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We study discrete magnetic random Schrédinger operators on the square and hon-
eycomb lattice. For the non-random magnetic operator on the hexagonal lattice with
any rational magnetic flux, we show that the middle two dispersion surfaces exhibit
Dirac cones. We then derive an asymptotic expansion for the density of states on the
honeycomb lattice for oscillations of arbitrary rational magnetic flux. This allows us,
as a corollary, to rigorously study the quantum Hall effect and conclude dynamical
delocalization close to the conical point under disorder. We obtain similar results for
the discrete random Schrédinger operator on the Z?-lattice with weak magnetic fields,

close to the bottom and top of its spectrum.

1 Introduction and Statement of Results

In this article, we study discrete random Schrodinger operators, the tight-binding limits
of continuous random Schrédinger operators, under weak disorder in weak magnetic

fields on the Z? lattice Ag and in addition for magnetic fluxes close to rationals on the
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honeycomb lattice Aq:
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ect i(e)=v ect t(@)=v

where V, is an i.i.d. random potential on the respective lattice A. For precise definitions
of these operators, we refer to Section 2.2.

The spectral properties of the discrete magnetic Laplacian (DML) on Z?2, and of
the almost Mathieu operator, have been extensively studied over the past 40 years, see
for instance a survey [34] and some recent advancements [3, 28, 29]. Significant progress
on the location of the spectrum has been made for magnetic Schrédinger operators using
semiclassical analysis [26, 27, 31, 45]. In two preceding articles [8, 9], by the authors,
this study was extended to spectral properties and the density of states (DOS) of the
magnetic Schrédinger operator on the honeycomb lattice—but without disorder. It was
shown in [9, Theorem 1] that the DOS for the magnetic Schrédinger operator on the
honeycomb quantum graph—close to the conical point—is concentrated at so-called
relativistic Landau levels.

The spectral analysis in [8] showed that for the DML on the hexagonal lattice,
close to the conical point, there is no point spectrum, as the analogy to the magnetic
2D Dirac operator suggests. Instead, the spectrum of the DML on the honeycomb lattice
is either absolutely continuous (a.c.) band spectrum or singular continuous (s.c.) and
a Cantor set of Lebesgue measure zero, depending on the arithmetic properties of the
magnetic flux through a single honeycomb.

Next let us introduce our results. We start with the non-random operator on
the hexagonal lattice H”

0,=0"

here by the discrete operator Hg,x=o

properties, is the energy spectrum close to the conical points, the so-called Dirac points

The part of the energy spectrum of graphene, modeled

that is relevant for most of its remarkable physical

at energy zero, see Figure 3. The existence of Dirac points for the tight-binding graphene
model in the absence of magnetic field is known since [44]. In the absence of magnetic
fields, the operator can be reduced to a 2 x 2 matrix via Floquet-Bloch theory. Hence,
the only two dispersion surfaces can be computed explicitly, whence conical touching of

the two surfaces is evident. It is natural to ask the question if Dirac points still exist for
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arbitrary rational magnetic flux, where the operator is still periodic. Indeed, for flux
h = 27p/q, the operator can be reduced to a 2q x 2q matrix. The dispersion surfaces
thus have to be analyzed implicitly and hence making it much harder to prove conical
structures. Our 1st result is to prove the existence of Dirac cones at energy zero for the

tight-binding model for any rational magnetic flux.

Theorem 1. For any rational flux h = 271% € 27 Q, the operator H”

&, .—o Possesses Dirac

points at energy zero.

Using the conical structures as a starting point, we are able to carry out the
semiclassical analysis and obtain the expansion of the DOS near the energy zero for flux
2np/q + h with h being the semiclassical parameter, see Theorems 3 and 4. (Theorem 3
actually proves the expansion of DOS for the operator with disorder.) This in particular
allows us to prove the localization of the spectrum in Landau bands near the zero
energy, characterized by the Bohr-Sommerfeld condition, and the existence of spectral
gaps between any two consecutive Landau bands. Our framework follows [30] but uses
independent arguments for the derivation of the DOS and the presence of spectral gaps
in between Landau bands. In addition to the study of the DML on the honeycomb lattice,
we also derive the expansion of DOS for the operator HL‘MU on the Z? lattice with small
flux near the top and bottom of the spectrum, which is included in Theorem 3.

