ACCEPTED MANUSCRIPT

Plasma-droplet interaction study to assess transport limitations and the role of ${}^{\cdot}$ OH, O $^{\cdot}$, H $^{\cdot}$, O $_2(a^1\Delta_g)$, O $_3$, He(2 3S) and Ar(1 s_5) in formate decomposition

To cite this article before publication: Gaurav Nayak et al 2021 Plasma Sources Sci. Technol. in press https://doi.org/10.1088/1361-6595/ac2676

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2021 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Plasma-droplet interaction study to assess transport limitations and the role of 'OH, O', H', $O_2(a^1\Delta_g)$, O_3 , $He(2^3S)$ and $Ar(1s_5)$ in formate decomposition

Gaurav Nayak¹, Gaku Oinuma², Yuanfu Yue¹, João Santos Sousa³ and Peter J Bruggeman¹

- $^{1}\mathrm{Department}$ of Mechanical Engineering, University of Minnesota, Minnesota, Minnesota 55455, USA
- $^2{\rm Advanced}$ Technology R & D Center, Mitsubishi Electric Corporation, Hyogo 661-8661, Japan
- 3 Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France

E-mail: nayak025@umn.edu, pbruggem@umn.edu

August 2021

Abstract.

Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of 'OH as well as non-OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O' and H' atoms, singlet delta oxygen $(O_2(a^1\Delta_{\sigma}))$, O_3 and metastable atoms of He and Ar, besides OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with $\sim 70\%$ decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase OH flux at lower H2O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e-/ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous OH concentrations. The formate decomposition in He/O₂ plasma was similar, although with an order of magnitude higher O radical density than the OH density in the corresponding He/H₂O plasma. Using a one-dimensional reaction-diffusion model, we showed that $O_2(a^1\Delta_g)$ and O_3 did not play a significant role and the decomposition was due to O', and possibly 'OH generated in the vapor containing droplet-plasma boundary layer.

Plasma-droplet interaction study for formate decomposition

Keywords: plasma-liquid interaction, droplet, diffusion and flux limited, radicals, plasma-induced liquid phase chemistry

1. Introduction

Plasma-liquid interactions have gained significant attention in the past few years due to many promising applications, including water treatment, nanoparticle synthesis, material processing, disinfection, healthcare, food decontamination and agriculture applications [1–8]. Many of these applications rely on the transfer of reactivity from a gas phase plasma to the liquid phase. Multiphase reactive species transfer in a plasma involves several complex interactions, such as evaporation, charge transfer, and heat and mass transfer [9]. As such, the understanding of plasma-liquid interactions, including the multiphase transfer of reactivity becomes imperative, especially because of the transport limitations of highly reactive plasma-produced species.

Several plasma-liquid configurations have been developed to study and overcome transport limitations [1], however, a quantitative understanding of the reactivity transfer at the plasma-liquid interface remains elusive at large. One approach involves the plasma activation of small liquid droplets or aerosols interspersed in the gas phase plasma, which has inherent advantages compared to the interactions between plasma and a bulk liquid phase [10]. Briefly, transport of radical or ionic species produced by electron impact in the gas phase to the droplet is faster due to the small distance between the local site of production and the droplet. This rapid transport is further enhanced by the much larger surface-to-volume ratio of the micrometersized droplets as compared to a plasma interacting with a bulk liquid. For example, the maximum efficiency of the production of H₂O₂ with plasmas was achieved in a low power pulsed gliding arc reactor treating a spray of small water droplets [11]. Similarly, plasma-based synthesis of gold nanoparticles (AuNPs) within liquid droplets have been reported to exhibit synthesis rates several orders of magnitude higher than any other reported methods [12]. In a similar approach, substrate- and stabilizer-free metallic silver nanoparticles (AgNPs) have been synthesized during in-flight reduction of liquid droplets loaded with a AgNO₃ precursor [13]. Another recent work on plasmadroplet interactions reports the continuous production of NH₃ by reacting N₂ and H₂O droplets in a DBD reactor [14]. Plasma-aerosol interactions have also been studied extensively in the context of thin film deposition of organic and inorganic coatings on polymer surfaces [15–19]. In the context of decontamination, the production of reactive nitrogen species by spark discharges during electrospraying of water droplets has been reported [20]. In view of the recent COVID-19 pandemic, rapid inactivation of in-flight virus aerosols by air DBD has been reported within timescales of milliseconds, enabled by the high rate of reactivity transfer into the virus-loaded liquid micro-droplets 21-23.

Apart from the above mentioned experimental work, these unique interactions

4 5

6

7

8

9 10

11

12

13

14

15 16

17

18

19

20

21 22

23

24

25

26

27

28 29

30

31

32

33

34 35

36

37

38

39

40 41

42

43

44

45

46 47

48

49

50

51

52 53

have also been studied by modeling and simulations, e.g. the deposition of liquid droplets containing HMDSO precursor in the presence of an atmospheric pressure plasma has been studied by three-dimensional simulations [24]. A recent modeling study reported on the interaction of water micro-droplets with an air DBD using a simplified 2-D and 0-D transport model [25]. This model revealed high fluxes of reactive oxygen and nitrogen species to the droplet, leading to the accumulation and ultimately saturation of these species in the plasma-treated droplets at timescales of milliseconds. Our previous work on the determination of the reactivity transfer of OH from the gas phase plasma to the liquid micro-droplets was likely the first measurement that showed quantitative agreement with a one-dimensional reactiondiffusion model without fitting parameters of decomposing a model hydrocarbon (formate), demonstrating the dominance of the near-interfacial reactions with 'OH radicals and the limitation of the diffusion of formate in the droplet to the reactive plasma-droplet interface on the formate oxidation rate [10]. Recently, the transport of gas-phase H₂O₂ and O₃ into water micro-droplets was investigated illustrating the solvation efficiency and mass transfer of these important plasma-produced species into bulk and electrosprayed water [26].

Despite extensive research involving plasma-droplet interactions, a quantitative understanding of plasma-induced liquid phase chemistry remains in the hindsight, particularly, the chemistry of short-lived reactive species. In this work, we focus on O₂ and H₂O plasma chemistry. This allows us to focus on the dominant radicals in these plasmas, such as hydroxyl radical ('OH), atomic oxygen (O'), singlet delta oxygen $(O_2(a^1\Delta_g))$, atomic hydrogen (H^{*}) and solvated electrons (e_{ag}^-) . The effect of these species on plasma-induced liquid phase chemistry have been suggested by several research groups [6, 27–34]. The role of plasma-produced OH radicals as the key component in initiating useful chemical reactions has been well established [1, 35, 36], although often not quantitatively. The OH radicals have been reported to efficiently degrade many organic compounds and plays a crucial role in H₂O₂ formation [35, 37]. However, due to the limited penetration depth in the liquid [38], OH mainly reacts at the interface and OH-induced reactions are transport limited [39]. It is, therefore, suggested that the efficient transport of the to-be-treated compound to the plasmaliquid interface might be more critical than the flux of 'OH radicals produced in the plasma itself [40, 41].

Besides OH, the importance of $O_2(a^1\Delta_g)$ in the plasma-enabled virus inactivation has been established in O₂-containing RF plasma jets [6]. $O_2(a^1\Delta_g)$ has also been suggested to be the possible cause of selective plasma action on cancer cells [42]. The H' radical is a major reducing species in acidic solutions [39]. The H' radicals have been suggested to play an important role in reducing Ag⁺ ions in the bulk solution into AgNPs at the interface [31]. However, H is strongly hydrophobic [43], and is unlikely to be transferred from the gas phase to the liquid phase [44]. Nonetheless, H can be produced in an acidic solution by the reaction of e_{aq}^- with H^+ ions or through

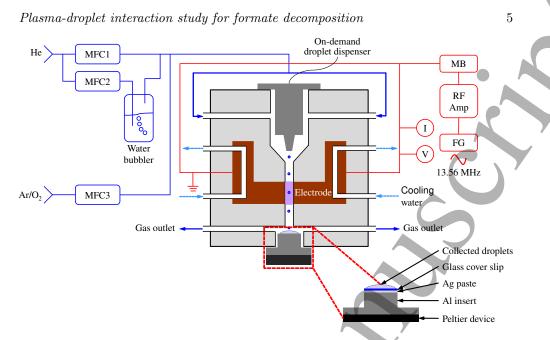
Plasma-droplet interaction study for formate decomposition

.

photolyses [45].

Another important plasma-generated short-lived radical species is the O' radical with mostly unknown transport properties. Nonetheless, plasma-generated O' atoms have been reported to diffuse into the liquid forming stable solvated O' atoms (O'aq) and react with phenol without any intermediate reactions [29]. The solvated O' atoms have been shown to be quite efficient in phenol degradation in solution, with more than 50% of the O' atoms leaving the He/O₂ jet nozzle entering the liquid and leading to liquid phase reactivity [28]. Similarly, OCl⁻ ions produced by the reaction of O' and chloride in saline solutions have been reported to show a strong biocidal activity [46, 47]. In summary, the effect of these short-lived reactive species ('OH, H' and O') in driving the plasma-induced chemistry is of paramount importance and would benefit from additional quantitative experimental studies.

In the present work, we extend our previous work reported in [10] to assess the effect of 'OH species flux on transport limitations and to plasma conditions that favor other short-lived reactive species, such as O', H', as well as $O_2(a^1\Delta_g)$, e⁻, ions and metastable atoms of He and Ar on the formate decomposition, and, thereby, establish a more detailed understanding of radical-induced liquid phase chemistry beyond 'OH radicals.


2. Methods

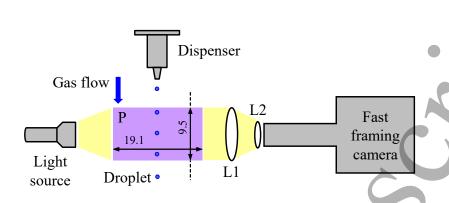
2.1. Experimental setup

Figure 1 depicts the schematic of the plasma-droplet reactor used in this work, the details of which can be found in [10, 48, 49]. Briefly, a capacitively-coupled diffuse RF glow plasma was generated between two parallel water-cooled electrodes separated by an inter-electrode spacing of 2 mm with an electrode cross-sectional area of 19.1×9.5 mm², embedded inside a PTFE housing and enclosed by quartz windows for optical access allowing droplet imaging and gas-phase spectroscopic diagnostics. The discharge was generated at atmospheric pressure in helium (ultra-pure carrier grade 99.9995%) with admixtures of O_2 , H_2O and Ar as reported in table 1. For similar plasma operating conditions in helium, the measured N_2 impurity in the same reactor was around 6 ppm [48]. The total gas flow rate was varied between 0.75 and 3.0 standard liters per minute (slm), which corresponded to gas velocities in the range of 0.5 and 2.1 m s⁻¹ at the center of the inter-electrode gap. The gas residence time ($t_{\rm res}$) in the discharge gap varied between 7 and 29 ms.

The discharge power in different gas admixtures was calculated as described in [10, 50], and reported in table 1. The reported images of plasmas in different gas mixtures were taken using a digital camera (Nikon D3100) with a micro-focus lens (Nikon Micro-Nikkor 105 mm) at a fixed exposure of 1 s.

