′0(t)| dt, dµ(t) = γ1(t)|γ′(t)| dt.

When Γ is an (α, ε)-perturbation of Γ0, the norms of L2([0, 1], dµ) and L2([0, 1], dµ0) are equivalent,
1

42
‖f‖L2([0,1],dµ0) ≤ ‖f‖L2([0,1],dµ) ≤ 42‖f‖L2([0,1],dµ0),

Any operator T on L2([0, 1], dµ), for example T = Kn
γ , can therefore be understood as an operator

on L2([0, 1], dµ0) of equivalent norm,
1

44
‖T‖µ ≤ ‖T‖µ0

≤ 44‖T‖µ,

where ‖·‖µ = ‖·‖L2([0,1],dµ)→L2([0,1],dµ) and ‖·‖µ0
= ‖·‖L2([0,1],dµ)→L2([0,1],dµ0).

In particular, we consider Kn
γ −Kn

γ0
and Snγ − Snγ0

as operators on L2([0, 1], dµ0). Explicitly,

(Kn
γ −Kn

γ0
)f(t) =

∫ 1

0

Kn(t, t′)f(t′) dµ0(t′), (Snγ − Snγ0
)f(t) =

∫ 1

0

Sn(t, t′)f(t′) dµ0(t′),

where the kernels are given by

(8) Kn(t, t′) = Kn
γ (t, t′)

γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

−Kn
γ0

(t, t′), Sn(t, t′) = Snγ (t, t′)
γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

−Snγ0
(t, t′).

Similarly, we consider KΓ −KΓ0 and SΓ − SΓ0 on L2(Γ0) = L2([0, 1]× [0, 2π), dµ0(t) dθ),

(KΓ −KΓ0)f(r0(t, θ)) =

∫
Γ0

K(r0(t, θ), r0(t′, θ′))f(r0(t′, θ′)) dµ0(t) dθ,

(SΓ − SΓ0)f(r0(t, θ)) =

∫
Γ0

S(r0(t, θ), r0(t′, θ′))f(r0(t′, θ′)) dµ0(t) dθ.

Their kernels are given by

K(r0(t, θ), r0(t′, θ′)) = KΓ(r(t, θ), r(t′, θ′))
γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

−KΓ0
(r0(t, θ), r0(t′, θ′)),

S(r0(t, θ), r0(t′, θ′)) = SΓ(r(t, θ), r(t′, θ′))
γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

− SΓ0
(r0(t, θ), r0(t′, θ′)).

Here r(t, θ) and r0(t, θ) refer to the parametrizations of Γ and Γ0 induced by γ and γ0, respectively.
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χ1 χ2
χ̃1 χ̃2

̂χ1 ̂χ2
0 1ε 2ε 3ε 4ε 5ε 6ε

Figure 3. Two pairs of partition of unity

Let χ1 + χ2 = χ̃1 + χ̃2 = 1 be two partitions of unity of [0, 1] such that suppχ1 ⊂ [0, 4ε],
suppχ2 ⊂ [3ε, 1], supp χ̃1 ⊂ [0, 2ε], and supp χ̃2 ⊂ [ε, 1], as in Figure 3. Since χ2K

nχ̃2 = 0 and
χ2S

nχ̃2 = 0, we have

(9)
Kn = χ1K

n + χ2K
nχ̃1,

Sn = χ1S
n + χ2S

nχ̃1.

We now state two technical lemmas, deferring their proofs to Section 4. Given a kernel T, we
also denote the operator it induces by T.

Lemma 9. There exists a constant C > 0 such that for every (α, ε)-perturbation Γ of Γ0, the
operators χ1K

n and χ1S
n satisfy

‖χ1K
n‖µ0

≤ C
|α− π/2|+ ε

n
, ‖χ1S

n‖µ0 ≤ C
ε

n
.

Lemma 10. For every (α, ε)-perturbation Γ of Γ0, the operators χ2Kχ̃1 and χ2Sχ̃1 are in the
Schatten class Sp(L2(Γ0)) for some p < 1.

As a consequence of Lemmas 9 and 10, we have the following.