By combining the expansion of DOS with the Streda formula, we are able to
compute the Hall conductivity explicitly in each of the aforementioned spectral gaps
for the non-random operators Hél),)\zo and HE,A:O' thus giving a rigorous derivation of
the quantum Hall effect (QHE). We then argue using the index-theoretic formulation
that the Hall conductivity is invariant under a random perturbation in the spectral
gaps between any two consecutive disorder-broaden Landau bands. The study of the
QHE of the continuous Laplacian in a homogeneous magnetic field is much simpler, as
the (infinitely-degenerate) eigenfunctions are fully explicit and so all computations can
be done analytically. In contrast to this, the DML does not have point spectrum and
closed form describing it are also not available. This is a major difficulty in the discrete
setting, which can be partly overcome by gap-labeling methods techniques as in [1].
However, we would like to emphasize that such methods are usually not quantitative
in the sense that they do not specify the Hall conductivity at prescribed energies. From
our refined study of the DOS with error bounds, we are able to solve this problem and
get precise information on the Hall conductivity in the gaps between Landau bands that

are quantitative. For the cleanness of the presentation, we present below the QHE for
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small magnetic fields and refer the readers to Theorem 4 for Hg , , With fluxes close to

rationals.

Proposition 1.1 (QHE under weak disorder; small magnetic fields). For sufficiently
small magnetic flux h > 0, there are spectral gaps between disorder-broadened Landau
bands up to some magnetic-dependent disorder parameter Ay(h) > 0. In the spectral gap
between two consecutive disorder-broadened Landau bands B}(l),x,n and B?),x,nﬂ' the Hall
conductivity ¢y with Fermi energy u is quantized with its value given below.

2n+1 .
CH(H(})L')L'LUI I‘L) = 27_[ ' Wlth - No(hl )"0) =n=< No(h'l )"0)

n .
cy(HRE o 1) = oo With 1<7n<Ng(h, i)

Using the jump of Hall conductivity in each disorder-broadened Landau band,
we then show that the discrete magnetic random Schrédinger operators undergo
metal/insulator transitions, using the framework of Germinet-Klein [17] and Klein-
Germinet-Schenker [20]. More precisely, we prove the existence of (at least one) mobility
edge near the Landau levels. Again, we only present the small magnetic fields case here

and refer the readers to Theorem 4 for Hg , , With perturbations of rational fluxes.

Theorem 2 (Dyn. delocalization; small fields). Under the same assumptions as Propo-
sition 1.1, there exists in each disorder-broadened Landau band (at least) one energy

that belongs to the region of dynamical delocalization.

The paper is structured as follows: Section 2 serves as preliminary and back-
ground, the study of DOS is presented in Section 3, QHE is studied in Section 4,
dynamical delocalization is proved in Section 5, the proof of Theorem 1 is presented in
Section 6, and finally the semiclassical analysis together with the proofs of Theorems 3

and 4 are presented in Section 7.

Notation. B, (r) is the ball of radius r centered at x. We write f, = O, (g)y for ||fllz < C,g
and f = O(h*)y means that for any N there exists Cy such that ||f|; < CNhN. We write
(x) := /1 + |x|%2. U(H) are the unitary operators on a Hilbert space . The symbol class