The reactor also includes an on-demand micro-droplet dispenser and a droplet collector mounted on the top and bottom of the PTFE housing, respectively. The

Figure 1. Schematic of the RF-driven plasma reactor with on-demand droplet dispenser. FG, function generator; RF Amp, RF amplifier; MB, matching box; MFC, mass flow controller; I, current probe; V, voltage probe.


Table 1. Operating plasma conditions used in this work.

Gas	Power (W)
He + 0.2% O ₂	14.2 ± 0.6
$He + 0.2\% H_2Q$	14.3 ± 0.4
He + 17% Ar + 0.2	$2\% \text{ H}_2\text{O}$ 13.4 ± 0.5

droplet dispenser (MicroFab Technologies Inc. MJ-ATP-01-070) with a 70 μ m (ϕ) orifice was used to generate droplets of $41\pm2~\mu$ m in diameter at a frequency of 1600 Hz actuated by an external controller (MicroFab Technologies Inc. JetDrive^M III CT-M5-01). The ejected droplets were carried with a downward flowing feed gas through the inter-electrode plasma gap before reaching the droplet collector, the surface of which was cooled to sub-zero temperatures to freeze the plasma-treated droplets upon impact. The detailed schematic of the droplet collector is also shown in figure 1 and further related information can be found in [10]. The plasma-droplet reactor was mounted on a micrometer-controlled translational stage allowing for spatially resolved diagnostics along the gas flow direction as well as across the inter-electrode gap.

2.2. Droplet imaging and residence time

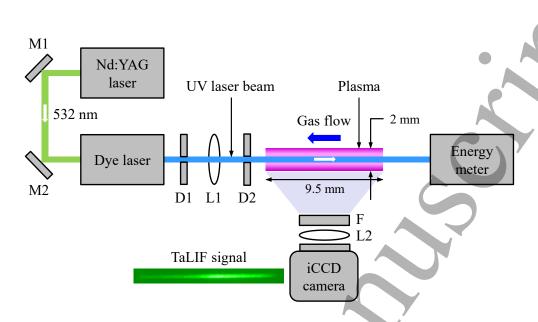
The droplet motion was captured by microscopic imaging using a fast-framing camera (Photron FASTCAM Mini UX50) mounted with a micro-focus lens L2 (Nikon Micro-

Figure 2. Experimental setup to determine the residence time of droplets in the plasma using fast frame imaging: P, plasma; L1, focusing lens; L2, adjustable lens. The provided dimensions have mm units.

Nikkor 105 mm) and an extension tube to achieve a high magnification and an image resolution of 1.7 μ m/px as shown in figure 2. The path of the droplets was illuminated with an LED flash light and the images were detected by the fast-framing camera via a convex lens L1. The camera settings, i.e. frame rate of 16000 frames per second and shutter speed of 7.8 μ s, along with the intensity and position of the flash light were fixed throughout the work. The droplet recordings were analyzed using the image processing software ImageJ [51]. The details of the analysis approach used can be found in [10]. The residence time of droplets in the plasma was determined from the droplet position and the local droplet velocity by recording the droplet motion along its trajectory.

2.3. Liquid-phase analysis

We used sodium formate as the model organic compound because of its simple molecular structure and known chemistry with various radical species in water in the context of photolysis [45]. This compound has been successfully used to elucidate OH-induced oxidation in droplets in plasmas [10]. A 2 mM formate solution was prepared by mixing equimolar amounts of formic acid and sodium hydroxide in HPLC-grade deionized water to achieve a pH of ~ 7.5 . For the $ex\ situ$ decomposition measurements, droplets containing 2 mM formate were dispensed and carried though the plasma by the gas flow at different gas flow rates (0.75 to 3.0 slm) to change the droplet residence times in the plasma. At a droplet dispensing frequency of 1600 Hz, there are up to 20 droplets within the plasma region at any given moment for the smallest gas flow rate of 0.75 slm, which might impact the plasma composition in the bulk [10]. However, the effect of the change in the OH radical density on the formate decomposition due to the increase in the local water vapor concentration has been estimated to be <10% [10].


Plasma-droplet interaction study for formate decomposition

There are mainly two reasons for selecting a high droplet dispensing frequency: (a) the sampling time is significantly reduced, leading to less evaporation of the collected droplets (an ice layer is formed after freezing of a large amount of droplets, which acts as a layer of insulation and avoids further freezing of additional droplets on impact), and (b) a lower droplet frequency (400 Hz) leads to larger variability in the absorption measurements due to increased variability in solution recovery at the bottom of the reactor. At lower frequency, the sampling time increases, which leads to changes in the surface properties of the glass cover slip from hydrophobic to hydrophilic by the plasma. The droplets were sampled for 2.5–3 min, which allowed a collection of 10μ sample solution for further chemical analysis. Using the assay as detailed in [10], the formate concentration in the droplets was quantified by optical absorption spectroscopy (OAS). All measurements were performed in triplicates and the reported error bars represent the standard deviation of these 3 measurements.

2.4. Plasma characterization

2.4.1. Hydroxyl radical (${}^{\circ}$ OH) density The absolute number density of ${}^{\circ}$ OH (n_{OH}) and gas temperature (T_g) in He/Ar/H₂O plasma was determined by employing broadband absorption spectroscopy (BAS) in the UV region as described in detail in [52–54]. The measurement of the rotational temperature of the ground state OH(X) molecule in He/H₂O and He/Ar/H₂O plasmas was previously shown to be a good representation of the gas temperature [52, 55, 56]. The absolute density and T_g were determined by fitting the experimentally recorded absorption spectrum with a synthetic spectrum based on the least-square method of the Curve Fitting Toolbox in MATLAB as described in [53]. The reported uncertainty represents the 95% confidence intervals of the fitting. These measurements were performed at different axial locations in the center of the discharge gap.

2.4.2. Atomic hydrogen (H[·]) density The absolute density of atomic H[·] in He/H₂O and He/Ar/H₂O plasmas was measured by two photon absorption laser induced fluorescence (TaLIF) exciting the H(1s²S_{$\frac{1}{2}$} \rightarrow 3d²D $_{\frac{3}{2},\frac{5}{2}}$) transition at 205.08 nm with a corresponding H_{α}(3d²D $_{\frac{3}{2},\frac{5}{2}}$) \rightarrow 2p²P $_{\frac{1}{2},\frac{3}{2}}$) fluorescence transition at 656 nm [57, 58]. The experimental configuration for TaLIF is described in [59, 60], which included a nanosecond pulsed Nd:YAG laser (Spectra-Physics Lab-170-10H, FWHM = 8 ns) operating at 532 nm that was used to pump a dye laser (Sirah Precision Scan). The resulting UV laser beam at 205 nm was focused by a plano-convex lens (f = 25 cm) into the plasma through an optical access provided by a quartz window mounted at the bottom of the reactor and the beam traversed through the length of the discharge gap (9.5 mm) as shown schematically in figure 3. The resulting fluorescence at 656.28 nm normal to the direction of the laser beam was recorded through a band pass filter (Lattice Electro Optics 656-F10-10) placed in front of an iCCD camera (Andor iStar

Figure 3. Schematic of the TaLIF setup used in this work for H density measurement: M1 and M2, 532 nm high reflector mirrors; D1 and D2, diaphragms; L1, quartz focusing lens; F, 656 nm optical band pass filter; L2, UV lens. See text for details.

340) mounted with a UV lens (Nikon 105 mm F4.5 UV). The absolute calibration of the H density was achieved by measuring the TaLIF signal of a known concentration of Kr mixed with Ar feed gas at a total flow rate of 1.5 slm in the same setup and by using the following transition $\text{Kr}(4p^{6-1}S_0 \to 5p'[3/2]_2)$ at 204.13 nm with corresponding fluorescence transition $\text{Kr}(5p'[3/2]_2 \to 5s[3/2]_1)$ at 587.1 nm. Details of the calibration procedure can be found in [58–60]. During the TaLIF measurements, no droplets were dispensed in the plasma reactor.

2.4.3. Ar metastable (1s₅) density The absolute densities of atoms in the metastable state of argon (1s) in $He/Ar/H_2O$ plasma were measured using BAS. The optical setup for the spectrally resolved measurements is identical as described in [49]. The time-averaged densities were measured across the plasma gap with a spatial resolution of 40 μ m without dispensing the droplets.

2.4.4. Singlet delta oxygen $(O_2(a^1\Delta_g))$ and ozone (O_3) densities The gas-phase density of $O_2(a^1\Delta_g)$ in the plasma effluent was measured by infrared optical emission spectroscopy (IR OES). The details of the measurement technique are reported in [61]. The experimental setup used in this study is similar to the one described in [62], with a $O_2(a^1\Delta_g)$ density detection limit of 4×10^{13} cm⁻³. The actual $O_2(a^1\Delta_g)$ density in the plasma volume $(n_{O_2(a^1\Delta_g)}(t=0))$ was determined from the measured $O_2(a^1\Delta_g)$

Plasma-droplet interaction study for formate decomposition

density in the effluent $(n_{O_2(a^1\Delta_g)}(t_{res}))$ by considering the gas residence time (t_{res}) and the effective lifetime of $O_2(a^1\Delta_g)$ ($\tau_{\rm eff}$) in the effluent by the following equation [62]:

$$\frac{n_{\mathcal{O}_2(a^1\Delta_{\mathbf{g}})}(t_{\text{res}})}{n_{\mathcal{O}_2(a^1\Delta_{\mathbf{g}})}(t=0)} = \exp\left(-\frac{t_{\text{res}}}{\tau_{\text{eff}}}\right),\tag{1}$$

where $\tau_{\rm eff}$ was determined by the collisional quenching of $O_2(a^1\Delta_{\rm g})$ in the discharge effluent dominated by O_2 and O_3 . The O_3 density in the effluent of the plasma was measured by OAS at 253.7 nm using the Beer-Lambert law as described in [62].