Lemma 11. There exists a constant C > 0 satisfying the following. For every (α, ε)-perturbation
Γ of Γ0 there exists an infinite set Z ⊂ N such that

‖Kn
γ −Kn

γ0
‖µ0
≤ C

|α− π/2|+ ε

n
,

‖Snγ − Snγ0
‖µ0
≤ C

ε

n
,

for every n ∈ Z.

Proof. Every norm ‖χ2K
nχ̃1‖µ0 appears as a singular value of χ2Kχ̃1, an operator on L2(Γ0) =

L2([0, 1]× [0, 2π), dµ0 dθ). The same statement is also true with S in place of K. From Lemma 10
we thus know that there is a p < 1 such that∑

n

‖χ2K
nχ̃1‖pµ0

<∞,
∑
n

‖χ2S
nχ̃1‖pµ0

<∞.

In particular, there are infinitely many n for which

‖χ2K
nχ̃1‖µ0

<
1

n
1
p

, ‖χ2S
nχ̃1‖µ0

<
1

n
1
p

.

The lemma now follows from (9) and Lemma 9. �

We can now prove the main result of this section. In the statement, λn and fn are as in (7), so
that Kn

γ0
fn = λnfn.
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Lemma 12. There exist c ∈ (0, π2 ) and C > 0 such that, for every (α, ε)-perturbation Γ of Γ0 with
|α− π

2 | < c, there exist infinitely many n for which

‖(Kn
γ − λn)fn‖Snγ ≤ C

|α− π/2|+ ε

n
‖fn‖Snγ .

Proof. Let 〈·, ·〉µ denote the inner product of L2([0, 1], dµ). By Lemma 11, there is a set Z =
Z(Γ) ⊂ N such that

(10)

‖(Kn
γ − λn)fn‖2Snγ = 〈Snγ (Kn

γ −Kn
γ0

)fn, (K
n
γ −Kn

γ0
)fn〉µ ≤

‖Snγ0
(Kn

γ −Kn
γ0

)fn‖µ‖(Kn
γ −Kn

γ0
)fn‖µ + ‖(Snγ − Snγ0

)(Kn
γ −Kn

γ0
)fn‖µ‖(Kn

γ −Kn
γ0

)fn‖µ .
1

n
‖(Kn

γ −Kn
γ0

)fn‖2µ .
(|α− π/2|+ ε)2

n3
‖fn‖2µ

whenever n ∈ Z. In addition to Lemma 11, we have here made use the fact that

‖Snγ0
‖µ ≤ 44‖Snγ0

‖µ0
= 44 2

2n+ 1
,

which follows from the fact that Snγ0
: L2([0, 1], dµ0) → L2([0, 1], dµ0) is a non-negative operator

with 2/(2n+ 1) as its largest eigenvalue (Section 2.3).
On the other hand, for n ∈ Z,

2

2n+ 1
‖fn‖2µ = 〈Snγ0

fn, fn〉µ ≤ 〈Snγ fn, fn〉µ + ‖(Snγ0
− Snγ )fn‖µ‖fn‖µ

. 〈Snγ fn, fn〉µ +
ε

n
‖fn‖2.

Here we have recalled that
〈
Snγ fn, fn

〉
= ‖fn‖2Snγ ≥ 0. If |α − π

2 |, and thus ε, is sufficiently small,
we conclude that

‖fn‖2µ . n‖fn‖2Snγ , n ∈ Z.
Inserting this estimate into (10) yields the desired conclusion. �

3.3. Proof of Theorem 1. We can now give the proof of Theorem 1. Recall that the proofs of
Lemmas 2, 5, 9, and 10 have been deferred to the next section.

Proof. Let c and C be as in Lemma 12, and let Γ be an (α, ε)-perturbation of Γ0 with 0 < π
2 −α < c.

Then Lemma 12 shows that there is an infinite set Z = Z(Γ) ⊂ N for which

dist(σ(Kn
γ , En), 1/(2n+ 1)) ≤ Cπ/2− α+ ε

n
, n ∈ Z.

