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Abstract
In this paper, we propose a delta-hedging strategy for a longmemory stochastic volatil-
ity model (LMSV). This is a model in which the volatility is driven by a fractional
Ornstein–Uhlenbeck process with long-memory parameter H . We compute the so-
called hedging bias, i.e. the difference between the Black–Scholes Delta and the
LMSV Delta as a function of H , and we determine when a European-type option
is over-hedged or under-hedged.

Keywords Long-memory · Stochastic volatility · Hedging · Hedging bias

JEL Classification C02 · C32 · C65 · G12

1 Introduction

It has been well documented in the literature that the celebrated Black–Scholes model
does not explain stylized facts related to the volatility, such as the volatility smile or
the volatility persistence, which led to the introduction of stochastic volatility mod-
els, Heston (1993), Fouque et al. (2000a, b). In recent works, Chronopoulou and Viens
(2010), Comte et al. (2012), Lima (1994), Breidt et al. (1998), there has been empirical
evidence that the volatility is highly persistent, which means that even for options with
long maturity, there exist pronounced smile effects. Furthermore, a unit root behavior
of the conditional variance process is prominent, particularly when the data are of
higher frequencies. On the other hand, when maturities are shorter and the data are
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(ultra) high-frequent, the volatility displays an antiperistent or rough behavior that
cannot be captured by traditional stochastic volatility models either, Gatheral et al.
(2018), Carr and Wu (2016), Fukasawa (2017).

Longmemory, or long-range dependence, in financial datasets has been observed in
practice long before the use of longmemory stochastic volatility models. For example,
the authors in Ding et al. (1993), Lima (1994), Breidt et al. (1998) observed that the
squared returns of market indexes have the long-memory property, which intuitively
means that observations that are far apart are highly correlated. First, a discrete time
model was introduced, Harvey (1998), Breidt et al. (1998), under which the log-
volatilitywasmodeled as a fractional ARIMA(p,d,q) process (Beran et al. 2013), while
Comte andRenault inComte andRenault (1998), first introduced a stochastic volatility
model with long-memory in continuous time. More recent works (Chronopoulou and
Viens 2010, 2012; Comte et al. 2012; Bezborodov et al. 2019) have also explored the
effect of volatility persistence in option pricing.

On the other hand, rough volatility models have a prominent role in the current
literature initiated by the work in Gatheral et al. (2018). Specifically, the log-volatility
is modeled by a rough (fractional) process where the implied volatility under this
model, for very short maturities, is shown to produce very strong skews. Along the
same lines, the authors in Bayer et al. (2016) investigate pricing under such models,
while the authors in Fukasawa (2017) study the case of small volatility fluctuations.

In this article, we focus on the long-range dependent case and specifically, we work
with the continous time long-memory stochastic volatility (LMSV) model introduced
in Comte and Renault (1998): If St is the price process and Yt is the volatility process,
then

{
dSt = r St dt + σ(Yt )St dBt ,

dYt = −λ Yt dt + β dW H
t ,

(1)

where Bt is a standard Brownianmotion andWH
t is a fractional Brownianmotion with

Hurst index H ∈ (1/2, 1]. The fractional Brownian motion is a process that captures
volatility persistence, when H > 1/2 and roughness when H < 1/2. (See also Sect. 2
for the model definition).

Thequestionof pricingderivatives under the longmemory stochastic volatilitymod-
els has already been addressed in the literature. First, the authors in Comte and Renault
(1998) provide a representation for the option price, while the authors in Garnier
and Sølna (2017) derive a corrected Black–Scholes formula in a fractional stochastic
volatility environment. In Chronopoulou and Viens (2010), Chronopoulou and Viens
(2012) a numerical method based on recombining quadrinomial trees is developed to
compute European and American-type option prices.

Our goal in this article is to propose a hedging strategy for the longmemory stochas-
tic volatility model, when the Hurst parameter is greater than 1/2. It is well known
that perfect hedging cannot be achieved in the stochastic volatility framework and
this remains the case when the volatility exhibits long memory. However, one can
study an imperfect (partial) delta-hedging strategy and its implications in a fractional
environment.
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In order to do so, first we need to establish the differentiability of the option price
with respect to the asset and then compute the derivative with respect to the fluctu-
ations of the underlying, a.k.a. the option’s Delta. We also investigate the so-called
hedging bias, as introduced in Renault and Touzi (1996). In particular, we look at the
distance of the Delta under the long memory volatility model from the Delta under the
Black–Scholes model and we determine if our position is under/over-hedged when an
(imperfect) Delta hedging strategy is adopted. To this extent, we show that the Black–
Scholes implied volatility-hedging bias leads to (i) an under-hedged position for the
in-the-money options (in the sense that the Black–Scholes hedging ratio is smaller
than the long memory stochastic volatility one), and (ii) an over-hedged poistion for
out-of-the money options. Moving one step further, we also investigate the Delta’s
behavior, when the volatility process is a slow fractional Ornstein–Uhlenbeck process
for which we derive a “corrected” Black–Scholes Delta formula for the European call
option.

The structure of the paper is as follows: In Sect. 2, we present the general framework
and provide a quick overview of the model we consider along with its main properties.
In Sect. 3 we introduce the option pricing framework, the proof of differentiability
of the option price and the derivation of the hedging biases. In Sect. 4, we derive
the approximate formula for the corrected Delta. In Sect. 5, we discuss the practical
implications of our method and along with our conclusions. Technical proofs and
Lemmas are delegated in the Appendix.