2.4.5. Electron density and temperature from continuum emission. In weakly ionized plasmas, such as the atmospheric pressure glow discharges reported in this work, with a low degree of ionization (typically $< 10^{-4}$), the continuum radiation originating from the interactions between free electrons and neutral atoms or the neutral bremsstrahlung is dominant [63]. By fitting the absolute intensity of the recorded plasma continuum emission with the theoretical neutral bremsstrahlung spectrum. the electron density (n_e) and temperature (T_e) can be determined [64]. Briefly, the time and spatially averaged absolute plasma emission was recorded by optical emission spectroscopy and the absolute calibration was performed using a calibrated tungsten halogen lamp. The absolute spectral irradiance of the plasma, $I_{\rm P}(\lambda)$ relates to the emissivity, ϵ as follows:

$$\epsilon = I_{\rm P}(\lambda) \times \frac{d^2}{V_{\rm D}},$$
 (2)

where d and $V_{\rm P}$ are the calibration distance and the plasma volume, respectively. The details of the measurement technique and data analysis can be found in [49]. For the electron-atom bremsstrahlung cross-section of gas mixtures ($\sigma_{\rm ea}^{\rm B}$), the elastic electronatom momentum transfer cross-sections were obtained from the Phelps database for He, Ar and O₂ [65–67], and the Itikawa and Hayashi databases for H₂O [68–71]. The weighted average of the momentum transfer cross-sections of the gas mixtures were used for the calculation of the bremsstrahlung cross-section. Similarly, the non-Maxwellian EEDF of the corresponding gas-mixtures were determined from Bolsig+ [65, 68, 69, 72]. When using a Maxwellian EEDF, $T_{\rm e}$ is smaller up to 35% and $n_{\rm e}$ is larger up to 112%. A more detailed description on the effect of the EEDF on $T_{\rm e}$ and $n_{\rm e}$ determination can be found in [49]. For plasmas containing H_2O , the H₂ continuum also significantly contributes to the emission spectrum besides the neutral bremsstrahlung radiation [63]. The H₂ continuum radiation fitting is performed by following the procedure described in [63]. The measured absolute emission spectrum is fitted by the combination of two emissivities (ϵ_{total}), the electronneutral bremsstrahlung ($\epsilon_{\rm ea}$) and the H₂ continuum ($\epsilon_{\rm H_2}$). The uncertainty in the determination of $T_{\rm e}$ and $n_{\rm e}$ is attributed to the uncertainty in the fit and random

Plasma-droplet interaction study for formate decomposition

variation in the absolute intensity of the plasmas as well as the uncertainty in the absolute calibration of the calibrated lamp emissions.

2.5. 1D reaction-diffusion model

Diffusion is the dominant transport mechanism of reactive species in the droplet for plasma treatment times up to 15 ms. Hence, a 1D reaction-diffusion model, reported by Oinuma et al. [10], was used to evaluate the plasma-induced oxidation of formate in the droplet. A summary of the model is presented here. The model assumes a homogeneous plasma with a near droplet boundary layer allowing only radial transport of species into the droplet with a diffusion profile, and also assumes that there are no reactions in the gas phase (see further). The time and spatial evolution of an aqueous species was governed by the 1D reaction-diffusion equation in spherical coordinates:

$$\frac{\partial A_j}{\partial t} = D_{1,j} \left(\frac{2}{r} \frac{\partial A_j}{\partial r} + \frac{\partial^2 A_j}{\partial r^2} \right) + \Sigma_i k_{ij} A_i A_j, \tag{3}$$

with A_j the aqueous concentration of the species j, $D_{l,j}$ the aqueous diffusion coefficient of species j in the droplet, r the radial position in the droplet, and $\Sigma_i k_{ij} A_i A_j$ the sum of all the reaction rates involving species j with reaction rate coefficient $k_{i,j}$. Equation (3) was solved numerically with two boundary conditions. The symmetric boundary condition at the center of the droplet is given by:

$$D_{\rm l}\left(\frac{\partial A}{\partial r}\right)_{r=0} = 0,\tag{4}$$

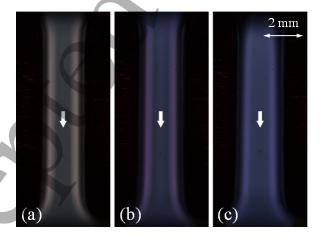
and the plasma-droplet interface boundary condition is given by the mass continuity of species at the droplet interface taken from [73]

$$D_{g}\left(\frac{\partial G}{\partial r}\right)_{r=R_{p}} = \frac{1}{4}\alpha v_{th} \left[G\left(R_{p}, t\right) - \frac{A\left(R_{p}, t\right)}{H'}\right],\tag{5}$$

with G the gas-phase density of species, $D_{\rm g}$ the gas-phase diffusion coefficient, $R_{\rm p}$ the droplet radius, α the mass accommodation coefficient, $v_{\rm th}$ the mean speed of the molecule in the gas and H' the dimensionless Henry's law constant. For a detailed discussion on the 1D diffusion-reaction model and the adopted reaction mechanism, the reader is referred to [10].

The following additional assumptions were made using this model:

- ullet the droplet experiences a negligible reduction in its diameter (see further);
- the liquid temperature remains close to 300 K [10];
- the effect of convection on the formate decomposition inside the droplet is negligible [10]; and
- the diffusion time of gas phase radicals through the droplet boundary is smaller than the radical lifetime [10].


Plasma-droplet interaction study for formate decomposition

In the case of He/H₂O plasma, the model was simulated for α , H' and $k_{\rm OH}$ (the rate coefficient of the reaction of 'OH with formate) values of 0.83, 662 and 3.2×10^9 M⁻¹s⁻¹, respectively, and measured gas-phase 'OH densities for corresponding H₂O concentrations. The H₂O₂ concentration input for the model was obtained from [10].

3. Results and discussions

3.1. Plasma characterization

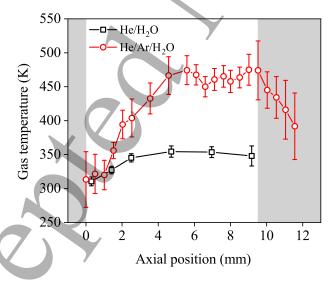

3.1.1. Emission It is well established that formate does not readily react with long-lived species such as H_2O_2 and O_3 [74], hence, short-lived radicals are required for formate decomposition. We used He/H₂O, He/O₂ and He/Ar/H₂O to generate plasmas to assess the effect of different reactive species (O', $O_2(a^1\Delta_g)$, H', 'OH, He_m and Ar_m) on the decomposition of formate. The plasmas were operated at an RF power of ~14 W (table 1). The images of plasmas in the different gas mixtures with the operating conditions reported in table 1 are shown in figure 4. The He/O_2 plasma has whitish glow near the sheath edge while the He/H₂O and He/Ar/H₂O cases are more bluish/purple in color. In all cases, the emission at the sheath edges is the strongest, while the intensity drops in the bulk of the discharge, with a maximum drop of $\sim 50\%$ in the case of He/O_2 and a minimum of $\sim 30\%$ in the case of $He/Ar/H_2O$ plasmas. In the case of the He/Ar/H₂O plasma operating at 13.4 W, the visible plasma does not fill the entire inter-electrode gap as shown in figure 4(c). In the He/Ar/H₂O plasma, emission starts to fade from the top part of the electrode and grows at the bottom part in the direction of the gas flow. This phenomenon becomes more prominent with increasing gas flow rates (not shown). This could be due to the build up of species, such

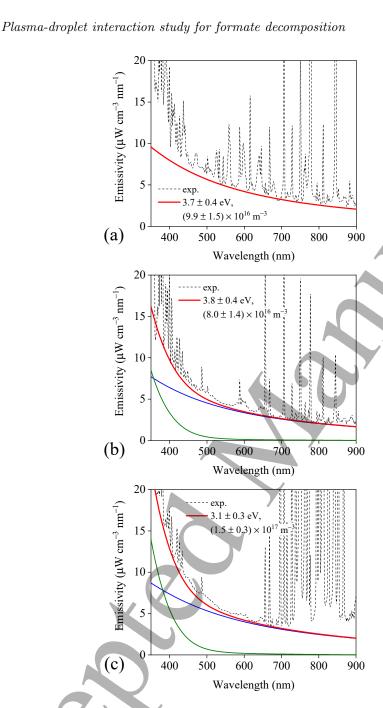
Figure 4. Digital color images of the plasma operated in (a) He + 0.2% O₂, (b) He + 0.2% H₂O, and (c) He + 17% Ar + 0.2% H₂O, at a total gas flow rate of 1.5 slm. The white arrows represent the direction of the gas flow.

as electrons, ions and metastable atoms, to reach steady state. The flow transports these species downstream enhancing the plasma emission at the bottom edge of the electrode compared to the plasma at the upper edge of the electrode. The $\rm He/Ar/H_2O$ plasma emission seems to even extend significantly beyond the metal electrode region. This could be due to the afterglow emission as reported in [75].

3.1.2. Gas temperature Figure 5 shows the variation in the gas temperature along the axial direction of the plasma in He/H₂O [10] and He/Ar/H₂O plasmas at a total gas flow rate of 1 slm as measured by 'OH absorption spectroscopy. The gas temperature increases along the direction of the gas flow to a steady-state temperature of 350 K and 450 K in the He/H₂O and He/Ar/H₂O plasmas, respectively. However, the gas temperature in the He/Ar/H₂O plasma attains a steady-state at a larger distance from the upper end of the electrode (\sim 5 mm), consistent with the smaller plasma size and larger steady-state gas temperature. The higher gas temperature for the He/Ar/H₂O compared to the He/H₂O plasma is further enhanced by the reduction in thermal conductivity of the gas mixture as Ar has a thermal conductivity that is almost an order of magnitude lower than that of helium [76]. Furthermore, at a higher gas flow rate of 5 slm, the maximum gas temperature in He/Ar/H₂O plasma drops to 350 K. Due to the similar concentration of O₂ in He/O₂ plasma (0.2%) to that of H₂O in the He/H₂O plasma, the gas temperature in He/O₂ plasma is expected to be

Figure 5. Spatial distribution of the gas temperature in the axial direction of He + 0.2% H₂O and He + 17% Ar + 0.2% H₂O plasmas at a gas flow rate of 1.0 slm. The white region represents the electrode zone in the axial direction. The data for He + 0.2% H₂O plasma is taken from [10].

Plasma-droplet interaction study for formate decomposition


similar to that in the He/H_2O plasma. The maximum increase in the gas temperatures assuming that all heat is removed through forced convection by the gas flow rate of 1 slm are ~ 990 K and ~ 440 K for He/H_2O and $He/Ar/H_2O$ plasmas, respectively. The measured gas temperatures do not exceed 500 K suggesting that a significant amount of the energy deposited by the plasma is removed through the (water-cooled) electrodes.

3.1.3. Electron temperature and density The electron properties in the investigated plasmas were determined from the emissivity measurements of the continuum radiation as described in Section 2.4.5. The results of the emissivity fitting with the experimentally obtained absolute intensity of the continuum radiation are shown in figure 6.

The emissivity in the He/O₂ (figure 6(a)) plasma could not be fitted completely in the near-UV region, which might be due to the significant contribution of molecular emission by nitrogen impurities and 'OH radicals. In our previous work, an electron density of $\sim 10^{19}~\rm m^{-3}$ was determined in Ar plasma (13.5 W) [49]. However, in this study, in a mixture of He/Ar/H₂O plasma, $n_{\rm e}$ was estimated to be around $1.5 \times 10^{17}~\rm m^{-3}$, which is more similar to a helium plasma [49]. This is consistent with the dilution of Ar with 83% helium and the presence of H₂O vapor, an electronegative gas. For H₂O containing plasmas, apart from bremsstrahlung radiation, the H₂ continuum is also considered. The H₂ continuum radiation fitting for He/H₂O and He/Ar/H₂O plasmas are shown in figure 6(b) and (c). In He/H₂O plasma, due to the electronegative nature, $T_{\rm e}$ is expected to rise with a reduction in $n_{\rm e}$ [77] as compared to He plasma [49], which is consistent with the result shown in figure 6(b). As expected, the He/H₂O and He/O₂ plasmas have very similar $n_{\rm e}$ and $T_{\rm e}$ (figure 6(a)).