By Lemma 5, we also know that the essential spectral radius of Kn
γ : En → En satisfies that

|σn,α| ≤ C0
π/2− α

n

for some constant C0. Hence, if π2 − α, and therefore ε, is chosen sufficiently small, Kn
γ : En → En

must for every n ∈ Z have an eigenvalue zn satisfying

|σn,α| <
1

2n+ 1
− Cπ/2− α+ ε

n
≤ zn ≤

1

2n+ 1
+ C

π/2− α+ ε

n
.

Every zn is an eigenvalue of KΓ : E → E , infinitely many of which are embedded in

σess(KΓ, E) = [0, |σ0,α|]. �
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Remark 13. By instead considering (α, ε)-perturbations with π
2 < α < π, the same argument yields

examples Γ where KΓ : E → E exhibits infinitely many eigenvalues outside its essential spectrum,
which is negative in this case. Such an example has previously been observed numerically in [7,
Section 7.3.3].

4. Kernel and operator estimates

This section contains the proofs of Lemmas 2, 5, 9, and 10.

4.1. Proof of Lemma 2.

Proof. We first consider

Qn−1/2(1 + δ2) =

∫ π

−π

einθ dθ√
δ2 + (1− cos(θ))

=

∫ π

−π

cos(nθ) dθ√
δ2 + (1− cos(θ))

.

Integration by parts once, twice, and three times gives

(11)

Qn−1/2(1 + δ2) =
1

2n

∫ π

−π

sin(ny) sin(y) dy

(δ2 + (1− cos(y)))3/2

=
1

2n2

∫ π

−π

cos(ny) cos(y) dy

(δ2 + (1− cos(y)))3/2
− 3

4n2

∫ π

−π

cos(ny) sin2(y) dy

(δ2 + (1− cos(y)))5/2

=
1

2n3

∫ π

−π

sin(ny) sin(y) dy

(δ2 + (1− cos(y)))3/2
+

3

4n3

∫ π

−π

sin(ny) cos(y) sin(y) dy

(δ2 + (1− cos(y)))5/2
+

+
3

2n3

∫ π

−π

sin(ny) sin(y) cos(y) dy

(δ2 + (1− cos(y)))5/2
− 15

8n3

∫ π

−π

sin(ny)(sin(y))3 dy

(δ2 + (1− cos(y)))7/2
.

From the third line of (11) we see that

Qn−1/2(1 + δ2) .
1

n3δ3
+

1

n3δ5
+

1

n3δ7
.

Thus, for δ ≥ 1, we obtain that

(12) Qn−1/2(1 + δ2) .
1

n3δ3
≤ 1

n2δ3
.

Rescaling the integrals in the third line of (11), y → y/n, yields

Qn−1/2(1 + δ2) =
1

2n3

∫ πn

−πn

sin(y) sin(y/n) dy/n

(δ2 + (1− cos(y/n)))3/2
+

3

4n3

∫ πn

−πn

sin(y) cos(y/n) sin(y/n) dy/n

(δ2 + (1− cos(y/n)))5/2

+
3

2n3

∫ πn

−πn

sin(y) sin(y/n) cos(y) dy/n

(δ2 + (1− cos(y/n)))5/2
− 15

8n3

∫ πn

−πn

sin(y)(sin(y/n))3 dy/n

(δ2 + (1− cos(y/n)))7/2
.

Since 1− cos(y/n) & (y/n)2, for all n and y ∈ (−πn, πn), we obtain that for δ > 0,

(13)

Qn−1/2(1 + δ2) .
1

n3

∫ ∞
−∞

dy/n

(δ2 + (y/n)2)3/2
+

1

n3

∫ ∞
−∞

|y|/n dy/n
(δ2 + (y/n)2))5/2

+

+
1

n3

∫ ∞
−∞

|y|/n dy/n
(δ2 + (y/n)2))5/2

+
1

n3

∫ ∞
−∞

(|y|/n)3 dy/n

(δ2 + (y/n)2))7/2

.
1

n3δ2
+

1

n3δ3
.
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Scaling instead the second line of (11), we obtain

Qn−1/2(1 + δ2) =
1

2n3

∫ πn

−πn

cos(y) cos(y/n) dy

(δ2 + (1− cos(y/n)))3/2
− 3

4n3

∫ πn

−πn

cos(y) sin2(y/n) dy

(δ2 + (1− cos(y/n)))5/2
.