2 Long-memory stochastic volatility model

In this section, we present all the mathematical ingredients required to properly define
our model. Under an equivalent martingale measure

dSt = r St dt + σ(Yt )St dBt , (2)

dYt = −λ Yt dt + β dW H
t , (3)

where r is the short-term risk-free rate of interest, {Bt ; t ≥ 0} is a standard Wiener
process and {WH

t ; t ≥ 0} is a standard fractional Brownian motion with H > 1/2,
both under the martingale measure. We assume that B and WH are independent,
although this assumption could be relaxed, in order to account for leverage effects,
which will be the topic of future investigations.

2.1 Fractional Brownianmotion

Before discussing the properties of the fractional SDE (3), we first introduce some
of the properties of the fractional Brownian motion, which is the driving noise of the
volatility process.

Definition 1 A fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1] is
a centered Gaussian process {BH

t ; t ∈ R+}whose distribution is defined by its covari-
ance
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Cov
(
WH

t ,WH
s

)
= 1

2

(
|t |2H + |s|2H − |t − s|2H

)
, t, s ∈ R+,

and the fact that its paths are continuous with probability 1.

The covariance of fBm immediately implies that it has H -self-similar increments;
for every c > 0 the processes {WH

ct ; t ∈ R+} and {cHW H
t ; t ∈ R+} have the same

distribution. The mean square of the increments of fBm computes as

E
(
|WH

t − WH
s |2

)
= |t − s|2H , (4)

which directly indicates that the increments are stationary. For H = 1
2 , the process is

the standard Brownian motion. However, contrary to standard Brownian motion, fBm
is not a semimartingale nor a Markov process when H �= 1

2 .
The fBm has one additional very important property for certain values of H : its

long-range dependence (a.k.a. long-memory). Indeed, when H �= 1
2 , the increments

of fBm over disjoint intervals, (WH
n − WH

n−1), are not independent; their correlation
function is

ρH (n) = 1

2

(
(n + 1)2H + (n − 1)2H − 2n2H

)
.

We observe that when H < 1
2 then ρH (n) < 0 and the increments over disjoint

intervals are negatively correlated. When H > 1
2 then ρH (n) > 0 and the increments

over disjoint intervals are positively correlated. More specifically in the case that
H > 1

2 the stationary sequence (WH
n − WH

n−1) exhibits long-range dependence (or
long memory) in the sense that

∑∞
n=1 ρH (n) = ∞, which follows immediately from

the asymptotics

ρH (n) = H(2H − 1)n2H−2 + o
(
n2H−2

)
.

When H < 1
2 , then

∑∞
n=1 |ρH (n)| < ∞ and one often says that the process has

short memory, although it might be preferable to call it “medium” memory, since
exponentially decaying correlations might better describe “short” memory.

The fractional Brownian motion with H > 1/2 also admits an integral representa-
tion with respect to a standard Brownian motion which is:

WH
t =

∫ t

0
KH (t, s)dZs . (5)

where

KH (t, s) = cHs
1/2−H

∫ t

s
|u − s|H−3/2uH−1/2du
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and {Zt } is a standard Brownian motion. More details on fBm can be found inMishura
(2008), Nualart (2006).

2.2 Fractional Ornstein–Uhlenbeck process

The fractional Ornstein–Uhlenbeck process is the fractional analogue of the well-
known Ornstein–Uhlenbeck process; it is a continuous-time first-order autoregressive
process Y = {Yt ; t ≥ 0} which is the solution of an one-dimensional homogeneous
linear stochastic differential equation driven by a fBm {WH

t ; t ∈ R+} with Hurst
parameter H ∈ [1/2, 1). Specifically, it is the unique Gaussian process satisfying the
following linear stochastic integral equation

Yt = −λ

∫ t

0
Ys ds + β WH

t , (6)

where λ > 0 and β are constant drift and variance parameters, respectively. The
solution to equation (6) is

Yt = exp(−λt)

(
Y0 + β

∫ t

0
exp(λu)dW H

u

)

and is almost surely continuous and H -self-similar. The decay of the autocovariance
function of {Yt ; t ∈ R+} is similar to that of the increments of the fBm, and thus it
exhibits long-range dependence. See Cheridito et al. (2003) for more details. In our
work for simplicity we take Y0 = 0.

In the remainder of the paper, we will make the following assumptions regarding
the function σ(·) in (2):

Assumption 1 (i) σ(·) is bounded above by a positive number A. This assumption
may be further relaxed later.

(ii) For some large enough N, σ(·) ≥ |x |m/2e
−x2

4�2 for some m > 1, up to a constant
for x ≤ −N . Here �2 = supt∈[0,T ] var(

∫ T
t Ysds).

(iii) σ(·) is sub-linear, that is σ(x1) + σ(x2) ≥ σ(x1 + x2).

3 Delta hedging and hedging bias

3.1 The fractional option pricing formula

To start our discussion, we will review the results about pricing under fractional
stochastic volatility model in Comte and Renault (1998). For notational convenience,
in this section we denote σt = σ(Yt ).