Sp,+ of possibly matrix-valued symbols, is defined as

Shy 1= {a(e,h) € C¥(T"R) : Yo € N 3C, > 0 Vh € [0,hol : [0%ale, )| = C, .
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We write a ~ Z;io ajhf to denote an asymptotic expansion of symbols, cf. [46, 4.4.2]

where aj € S, with
S = {a € C®(T*R); Yo e N23C, > 0: |9%a| < ca}

and denote the class of symbols allowing such an expansion by S°. The standard basis
vectors of ¢%(Z?) are for y € Z? denoted by 8, :=(5,,), and occasionally by é; if the
Hilbert space is finite dimensional. £(X,Y) are the bounded linear operators between
normed spaces X, Y. E and Var denote expectation and variance. The semiclassical Weyl

quantization of a symbol a € §;,(T*R) is for suitable functions u defined as
1 i
OPY (@) () = (@ (x, hpy, HU) (x) = - / / eh Vg (42,6, h) u(y) dy dé.
27h RJR

Here, p,, := —i%. Conversely, we write o (Opfl"(a)) := a to denote the Weyl symbol of a
W¥DO and o, (Op}’(a)) for the principal symbol. Analogously, higher-order symbols are
denoted by oy, respectively. The semiclassical wavefront set is denoted by WF;,, see [46,
Section 8.4]. We also write Zi := (277Z)%. For a subset I C R, we denote by fl a contour
integral over a path in the complex plane that encloses I sufficiently close.

The spectrum of an operator T is denoted by X (T). We sometimes use the
convention A := % where h is the magnetic flux (thus, this notation should not
be confused with Planck’s constant). The p-th Schatten class is denoted by LP. The
symplectic form on R? is denoted by Osymp (V1 8) := y185 — 8;¥,. Finally, we use Wirtinger
derivatives D, := %(BX —19,) and D5 := %(8,( +19,) where we recall that D,f is nothing but
the derivative of a holomorphic function f. In particular, holomorphic functions satisfy
D;f = 0 by the Cauchy-Riemann equations. .7 (Z?) are the sequences that decay faster
than any polynomial power. We also write . (R") or .#(C") for the Schwartz functions
on R™ or C". We also define for one of the two lattices A we study in this article, the

truncated sets
Ap = {y eRZ%y = yb, + ypb, + Iyl for ye{-L,.,L}2 and [yle WA}, (1.1)

where I;l and 132 are the basis vectors of the lattice and W, a fundamental domain.
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(A) The square lattice Am. (B) The hexagonal lattice Ag.

Fig. 1. Fundamental cells of lattices.

2 Lattices and Discrete Random Schrédinger Operators
2.1 Geometry of lattices

The 72 lattice B, see Figure la. The square lattice A4 := Z? is spanned by basis vectors
Z;.,l = (1,0), 7).,2 := (0, 1) and its fundamental cell W, consists of just the vertex ry :=
(0,0). Although we do not study operators on the associated graph, we also introduce

the set of edges £ on the square graph consisting of the two edges

fy 1= conv ({rg, (1,0}) \ {ro, (1,00},

fo, = conv ({ry, (0, D}) \ {r, (0, 1)}

(2.1)

and translations thereof by basis vectors 13.'1, B.yz, where conv denotes the convex hull.
To orient the graph, we also define amap i: g — Ag by i(]?T) = i()ﬁg) :=ry and extend
it to all edges by translation

ify +v)=if. +y)=ro+y for yeZ?
Let us now turn to the hexagonal lattice:

The hexagonal lattice O, see Figure 1b. The hexagonal lattice A is obtained by

translating its fundamental cell WAO’ consisting of vertices

roi=0,0, r:=(}%) (2.2)
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along the basis vectors of the lattice. The basis vectors are
1301 = (%,\/Tg) and Bo,z = (0,\/5). (2.3)

As in the case of the Z? lattice, we also introduce auxiliary edges

f := conv ({ro.m}) \ {ro.m},
g := conv ({ry, (=1,0}) \{ry. (=1,0)}, (2.4)
om0 (5]

and define the set of all edges & as the set of all translates of these three edges along

the basis vectors b b, , of the hexagonal lattice.

ol

We call translates of r, by basis vectors Iﬁ)o,l, Eo,z initial vertices Al whereas
translates of r; will be referred to as terminal vertices Ato. Moreover, we consider maps
i:8y—> Apandt: &y — Ay that map edges to the respective initial or terminal vertex
they contain.