Thus for δ > 0,

Qn−1/2(1 + δ2) .
1

n3

∫ ∞
−∞

dy

(δ2 + (y/n)2)3/2
+

1

n3

∫ ∞
−∞

(y/n)2 dy

(δ2 + (y/n)2)5/2
≈ 1

(nδ)2
.

Scaling the first line of (11), we obtain

Qn−1/2(1 + δ2) =
1

2n2

∫ πn

−πn

sin(y) sin(y/n) dy

(δ2 + (1− cos(y/n)))3/2
.

Thus for nδ < 1/2,

(14)

Qn−1/2(1 + δ2) .
1

n2

(∫ 1

−1

+

∫
|y|>1

) ∣∣∣∣ sin(y) sin(y/n)

(δ2 + (y/n)2)3/2

∣∣∣∣ dy
≤ 1

n2

∫ 1

−1

y2/n dy

(δ2 + (y/n)2)3/2
+

1

n2

∫
|y|>1

|y|/n dy
(δ2 + (y/n)2)3/2

=

∫ 1

−1

y2 dy

((nδ)2 + y2)3/2
+

∫
|y|>1

|y| dy
((nδ)2 + y2)3/2

≈ log
1

nδ
+

1√
n2δ2 + 1

. log
1

nδ
.

We have now proved the desired estimates for Qn−1/2(1 + δ2).
Next we consider

Rn(χ) =
2n− 1

2 + δ2

(
δ2Qn−1/2(χ) + Qn−1/2(χ)−Qn−3/2(χ)

)
.

Since 2n − 1 ≈ n and 2 + δ2 ≥ 1, it suffices to show that the three estimates in the lemma are
satisfied by

nδ2

2 + δ2
Qn−1/2(χ) and n

(
Qn−1/2(χ)−Qn−3/2(χ)

)
.

Using (12), we obtain that for δ > 1,

nδ2

2 + δ2
Qn−1/2(χ) . n · 1

n3δ3
=

1

n2δ3
.

Using (13), we obtain that for δ > 0,

nδ2

2 + δ2
Qn−1/2(χ) ≤ nδ2

2 + δ2
(

1

n3δ2
+

1

n3δ3
) .

1

n2δ2
+

1

n2δ
.

Thus for δ < 2,
nδ2

2 + δ2
Qn−1/2(χ) .

1

n2δ2
.

Using (14), we obtain that for δ < 1
2n ,

nδ2

2 + δ2
Qn−1/2(χ) =

n2δ2

(2 + δ2)n
Qn−1/2(χ) ≤ 1

8n
Qn−1/2(χ) . log

1

nδ
.
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Therefore we are left to consider n
(
Qn−1/2(χ)−Qn−3/2(χ)

)
. From (12), for δ ≥ 1,

n
∣∣Qn−1/2(χ)−Qn−3/2(χ)

∣∣ ≤ n · 1

n3δ3
.

1

n2δ3
.

For the other two bounds, we use the explicit expression

2
√

2n(Qn−1/2 −Qn−3/2)(1 + δ2) = n

∫ π

−π

einθ(1− e−iθ) dθ√
δ2 + (1− cos(θ))

= −
∫ π

−π

ei(n−1)θ dθ√
δ2 + (1− cos(θ))

− i

2

∫ π

−π

einθ(1− e−iθ) sin(θ) dθ

(δ2 + (1− cos(θ)))3/2

= −
∫ π

−π

cos((n− 1)θ) dθ√
δ2 + (1− cos(θ))

+
1

2

∫ π

−π

cos(nθ) sin2(θ) dθ

(δ2 + (1− cos(θ)))3/2
+

1

2

∫ π

−π

sin(nθ)(1− cos(θ)) sin(θ) dθ

(δ2 + (1− cos(θ)))3/2
.