Let (�,F , P) be the fundamental probability space and {Ft } the P-augmented
filtration generated by the twoBrownianmotions {Bu, B∗

u }u≤t .We focus on aEuropean
call option on a given financial asset {St ; t ≥ 0}, with payoff max{ST −K , 0}where K
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is the strike price, and T the maturity. The filtration {Ft } coincides with the filtration
generated by the stock and the volatility process, {Su, σu}u≤t or {mu, σu}u≤t , wherewe
definemt = ln(St/K ). We assume that the market permits continuous and frictionless
trading, but is in equilibrium in the sense that no arbitrage profits are available from
trading the underlying asset and riskless bonds. We also assume that the interest
rate r is constant, although this can be relaxed to incorporate a deterministic, time-
dependent process rt . A zero coupon bond with maturity T is denoted by D(t, T ) =
exp {−r(T − t)}.

In the remainder of the paper, as in Comte and Renault (1998) we will work under
the equivalent martingale measure (as it is presented in Sect. 2). For a price process
given by

dSt = μ(t, St ) St dt + σ(Yt )St dBt ,

the existence of an equivalent martingale measure Q has been established in Comte
and Renault (1998). The density process of any probability measure Q equivalent to
P and can be written as

Mt = exp

{
−

∫ t

0
λS
udBu − 1

2

∫ t

0
λS2
u du −

∫ t

0
λσ
u dB

∗
u − 1

2

∫ t

0
λσ 2

u du

}
,

where λS
u , λ

σ
u are adapted to the filtration Ft and standard integrability conditions∫ T

0 λS2
u du < ∞ a.s. and

∫ T
0 λσ 2

u du < ∞ a.s.. The discounted asset price process
{St Dt , 0 ≤ t ≤ T } is a Q martingale if and only if

λS
uσt = μ(t, St ) − r .

Since the stock is the only traded asset, λσ
u is not fixed and as the market is incomplete,

themartingale probability Q is not unique. So, for any choice ofλσ
u , the density process

Mt is an equivalent martingale measure. We also have that

B̃t = Bt +
∫ T

0
λS
udu and B̃∗

t = B∗
t +

∫ T

0
λσ
u du

where B̃t and B̃∗
t are independent under Q by construction. Therefore, the European

Call option price can be expressed as

Ct = D(t, T )EQλσ [max{ST − K , 0}|Ft ]

In the remainder of the paper, we fix λσ and as a result Qλσ . However, for simplicity
in the notation, we will only denote it by Q.

Since the two noises B and WH are independent, conditionally on Ft and the
volatility path {σt : t ∈ [t, T ]}, the distribution of log St is Normal with mean(
r(T − t) − 1

2

∫ T
t σ 2

s ds
)

and variance
∫ T
t σ 2

s ds. Therefore, based on the results

in Comte and Renault (1998), we can compute the European option price by first
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conditioning on the larger sigma-algebra F̂t := Ft ∨ {σu; u ∈ [t, T ]} and then
narrowing down the sigma-algebra to Ft to obtain

Ct = St

{
EQ

[
�

(
mt

Ut,T
+ Ut,T

2

)
|Ft

]
− e−mt EQ

[
�

(
mt

Ut,T
− Ut,T

2

)
|Ft

]}
,

(7)

where �(·) denotes the cdf of standard normal distribution, and Ut,T is defined as

Ut,T =
√∫ T

t
σ 2
u du.

3.2 Price differentiability with respect to St

To investigate whether the option price is differentiable with respect to the underlying
asset we use Fourier transform techniques, similar to El Euch and Rosenbaum (2018),
and we prove the following theorem:

Theorem 1 Under Assumption 1, the European Call Option price defined as in (7),
Ct , is differentiable with respect to St .

Proof First, assume that we can find an a > 1 such that EQ(St )a < ∞. For the
existence of this a, we can take a = 2. For the reason please refer to Proposition 3 in
Appendix.

Then the European Call option price is

Ct = EQ [
(ST − K )+ |Ft

]

Let xt = ln St , and define

g(x) = e−ax (ex − K )+.

Then,we know that g ∈ L1(R)∩L2(R). Therefore it has a Fourier transform according
to

g(x) = 1

2π

∫
ĝ(b)e−ibxdb

where for ĝ we have:

ĝ(b) = exp {(1 − a + ib)log(K )}
(ib − a)(ib − a − 1)

Thus we know that

Ct = EQ [
g(xT )eaxT |Ft

] = 1

2π

∫
ĝ(b)EQ[e(a−ib)xT |Ft ]
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Thus the only thing we need to show is that the term

EQ
[
e(a−ib)(xT −xt )|Ft

]

only depends on the volatility. We already know that the stock process St is a semi-
martingale, and we have that

xT − xt =
∫ T

t

(
r − 1

2
(σ (Ys))

2
)
ds +

∫ T

t
σ(Ys)dWs .

If we plug-in to the price Ct , we obtain

Ct = 1

2π

∫
ĝ(b)EQ [

exp {(a − ib) xT } |Ft
]
db

= 1

2π

∫
ĝ(b) exp {(a − ib) xt } EQ [

exp {(a − ib)(xT − xt } |Ft
]
db

= 1

2π

∫
ĝ(b) exp {(a − ib) xt }

EQ
[
exp

{
(a − ib)

∫ T

t

(
r − 1

2
σ 2(Ys)

)
ds +

∫ T

t
σ(Ys)dWs

} ∣∣∣∣Ft

]
db

We can use the fact that the conditional distribution of xT − xt under Ft and the path
is a Normal distribution with μ = r(T − t) − 1/2 · V and variance �2 = V , where
V = ∫ T

t σ(Ys)2ds. Thus, we have:

EQ [
exp {(a − ib) (xT − xt )}

∣∣∣∣Ft

]