In the sequel, we will use the isomorphism £%(Ag) =~ €%(Z?; C?) as the honeycomb
has two basis vectors and two vertices in its fundamental domain. More generally, any
lattice with A spanned by two basis vectors with n vertices in its fundamental domain

satisfies €2(A) ~ £2(Z2; C™).

2.2 Discrete random Schrodinger operators

We consider a constant magnetic field. The vector potential A is a one form on R? and

the magnetic field is given by B = dA. For homogeneous magnetic fields
B:=Bdx; Adx, (2.5)
we can choose a symmetric gauge for the vector potential A such that
B=dA, A=}B(—x,dx,+x, dx,). (2.6)

The DMLs with single-site disorder are then defined as follows: first, we take the scalar

potential Az € C®(é) along edges é = e, dx} + e, dx} of the respective graph, where
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dx;(dx;) = §;; is defined by evaluating the 1-form on the graph along the vector field

generated by the respective edge é:
Ag(t) := A (i(e) + té) (e, dx] + e, dx;) = A(i(@)) (e, dx} + e, dx3). (2.7)

The quantities A; on the square lattice are given by

.. N 1
Af¢+V1bl,1+V2bl,2 =2N

and A:

_ - _hm
o tyibmytyobme = 2 V2 (2.8)

and the quantities A; on the hexagonal lattice are explicitly given by

. o _ho, - . _h
Af+)/1bo,1+)/2bo,2 =50 -7 A§+V1bo,1+yzbo,2 =% (n+2r), and

h,
AB+V150,1+V250,2 = _To(zyl +72) (2.9)

where the magnetic flux for either lattice is defined as

ha:=B and h,:= £ =35 (2.10)

From this point on, we may suppress the dependence on the lattices in some notations
if there is no ambiguity or if the results hold for both lattices.

We now define the discrete magnetic random Schrédinger operators:

Definition 2.1 (Discrete magnetic Schrédinger operators). We define discrete magnetic
random Schrédinger operators HL‘ € £(£2(A.)) and Hg € E(ZZ(AO)) on the square m,

using (2.8), and hexagonal O, lattice, using (2.9), respectively
1/ . S ) -
(Hg , ;W) = Z(e‘hVZ/zu(V +f)+em Puy —F )

+e M2y (y + f) + e /Puy —ﬂ)) +AV,()uly) 2.11)

H, W) ::% > eMeuE)+ Y. e%udE) | + AV, muw),

éeEo,i(é):V éego,t(é):v

where the parameter A > 0 measures the disorder strength. The random potential
satisfies V,(v) = o(v), where {w(v)},c, is a family of i.i.d with common probability
distribution v of compact support on R. We write (2,P) the underlying probability

space, and E the expectation.
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Square lattice

Energy

Potential well

Fig. 2. Energy band of the non-magnetic discrete Laplacian on Am. The bottom of the spectrum

forms a potential well.

We will write (R, P) for the underlying probability space; hence, Q = x,.,R, and
P = X, v. We define the shifts operators {T§!};.,2 on Q by

Tew(v) = (v — ;b — 8,b,). (2.12)

The sample space Q of the configuration space of impurities (2, P) is, without loss of
generality, assumed to be compact, cf. [12, p. 372f.] for details.
We then write H" := H)}fzo , for the non-random DML.

2.3 Magnetic translations, regularized traces, and the DOS measure

We start our analysis by introducing discrete translation operators T, with y € 72 for
¥ € €2(A)

T,y (v) 1= ¥(v — b1 — v,by). (2.13)

The magnetic Schrédinger operator H” does, in general, not commute with standard
lattice translations T, but with magnetic translations T)}} instead. These operators
and powers of them, do not commute with each other, if T(;(’),l) and T(h1,0) generate the
irrational (A € R\Q) rotation algebra. Magnetic translations T)’} : £2(A) — (2(A) are

unitary operators of the form

My = uh T, ¥, ¥ = W)pen € L2, W) =1, y €22 (2.14)
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Hexagonal lattice