The electron density in all the investigated plasmas varies at most by a factor 2 and is of the order of $\sim 10^{17}~{\rm m}^{-3}$. However, a larger variation in $T_{\rm e}$ is observed from 3.1 eV in He/Ar/H₂O to 3.8 eV in He/H₂O plasma. Based on the accuracy of the fit and the random variation in repeated measurements of the emission intensities of the lamp and the plasma, an uncertainty of 11% in $T_{\rm e}$ and 28% in $n_{\rm e}$ is estimated. The uncertainty in $n_{\rm e}$ due to the addition of H₂ continuum to the overall fit does not necessarily increase, however, it impacts the uncertainty in $T_{\rm e}$ more significantly. The electron properties ($n_{\rm e}$ and $T_{\rm e}$) determined from the continuum emission were compared with power balance estimates previously [49], and while for helium, a good agreement was obtained, in the case of argon, significant discrepancies were found which might suggest that the $n_{\rm e}$ and $T_{\rm e}$ determined for the He/Ar/H₂O mixture might be less accurate and further validation of the continuum emission approach might be beneficial.

3.1.4. He/Ar metastable species The metastable atoms produced in RF plasmas are important sources of energy sinks and might influence the chemistry in the plasma-

Figure 6. The measured absolute intensity of plasma emission in (a) He + 0.2% O₂, (b) He + 0.2% H₂O, and (c) He + 17% Ar + 0.2% H₂O plasmas at a total gas flow rate of 1 slm fitted with the calculated emissivities of the electronatom bremsstrahlung continuum radiation using a non-Maxwellian EEDF. The corresponding $n_{\rm e}$ and $T_{\rm e}$ are also shown. The blue, green and red solid curves in (b) and (c) represent $\epsilon_{\rm ea}$, $\epsilon_{\rm H_2}$ and $\epsilon_{\rm total}$, respectively.

Plasma-droplet interaction study for formate decomposition

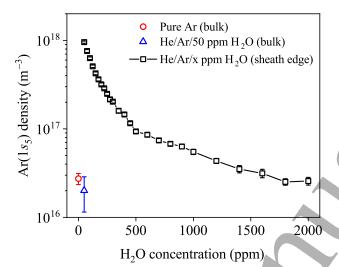
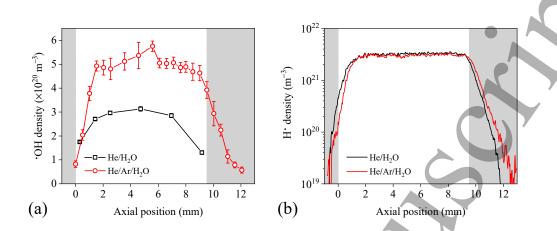


Figure 7. Time-averaged absolute densities of $Ar(1s_5)$ metastable atoms in He + 17% Ar + x ppm H₂O plasma as a function of H₂O concentration at a total gas flow rate of 5 slm. The power varied from 14.3 W to 13.4 W corresponding to 50 ppm and 2000 ppm H₂O, respectively. The measurements were taken at the position of the maximum density of $Ar(1s_5)$ atoms near the sheath edge. The densities of $Ar(1s_5)$ metastable atoms in the bulk of the discharge in pure Ar and He + 17% Ar + 50 ppm H₂O plasmas are also shown.

treated droplet. We investigated the effect of varying H₂O concentration from 50 to 2000 ppm (i.e. 0.05-0.2%) in He/Ar/H₂O plasma on the Ar(1 s_5) metastable densities. The corresponding densities near the sheath edge are shown in figure 7. The maximum density of $Ar(1s_5)$ metastable atoms in He + 17% Ar + 0.2% H₂O near the sheath region is $\sim 2.6 \times 10^{16}$ m⁻³, while the density in the bulk of the plasma, where the droplets are mostly located during in-flight treatment, is below the detection limit of the measurement ($\sim 1.0 \times 10^{16} \text{ m}^{-3}$). The ratio of the densities of Ar(1s₅) metastable atoms in the sheath to the bulk is ~ 30 in pure Ar plasma [49], and ~ 55 in He/Ar plasma with low H₂O concentration (50 ppm). However, to assess the possible role of these metastable atoms in reactions in the droplets, a detailed flux analysis is necessary. The effective lifetime of $Ar(1s_5)$ metastable atom in the presence of 0.2% H_2O is estimated to be ~ 45 ns, which is more than 4 orders of magnitude faster than its diffusion time (~ 1 ms). Hence, only local production of Ar(1s₅) at the plasmadroplet interface can lead to liquid phase reactions. The total flux of electrons ($\Gamma_{\rm e}$) and $Ar(1s_5)^{-}(\Gamma_{Ar(1s_5)})$ to a droplet of diameter 41 μm can be estimated by the following equations [10]:

$$\Gamma_{\rm e} \approx \frac{1}{4} n_{\rm e} \overline{v}_{\rm e} \times 4\pi R_{\rm p}^2 \exp\left(\frac{q\phi}{kT_{\rm e}}\right), \text{ and}$$
(6)

Plasma-droplet interaction study for formate decomposition


$$\Gamma_{\text{Ar}(1s_5)} \approx \frac{1}{4} \alpha G_{\text{Ar}(1s_5)} v_{\text{th}} \times 4\pi R_{\text{p}}^2,$$
(7)

where $\bar{v}_{\rm e}$, $q\phi$, $kT_{\rm e}$ and $G_{\rm Ar(1s_5)}$ are the mean speed of electrons, the droplet potential, the electron temperature and the gas-phase bulk density of ${\rm Ar}(1s_5)$ atoms, respectively. The droplet potential as estimated from a kinetic electron model involving interaction of a non-emitting spherical body (droplet, in this case) with a continuum-plasma solution was roughly around $4\times kT_{\rm e}$ [78]. Considering $n_{\rm e}$ and $T_{\rm e}$ in the bulk of the He/Ar/H₂O plasma estimated from the continuum radiation measurement (see figure 6(c)) and a droplet potential $q\phi\approx 4\times kT_{\rm e}$, an electron flux of $4.3\times 10^{12}~{\rm s}^{-1}$ is estimated. Assuming an α of 1 and $G_{\rm Ar(1s_5)}$ corresponding to the detection limit of the measurement, the maximum ${\rm Ar}(1s_5)$ flux to the droplet is estimated to be $5.3\times 10^9~{\rm s}^{-1}$, which is almost 3 orders of magnitude smaller than the electron flux. As the ${\rm Ar}(1s_5)$ density will be significantly depleted at the droplet interface compared to the bulk plasma and the lifetime is too small for significant transport, ${\rm Ar}(1s_5)$ metastable atoms do not play a dominant role in the droplet chemistry.

The dominant metastable atom in helium ($\text{He}(2^3S)$) has been previously investigated in He with 50 ppm H_2O plasma and the densities were below the detection limit $(3.4 \times 10^{17} \text{ m}^{-3})$ [48], which suggests that the $\text{He}(2^3S)$ density would be even smaller in the presence of 0.2% H_2O . Using a similar approach as for $\text{Ar}(1s_5)$, the maximum total $\text{He}(2^3S)$ flux to the droplet is estimated to be ~ 7.5 times smaller than that of the electron flux. Similar conclusions can be made for He/O_2 . Hence, the effect of He metastable atoms on the droplet chemistry is also negligible for all plasma conditions. To summarize, the effect of the atomic He/Ar metastable species on plasma-induced chemistry in the droplet is dominated by e^- /ion flux to the droplet.

3.1.5. Radicals One of the dominant reactive species in water containing plasmas is the 'OH radical. To investigate the role of 'OH radicals, the gas-phase 'OH densities in He/H_2O [10] and $He/Ar/H_2O$ plasmas were measured without the presence of droplets using broadband absorption spectroscopy as discussed in Section 2.4.1. Figure 8(a) shows the axial variation of the 'OH densities in He/H_2O and $He/Ar/H_2O$ plasmas at a total gas flow rate of 1 slm. The 'OH radical densities in the $He/Ar/H_2O$ plasma are almost twice those in the He/H_2O plasma.

In both plasmas, the 'OH density increases along the direction of the gas flow, attains a steady-state density in the center of the discharge, and decays rapidly at the bottom edge of the electrode in the afterglow. The major 'OH production mechanism in He/H₂O plasma is via electron-impact dissociation of water (R1), which contributes to almost 50% of the total 'OH generation in a parallel plate capacitively coupled RF discharge operating at similar conditions as studied in this work [79], while the dominant loss mechanism is through two-body recombination with 'OH radicals to

Figure 8. Absolute number densities of (a) 'OH radicals, and (b) H' radicals measured as a function of the axial position in the bulk of He + 0.2% H₂O and He + 17% Ar + 0.2% H₂O plasmas at a gas flow rate of 1.0 slm. The data for 'OH density in He + 0.2% H₂O plasma in (a) is taken from [10]. The white region represents the location of the electrodes in the axial direction.

produce H_2O (R2) in addition to recombination reactions (R3) and (R4) that lead to the formation of H_2O_2 and H_2O , respectively, as shown below.

$$e^- + H_2O \rightarrow H + OH + e^- \tag{R1}$$

$$OH + OH \rightarrow H_2O + O$$
 (R2)

$$OH + OH + M \rightarrow H_2O_2 + M \tag{R3}$$

$$OH + H + M \rightarrow H_2O + M$$
 (R4)

Here, M = Ar or He. The lifetime of OH in He/H₂O plasma can be estimated as

$$\tau_{\text{lifetime}} = \left[2k_{\text{(R2)}}n_{\text{OH}} + 2k_{\text{(R3)}}n_{\text{OH}}n_{\text{He}} + k_{\text{(R4)}}n_{\text{He}}n_{\text{H}} + \frac{D_{\text{OH}}}{\Lambda^2} \right]^{-1}, \tag{8}$$

where k_i is the reaction rate coefficient of reaction R_i [80], D_{OH} the diffusion coefficient of OH in He gas at a gas temperature of 350 K [81], and $\Lambda = L/\pi$, with L being half of the discharge gap. The absolute H density $(n_{\rm H})$ is obtained from the measured TaLIF (see further). The OH lifetime in He/H₂O plasma from (8) is estimated to be ~73 μ s. However, in He/Ar/H₂O plasma, the OH lifetime is estimated to be ~114 μ s, even though the OH density is larger than in He/H₂O plasma. This is due to the higher gas temperature of 450 K, which reduces the reaction rates of the 3-body OH recombination reactions significantly. This ~1.6 times larger OH lifetime in He/Ar/H₂O plasma is most likely the main reason for the higher OH density in He/Ar/H₂O compared to He/H₂O plasma. The OH lifetime in both He/H₂O and He/Ar/H₂O plasmas is much smaller than the smallest droplet residence time in the plasma region used in this study (~4.7 ms), ensuring that the droplet is in good approximation only exposed to OH radicals during the droplet residence time in the plasma zone only. The steady-state OH density in He/H₂O plasma has previously been shown to be independent of the gas flow rate ranging from 0.5 to 1.5 slm [10].