= EQ

[∫
R
e(a−ib)x exp

{
− (x − μ)2

2�2

}
· 1√

2π�
dx

∣∣∣∣Ft

]

which is the characteristic function of xT − xt . Thus, we have

EQ
[
exp {(a − ib) (xT − xt )}

∣∣∣∣Ft

]

= EQ
[∫

R
e(−ib)x exp

{−(x − μ − a�2)2

2�2 + aμ + 1

2
a2�2

}
· 1√

2π�
dx

∣∣∣∣Ft

]

Using the characteristic function of a Normally distributed variable, we can re-write
the above equation as

EQ
[
exp {(a − ib) (xT − xt )}

∣∣∣∣Ft

]

= EQ
[
exp

{
aμ + 1

2
a2�2

}
exp

{
−imb − 1

2
b2�2

} ∣∣∣∣Ft

]
,
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Where m = μ + a�2. Finally, we can write the option price as

Ct = 1

2π

∫
ĝ(b) exp {(a − ib)xt }

EQ
[
exp

{
aμ + 1

2
a2�2

}
exp

{
−imb − 1

2
b2�2

} ∣∣∣∣Ft

]
db

Combining all the above, we have

Ct = 1

2π

∫
ĝ(b) exp {(a − ib) log(St )}

EQ
[
exp

{
aμ + 1

2
a2V

}
exp

{
−imb − 1

2
b2V

} ∣∣∣∣Ft

]
db,

where V = ∫ T−t
0 σ 2

(s+t)ds. Thus what remains to be checked is whether Ct is differ-
entiable with respect to St , and this involves whether it is legitimate to take derivative
under the integral. In fact, what we can see here is that if we first take the derivative
with St inside the integral, we will have the following:

l(b) = ĝ(b)
ib

s
exp {(a − ib) log(St )}

· EQ
[
exp

{
aμ + 1

2
a2V

}
exp

{
−imb − 1

2
b2V

} ∣∣∣∣Ft

]

Using the inequality

log(b) − 1

2
b2V ≤ log

(
1√
V

)

we have that

EQ
[
exp

{
aμ + 1

2
a2V

}
b · exp

{
−1

2
b2V

}
|Ft

]
≤ E

[
exp

{
aμ + 1

2
a2V

}
1√
V

|Ft

]
,

if we assume that 1√
V
is square integrable. Then, by an application of the dominated

convergence theorem it follows that
∫
R l(b)db and as a consequenceC is differentiable

with respect to S and the derivative can be taken under the integral sign. What is left
to prove is the integrability of 1

V , which is obtained by Lemma 1 in the Appendix. ��

3.3 Delta-hedging and implied volatilities

In the case of a standard stochastic volatility model, a natural idea to solve the hedging
problem is to follow a delta-sigma hedging strategy with 
∗

t units of the underlying

asset and �∗
t units of another option with price C (2)

t . Under certain conditions, it
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has been proven that there exist unique 
∗
t and �∗

t quantities that solve the delta-
sigma hedging problem. However, even in this classical framework, it is common
for practitioners to mainly focus on the risk associated with the underlying asset
fluctuations and consider an imperfect hedging strategy with �∗

t = 0 and


t = ∂Ct

∂St
.

According to our discussion in the previous section, we know that under the long
memory stochastic volatility model, Ct is differentiable with respect to mt (and St as
a consequence), so we can write


t = ∂Ct

∂St
= EQ

[
�

(
mt

Ut,T
+ Ut,T

2

) ∣∣∣∣Ft

]

On the other hand, if one assumes that the underlying pricing model is the Black–
Scholes with constant volatility σ (i.e. Ut,T = σ

√
T − t), then the corresponding

Black–Scholes Delta computes as


BS
t = ∂Ct

∂St
= EQ

[
�

(
mt

σ
√
T − t

+ σ
√
T − t

2

) ∣∣∣∣Ft

]

In order to use the Black–Scholes Delta in practice, we need to calculate the implied
volatility, that is the value of σ that is obtained by calibrating the Black–Scholes price
to realized option prices [see for example Fouque et al. (2000a)], in which the Black–
Scholes model is the one that is assumed to be true. Following the ideas of Renault
and Touzi (1996), we assume that the Black–Scholes impled volatility is the unique
solution to

Ct = CBS
t

(
St , σ

i
t

)
,

where Ct is the option price under the long-memory stochastic volatility model.
A second notion of implied volatility is the so-called hedging volatility, first intro-

duced in Renault and Touzi (1996), according to which the implied parameter σ h
t is

the volatility that satisfies the following equation


t = 
BS
t

(
St , σ

h
t

)
,

which is the volatility parameter that equates the Black–Scholes hedging ratio against
the underlying asset price variations to the long memory stochastic volatility one. The
hedging implied volatility, σ h

t computes as

σ h
t = 1√

T − t

{ [
�−1EQ

[
(
mt

Ut,T
+ Ut,T

2
)

∣∣∣∣Ft

]]
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+
√[

�−1EQ

[
(
mt

Ut,T
+ Ut,T

2
)

∣∣∣∣Ft

]]2
− 2mt

}

In contrast to the Black–Scholes implied volatility, the hedging volatility is not
observed, and it is approximated by the Black–Scholes implied volatility.

3.4 Hedging bias

Following Renault and Touzi (1996), we define hedging bias to be the difference
between the Black–Scholes implied volatility-based hedging ratio and the long mem-
ory volatility one, i.e.


BS
t (St , σ ) − 
t .