Dirac cones

Energy

Fig. 3. The two energy bands of the non-magnetic discrete Laplacian on Ag. The Dirac cones are
located at zero energy.

that satisfy the commutation relation
ThT] = ehosme v A prh, (2.15)
On the square lattice, we define magnetic translations as
(TR o) = eM?2uy —by) and (Th , w(y) = e M21u(y —by) (2.16)

h._ (mh h
and set then T/ := (T(} o))" (T(g 1))
On the hexagonal lattice, the magnetic translations Tf} : ZZ(AO) — ZZ(AO) are

unitary operators of the above form (2.14) with prefactors (uh(y) defined as

V)VGAO

. h
follows: Let a(y) = 2(y; — y,), then we can define uB(y)r*_BIZ;I_5252 = e'27smprAyB(y)
with * € {0,1} where uf(y),, = 1 and uf(y),, = ™). This way, the magnetic

translations on both lattices satisfy

hyrh _ 7h
TVH)»,H) - HA,TJs}w

h
T,. (2.17)
The functional calculus implies that for measurable f: R — R

T)f(H],) = fH] 15,)T) (2.18)
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such that for the Schwartz kernels f (Hi"w)[x, vl = (.1 (H{‘lw)8y) on the diagonal
f(Hil,w)[X,X] =f(Hf,T§zw)[X - J’1T91 - J’sz,X - )/1771 - )/27’2]~ (2.19)

To study the DOS of the model, we define, for a lattice I' C R2 and operators
A € L(*(I",C") given by A(s)(y) := Zﬁe[‘ Aly, Bls(B) with possibly matrix-valued kernel
Aly, Bl € C**", the regularized trace

- 1
trr(4) := lim ——— tren Aly, y1 (2.20)
r r—00 |BO(T‘)| yeI;B;o(r) ¢

provided the limit exists.

Birkhoff's ergodic theorem implies the a.s. existence of the regularized trace

, 2.21
|b1Ab2| |by Ab2| ( )

T x HI )lxx] Etrly, fE"
trA(f(H)’},w)) —-F (Z ewy S A,w)XX) _ trlw, f(H )

where |I;1 /\I;2|_l normalizes the number of vertices per unit volume. By Riesz’s theorem,
one can then associate to the regularized trace a Radon measure Puh the DOS measure,
and by the preceding discussion, this measure is a.s. non-random. Thus, pyr =: pyn a.s.

0) A
and therefore fRf(X) de;l(X) =1tr, (f(H)’flw)) a.s..

3 The Semiclassical Expansion of the DOS

We study the DOS by investigating operators f (Hi"w) using the functional calculus of
Helffer-Sjostrand [26]. We first recall that any function f € C(R) can be extended to
functions f e Z(C) such that f|R = f and sz = O(|3z|*°). Such functions f are then

called almost-analytic extensions of f. One possible way of definingf is by

~ 1 —~ . .
f&x+iy) = —xMY &) / X (V& (§)e'* s g,
27‘[ R (31)

X:w € CSO(R)I 1p'suppf-l,—(_l’l) - 1! X|(—],1) - 11
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[15, see Chapter 8] for details. A more pedestrian, but also more restrictive, way of

defining almost-analytic extensions, for smooth functions f € CX(R), is for n € N by

n

Foa+iy) = (Zf " () ) ) £ (x +ip)

r!

r=0 (3.2)
C(x+1y) = x(y/x), x €C, xl_11 =1, supp(x) C [-2,2].
Differentiating (3.2), one finds that |sz(z)| = O (|32|"), which follows from
n . r . n .
~ . i . i X+1
Df(x +iy) = Zf(’) (X)@ng(x +1iy) +f(”+1)(x)ﬂu. (3.3)
= r! n! 2
A similar computation shows that the quasi-analytic extension satisfies
(sz%(z)) o) (|5z|"—k) . (3.4)