In H₂O-containing plasmas, H radicals are another dominant radical species. The absolute densities of H radicals were determined from the calibrated TaLIF measurements as discussed in Section 2.4.2. Figure 8(b) shows the variation in the H densities as a function of axial position in He/H₂O and He/Ar/H₂O plasmas at a total gas flow rate of 1.0 slm. The H⁻ densities in both He/H₂O and He/Ar/H₂O plasmas reach the steady-state density of $\sim 3 \times 10^{21}$ m⁻³ within ~ 2 mm, followed by a fast decay in the effluent because of the short lifetime of H in the presence of OH radical, which is a highly effective quencher of H via three-body recombination reaction [82]. The H⁻ density in He/H₂O and He/Ar/H₂O plasmas is almost an order of magnitude higher than the corresponding 'OH density. The high H' density suggests a high degree of dissociation of H₂O in such plasmas (8.1% in He/H₂O and 9.5% in He/Ar/H₂O), conditions that favor electron impact dissociation of OH [83] and lead to higher densities of H (and possibly O) compared to OH. Additionally, there is much data available in literature for O densities in He/H₂O RF plasma [84], which allows us to conclude that the O' density is an order of magnitude lower than the 'OH density.

The O' density in similar RF plasmas in parallel-plate configuration has been extensively investigated previously using either O-TaLIF [85–89] or molecular beam mass spectrometry [90]. For a similar capacitively-coupled He/O₂ RF plasma with an inter-electrode gap of 1 mm, operating at atmospheric pressure and a simulated power density of 40 W/cm³, but with an O₂ concentration of 0.6%, the O' density from TaLIF was measured to be $\sim 2.2 \times 10^{21}$ m⁻³ [89]. Although the O₂ concentration in our work is 3 times lower, the O' density reduced by \sim 42% for this drop in O₂ concentration as measured by molecular beam mass spectrometry [90]. From these literature values, we estimated for our operating conditions in the He/O₂ plasma at a similar power density of 39 W/cm³ and an inter-electrode gap of 2 mm, an O' density

Plasma-droplet interaction study for formate decomposition

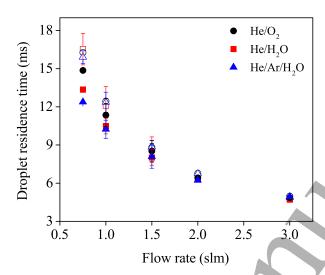
Table 2. Electron properties and gas-phase densities of dominant radicals and metastable atoms in the glow discharges investigated in this work at the center of the discharge gap.

			Species density (m^{-3})					
Plasma	$T_{\rm e}~({ m eV})$	e-	·OH	H.	O.	$O_2(a^1\Delta_g)$	O_3	$\operatorname{He}(2^3S) \operatorname{Ar}(1s_5)$
He/O ₂	3.7 ± 0.4	$9.9 \pm 1.5 \\ \times 10^{16}$	=	-	$1.55\\ \times 10^{21}\mathrm{a}$	2.2 ± 0.2 $\times 10^{21}$	2.2×10^{19}	
${ m He/H_2O}$	3.8 ± 0.4	8.0 ± 1.4 $\times 10^{16}$	$\begin{array}{c} 3 \\ \times 10^{20} \end{array}$	$3.4 \pm 1.2 \\ \times 10^{21}$	$\begin{array}{c} \sim 3 \\ \times 10^{19 \mathrm{b}} \end{array}$	$<4\\ \times 10^{19}$	$<9.8\\ \times 10^{18}$	$< 3.4 - \times 10^{17}$
${ m He/Ar/H_2O}$	3.1 ± 0.3			$3.1 \pm 1.1 \\ \times 10^{21}$	=	-		$\begin{array}{ccc} - & \sim 5 \\ \times 10^{14} \end{array}$

^a From [90]

of the order of 1.55×10^{21} m⁻³. This is a typical value for such a plasma with variations in O' density as a function of power and O₂ density reported in literature suggesting a maximum of 50% error in these values [89].

The $O_2(a^1\Delta_g)$ density in He + 0.2% O_2 plasma at 1 slm and 15 W is estimated to be $(2.2\pm0.2)\times10^{21}~\mathrm{m}^{-3}$ from the absolute values of $O_2(a^1\Delta_g)$ and the corresponding O_3 density of $(2.2\pm1.5)\times10^{19}~\mathrm{m}^{-3}$ measured in the effluent of the plasma using (1). For the same operating conditions in a He + 0.25% H₂O plasma, both the $O_2(a^1\Delta_g)$ and O_3 densities were found to be below their respective detection limits of the IR OES system $(4\times10^{19}~\mathrm{m}^{-3})$ and the OAS system $(9.8\times10^{18}~\mathrm{m}^{-3})$.


A summary of the electron properties and the gas-phase densities of dominant radicals and excited state atoms and molecules in the investigated plasma conditions is complied in table 2.

3.2. Droplet characterization

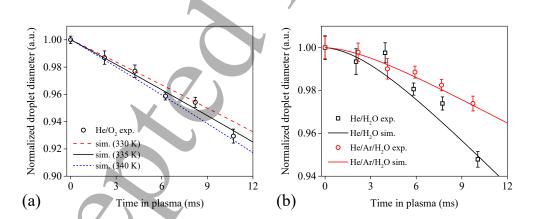
The residence time of the droplet in the plasma ($t_{\rm res}$) is an important parameter to assess the total flux of reactive species into the droplet. Figure 9 shows the variation in the droplet residence time as a function of the total gas flow rate for both plasma off and plasma on conditions as obtained by fast imaging. The ratio of the droplet residence time between plasma off and on conditions is larger at lower flow rates and approaches unity at higher flow rates. As the droplet enters the plasma, it is accelerated due to the force induced by the electric field present in the space charge boundary at the edge of the plasma, while it is decelerated upon exiting the plasma in the direction of the gas flow (not shown). This force imparted to the droplet is dependent on the discharge power. A minimum and maximum droplet residence time of 4.7 and 13.3 ms in the He/H₂O plasma is determined for corresponding gas residence

^b From [84]

Plasma-droplet interaction study for formate decomposition

Figure 9. Droplet residence time in the plasma as a function of the total gas flow rate in He + 0.2% O₂, He + 0.2% H₂O, and He + 17% Ar + 0.2% H₂O plasmas used in this work. Open symbols represent plasma off conditions, while solid symbols represent plasma on conditions.

times of 7 and 29 ms, respectively, showing that the change in $t_{\rm res}$ with the gas flow rate is not a linear relationship. This deviation is due to the impact of the electric field induced acceleration of the droplet, which has a relatively larger impact on the droplet residence time for smaller gas flow rates or larger $t_{\rm res}$. Even with the plasma off, the droplet residence time is lower than the gas residence time due to the effect of the gravitational force acting on the droplet.


As previously discussed in [10], a reduction in the size of the droplet was observed along the vertical axis or as a function of time during which the droplet resides in the plasma. Due to the elevated gas temperatures in the plasma, the reduction in the droplet size increased when the plasma was generated as compared to only gas flow due to evaporation. This reduction can be explained by a simple evaporation model applied to a droplet of given size in a homogeneous gas with a given temperature following these two equations expressing mass continuity and energy conservation [91]:

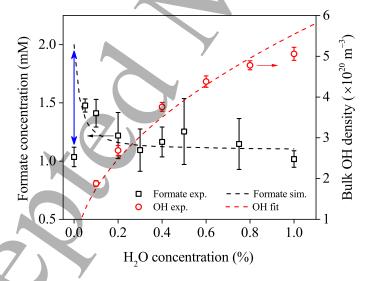
$$T_{\rm s} = T_{\infty} - \frac{DML}{RK} \left(\frac{P_{\infty}}{T_{\infty}} - \frac{P_{\rm s}}{T_{\rm s}} \right), \text{ and}$$
 (9)

$$\frac{d(d_{\rm p})}{dt} = \frac{4DM}{R\rho d_{\rm p}} \left(\frac{P_{\infty}}{T_{\infty}} - \frac{P_{\rm s}}{T_{\rm s}}\right),\tag{10}$$

where T_s , T_{∞} , P_s , P_{∞} , D, M, L, R, K, ρ and d_p are the temperature at the droplet surface, the homogeneous plasma gas temperature, the water vapor pressure at the droplet surface, the homogeneous water vapor pressure, the diffusivity, the

molecular weight of water, the latent heat of vaporization, the gas constant, the thermal conductivity of the gas, the liquid density of water, and the diameter of the droplet, respectively. For He/H₂O and He/Ar/H₂O plasmas, the gas temperature as a function of the droplet residence time is known from figure 5, while for He/O_2 plasma, the model is fit with the experimental data for different gas temperatures. The results for fitting of the droplet evaporation in different plasmas at a total gas flow rate of 1 slm are shown in figure 10. A maximum reduction of $\sim 9\%$ and a minimum of < 1% in the droplet size were observed for He/O_2 plasma at 0.75 slm and He/Ar/H₂O plasma at 3 slm, respectively, for similar plasma power of ~14 W (not shown). The estimated gas temperature in He/O₂ plasma from the evaporation model (figure 10(a)) is similar to the measured gas temperature of ~ 330 K in He plasma from the rotational temperature of OH(A) at similar plasma power [48]. In all plasma cases, the reduction in the droplet diameter decreases with increasing gas flow rates. The significantly smaller evaporation in He/Ar/H₂Q plasma compared to He/H₂O (figure 10(b)), despite the larger gas temperatures in He/Ar/H₂O plasma, is unexpected. This is, however, also reproduced by the evaporation model. This remarkable finding is due to the lower diffusivity for water vapor and lower thermal conductivity of Ar as compared to He. The excellent agreement of the evaporation model with the experimentally measured droplet sizes in all plasma cases clearly indicates that the evaporation is due to the thermal heat transfer from the gas-phase plasma to the liquid droplet and not significantly impacted by the heating of the droplet interface due to surface recombination reactions of ions and/or radicals.

Figure 10. Normalized droplet diameters as a function of the droplet residence time in (a) He + 0.2% O_2 , and (b) He + 0.2% O_2 H₂O and He + 17% Ar + 0.2% O_2 H₂O plasmas at a total gas flow rate of 1 slm and power conditions reported in table 1 for droplet diameter of 41 ± 2 μ m. The reduction in the droplet size is fitted with an evaporation model as described in the text.


The number of water vapor molecules evaporating from a single droplet in the He/O_2 plasma is between 5.2×10^{13} and 2.9×10^{14} . Considering that between 6 and 19 droplets are present in the plasma region simultaneously for 3 and 0.75 slm, respectively, the total number of water vapor molecules added to the feed gas inside the plasma is between 3.2×10^{14} and 5.5×10^{15} . This leads to a possible increase in water vapor between 0.004 and 0.07%, assuming that all the water vapor is distributed evenly within the electrode cross-section of 19.1×9.5 mm, i.e. the whole plasma region. However, if we assume that the water vapor evaporating from the droplet surface is confined within a localized boundary surrounding the droplet with a cross-section of 2×2 mm, the water vapor increase could be between 0.04 and 0.61%. It has been previously shown that OH radical densities in good approximation scale with the root mean square of the H₂O concentration in RF discharges as used in this work [52]. Hence, an increase in water vapor concentration by a factor 2 will only increase the OH density by 40%. In addition, as shown later, the formate destruction is transport limited and even a significant increase in OH density has limited impact on the formate destruction. Nonetheless, this evaporation does not allow us to exclude an important role of 'OH radicals in formate decomposition in the He/O₂ plasma.