In order to quantify the difference of the two volatilities, similar to Renault and Touzi
(1996), we have the following theorem:

Theorem 2 For the long-memory stochastic volatilitymodel (1), the following inequal-
ity always holds:

σ h
t ≥ σ i

t

when mt ≥ 0.

The proof of this theorem will be the same following Renault and Touzi (1996). And
we will list the proof in the appendix.

With Theorem 2, we can say that the implied parameters are different for in-the-
money and out-of the money options. The main result for the hedging bias follows
immediately from the Theorem and is summarized in the Corollary below.

Corollary 1 When we have ln
(

St
K D(t,T )

)
≥ 0, we will always have the following:


t ≥ 
BS
t

(
St , σ

i
t

)
.

When ln
(

St
K D(t,T )

)
< 0,


t ≤ 
BS
t

(
St , σ

i
t

)
.

When ln
(

St
K D(t,T )

)
= 0,


t = 
BS
t

(
St , σ

i
t

)
.

Proof Same as Comte and Renault (1998), the inequalities follow directly from The-
orem 3 and from the fact that the function σ(·) is increasing. ��
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The implications of Corollary 1 are that for in-the-money options the use of the
Black–Scholes implicit volatility leads to an under-hedged position, in the sense that
the hedging ratio is smaller than the partial hedging ratio, while for out-of-the money
options the use of the Black–Scholes implicit volatility leads to an over-hedged posi-
tion. In the case of at-the-money options, the use of the Black–Scholes volatility leads
to a perfect partial hedging.

4 Correction to the Black–Scholes delta

In this section, we will consider a special case of our model (1). Specifically, we
impose the following conditions:

Assumption 2 (i) The volatility is having the form σ(Yt ) = σ̄ + F(δYt ), where σ̄

is a constant and Yt the volatility process as before.
(ii) The function F not only satisfiesAssumption1, but also F(0) = 0 and F ′(0) = 1.

Our goal in this section is to derive a correction to the Black–Scholes Delta formula
when δ tends to 0. In order to do, we need first an appropriate expansion for the option
price. Extending the results in Garnier and Sølna (2017) in the case of Ornstein–
Uhlenbeck processes with a drift component, we obtain the following proposition:

Proposition 1 When δ is small, we have

Ct = Qt (St ) + O(δ2),

where Qt (St ) have the following form:

Qt (St ) = Q(St , t) + δσ̄ φt

(
S2t

∂2Q(St , t)

∂S2t

)

with Q(St , t) being the Black–Scholes formula with the constant volatility σ̄ , and
φt = E[∫ T

t Ysds
∣∣Ft ].

Proof The proof of this proposition is along the lines of Proposition 3.1 in Garnier and
Sølna (2017), ifwe establish thatφt = E[∫ T

t Ysds
∣∣Ft ] is a continuous semimartingale.

The proof of the latter is delegated in the Appendix in Lemma 3. ��

Since we have established a first order correction to the option price, we can also
obtain a first order correction to the option’s Delta:

Proposition 2 When δ is small, we have


t (St ) = ∂Qt (St )

∂St
+ O(δ2)
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where

∂Qt (St )

∂St
= ∂Q(St , t)

∂St
+ δσ̄φt

(
2St

∂2Q(St , t)

∂S2t
+ S2t

∂3Q(St , t)

∂S3t

)

Proof The differentiability of Qt (St ) is obtained from the results in Sect. 3. Once we
have that the result follows by direct computations. ��

5 Discussion and conclusion

5.1 Practical implications

In Sect. 3 of this article we quantified the difference between the Black–Scholes Delta
and the Delta under the long memory stochastic volatility model, and we obtained
guidelines on whether the option is over-hedged or under-hedged when we believe
that the stock behaves according to a fractional model and a Black–Scholes Delta is
used for partial hedging.

However, in order to derive the expression for theDelta,we conditionedwith respect
to the entire volatility path. Therefore, in order to use this method in practice, we need
to estimate or filter the underlying volatility process. In our case the underlying process
exhibits long-memory which makes the filtering task harder. Furthermore, since we
conditioned on the entire volatility path, not only we need to estimate the volatility up
to the current time t , but also to predict the volatility values for future times t < s ≤ T .

Therefore, we are going to divide the problem into two time periods: (i) when
s < t and (ii) when t < s ≤ T , where t is considered the be the current time.
The question of filtering long-range dependent processes with only discrete observa-
tions available has been studied in the literature. For example, one can use particle
filtering techniques as in Chronopoulou and Viens (2010), a sequential Monte Carlo
approach as in Chronopoulou and Spiliopoulos (2018), or Bayesian techniques, simi-
lar to those developed in Beskos et al. (2015). All these methods are directly tracking
the volatility process up to time t . Alternatively, one can use an indirect approach, by
first discretizing the continuous time model, secondly applying a discrete semimartin-
gale transformation, Brouste and Kleptsyna (2012), and then apply traditional filtering
methods before inverting the transformation.

Once the volatility has been tracked up to time t , then we can make use of the fact
that our volatility fractional SDE has an explicit solution, (6), which we can use to
estimate the future volatility values.

5.2 Conclusion

In this article, we discussed Delta hedging for a long-memory stochastic volatility
model. Using Fourier techniques, we proved that the option price under such a model
is differentiable with respect to the stock price, and hence we were able to derive an
expression for the option’s Delta. Then, we quantified the hedging bias, that is the
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difference between the Black–Scholes Delta and the Delta under the long memory
model and we determined that our position is under-hedged for in-the-money options
and over-hedged for out-of-the money options, while the partial Delta hedging is
perfect for at-the-money options. Finally, we considered a special case for the volatility
process for which we derived a corrected formula to the Black–Scholes Delta.

