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Abstract—The problem of sequential change diagnosis is con-
sidered, where a sequence of independent random elements is
accessed sequentially, there is an abrupt change in its distribution
at some unknown time, and there are two main operational goals:
to quickly detect the change and to accurately identify the post-
change distribution among a finite set of alternatives. A standard
algorithm is considered, which does not explicitly address the
isolation task and raises an alarm as soon as the CuSum statistic
that corresponds to one of the post-change alternatives exceeds
a certain threshold. It is shown that in certain cases, such as
the so-called multichannel problem, this algorithm controls the
worst-case conditional probability of false isolation and minimizes
Lorden’s criterion, for every possible post-change distribution, to
a first-order asymptotic approximation as the false alarm rate
goes to zero sufficiently faster than the worst-case conditional
probability of false isolation. These theoretical results are also
illustrated with a numerical study.

Index Terms—Sequential Change Detection, Sequential
Change Diagnosis, Isolation, Identification.

I. INTRODUCTION

THE problem of quickly detecting a change in sequentially
acquired data dates back to the pioneering works of

Shewhart [1] and Page [2], and is motivated by a wide range
of engineering and scientific applications, such as industrial
process quality control [3]–[5], target detection and identifi-
cation [6], [7], integrity monitoring of navigation systems [8],
[9], target tracking [10], network intrusion detection [11], [12],
bioterrorism [13], [14], and genomics [15].

In these applications, there are typically many possible post-
change distributions, representing different types of change,
and it is useful, if not critical, to not only detect the change
quickly, but also to correctly identify its type upon stopping.
This problem of simultaneously detecting a change in sequen-
tially collected data and identifying the correct post-change
distribution among a finite set of alternatives is known as
sequential change diagnosis and has been studied in various
works [16]–[20].

A Bayesian formulation for the sequential change diagnosis
problem was proposed in [21], where the change-point has a
known geometric prior distribution and the observations are
iid before and after the change conditionally on the change-
point. A computationally convenient modification of the Bayes
rule was proposed and analyzed in [22]. In the same Bayesian
context, a two-stage approach was considered in [23]. The
special case of the multichannel problem was explored in [18],
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wherein a number of independent data streams are observed
in parallel and a change occurs in one of them. Additionally,
general non-iid models were considered for the pre-change and
post-change regimes and non-geometric priors were allowed
for the change-point.

When the mechanism that generates the change-point is
not assumed to be known a priori, the sequential change
diagnosis problem is arguably significantly more complex than
its individual components of sequential change detection and
sequential multi-hypothesis testing. Indeed, simple algorithms
for sequential change-detection, which do not assume any prior
information on the change-point, such as Page’s Cumulative
Sum (CuSum) [2], were proposed very early on. This algo-
rithm has been studied extensively since its introduction and
has been grounded on strong theoretical support. Specifically,
in the case that the observations are iid before and after the
change with completely specified pre-change and post-change
distributions, it has been shown [24] to minimize Lorden’s cri-
terion [25], i.e., the worst-case conditional expected detection
delay with respect to both the history of the observations up
to the change and the change-point itself, subject to a user-
specified bound on the false alarm rate.

The first scheme that was ever proposed, in [16], for the
sequential change diagnosis problem, under the assumption of
iid observations before and after the change, was in fact a
generalization of the CuSum algorithm, termed “Generalized
CuSum”. Unlike the original CuSum algorithm, however, this
one does not admit a recursive structure and requires a number
of operations at each time instance that grows linearly with
the number of observations. Since the change can take a
very long time to occur, this implies that this procedure
needs to be modified to be applicable in practice. A recursive
modification was proposed in [26], according to which an
alarm is raised as soon as the CuSum statistics of a post-change
hypothesis against the pre-change and all other post-change
alternatives simultaneously exceed a certain threshold. Thus,
this algorithm requires the parallel computation of a matrix of
CuSum statistics, and for this reason it is referred to as the
“Matrix CuSum”.