3.3. Formate decomposition

3.3.1. Effect of H₂O concentration Previously, it was shown that the formate in the droplet is decomposed primarily at the plasma-droplet interface by the 'OH radicals in a He + 0.2% H₂O plasma [10]. Although the H density is an order of magnitude higher than the OH density in He/H₂O plasma, the role of H radical in formate decomposition is negligible due to its Henry's law solubility constant that is 5 orders of magnitude smaller than that of 'OH radicals [43]. Using the Henry's law, the equilibrium concentration of H radical in the droplet interface is estimated to be almost 4 orders of magnitude smaller than that of the 'OH radical in He/H₂O plasma. Similarly, the O density in humid He RF plasma is determined to be an order of magnitude smaller than the OH density [84], while the electron flux to the droplet is 2 orders of magnitude smaller than the OH flux [10]. To study the effect of varying OH flux on formate decomposition in the droplet and assess the possible indications of non-OH induced chemistry, we varied the water concentration in the He/H₂O plasma from 0.005\% to 1\%. The gas-phase OH densities for these conditions were measured previously for similar conditions using broadband absorption spectroscopy [53]. The OH density increases with the water concentration in the plasma and follows a square root dependence as shown in figure 11. The OH density at 0.2% water concentration (3×10^{20}) m⁻³ [10] matches the values of this study within 10% difference.

The effect of the H_2O concentration (or flux) on the formate decomposition in droplets of size 43 μ m is shown in figure 11. The amount of formate decomposition increases for increasing H_2O concentrations up to 0.2% H_2O and subsequently

saturates. The average formate concentration obtained from the 1D reaction-diffusion model after plasma exposure as described in Section 2.5 and [10] as a function of H₂O concentration is also plotted in figure 11 for comparison. The model has a good agreement with the measured concentrations, with exception of the 0% H₂O concentration case for which the model significantly underestimates the formate decomposition. This suggests that at the smaller OH densities, i.e. $n_{\rm OH} < 10^{20} \, \rm m^{-3}$ (corresponding to < 0.05\% H₂O concentration), the effect of other reactive species becomes important partly because the species that are readily quenched by H₂O can become dominant, consequently changing the gas species composition. The diffusion layer near the droplet leads to a reduction in the OH density compared to the bulk OH density by a factor 11 (see Section 2.5). Using the OH density at the droplet interface $(8 \times 10^{18} \text{ m}^{-3})$ corresponding to $0.025\% \text{ H}_2\text{O}$ concentration, and the bulk n_e and $T_{\rm e}$ from the continuum radiation measurement for 0.05% H₂O (not shown), the electron flux ($\geq 3 \times 10^{12} \text{ s}^{-1}$) becomes similar to the OH flux ($5.8 \times 10^{12} \text{ s}^{-1}$) to the droplet, which shows that indeed electron/ion injection into solution and the formation of solvated electrons or 'OH and H' radicals through charge exchange or recombination reactions might become important. Particularly at lower H₂O concentrations, local OH production in the vicinity of the droplet as a result of the water vapor formed by droplet evaporation might impact the 'OH flux, although it cannot readily explain

Figure 11. Average formate concentration in plasma-treated droplets as a function of water concentration in He/H₂O plasma, compared with the 1D diffusion-reaction modeling result. The discharge was operated at a total gas flow rate of 1.5 slm ($t_{\rm res} = 8$ ms), and fixed power of 14.3 ± 0.5 W for He/H₂O plasmas and 13.6 ± 1.3 for pure He plasma. The corresponding 'OH densities are taken from [53] and follow the following relation: $n_{\rm OH}[{\rm m}^{-3}] = 5.54 \times 10^{20} \sqrt{n_{\rm H_2O}[\%]}$.

the observed increase in decomposition. Furthermore, at low $\rm H_2O$ concentrations in He plasma, the ion composition could change drastically as compared to those in higher $\rm H_2O$ concentrations [92]. At higher $\rm H_2O$ concentrations, the model shows that the transport of the unreacted formate from the bulk of the droplet to the interface becomes the rate limiting step [10], rendering the formate decomposition independent of the 'OH flux, and is, thus, diffusion limited. However, at lower $\rm H_2O$ concentration (<0.2%), it becomes limited by the 'OH flux in the gas phase. This transport effect is illustrated in figure 12, where the spatial distribution of the concentrations of 'OH and formate near the plasma-droplet interface are shown for three different $\rm H_2O$ concentrations (0.025%, 0.2% and 1%) in the feed gas corresponding to the formate conversion shown in figure 11, for which no significant depletion of formate near the droplet interface is found for the lower water concentration case but an increasing depletion of formate is observed for higher 'OH fluxes.

3.3.2. Effect of droplet residence time Figure 13 shows the formate concentration in droplets with an initial diameter of $41 \pm 2~\mu m$ after plasma exposure as a function of the droplet residence time in He/H₂O, He/O₂ and He/Ar/H₂O plasmas. The results are all very similar for the 3 cases.

Figure 13 also shows the simulated formate decomposition in He/H_2O plasma using the 1D reaction-diffusion model to validate the effect of OH radical. The results

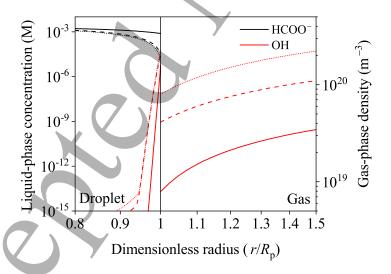


Figure 12. Radial distributions of 'OH densities near the gas–droplet interface along with the formate concentrations in the droplet for a droplet diameter of 43 μ m after a plasma exposure of 8 ms corresponding to a total gas flow rate of 1.5 slm (see figure 11). The distributions are shown for H₂O concentration of 0.025% (solid line), 0.2% (dashed line) and 1.0% (dotted line) in the feed gas.

confirm the diffusion/transport limited formate conversion for $n_{\rm OH} > 2 \times 10^{20}~{\rm m}^{-3}$ and the further increase in decomposition of formate with increasing plasma exposure time allowing for continued transport of the formate from the bulk of the droplet to the plasma-droplet interface.

The formate decomposition in He/O_2 plasma is remarkably similar to that of the $\text{He/H}_2\text{O}$ plasma in spite of the reactions induced that might be dominantly induced by radicals other than 'OH. The major reactive species in He/O_2 plasma are O', $\text{O}_2(a^1\Delta_{\rm g})$ and O_3 . The effect of O_3 can be neglected as it has a lower H' constant than OH [43] and a reaction rate coefficient with formate $(1 \times 10^2 \text{ M}^{-1} \text{s}^{-1})$ that is 7 orders of magnitude smaller than that of 'OH [93], while the O_3 density in He/O_2 plasma is smaller than the OH density in $\text{He/H}_2\text{O}$ plasma.

The investigation of the effect of $O_2(a^1\Delta_g)$ is warranted as it is known to react with organic compounds with fairly large rate coefficients of the order of $\sim 10^7-10^9$ $\rm M^{-1}s^{-1}$ [94, 95], although the reaction rate with formate is not reported. The 1D reaction-diffusion model is run with the gas-phase density of $O_2(a^1\Delta_g)$ (2.2 × 10^{21} m⁻³) estimated from the measurements in the effluent. The H' and α are assumed to be the same as that of O_2 . A range of $k_{O_2(a)}$ were used to fit the experimentally obtained formate decomposition. Figure 14(a) shows the results of the calculated

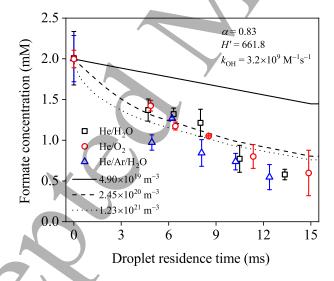
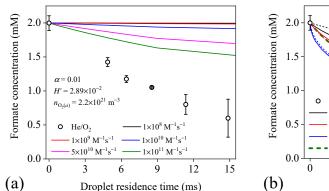



Figure 13. Average formate concentration in plasma-treated droplets as a function of droplet residence time corresponding to gas flow rates between 0.75 and 3.0 slm for an initial droplet diameter of $41\pm2~\mu\mathrm{m}$ in He + 0.2% H₂O, He + 0.2% O₂ and He + 17% Ar + 0.2% H₂O plasmas (open symbols). The calculated temporal evolution of average formate concentration for different values of n_{OH} fitted to the experimentally obtained results in He + 0.2% H₂O plasma is also shown (lines).



Figure 14. (a) Calculated temporal evolution of average formate concentration in liquid droplet of diameter $41\pm 2~\mu m$ for different values of $k_{\rm O_2(a)}$ fitted to the experimentally obtained results to assess the effect of ${\rm O_2}(a^1\Delta_{\rm g})$ in He + 0.2% ${\rm O_2}$ plasma. Experimental and simulated results are presented in open symbols and solid lines, respectively. (b) Calculated average formate concentration for different values of $k_{\rm O}$ ($\alpha=0.1,~H'=661.8,~n_{\rm O}=1.55\times10^{21}~{\rm m}^{-3}$) shown in solid lines, and $n_{\rm O}$ ($\alpha=0.1,~H'=7,~k_{\rm O}=3.2\times10^9~{\rm M}^{-1}{\rm s}^{-1}$) shown in short dashed lines fitted to the experimentally obtained results to assess the effect of O radical in He + 0.2% ${\rm O_2}$ plasma. The green dashed line shows the effect of O on formate degradation at lower O density and much higher $k_{\rm O}$ value.

average formate concentration as a function of the droplet residence time for different values of $k_{\rm O_2(a)}$. Even with an unrealistic high reaction rate coefficient, $k_{\rm O_2(a)}$ of $1\times 10^{11}~{\rm M^{-1}s^{-1}}$, the model underestimates the formate decomposition. This shows that ${\rm O_2}(a^1\Delta_{\rm g})$ is not the dominant species responsible for the decomposition of formate within the investigated conditions despite being present at very large densities in the plasma. This is predominantly because of the low Henry's law constant and very short lifetime of ${\rm O_2}(a^1\Delta_{\rm g})$ in liquid ${\rm H_2O}$ (4.4 μs [96]), severely limiting its transport into the droplet via solvation and/or diffusion.