Funding Funding was provided by Directorate for Mathematical and Physical Sciences (Grant Number
1811859).
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Appendix

Proposition 3 For Eq. (1), if E[(S0)2] < ∞, there exists a strong solution, which is a
semimartingale, and also Ito’s lemma can be applied. Also E[(St )2] < ∞, ∀t ≤ T

Proof The proof will be mainly following the general method of proving the existence
of strong solutions of stochastic differential equations. And we will refer to Theorem
8.3 in Le Gall (2016) for reference. Assume that the function σ(·) is bounded by
constant A, i.e. |σ(·)| ≤ A. Thenwe construct the solution using Picard approximation
series. For any t ∈ [0, T ] and for any positive integer n,

S0t = S0
Snt = S0 + ∫ t

0 σ(Ys)Sn−1
s dWs + ∫ t

0 r S
n−1
s ds

We need to know that (i) S0t is continuous, (ii) the iteration is valid for every step and
(iii) Snt is continuous for every n. We focus on the proof of (ii). For this a necessary
and sufficient condition is

E

[∫ T

0
(σ (Ys)S

n
s )2ds

]
< ∞, ∀n ≥ 0.

Since |σ(·)| ≤ A, the above statement can be deduced by

E

[∫ T

0
(Sns )2ds

]
< ∞, ∀n ≥ 0.

Observe that

E

[∫ T

0
(Sns )2ds

]
≤ T E

[
sup

0≤s≤T
(Sns )2

]
.
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For E[sup0≤s≤T (Sns )2], we know

E

[
sup

0≤s≤T
(Sns )2

]
≤ 2E

[
sup

0≤s≤T

[(∫ s

0
σ(Yl)S

n−1
l dWl

)2

+
(∫ s

0
r Sn−1

l dl

)2
]]

Observe that

E

[
sup

0≤s≤T

[(∫ s

0
σ(Yl)S

n−1
l dWl

)2

+
(∫ s

0
r Sn−1

l dl

)2
]]

≤ E

[
sup

0≤s≤T

(∫ s

0
σ(Yl)S

n−1
l dWl

)2
]

+ E

[
sup

0≤s≤T

(∫ s

0
r Sn−1

l dl

)2
]

.

For the second part, we have the following inequality:

E

[
sup

0≤s≤T

(∫ s

0
r Sn−1

l dl

)2
]

≤T E

[
sup

0≤s≤T

∫ s

0
(r Sn−1

l )2dl

]
≤T E

[∫ T

0
(r Sn−1

l )2dl

]

For first part, denote Fs = ∫ s
0 σ(Yl)S

n−1
l dWl . This is a continuous martingale if

E[∫ T
0 (σ (Ys)Sn−1

s )2ds] < ∞, which is implied by E[∫ T
0 (Sn−1

l )2dl] < ∞. Then, if Fs
is a continuous semi-martingale, we can use the Burkholder–Davis–Gundy inequality,
to obtain

E

[
sup

0≤s≤T
(Fs)

2

]
≤ C2E [〈Fs, Fs〉T ] = C2E

[∫ T

0
(σ (Ys)S

n−1
s )2ds

]

Since σ(Ys) ≤ A, we have E[sup0≤s≤T (Fs)2] < ∞ to be deduced by

E[
∫ T

0
(Sn−1

s )2ds] < ∞.

Thus, we obtain E[∫ T
0 (Sns )2ds] < ∞ if E[∫ T

0 (Sn−1
s )2ds] < ∞. Since we know that

E[∫ T
0 (S0s )

2ds] = T E[(S0)2] < ∞, by induction we can show that

E[∫ T
0 (σ (Ys)Sns )2ds] < ∞, ∀n ≥ 0. Hence we can prove that for every step the

iteration is valid.
Last, (iii) holds since it is the sum of a finite variation process and a continuous

martingale.
Now, for every n ≥ 1, take gn(t) = E[sup0≤s≤t (S

n
s − Sn−1

s )2]. Then we will have

gn+1(t) ≤ 2E[ sup
0≤s≤t

|
∫ s

0
σ(Yl)(S

n
l − Sn−1

l )dWl |2 + sup
0≤s≤t

|
∫ s

0
r(Snl − Sn−1

l )dl|2].
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Applying Burkholder–Davis–Gundy inequality, we have

E

[
sup

0≤s≤t
|
∫ s

0
σ(Yl)(S

n
l − Sn−1

l )dWl |2
]

≤ C2E

[∫ t

0
(σ (Yl)S

n
l − Sn−1

l )2dl

]
.

which leads to

gn+1(t) ≤ 2(C2A
2 + Tr2)E[

∫ t

0
(Snl − Sn−1

l )2dl] ≤ C
∫ t

0
gn(l)dl

Since g1(t) is bounded by a constant C1 on [0, T ], we know that gn(t) ≤
C1Cn−1 tn−1

(n − 1)! . Then, since square root is a concave function, we have

√
gn(t) ≥ E

[√
sup

0≤s≤t
(Sns − Sn−1

s )2

]
= E

[
sup

0≤s≤t
|Sns − Sn−1

s |
]

,

which implies

E

[ ∞∑
n=1

sup
0≤s≤T

|Sns − Sn−1
s |

]
< ∞,

∞∑
n=1

sup
0≤s≤T

|Sns − Sn−1
s | < ∞ a.s

and Sns → Ss uniformly almost surely. Then Ss has continuous sample path. Finally,
it is easy to check that Ss is a solution and satisfies

dSt = r Stdt + σ(Yt )StdBt .