A fundamental drawback of both the “Generalized CuSum”
and the “Matrix CuSum” is that they might fail to isolate
the post-change distribution when the change-point is large
[27, Section 4.3.1]. Indeed, they have only been shown to
control metrics of the false isolation rate when the change
occurs at the beginning of the sampling period. This can be
partially addressed by a window-limited modification of the
Generalized CuSum, as the one suggested in [19]. However,
this leads to a nontrivial trade-off regarding the size of the
window, Indeed, if this deterministic window is selected to be
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too small, it will degrade the ability of the algorithm to detect
a change of weak signal. On the other hand, if it is chosen to
be too large, it will fail to ameliorate the issue stated above.

A recursive, CuSum-based algorithm that, under certain
conditions can control the worst-case conditional probabil-
ity of false isolation given that there was no false alarm
with respect to the change-point, was proposed in [20]. This
algorithm requires the computation of only the original K
CuSum statistics, which are used for the pure change detection
problem, and for this reason it is referred to as the “Vector
CuSum”. The worst-case conditional expected detection delay
of this scheme, however, was shown to be bounded only with
respect to the change-point, not the data up to the change. That
is, its delay analysis was based on Pollak’s criterion [28], not
Lorden’s.

The goal of the present work is to study a very simple
algorithm for the change diagnosis problem, which does not
explicitly address the isolation task and incidentally admits
a convenient decentralized implementation (see, e.g., [29]).
Specifically, this procedure raises an alarm when the value of a
CuSum statistic that corresponds to a post-change distribution
exceeds a certain threshold. This algorithm is shown to control
the worst-case conditional probability of false isolation in
certain problems where the post-change distributions are more
similar, in a certain sense, to the pre-change distribution than
to each other. This is the case, for example, in the multichannel
problem mentioned above. In such a setup, this algorithm
is also shown to minimize Lorden’s criterion, under every
possible post-change alternative, to a first order asymptotic
approximation as the prescribed false alarm rate goes to 0,
sufficiently faster than the prescribed worst-case probability
of false isolation.

II. PROBLEM STATEMENT

Let X ≡ {Xn, n ∈ N} be a sequence of independent S-
valued random elements, where S is an arbitrary Polish space.
We denote by {Fn : n ∈ N} the natural filtration of X , i.e.,
Fn ≡ σ(X1, . . . , Xn), n ∈ N, and by F0 the trivial σ-algebra.
We assume that each term of this sequence has a density with
respect to a σ-finite measure λ, which is f up to and including
some time instance ν ∈ N ∪ {0} and g after ν.

We assume that the change-point, ν, is deterministic and
completely unknown, and that the pre-change density, f , is
completely specified. On the other hand, we allow for uncer-
tainty regarding the distribution after the change. Specifically,
we postulate K alternatives for the post-change density, i.e.,
g ∈ {g1, . . . , gK}, and assume that the Kullback-Leibler
information number

Ii ≡
∫

log(gi/f) gi dλ

is positive and finite for every i ∈ [K] ≡ {1, . . . ,K}.
We denote by P∞ the distribution of X , and by E∞ the

corresponding expectation, when the change never occurs,
i.e., when X is a sequence of independent random elements
with common density f . Moreover, we denote by Pν,i the

distribution of X , and by Eν,i the corresponding expectation,
when the change occurs at time ν and the post-change density
is gi. For simplicity, when the change occurs from the very
beginning, i.e., when ν = 0, we suppress the dependence on
the change-point by setting Pi ≡ P0,i and Ei ≡ E0,i.