This leaves us with the dominant O radicals as most likely species enabling (directly or indirectly) formate decomposition in the He/O₂ plasma. The O density in the bulk of the He/O₂ plasma is an order of magnitude higher than the 'OH density in He/H₂O plasma. The recombination of O (effective lifetime) in background He gas can be estimated from the quenching reactions of O with O₂ and O₃ in the gas phase using the reaction scheme and the rate coefficient values provided in [97, 98] at a gas temperature of ~ 350 K. The recombination time of O is estimated to be in the range of 2.8–3.9 ms, depending on the reaction rate coefficients used. The diffusion time of O from the bulk plasma into the droplet across a sheath (h_p) of $\sim 200~\mu m$ can be estimated by [99]

Plasma-droplet interaction study for formate decomposition

$$\tau_{\rm D,O} = \frac{\sqrt{3}R_{\rm p}h_{\rm p}}{D_{\rm O-He}},\tag{11}$$

with $D_{\rm O-He} = 1.29 \times 10^{-4} \ {\rm m^2 s^{-1}}$, the diffusion coefficient of O in He [89] and $R_{\rm P}$ the droplet radius (20.5 μ m). Equation (11) yields a diffusion time of 55 μ s, which is 50–70 times faster than the estimated lifetime of O for the investigated plasma condition. This confirms that, similar to 'OH, the boundary layer acts as a sink for O atoms and a diffusion profile for O can be assumed to calculate the O flux ($\Gamma_{\rm O}$) to the droplet. Using the O density at the droplet interface and an α value of 0.83 (assumed the same as 'OH), the total O flux to the droplet can be estimated as:

$$\Gamma_{\rm O} \approx \frac{1}{4} \alpha G_{\rm O} v_{\rm th} \times 4\pi R_{\rm p}^2 \approx 1.1 \times 10^{15} \text{ s}^{-1},$$
 (12)

which is more than an order of magnitude higher than the total 'OH flux to the droplet in He + 0.2% H₂O plasma ($2.8 \times 10^{13} \text{ s}^{-1}$), although α for O atom is unknown and smaller α than that of 'OH might ultimately lead to smaller fluxes.

As the transport properties of O are not available in literature, we modeled the formate conversion in He/O_2 plasma to semi-quantitatively determine the appropriate values of α , H' and $k_{\rm O}$ (the rate coefficient of the reaction of O with formate) that provide satisfactory correspondence with the experimental measurement. In the 1D reaction-diffusion model, it was assumed that the aqueous phase concentration of O_2 at the interface in the liquid was in equilibrium with the ambient O_2 gas phase density. This is included because O atoms recombine with O_2 to produce O_3 , which would reduce the ability of O to decompose formate. To assess the impact of dissolved oxygen on the formate decomposition, the model was simulated both with and without any dissolved O₂ in the liquid droplet. However, the oxidation was independent of the dissolved oxygen concentration even assuming complete O_2 saturation of the droplet. The 1D model was simulated with as base condition the values of the reaction and transport parameters the same as used for OH. The accommodation coefficient (α) for O atom was varied in the range of 10^{-3} to 1 at a constant H' and $k_{\rm O}$ values of 661.8 and 3.2×10^9 M⁻¹s⁻¹, respectively. Although a strong effect was observed for $10^{-3} < \alpha < 5 \times 10^{-3}$, it was found to have little to no effect on formate decomposition for $\alpha > 10^{-2}$. A value of 0.1 for α is used for further modeling work. We used different values of H', ranging from 2 to that of H_2O_2 (10⁶). A strong dependency was observed for 2 < H' < 100. However, for H' > 100, the formate oxidation becomes independent of H'. A value of 661.8 for H' (equal to that of OH) is, henceforth, used for assessing the impact of the reaction rates. $k_{\rm O}$ was varied from 5×10^7 to 1×10^{10} M⁻¹s⁻¹, which shows that a rate coefficient of at least $1 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$ is required to predict the experimental results as shown in figure 14(b). Similarly, the gas-phase O density (n_0) was varied by a factor 5 at fixed values of transport properties ($\alpha = 0.1, H' = 7$, and $k_{\rm O} = 3.2 \times 10^9 \; {\rm M}^{-1} {\rm s}^{-1}$) showing the need for $n_{\rm O}$ in excess of $6.2 \times 10^{21} \; {\rm m}^{-3}$ if

the reaction rate of O' with formate is the same as for 'OH. These results are also shown in figure 14(b).

We can, from the above discussions, conclude that to explain the formate conversion in He/O₂ plasma, $\alpha \geq 0.003$, $H' \geq 4$ and $k_{\rm O} \geq 1 \times 10^8 \ {\rm M}^{-1} {\rm s}^{-1}$ are required. Although the O radical might be the dominant species in the bulk plasma, OH could, in principle, be responsible for formate decomposition, since the presence of water vapor due to droplet evaporation can lead to production of 'OH from O'. The electron-induced dissociation of H₂O vapor around the droplet surface can produce H radicals, which can recombine with the incoming O radical to produce OH. A concentration of $H^{\cdot} = 6.5 \times 10^{20} \text{ m}^{-3}$ in a humid boundary layer around the droplet could convert sufficient O' into OH for a typical diffusion time of 55 μs to achieve the same flux of 'OH into droplet as for the He/H₂O case. Due to evaporation, the H₂O vapor is most likely diffusing into the active plasma, which increases the OH density and reduces the O' density as reported in [100]. If the O' density reduces, the rate at which O' reacts with formate would need to be higher in order to explain the observed formate decomposition. This case is shown in figure 14(b) in green dashed line. With a lower O density of 3.1×10^{20} m⁻³, a much higher $k_{\rm O}$ of 7×10^{10} M⁻¹s⁻¹ would be required, which might be unlikely and 'OH radicals are more likely to be the cause of formate decomposition in this case.

A recent study showed that almost all plasma-generated O atoms entering the liquid phase can react with Cl^- ions in highly concentrated saline solutions [101], suggesting that both α and H' must indeed be sufficiently large. The estimated O density in this study is relatively high, which places the formate conversion in the transport limited regime and the impact of OH-induced chemistry cannot be excluded. This does not allow to draw more detailed conclusions on the lower range of $k_{\rm O}$ values. In conclusion, the observed formate conversion in ${\rm He/O_2}$ plasma could either be due to the direct impact of O atoms, provided the transport is sufficient, or due to OH-induced chemistry, since addition of ${\rm H_2O}$ to ${\rm He/O_2}$ plasma (water vapor from the droplet in this study) does not significantly impacts the OH density as shown in [102].

4. Conclusion

In this work, we explored the role of both OH and non-OH driven chemistry in the interaction between plasma and liquid micro-droplets in a controlled environment. The plasma is operated in He with different gas admixtures (Ar, O₂, humidified He) at atmospheric pressure to study the effect of O', H' and 'OH radicals, O₂($a^1\Delta_g$), O₃, and metastable He and Ar atoms on the formate decomposition in plasma-treated droplets. The plasmas are characterized using different optical diagnostic techniques to determine the electron density and temperature (OES), 'OH radical and metastable densities (BAS), O₂($a^1\Delta_g$) density (IR OES), O₃ density (OAS) and H' radical

density (TaLIF). The droplet dynamics (motion and evaporation) was determined using microscopic fast imaging, from which the residence time of the droplets in the plasma could be estimated. The formate concentration was measured in the collected droplets post-plasma treatment using OAS.

The formate decomposition increased with increasing droplet residence time in the plasma in all studied cases (He/O₂, He/H₂O and He/Ar/H₂O). For the highest residence time of ~ 15 ms, a 70% reduction in the formate concentration was observed. A one-dimensional reaction-diffusion model was able to predict the oxidation via OH transport using measured gas-phase OH densities in He/H₂O plasma. It was further shown that at lower H₂O concentration in the plasma, the formate oxidation is gas phase OH flux limited. When no water vapor was added to the He feed gas, an enhanced formate decomposition was found, which might be due to the increase in the electron/ion flux to the droplet, estimated to be similar to the expected 'OH flux in this case. At higher H₂O concentrations, the formate oxidation was independent of the OH flux, and hence, diffusion limited. The decomposition in He/O₂ plasma was remarkably similar as for He/H₂O. The same amount of formate decomposition was achieved, although with an O radical density one order of magnitude larger than the OH density in the corresponding He/H₂O plasma. Using the reaction-diffusion model, we semi-quantitatively predicted the lower limits of the transport properties and reactions rates of O radical with formate ($\alpha \geq 0.003$, $H' \geq 4$ and $k_O \geq 1 \times 10^8$ $M^{-1}s^{-1}$), if O were solely responsible for formate decomposition in He/O₂ plasma. We showed that O_3 and $O_2(a^1\Delta_g)$ did not significantly contribute to this decomposition. However, a contribution of OH due to water vapor from droplet evaporation to the formate decomposition cannot be excluded.

Acknowledgments

This work was enabled by equipment and methods developed in the framework of the US Department of Energy, Office of Science, Office of Fusion Energy Sciences General Plasma Science program under Award Number DE-SC-0020232, the Army Research Office under Grant No. W911NF-20-1-0105 and the NSF grant under Award Number PHY 1903151. GN would like to thank Dr. Marien Simeni Simeni for helpful discussions on the analysis of the continuum radiation.

References

- [1] Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G, Graham W, Graves D B, Hofman-Caris R, Maric D, Reid J P, Ceriani E et al. 2016 Plasma Sources Science and Technology 25 053002
- [2] Foster J, Sommers B S, Gucker S N, Blankson I M and Adamovsky G 2012 *IEEE Transactions on Plasma Science* **40** 1311–1323

[3] Mariotti D, Patel J, Švrček V and Maguire P 2012 Plasma Processes and Polymers 9 1074–1085

- [4] Friedrich J F, Mix R, Schulze R D, Meyer-Plath A, Joshi R and Wettmarshausen S 2008 Plasma Processes and Polymers 5 407–423
- [5] Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J and Zimmermann J 2009 New Journal of Physics 11 115012
- [6] Aboubakr H A, Gangal U, Youssef M M, Goyal S M and Bruggeman P J 2016 Journal of Physics D: Applied Physics 49 204001
- [7] Misra N, Schlüter O and Cullen P J 2016 Cold plasma in food and agriculture: fundamentals and applications (Academic Press)
- [8] Sklias K, Santos Sousa J and Girard P M 2021 Cancers 13 615
- [9] Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P et al. 2017 Journal of Physics D: Applied Physics 50 323001
- [10] Oinuma G, Nayak G, Du Y and Bruggeman P J 2020 Plasma Sources Science and Technology 29 095002
- [11] Burlica R and Locke B R 2008 IEEE Transactions on Industry Applications 44 482–489
- [12] Maguire P, Rutherford D, Macias-Montero M, Mahony C, Kelsey C, Tweedie M, Pérez-Martin F, McQuaid H, Diver D and Mariotti D 2017 Nano Letters 17 1336–1343
- [13] Gallingani T, Abuyazid N H, Colombo V, Gherardi M and Sankaran R M 2020 Journal of Aerosol Science 150 105631
- [14] Toth J R, Abuyazid N H, Lacks D J, Renner J N and Sankaran R M 2020 ACS Sustainable Chemistry & Engineering 8 14845–14854
- [15] Merche D, Vandencasteele N and Reniers F 2012 Thin Solid Films 520 4219–
- [16] Palumbo F, Porto C L, Fracassi F and Favia P 2020 Coatings 10 440
- [17] Porto C L, Palumbo F, Treglia A, Camporeale G and Favia P 2019 Japanese Journal of Applied Physics 59 SA0801
- [18] Treglia A, Palumbo F, Gristina R, Calvano C D, Cataldi T, Fracassi F and Favia P 2020 Applied Surface Science 146698
- [19] Heyse P, Dams R, Paulussen S, Houthoofd K, Janssen K, Jacobs P A and Sels B F 2007 Plasma Processes and Polymers 4 145–157
- [20] Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L and Lukes P 2013