The square integrability of St is easy to derive. We know that

S2t = exp

[
2

(∫ t

0

(
r − 1

2
σ 2(Ys)

)
ds +

∫ t

0
σ(Ys)dBs

)]

And thus E(S2t ) < ∞ is guaranteed by E
(
exp

[
2

∫ t
0 σ(Ys)dBs

])
< ∞, which is

then guaranteed by applying Novikov’s criterion to

E

(
exp

[
8
∫ T

0
σ 2(Ys)ds

])
< ∞

��
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Lemma 1 With the assumption that for some large enough N, σ(·) ≥ |x |m/2e
−x2

4�2 for
some m > 1, up to a constant for x ≤ −N, 1√

V
will be square integrable. Here

�2 = supt∈[0,T ] var(
∫ T
t Ysds).

Proof First from the sublinearity of σ , we know that

V ≥
(∫ T

t
σ(Ys)ds

)2 /
(T − t) ≥ σ 2

(∫ T

t
Ysds

) /
(T − t)

This implies that 1
V ≤ T−t

σ 2(
∫ T
t Ysds)

. Since Ys is a Gaussian Process, Zt = ∫ T
t Ysds is a

Normally distributed random variable, thus we will have that

E

(
1

V

)
≤

∫ ∞

−∞
T − t

σ 2(x)
exp

{
−(x − μ)2

2�2
V

}
dx,

where �2
V = var(Zt ) ≤ �2. Thus

1

σ 2(x)
exp

(
−(x − μ)2

2�2
V

)
≤ |x |−m

for x ≤ −N , which concludes that 1√
V
is square integrable. ��

Proof of Theorem 2 The proof will be the same following the proof of proposition 4.1
in Renault and Touzi (1996). First, define the quantity Ht ,

Ht = Ct

St
= 
BS

t

(
mt , σ

h
t

)
− e−x

[
1 − 
BS

t

(
−mt , σ

h
t

)]

and let

h(v) = emt
(
Ht − HBS(mt , v)

)

be a strictly decreasing function (easily checked by computing the derivative), with
HBS(x, v) defined as:

HBS(mt , v) = �

(
mt

v
√
T − t

+ v
√
T − t

2

)
− e−mt�

(
mt

v
√
T − t

− v
√
T − t

2

)

Combining all the above, we have

h(v) = emt
[

BS

t

(
mt , σ

h
t

)
− 
BS

t (mt , v)
]

+
[

BS

t

(
−mt , σ

h
t

)
− 
BS

t (−mt , v)
]
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Since h(v) is decreasing with h(σ i
t ) = 0, we can deduce the relationship between σ h

t
and σ i

t is determined by the sign of h(σ h
t ), which is given by the sign of

�−1EQ[�
(−mt

Ut,T
+ Ut,T

2

)
|Ft ] −

√
[�−1EQ[�

(
mt

Ut,T
+ Ut,T

2

)
|Ft ]]2 − 2mt .

From Lemma 2 in the Appendix, we know that the latter is less than or equal to 0.
This implies that when mt ≥ 0, h(σ h

t ) ≤ 0, which together with the monotonicity of
h(·) results in

σ h
t ≥ σ i

t , when mt ≥ 0

��
Lemma 2

�−1EQ
[
�

(−mt

Ut,T
+ Ut,T

2

) ∣∣∣∣Ft

]
−

√[
�−1EQ

[
�

(
mt

Ut,T
+ Ut,T

2

) ∣∣∣∣Ft

]]2
− 2mt ≤ 0

when mt ≥ 0.

Proof The proof of this lemmawill also be the same following the proof of proposition
4.1 in Renault and Touzi (1996). We first prove the case of Ut,T being a constant, i.e
Ut,T = C a.s . Then it is obvious that

EQ
[
�

(−mt

Ut,T
+ Ut,T

2

) ∣∣∣∣Ft

]
= �

(−mt

Ut,T
+ Ut,T

2

)
.

Then, everything follows from the fact that

(−mt

Ut,T
+ Ut,T

2

)2

≤
(

mt

Ut,T
+ Ut,T

2

)2

− 2mt

Let U = ∑n
i=1 ai1Ai be a step function, with ai ≥ 0 and

⋃
Ai = �. Then, we have

EQ
[
�

(−mt

Ut,T
+ Ut,T

2

) ∣∣∣∣Ft

]
=

n∑
i=1

�

(−mt

ai
+ ai

2

)
EQ [

1Ai |Ft
]

EQ
[
�

(
mt

Ut,T
+ Ut,T

2

) ∣∣∣∣Ft

]
=

n∑
i=1

�

(
mt

ai
+ ai

2

)
EQ [

1Ai |Ft
]

Since
∑n

i=1 E
Q[1Ai |Ft ] = 1 a.s, following the same steps as in Renault and Touzi

(1996), we obtain the desired result.
For general square integrable positive random variable U , we can use the density

argument by using a sequence of step random variable increasingly approximatingU ,
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also with the boundedness of �, we can use bounded convergence theorem to prove
the lemma. ��
Lemma 3 φt = E[∫ T

t Ysds
∣∣Ft ] is a continuous semimartingale.