We assume that the terms of the sequence X are observed
sequentially and that the problem is to quickly detect the
change, as well as to identify the correct post-change dis-
tribution upon stopping. Thus, we need to specify a random
time, T , at which we declare that the change has occurred,
as well as a [K]-valued random variable, D, that represents
our decision regarding the post-change density at the time of
stopping. On the event {T = n,D = i} the alarm is raised and
gi is declared as the correct post-change density after having
taken n observations, where n ∈ N and i ∈ [K]. We refer to
such a pair (T,D) as a diagnosis procedure if T is an {Fn}-
stopping time and D is FT -measurable, or in other words if

{T = n}, {T = n,D = i} ∈ Fn ∀ n ∈ N, i ∈ [K].

We denote by C the family of all diagnosis procedures and,
without loss of generality, we restrict ourselves to stopping
times that are not almost surely bounded under any Pν,i.

As in the change detection problem, we measure the ability
of (T,D) ∈ C to avoid false alarms using the average
number of observations until stopping under P∞, i.e., E∞[T ].
Similarly, to measure the ability of (T,D) ∈ C to quickly
detect the change when the post-change density is gi for some
i ∈ [K], we adopt Lorden’s criterion [25], which utilizes the
worst-case conditional expected detection delay with respect
to both the change-point and the data up to the change:

Ji(T ) ≡ sup
ν≥0

esssupEν,i[T − ν|Fν , T > ν]. (1)

Finally, to measure the ability of (T,D) ∈ C to isolate the
post-change density when the change occurs at some time ν,
we use the conditional probability of selecting the wrong post-
change density at the time of stopping given that there was no
false alarm:

max
j∈[K]

Pν,j(D ̸= j|T > ν).

We denote by C(α) the family of diagnosis procedures that
control the expected time until stopping under P∞ by at least
1/α, i.e.,

C(α) ≡ {(T,D) ∈ C : E∞[T ] ≥ 1/α},

where α ∈ (0, 1) is a user-specified value that represent
tolerance to false alarms. Moreover, we denote by C(α, β,N )
the subfamily of diagnosis procedures that also control the
conditional probability of false isolation below β when the
change point belongs to a set N ⊆ {0} ∪ N, i.e.,

C(α, β,N ) ≡{(T,D) ∈ C(α) :
max
j∈[K]

sup
ν∈N

Pν,j(D ̸= j|T > ν) ≤ β}, (2)

where β ∈ (0, 1) is a user-specified value that represent toler-
ance to false isolations. Clearly, we would like to have a di-
agnosis scheme that can be designed to belong to C(α, β,N ),
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for α, β ∈ (0, 1) arbitrarily small and N as large as possible,
ideally {0} ∪ N, while achieving

inf
(T,D)∈C(α,β,N )

Ji(T ), (3)

at least approximately, for every possible post-change alter-
native, i.e., for every i ∈ [K]. As we mentioned in the
Introduction, existing algorithms in the literature have been
shown to enjoy such an asymptotic optimality property (only)
when the change occurs from the beginning, i.e., N = {0}.
Our main goal in this work is to show that, in certain problems,
a simple algorithm that does not explicitly address the isolation
task can actually control the worst-case probability of false
isolation and enjoy the above asymptotic optimality property
with N = {0} ∪ N.

III. THE MIN-CUSUM ALGORITHM

In this section we introduce the algorithm that we consider
in this work for the sequential change diagnosis problem, and
review some of its well known properties. To this end, for
each i ∈ [K] and n ∈ N, we introduce the following notation:

ℓi(n) ≡ log (gi(Xn)/f(Xn)) . (4)

A. An algorithm for change-detection

Page’s CuSum algorithm [2] for detecting a change from f
to gi raises an alarm at the first time n ∈ N the statistic

Yi(n) ≡ max
0≤m≤n

n∑
t=m+1

ℓi(t) (5)

exceeds a threshold bi > 0, i.e., at

σi(bi) ≡ inf{n ≥ 1 : Yi(n) ≥ bi}. (6)

An important property of this algorithm concerning its imple-
mentation in practice is that its statistic can be evaluated via
the following recursion:

Yi(n) = (Yi(n− 1) + ℓi(n))
+
, n ∈ N, (7)

with Yi(0) = 0. Moreover, it is well known [24] that it
minimizes Ji in C(α) when the threshold bi is selected so
that the false alarm constraint is satisfied with equality. In the
presence of uncertainty regarding the post-change distribution,
which is the case in our setup whenever K > 1, a standard
approach for detecting the change is to run in parallel all these
CuSum algorithms, σ1(b1), . . . , σK(bK), and stop as soon as
one of them does, i.e., at

min
i∈[K]

σi(bi).