The first term on the last line coincides with 2
√

2Qn−3/2, which we have already handled. For the
second term,∫ π

−π

cos(nθ) sin2(θ) dθ

(δ2 + (1− cos(θ)))3/2
=

1

n

∫ πn

−πn

cos(y) sin2(y/n) dy

(δ2 + (1− cos(y/n)))3/2

= − 2

n2

∫ πn

−πn

sin(y) cos(y/n) sin(y/n) dy

(δ2 + (1− cos(y/n)))3/2
+

3

2

1

n2

∫ πn

−πn

sin(y) sin3(y/n) dy

(δ2 + (1− cos(y/n)))5/2
.

Arguing as before, for nδ < 1/2,∣∣∣∣∫ π

−π

cos(nθ) sin2(θ) dθ

(δ2 + (1− cos(θ)))3/2

∣∣∣∣ . ∫ 1

−1

y2

((nδ)2 + y2)3/2
+

y4

((nδ)2 + y2)5/2
dy +

∫
|y|>1

1

y2
dy ≈ log

1

nδ
.

For δ > 0, integrating by parts one more time yields∣∣∣∣∫ π

−π

cos(nθ) sin2(θ) dθ

(δ2 + (1− cos(θ)))3/2

∣∣∣∣ . ∫ ∞
−∞

dy

((nδ)2 + y2)3/2
+

∫ ∞
−∞

y2dy

((nδ)2 + y2)5/2
+

∫ ∞
−∞

y4dy

((nδ)2 + y2)7/2

≈ 1

(nδ)2
.

The final term is dealt with in an identical manner. �

4.2. Proof of Lemmas 5 and 9. With the estimates of Lemma 2 in hand, we can now provide a
proof of Lemma 5.

Proof of Lemma 5. Let Wα be the infinite straight cone obtained as the surface of revolution of the
half-line given by wα(t) = (sin(α)t, cos(α)t), t > 0. As in Section 2, for n ∈ Z, let Kn

wα denote the
corresponding modal operator with kernel

Kn
wα(t, t′) =

1

2π

∫ 2π

0

e−inθKWα
(t, θ, t′, 0) dθ, t, t′ > 0.

Then the holomorphic function Πn
α(z) of (3) is a Mellin transform,

(15) Πn
α(z) = sinα

∫ ∞
0

tzKn
wα(t, 1)

dt

t
, 0 < Re z < 3,

see [7, Section 3]. In particular, tβ−1Kn
wα(t, 1) ∈ L1((0,∞)) for 0 < β < 3.
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If 0 < α < π/2, then the convexity of Wα ensures that KWα is a non-negative kernel, cf. (1). In
turn, K0

wα is non-negative, and therefore, by (15),

|σ0,α| = sup
ξ∈R

∣∣Π0
α(3/2 + iξ)

∣∣ = Π0
α(3/2).

Furthermore, for any ξ ∈ R and n ∈ Z,

|Πn
α(3/2 + iξ)| ≤ sinα

∫ ∞
0

t3/2|Kn
wα(t, 1)| dt

t
≤ Π0

α(3/2),

so that |σn,α| ≤ |σ0,α|. On the other hand, the non-negativity of σess(KΓ, E) and the continuity of
Πn
α guarantees that

σess(K
n
γ , En) = [0, |σn,α|].

We conclude that
σess(KΓ, E) = [0, |σ0,α|].

A similar argument applies when π/2 < α < π.
The parity identity P |n|z = P

|n|
−z−1 for associated Legendre functions of the first kind implies that

Πn
α(z) = Πn

α(3− z), and in particular that

|σ̃n,α| = sup
ξ∈R
|Πn
α(1 + iξ)| = sup

ξ∈R
|Πn
α(2 + iξ)| .

By the Hadamard three lines theorem we thus have that

|σn,α| ≤ |σ̃n,α|.
Finally, in the special case of a straight cone, formula (2) takes for n ≥ 0 the form

Kn
wα(t, 1) =

cosα

2
√

2π3 sin2 α

Qn−1/2(χ) + Rn(χ)

t3/2
,

where χ = χ(t) = 1 + (t−1)2

2t sin2 α
. Let

Pn(χ) = (Qn−1/2 + |Rn|)(χ).