Proof It is easy to observe that φt is a semimartingale, because of the following
decomposition:

φt = E

[∫ T

0
Ysds

∣∣Ft

]
−

∫ t

0
Ysds

So, our main task is to prove continuity of φt . We start by writing

Yt = exp {−λt} ξ + σ

∫ t

0

(∫ t

s
exp {λ(u − t)} ∂K (u, s)

∂u
du

)
dBs,

which is derived from the solution of the fractional Ornstein–Uhlenbeck process as
the follows:

Yt = exp {−λt} ξ + σ

∫ t

0
exp {λ(u − t)} dBH

t

= exp {−λt} ξ + σ BH
t − λσ

∫ t

0
exp {λ(u − t)} BH

u du

= exp {−λt} ξ + σ BH
t − λσ

∫ t

0
exp {λ(u − t)}

(∫ u

0
K (u, s)dBs

)
du

= exp {−λt} ξ + σ BH
t − λσ

∫ t

0

(∫ t

s
exp {λ(u − t)} K (u, s)du

)
dBs

= exp {−λt} ξ + σ BH
t − σ

∫ t

0

(∫ t

s
K (u, s)d exp {λ(u − t)}

)
dBs

= exp {−λt} ξ + σ BH
t + σ

∫ t

0

(∫ t

s
exp {λ(u − t)} ∂K (u, s)

∂u
du

)
dBs

− σ

∫ t

0
K (t, s)dBs

= exp {−λt} ξ + σ

∫ t

0

(∫ t

s
exp {λ(u − t)} ∂K (u, s)

∂u
du

)
dBs

Here we need to check the interchangeability. According to Theorem 65 [Chapter 6
of Mishura (2008)], what we only need to prove that

(∫ T

0
exp {2λu} K 2(u, s)du

) 1
2

∈ L2[0, T ].

The above calculations also indicate that the pathwise integral andwiener type integral
with respect to BH coincide. Here ξ is the initial value. And K (u, s) is the kernel of
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FBM, which is also related with Hurst Number H . Also it is easy to derive that

E[
∫ T

0
Ysds

∣∣Ft ] =
∫ T

0
E[Ys

∣∣Ft ]ds

Furthermore observe that

E[Yt
∣∣Fs1] = exp {−λt} ξ + σ

∫ s1∧t

0
ζ(t, s)dBs,

where ζ(t, s) = ∫ t
s exp(λ(u − t))

∂K (u, s)

∂u
du < K (t, s). Thus we can write:

∫ T

0
E[Yt

∣∣Fs1 ]dt =
∫ T

0
exp(−λt)ξdt +

∫ s1

0
σ

∫ t

0
ζ(t, s)dBsdt +

∫ T

s1
σ

∫ s1

0
ζ(t, s)dBsdt

which boils down to showing that

(

∫ T

0
ζ 2(t, s)dt)

1
2 ∈ L2[0, T ]

Since ζ(t, s) and K (t, s) are both defined only on the set {(t, s)|t ≥ s}
∫ T

0
ζ 2(t, s)dt <

∫ T

0
K 2(t, s)dt

=
∫ T

s
cH s

1−2H (

∫ t

s
(u − s)H− 3

2 uH− 1
2 du)2dt

≤
∫ T

s
cH s

1−2H t2H−1(

∫ t

s
(u − s)H− 3

2 du)2dt

=
∫ T

s
cH s

1−2H t2H−1(t − s)2H−1dt

≤ cHs
1−2HT 2H−1

∫ T

s
(t − s)2H−1dt

= c2Hs
1−2HT 2H−1(T − s)2H

The above formula shows that h̃(s) = ∫ T
0 ζ 2(t, s)dt is of the order 1 − 2H , which

is less than 0 but greater than −1. This indicates that (
∫ T
0 ζ 2(t, s)dt)

1
2 ∈ L2[0, T ].

Therefore, we can apply the stochastic Fubini Theorem. Let

Zs1 =
∫ T

0
E[Yt

∣∣Fs1 ]dt

=
∫ T

0
exp {−λt} ξdt + σ

∫ s1

0

∫ T

s1
ζ(t, s)dtdBs + σ

∫ s1

0

∫ s1

s
ζ(t, s)dtdBs
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Zs2 =
∫ T

0
E[Yt

∣∣Fs2 ]dt

=
∫ T

0
exp {−λt} ξdt + σ

∫ s2

0

∫ T

s2
ζ(t, s)dtdBs + σ

∫ s2

0

∫ s2

s
ζ(t, s)dtdBs

Assuming s2 > s1, we know that Zs2, s1 := Zs2 − Zs1 is a Gaussian random variable
with

E |Zs2 − Zs1 |2 = σ 2
∫ s2

s1

(∫ T

s
ζ(t, s)dt

)2

ds

≤ σ 2
∫ s2

s1

∫ T

s
(ζ(t, s))2dtds

≤ σ 2
∫ s2

s1
c2Hs

1−2HT 2H−1(T − s)2Hds

≤ σ 2c3H |s2 − s1|

Therefore, Zs2 − Zs1 ∼ N (0, σ 2
s2−s1) with σ 2

s2−s1 ≤ σ 2c3H |s2 − s1|, which implies
that

E |Zs2 − Zs1 |p ≤ c|s2 − s1| p
2 E[|Z |p]

where Z ∼ N (0, 1). Setting p larger than 2, we conclude that there is a continuous
version of the process by Kolmogorov-Centsov theorem. ��
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