In what follows, we set b1 = ... = bK = b (and refer to
[30, Section 4] for a discussion of how to select unequal
thresholds). Moreover, we denote the resulting stopping time
by σ(b), i.e.,

σ(b) ≡ min
i∈[K]

σi(b),

and refer to it as the min-CuSum stopping time. It is well
known (see, e.g., [17, Theorem 3.1]) that, for any b > 0,

E∞[σ(b)] ≥ eb/K, (8)

which implies that the false alarm constraint is satisfied with
b = bα, where

bα ≡ | logα|+ logK.

Moreover, it is well known that, for every i ∈ [K] and b > 0,

Ji [σ(b)] = Ei[σ(b)], (9)

and that σ(bα) achieves the minimum value of Ji in C(α) for
every i ∈ [K], to a first-order asymptotic approximation as
α→ 0. In particular, from [31, Section 9.2] it follows that

Ji [σ(bα)] ∼
| logα|
Ii

∼ inf
(T,D)∈C(α)

Ji[T ] (10)

for every i ∈ [K] as α→ 0, i.e.,

lim
α→0

Ji [σ(bα)]

inf(T,D)∈C(α) Ji[T ]
= 1.

B. An algorithm for diagnosis

The stopping time σ(b) is associated with a natural deci-
sion rule, which is to select the post-change hypothesis that
corresponds to the CuSum stopping time that stops first. We
denote this decision rule by σ̂(b), i.e.,

σ̂(b) ∈ argmin
i∈[K]

σi(b).

When σ̂(b) is not uniquely defined, we assume that a hypoth-
esis in σ̂(b) is selected in some arbitrary way.

In the next section we show that, in certain problems,
the diagnosis scheme (σ(b), σ̂(b)) controls the worst-case
conditional probability of false isolation and achieves the
infimum in (3), with N = {0}∪N, as α goes to 0 sufficiently
faster than β.

IV. MAIN RESULTS

We start by stating the assumptions that we need for the
results of this work.

A. Assumptions

Our first assumption is that each ℓi has a finite exponential
moment under P∞. Specifically, we denote by ψi the cumulant
generating function of ℓi(n) under P∞, i.e.,

ψi(θ) ≡ log (E∞ [exp{θ ℓi(n)}]) , θ ∈ R,

and assume that

ψi is finite around 0 for every i ∈ [K]. (A1)

Our second assumption essentially requires that any two
post-change distributions are more similar to the pre-change
distribution than to each other, in the sense that∫

(gi/f) gj dλ ≤ 1 for every i, j ∈ [K] : j ̸= i. (A2)
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Indeed, these two assumptions imply that, for any i, j ∈ [K]
with i ̸= j, the process

{exp{ℓj(n)}, n ∈ N}

is a Pi-supermartingale, and consequently that the CuSum
statistic for detecting a change from f to gj , namely Yj ,
will not grow after the change when the true post-change
distribution is gi.

Remark: Assumption (A1) is satisfied, for example, whenever
the post-change densities belong to the same exponential
family as the pre-change density. Specifically, let

Θ ≡ {θ ∈ R : ζ(θ) <∞},

where ζ(θ) ≡
∫

exp{θx}f(x) dλ,

and for any such θ ∈ Θ consider the following density with
respect to λ:

f(x; θ) ≡ f(x) exp{θx− ζ(θ)}.

If Θ contains a neighborhood of 0 and gi = f( · ; θi) for every
i ∈ [K], then (A2) holds. If also K = 2 and θ1 < 0 < θ2,
then (A2) also holds.