Suppose that c0 ∈ (0, π/2) is given and that |α− π/2| < c0. Then sinα is uniformly bounded from
below (depending on c0) and to prove (5) it is sufficient to show that∫ ∞

0

t−
1
2Pn(χ(t))

dt

t
.

1

n
, n ≥ 1.

Making the change of variable s2 = (t−1)2

2t sin2 α
for t < 1 and for t > 1, we find that it is equivalent to

show that ∫ ∞
0

Pn(1 + s2) ds .
1

n
.

By Lemma 2, ∫ ∞
1

Pn(1 + s2) ds .
1

n2

∫ ∞
1

ds

s3
.

1

n2
,∫ 1

1/(2n)

Pn(1 + s2) ds .
1

n2

∫ 1

1/(2n)

1

s2
ds ≈ 1

n
,

and ∫ 1/(2n)

0

Pn(1 + s2) ds .
∫ 1/(2n)

0

log
1

ns
ds ≈ 1

n
.

The case when n < 0 is handled by symmetry. �
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Lemma 9 follows from similar estimates, applying the Schur test.

Proof of Lemma 9. We prove the first inequality; the second inequality can be proved in a nearly
identical fashion. We want to show that∫ 1

0

∣∣∣∣∫ 1

0

χ1(t)Kn(t, t′)g(t′)dµ0(t′)

∣∣∣∣2 dµ0(t) .

(
|α− π/2|+ ε

n

)2 ∫ 1

0

|g(t)|2dµ0(t), g ∈ L2(dµ0),

uniformly for all (α, ε)-perturbations Γ of Γ0.
Let

M(t) = tχ[0, 15 ](t) + χ[ 1
5 ,

4
5 ](t) + (1− t)χ[ 4

5 ,1](t).

It is equivalent to show that∫ 1

0

∣∣∣∣∫ 1

0

R(t, t′)f(t′)dµ1(t′)

∣∣∣∣2 dµ1(t) .

(
|α− π/2|+ ε

n

)2 ∫ 1

0

|f(t)|2dµ1(t), f ∈ L2(dµ1),

where

dµ1(t) =
(
M(t)

)−2
dµ0(t),

R(t, t′) = χ1(t)Kn(t, t′)M(t)M(t′).

By the Schur test, it suffices to verify that

sup
t∈[0,1]

∫ 1

0

|R(t, t′)|dµ1(t′) .
|α− π/2|+ ε

n
, sup

t′∈[0,1]

∫ 1

0

|R(t, t′)|dµ1(t) .
|α− π/2|+ ε

n
.

Recalling from (8) that

Kn(t, t′) = Kn
γ (t, t′)

γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

−Kn
γ0

(t, t′),

we consider

R1(t, t′) = χ1(t)Kn
γ (t, t′)

γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

M(t)M(t′).

The other term can be handled similarly. Let χ̂1 + χ̂2 = 1 be a partition of unity of [0, 1] such that
supp χ̂1 ⊂ [0, 1

5 ] and supp χ̂2 ⊂ [ 1
6 , 1]. It suffices to show that

(16)

sup
t∈[0,4ε]

∫ 1

0

|R1(t, t′)χ̂1(t′)|dµ1(t′) .
|α− π/2|+ ε

n
,

sup
t′∈[0, 15 ]

∫ 1

0

|R1(t, t′)χ̂1(t′)|dµ1(t) .
|α− π/2|+ ε

n
,

sup
t∈[0,4ε]

∫ 1

0

|R1(t, t′)χ̂2(t′)|dµ1(t′) .
|α− π/2|+ ε

n
,

sup
t′∈[ 1

6 ,1]

∫ 1

0

|R1(t, t′)χ̂2(t′)|dµ1(t) .
|α− π/2|+ ε

n
.

By Definition 7, we have that

γ1(t′)|γ′(t′)|
γ0,1(t′)|γ′0(t′)|

≈ 1, t ∈ [0, 1].
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Furthermore, there is a universal constant C1 such that

|γ(t)− γ(t′)||KΓ(t, 0, t′, 0)| < C1, t, t′ ∈ [0, 1].