 **Plasma Processes and Polymers 10 649–659

[21] Nayak G, Andrews A J, Marabella I, Aboubakr H A, Goyal S M, Olson B A, Torremorell M and Bruggeman P J 2020 *Plasma Processes and Polymers* e1900269

- [22] Xia T, Kleinheksel A, Lee E, Qiao Z, Wigginton K and Clack H 2019 Journal of Physics D: Applied Physics 52 255201
- [23] Wu Y, Liang Y, Wei K, Li W, Yao M, Zhang J and Grinshpun S A 2015 Applied Environmental Microbiology 81 996–1002
- [24] Iqbal M M, Stallard C P, Dowling D P and Turner M M 2015 Plasma Processes and Polymers 12 201–213
- [25] Kruszelnicki J, Lietz A M and Kushner M J 2019 Journal of Physics D: Applied Physics 52 355207
- [26] Hassan M E, Janda M and Machala Z 2021 Water 13 182
- [27] Lukes P, Dolezalova E, Sisrova I and Clupek M 2014 Plasma Sources Science and Technology 23 015019
- [28] Hefny M M, Pattyn C, Lukes P and Benedikt J 2016 Journal of Physics D: Applied Physics 49 404002
- [29] Benedikt J, Hefny M M, Shaw A, Buckley B R, Iza F, Schäkermann S and Bandow J 2018 Physical Chemistry Chemical Physics 20 12037–12042
- [30] Gorbanev Y, O'Connell D and Chechik V 2016 Chemistry-A European Journal 22 3496–3505
- [31] Kondeti V S K, Gangal U, Yatom S and Bruggeman P J 2017 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35 061302
- [32] Rumbach P, Bartels D M, Sankaran R M and Go D B 2015 Nature Communications 6 1–7
- [33] Richmonds C and Sankaran R M 2008 Applied Physics Letters 93 131501
- [34] Jablonowski H, Sousa J S, Weltmann K D, Wende K and Reuter S 2018 Scientific reports 8 1–12
- [35] Locke B, Sato M, Sunka P, Hoffmann M and Chang J S 2006 Industrial & Engineering Chemistry Research 45 882–905
- [36] Hsieh K C, Wandell R J, Bresch S and Locke B R 2017 Plasma Processes and Polymers 14 1600171
- [37] Sahni M and Locke B R 2006 Industrial & Engineering Chemistry Research 45 5819–5825
- [38] Chen C, Liu D, Liu Z, Yang A, Chen H, Shama G and Kong M 2014 *Plasma Chemistry and Plasma Processing* **34** 403–441
- [39] Buxton G V, Greenstock C L, Helman W P and Ross A B 1988 Journal of Physical and Chemical Reference Data 17 513–886

[40] Taghvaei H, Kondeti V and Bruggeman P J 2019 Plasma Chemistry and Plasma Processing 39 729–749

- [41] Franclemont J, Fan X and Thagard S M 2015 Journal of Physics D: Applied Physics 48 424004
- [42] Bauer G and Graves D B 2016 Plasma processes and polymers 13 1157–1178
- [43] Sander R 2015 Atmospheric Chemistry and Physics 15 4399–4981
- [44] Zheng Y, Wang L and Bruggeman P 2020 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 38 063005
- [45] Crapulli F, Santoro D, Sasges M and Ray A 2014 Water Research 64 209–225
- [46] Wende K, Williams P, Dalluge J, Van Gaens W, Aboubakr H, Bischof J, Von Woedtke T, Goyal S M, Weltmann K D, Bogaerts A et al. 2015 Biointerphases 10 029518
- [47] Kondeti V S K, Phan C Q, Wende K, Jablonowski H, Gangal U, Granick J L, Hunter R C and Bruggeman P J 2018 Free Radical Biology and Medicine 124 275–287
- [48] Nayak G, Sadeghi N and Bruggeman P 2019 Plasma Sources Science and Technology 28 125006
- [49] Nayak G, Simeni Simeni M, Rosato J, Sadeghi N and Bruggeman P 2020 Journal of Applied Physics 128 243302
- [50] Hofmann S, Van Gessel A, Verreycken T and Bruggeman P 2011 Plasma Sources Science and Technology 20 065010
- [51] Schneider C A, Rasband W S and Eliceiri K W 2012 Nature Methods ${\bf 9}~671–675$
- [52] Bruggeman P, Cunge G and Sadeghi N 2012 Plasma Sources Science and Technology 21 035019
- [53] Du Y, Nayak G, Oinuma G, Ding Y, Peng Z and Bruggeman P J 2017 Plasma Sources Science and Technology 26 095007
- [54] Du Y, Nayak G, Oinuma G, Peng Z and Bruggeman P J 2017 Journal of Physics D: Applied Physics 50 145201
- [55] Bruggeman P J, Sadeghi N, Schram D and Linss V 2014 Plasma Sources Science and Technology 23 023001
- [56] Bruggeman P, Iza F, Guns P, Lauwers D, Kong M G, Gonzalvo Y A, Leys C and Schram D C 2009 Plasma Sources Science and Technology 19 015016
- [57] Bokor J, Freeman R, White J and Storz R 1981 Physical Review A 24 612
- [58] Niemi K, Schulz-Von Der Gathen V and Döbele H 2001 Journal of Physics D: Applied Physics 34 2330
- [59] Yatom S, Luo Y, Xiong Q and Bruggeman P J 2017 Journal of Physics D: Applied Physics **50** 415204

[60] Yue Y, Santosh V, Kodenti K and Bruggeman P J 2020 Plasma Sources Science and Technology 29 04LT01

- [61] Sousa J S and Puech V 2013 Journal of Physics D: Applied Physics 46 464005
- [62] Nayak G, Sousa J S and Bruggeman P J 2017 Journal of Physics D: Applied Physics 50 105205
- [63] Park S, Choe W, Youn Moon S and Park J 2014 Applied Physics Letters 104
- [64] Burm K 2004 Plasma Sources Science and Technology 13 387
- [65] Phelps database http://www.lxcat.net retrieved on November 22, 2020
- [66] Yamabe C, Buckman S and Phelps A 1983 Physical Review A 27 1345
- [67] Lawton S and Phelps A 1978 The Journal of Chemical Physics 69 1055–1068
- [68] Itikawa database http://www.lxcat.net retrieved on October 28, 2020
- [69] Hayashi database http://www.lxcat.net retrieved on November 22, 2020
- [70] Itikawa Y and Mason N 2005 Journal of Physical and Chemical Reference Data 34 1–22
- [71] Hayashi M 1987 Electron collision cross-sections for molecules determined from beam and swarm data Swarm Studies and Inelastic Electron-Molecule Collisions (Springer) pp 167–187
- [72] Hagelaar G and Pitchford L 2005 Plasma Sources Science and Technology 14
- [73] Mai H, Shiraiwa M, Flagan R C and Seinfeld J H 2015 Environmental Science & Technology 49 11485–11491
- [74] Hoigné J and Bader H 1983 Water research 17 185-194
- [75] Bruggeman P, Verreycken T, Gonzalez M A, Walsh J L, Kong M G, Leys C and Schram D C 2010 Journal of Physics D: Applied Physics 43 124005
- [76] Guildner L A 1975 Journal of research of the National Bureau of Standards. Section A, Physics and chemistry 79 407
- [77] Van Gessel B, Brandenburg R and Bruggeman P 2013 Applied Physics Letters 103 064103
- [78] Patacchini L and Hutchinson I H 2009 Physics of Plasmas 16 062101
- [79] Vasko C, Liu D X, Van Veldhuizen E, Iza F and Bruggeman P J 2014 Plasma Chemistry and Plasma Processing 34 1081–1099
- [80] Verreycken T, Van Der Horst R, Sadeghi N and Bruggeman P J 2013 Journal of Physics D: Applied Physics 46 464004
- [81] Liu Y, Ivanov A V and Molina M J 2009 Geophysical Research Letters 36
- [82] Yue Y, Jiang J, Kondeti V S K and Bruggeman P J 2021 Journal of Physics D: Applied Physics 54 115202

[83] Luo Y, Lietz A M, Yatom S, Kushner M J and Bruggeman P J 2018 Journal of Physics D: Applied Physics 52 044003

- [84] Schröter S, Wijaikhum A, Gibson A R, West A, Davies H L, Minesi N, Dedrick J, Wagenaars E, De Oliveira N, Nahon L et al. 2018 Physical Chemistry Chemical Physics 20 24263–24286
- [85] Knake N, Niemi K, Reuter S, Schulz-von der Gathen V and Winter J 2008 Applied Physics Letters 93 131503
- [86] Knake N, Reuter S, Niemi K, Schulz-Von Der Gathen V and Winter J 2008 Journal of Physics D: Applied Physics 41 194006
- [87] Reuter S, Niemi K, Schulz-Von Der Gathen V and Döbele H 2008 Plasma Sources Science and Technology 18 015006
- [88] Niemi K, Reuter S, Graham L, Waskoenig J and Gans T 2009 Applied Physics Letters 95 151504
- [89] Waskoenig J, Niemi K, Knake N, Graham L, Reuter S, Schulz-Von Der Gathen V and Gans T 2010 Plasma Sources Science and Technology 19 045018
- [90] Willems G, Golda J, Ellerweg D, Benedikt J, von Keudell A, Knake N and Schulz-von der Gathen V 2019 New Journal of Physics 21 059501
- [91] Hinds W C 1999 Aerosol technology: properties, behavior, and measurement of airborne particles (John Wiley & Sons)
- [92] Bruggeman P, Iza F, Lauwers D and Gonzalvo Y A 2009 Journal of Physics D: Applied Physics 43 012003
- [93] Rumble J R 2016 NIST 40. NDRL/NIST Solution Kinetics Database: Version 3.0 Tech. rep.
- [94] Young R H, Brewer D and Keller R A 1973 Journal of the American Chemical Society 95 375–379
- [95] Scully Jr F E and Hoigné J 1987 Chemosphere 16 681–694
- [96] Rodgers M A and Snowden P T 1982 Journal of the American Chemical Society 104 5541–5543
- [97] Jeong J Y, Park J, Henins I, Babayan S E, Tu V J, Selwyn G S, Ding G and Hicks R F 2000 The Journal of Physical Chemistry A 104 8027–8032
- [98] Ellerweg D, Von Keudell A and Benedikt J 2012 Plasma Sources Science and Technology 21 034019
- [99] Alvarez N J, Walker L M and Anna S L 2010 Physical Review E 82 011604
- [100] McKay K, Liu D, Rong M, Iza F and Kong M 2012 Journal of Physics D: Applied Physics 45 172001
- [101] Jirásek V and Lukeš P 2020 Journal of Physics D: Applied Physics 53 505206
- [102] Brisset A, Gibson A R, Schröter S, Niemi K, Booth J P, Gans T, O'Connell D and Wagenaars E 2021 Journal of Physics D: Applied Physics 54 285201