Remark: Assumptions (A1) and (A2) are also satisfied in the
multichannel setup of Subsection IV-C, e.g., when X is a
sequence of Gaussian random vectors of independent com-
ponents and gi represents a mean-shift in the i-th component
of this vector.

B. Main results

We next state an upper bound for the conditional probability
of false isolation of the Min-CuSum, which is uniform for a
certain family of change points. Due to the space constraints,
the proof is omitted and will be provided elsewhere.

Lemma 1: Suppose that (A1)-(A2) hold and let ν ≥ 0 be
such that

P∞(Yi(ν) ≥ x) ≥ P∞(Yi(ν) ≥ x | σ(b) > ν)

for allx ≥ 0, b > 0, i ∈ [K].
(11)

Then, for every j ∈ [K] we have:

Pν,j (σ̂(b) ̸= j | σ(b) > ν) ≤ CK b e−b(1 + ϕ(b)),

where ϕ is a real function, which does not depend on ν or j,
such that ϕ(b) → 0 as b→ ∞, and

CK ≡ (K − 1)

(
1 + max

i∈[K]
(1/Ii)

)
.

The previous lemma implies that if N is the set of change-
points that satisfy (11), which is nonempty because {0} ∈ N ,
then

(i) for any α, β ∈ (0, 1), we can select b large enough so
that

(σ(b), σ̂(b)) ∈ C(α, β,N )

(ii) the infimum in (3) is achieved, to a first-order asymptotic
approximation as α, β → 0, by

(σ(bα), σ̂(bα)),

as long as β is sufficiently larger than α.
These two implications are formalized and stated in the
following theorem.

Theorem 2: Suppose that (A1)-(A2) hold and let N denote
the set of ν’s that satisfy (11).

(i) For any α, β ∈ (0, 1), there is a b > 0 such that

(σ(b), σ̂(b)) ∈ C(α, β,N ).

(ii) For any α ∈ (0, 1) let β be such that

CK bα e
−bα (1 + ϕ(bα)) ≤ β. (12)

Then: σ (bα) ∈ C(α, β,N ) and, as α→ 0,

Ji[σ(bα)] ∼
| logα|
Ii

∼ inf
(T,D)∈C(α,β,N )

Ji[T ]

for all i ∈ [K].
Proof: (i) Let α, β ∈ (0, 1) be arbitrary. From (8) it

follows that for b ≥ bα we have

E∞[σ(b)] ≥ 1/α.

Moreover, from Lemma 1 it follows that there is a b large
enough, which depends on β, so that

max
j∈[K]

sup
ν∈N

Pν,j (σ̂(b) ̸= j|σ(b) > ν) ≤ β.

Thus, we can select b large enough so that both inequalities
are satisfied and consequently (σ(b), σ̂(b)) ∈ C(α, β,N ).

(ii) For any α, β ∈ (0, 1), we have C(α, β,N ) ⊆ C(α),
therefore

inf
(T,D)∈C(α,β,N )

Ji[T ] ≥ inf
T∈C(α)

Ji[T ]. (13)

In view of (10), it suffices to show that σ(bα) ∈ C(α, β,N )
when β satisfies (12), which follows directly by Lemma 1.

Condition (11) is always satisfied (trivially) when ν = 0.
Therefore, the previous theorem shows that the min-CuSum
controls the false isolation rate at least when the change occurs
from the very beginning. We next show that the previous
theorem holds with N = {0}∪N in the special but important
case of the multichannel problem. That is, in that case, the
min-CuSum controls the worst-case conditional probability of
false isolation, with respect to all possible change points.