The assumptions of Definition 7 ensure that |γ(t) − γ′(t)| ≈ |t − t′|. The estimate is thus a
consequence of the uniform bounds on |γ|, |γ′| and the bound on the curvature of the generating
curve γ of Γ. Also note that

dµ1(t) ≈ dt/t on [0, 1
5 ], dµ1(t) ≈ dt/(1− t) on [ 1

6 , 1].

Applying these estimates together with (2) yields that the four integrals in (16) can be bounded
as follows:

(17)
∫ 1

0

|R1(t, t′)χ̂1(t′)|dµ1(t′) . χ1(t)

∫ 1
5

0

√
t′

t
(| cotα|+ ε)

(
Qn−1/2(χ) + |Rn(χ)|

) dt′
t′
,

(18)
∫ 1

0

|R1(t, t′)χ̂1(t′)|dµ1(t) . χ̂1(t′)

∫ 4ε

0

√
t′

t
(| cotα|+ ε)

(
Qn−1/2(χ) + |Rn(χ)|

) dt
t
,

(19)
∫ 1

0

|R1(t, t′)χ̂2(t′)|dµ1(t′) . χ1(t)

∫ 1

1
6

√
1− t′√
t

(| cotα|+ ε)
(
Qn−1/2(χ) + |Rn(χ)|

) dt′

1− t′
,

(20)
∫ 1

0

|R1(t, t′)χ̂2(t′)|dµ1(t) . χ̂2(t′)

∫ 4ε

0

√
1− t′√
t

(| cotα|+ ε)
(
Qn−1/2(χ) + |Rn(χ)|

) dt
t
,

where

χ = 1 +
|γ(t)− γ(t′)|2

2γ1(t)γ1(t′)
.

We first consider (17). Note that there is a universal constant C1 > 1 such that

|t− t′|2

2tt′
≤ |γ(t)− γ(t′)|2

2γ1(t)γ1(t′)
≤ C1

|t− t′|2

2tt′

whenever t ∈ suppχ1 ⊂ [0, 4ε] and t′ ∈ supp χ̂1 ⊂ [0, 1
5 ]. For n ≥ 1, let

Hn(1 + δ2) = sup
1≤κ≤C1

(
Qn−1/2(1 + κδ2) + |Rn(1 + κδ2)|

)
, δ > 0,

so that
Qn−1/2(χ(t)) + |Rn(χ(t))| ≤ Hn(1 + s2), t ∈ suppχ1, t

′ ∈ supp χ̂1,

where

(21) s2 =
|t− t′|2

2tt′
=
|(t′/t)− 1|2

2t′/t
.

For fixed t, we understand (21) as two changes of variable from t̃ = t′/t to s2, one for t̃ > 1 and
one for t̃ < 1,

ds = ± t
′ + t√
8tt′

dt′

t′
= ± t̃+ 1√

8t̃

dt̃

t̃
.

Making the changes of variable in (17) yields, for t ∈ suppχ1,∫ 1

0

|R1(t, t′)χ̂1(t′)|dµ1(t′) . (| cotα|+ ε)

∫ ∞
0

Hn(1 + s2) ds.
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Note that Lemma 2 immediately implies that Hn satisfies the same estimates as Qn−1/2. Hence
the same argument as in the proof of Lemma 5 shows that

∫∞
0

Hn(1 + s2) ds . 1/n. The integral
of (18) is treated in the same way.

Finally we consider (19) and (20). In this case t ∈ suppχ1 ⊂ [0, 4ε] and t′ ∈ supp χ̃1 ⊂ [ 1
6 , 1],

and therefore
|γ(t)− γ(t′)|2

2γ1(t)γ1(t′)
&

1

t(1− t′)
.

For (19), we find from Lemma 2 that

sup
t∈[0,4ε]

∫ 1

0

|R1(t, t′)χ̂2(t′)|dµ1(t′) .
| cotα|+ ε

n2
sup

t∈[0,4ε]

t

∫ 1

1
6

(1− t′) dt′ . ε(| cotα|+ ε)

n2
,

and for (20),

sup
t′∈[ 1

6 ,1]

∫ 2

0

|R1(t, t′)χ̂2(t′)|dµ1(t) .
| cotα|+ ε

n2

∫ 4ε

0

dt .
ε(| cotα|+ ε)

n2
. �

4.3. Proof of Lemma 10.

Proof. It suffices to prove that χ2Kχ̃1, χ2Sχ̃1 ∈ Hµ(Γ0 × Γ0) for some µ > 1. Because then, by [3,
Theorem 1], we have that χ2Kχ̃1 ∈ Sp(L2(S2)) for every p > 2n

n+2µ , where n = 2 is the dimension
of Γ0 = S2.

Since χ2 and χ̃1 are supported away from the south pole and the north pole, respectively, we
switch to an Euclidean coordinate chart (x, y) for points in the support of χ2 and a chart (u, v) for
points in the support of χ̃1. More precisely, we let (x, y) be given by stereographic projection from
the south pole, and (u, v) by projection onto the horizontal plane.

As the supports of χ2 and χ̃1 do not overlap, the functions

χ2(t(x, y))KΓ0
(r0(x, y), r0(u, v))χ̃1(t(u, v)) and χ2(t(x, y))SΓ0

(r0(x, y), r0(u, v))χ̃1(t(u, v))

are then smooth on R4. It therefore suffices to show that the following two functions are in Hµ(R4)
for some µ > 1:

χ2(t(x, y))KΓ(r(x, y), r(u, v))
γ1(t(u, v))|γ′(t(u, v))|
γ0,1(t(u, v))|γ′0(t(u, v))|

χ̃1(t(u, v)),

χ2(t(x, y))SΓ(r(x, y), r(u, v))
γ1(t(u, v))|γ′(t(u, v))|
γ0,1(t(u, v))|γ′0(t(u, v))|

χ̃1(t(u, v)).

Using that γ(t) = (t, γ2(t)) and γ0(t) = (t, γ0,2(t)) for t ∈ supp χ̃1 ⊂ [0, 2ε] these two functions can
be rewritten as

(22)

1

2π
χ2(t(x, y))

〈r(x, y)− r(u, v),νr(x,y)〉
|r(x, y)− r(u, v)|3

√
1 + γ′2(

√
u2 + v2)2√

1 + γ′0,2(
√
u2 + v2)2

χ̃1(
√
u2 + v2),

1

2π
χ2(t(x, y))

1

|r(x, y)− r(u, v)|

√
1 + γ′2(

√
u2 + v2)2√

1 + γ′0,2(
√
u2 + v2)2

χ̃1(
√
u2 + v2).

Away from (u, v) = (0, 0), both expressions are smooth in all variables. In a neighborhood of
(u, v) = (0, 0), r(u, v) = (u, v, cot(α)

√
u2 + v2 + c), γ′2(

√
u2 + v2) = cotα, and γ′0,2(

√
u2 + v2) =

√
u2+v2

√
1−u2−v2

.
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Both functions in (22) are therefore of the form

F (x, y, u, v) = G(x, y, u, v,
√
u2 + v2),

where G(x, y, u, v, w) is a smooth compactly supported function in R5. Let

G(x, y, u, v, w) = G0(x, y, u, v) +G1(x, y, u, v)w +G2(x, y, u, v)w2 +G3(x, y, u, v, w)

be the Taylor expansion of G around w = 0, where G0, . . . , G3 are smooth and

|∂αx,y,u,v∂jwG3(x, y, u, v, w)| ≤ Cα,j |w|3−j

for j = 0, 1, 2, any multi-index α ∈ N4
0, and some corresponding constants Cα,j . It is then clear

that
F (x, y, u, v)−G1(x, y, u, v)

√
u2 + v2 ∈ H2(R4).

To finish the proof, we therefore only need to check that G̃(x, y, u, v)
√
u2 + v2 ∈ Hµ(R4) for

µ < 2, where G̃ is a smooth compactly supported function in R4. By comparing this function with
G̃(x, y, u, v)(1− e−

√
u2+v2

), it is enough to note that e−
√
u2+v2 ∈ Hµ(R2) for µ < 2, as can be seen

from an explicit computation of its Fourier transform. �
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