C. The multichannel problem

We conclude these theoretical developments by focusing
on the special case of the multichannel problem, in which
d independent channels are monitored, i.e.,

Xn = (X1,n, X2,n, . . . , Xd,n), n ∈ N (14)
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and each channel i takes values in some Polish space Si, so
that

S = S1 × . . .× Sd. (15)

Moreover, we assume that each Xi,n has a density with respect
to a σ-finite measure λi that is pi for every n ∈ N if the
channel does not undergo any change, whereas it is pi for
every n ≤ ν and qi for every n > ν if the change occurs in
channel i. We assume that the change occurs in exactly one
channel, therefore K = d and

f(x1, . . . , xd) =
d∏

j=1

pj(xj)

gi(x1, . . . , xd) = qi(xi)
∏
j ̸=i

pj(xj)

(16)

for (x1, . . . , xd) ∈ S. We also assume that, for each i ∈ [K],
the Kullback-Leibler divergences between pi and qi are posi-
tive and finite, i.e.,∫

log(qi/pi) qi dλi ∈ (0,∞)∫
log(pi/qi) pi dλi ∈ (0,∞),

(17)

as well as that

θ ∈ R → log

(∫
qθi p

1−θ
i dλi

)
is finite around 0. (18)

Proposition 1: Suppose that (14)-(18) hold. Then, conditions
(A1)-(A2) are satisfied and (11) holds for every ν ∈ {0} ∪N.

Proof: Let i, j ∈ [K] with i ̸= j. First of all, we observe
that by (14) and (16) we have

ℓi(n) = log

(
qi(Xi,n)

pi(Xi,n)

)
.

As a result, for every θ ∈ R we have

ψi(θ) = log

∫
qθi p

1−θ
i dλi

which proves that (A1) holds in view of (18). Moreover,∫
(gi/f) gj dλ =

∫
(qi/pi) pi dλi = 1,

which proves that (A2) holds. We know that {0} ∈ N , so it
remains to show that (11) holds for every ν ∈ N. Indeed, for
any ν ∈ N and i ∈ [K], b > 0, x ≥ 0 we have

P∞(Yi(ν) > x |σ(b) > ν)

= P∞(Yi(ν) > x |σj(b) > ν for every j ∈ [K])

= P∞(Yi(ν) > x | σi(b) > ν)

≤ P∞(Yi(ν) > x),

where the first equality follows by the definition of σ(b), the
second by the independence of the channels, and the inequality
follows from [32, Theorem 1] and the fact that {Yi(n), n ∈ N}
is a nonnegative stochastically monotone Markov process.

V. NUMERICAL ILLUSTRATION

Consider the multichannel problem of Subsection IV-C with
d = 2 channels, where both generate iid standard Gaussian
observations before the change, and after the change the mean
changes to 1 in one of the two sequences, i.e., p1 = p2 =
Gaussian(0, 1) and q1 = q2 = Gaussian(1, 1).

Without loss of generality, due to symmetry, we consider the
case that the change happens in the first channel. We consider
different change-points, and for each of them we estimate the
conditional probability of false isolation

Pν,1 (σ̂(b) ̸= 1|σ(b) > ν)

for different values of the threshold, b, using Monte Carlo
simulation, with N = 5 × 104 runs. In Figure 1, for each
of these change-points we plot the conditional probability of
false isolation as a function of b, and we see that it indeed
decays exponentially in b. Moreover, we see that the curve
stabilizes as the change-point increases. In particular, while the
conditional probability of false isolation is point-wise smaller
when ν = 0 compared to ν > 0, there is not a perceptible
difference between the cases of ν = 50 and ν = 100. Standard
errors are included as vertical bars in the figure.

VI. CONCLUSION

We have shown that in certain cases, such as the multi-
channel problem, a simple algorithm can control the worst-
case probability of false isolation and minimize Lorden’s delay
criterion in an asymptotic sense, for every possible post-
change distribution. Future work on this problem will address
the case where the the underlying problem does not have such
a special structure, and it is necessary to design algorithms
that explicitly address the isolation task.

Fig. 1. In the multichannel problem, the probabilities of false isolation
are stable as the change-point increases and decrease exponentially in the
threshold b.
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