The almost-analytic extension enters then in the Helffer-Sjostrand formula,

which states that for any self-adjoint operator P,
1 ~
f@ =2 / DF )P 2" dm(2), (3.5)
C

where m is the Lebesgue measure on C. For discrete random Schrdédinger operators

(2.11), this yields by applying the regularized trace

~ 1 ~ -
T\ (FEH ) = ;/CDZf(z)trA ((H{ﬁw - z)—l) dm(2). (3.6)

3.1 Magnetic matrices

Definition 3.1 (Magnetic matrices). Let f, (y) € C,(22 x 72; C"*1) at first, where w €

and y € Z%. We define magnetic matrices as discrete operators as

h 2,772, XN h o (o1 B oeymp(r.,8) _
aMf,) e (@ m), AN = (IO o =) L B)

These matrices act on ¢2(Z?; C") by matrix-like multiplication

@t yw, = > (4"¢)) | us (3.8)

v
8eZ2?
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h

, on the

For yet another set of discrete magnetic translation operators t
7Z2-lattice

+h
rsh(fw)(y) — e—zfasymp(y,a)nyw(y —5), (3.9)

we find, in analogy to (2.17), that magnetic matrices are covariant with respect to

discrete magnetic translations (3.9)
Ah(nyw)r)f‘ =AM (f,). (3.10)
Moreover, translations (3.9) satisfy the Weyl commutation relations

_L,;lrsh — eihasymp(y!ts).[;lt}il' (311)

Forf,g e C (2 x 72; C™*"), we introduce the product

F#r9),(v) = wa()/ - Z)gTyizw(z)e_i%"symp(%z)

zeZ?
" (3.12)
= D fu@)grg, (v — z)e” 2omme ),
zeZ?
This product is reconcilable with multiplication of magnetic matrices
AMF#9),u®) = A"(f,) (A" (g,) (W) (©). (3.13)
Moreover, defining the involution
fo@) =fre (=), (3.14)
we see that the adjoint of a magnetic matrix is again given by a magnetic matrix
(AMF) (@), h) = (g, A" (). (3.15)
Remark 1. The preceding computations show that magnetic matrices are the

x-representation of a C*-algebra Cy, which is the closure of functions f € C (QxZ?2; C"™*™)
with composition (3.12) and involution (3.14) under the norm |fllc, = Sup,.cq AR -
This defines a continuous field (as a function of h) of C*-algebra C;, cf. [6, Section F]
and [43].
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To connect operators H/{‘w with magnetic matrices, we define symbols

ag(1,0) =ag(0,1) = ag(—1,0) = ag(0,—1) = 3, and for the hexagonal lattice

1
ar

[0 1 1 {0 1
20,0:=3{ ) @@O=a0b:=5|_ )

fo o
a,(~1,0) :=a,(0,-1) =} L o) (3.16)

and a(n) = 0 otherwise. The random symbols are then defined as a, , g(v) = ag(y) +
A8o(¥)V,(0) or a; , n(¥) = a(y) + Ady(y) diag(V,,(rg), V,,(r1)).

Lemma 3.2. There exist unitary multiplication operators Uy : ¢?(Z%;C) — (%(Z?;C)
and Uy, : £%(Z?%; C?) — (*(Ap; C) such that

H!',u=UsA"@a; ,a)Us and H},  =UA"a,, U (3.17)

In particular, since operators U are multiplication operators, we find
fr, ((H{{w — z)—l) — by A by My ((Ah(aklw) — z)—l) . (3.18)
Proof. The 1st equivalence on the Z? lattice in (3.17) is obtained by 1st passing from
the symmetric to the Landau gauge and then conjugating this operator by Wu(y) :=

e 'z"7r2y(y). For the hexagonal lattice, the transformation is slightly more involved. We

start by defining two unitary maps: the 1st oneis U,z := ({VZ(V)) with recursively

veV(Ay)
defined factors
A o e
=1 - - = e nbitrbatfr - -
éﬂ’”O ! é‘)/1}J1+)/2bz+r1 € éﬂ)/1b1-‘-1/2bz+ro
i(-a S A
- - — (r1+Db1+ygba+g "y b +yzb2+f) - -
;-(V1+1)b1+)/2b2+r0 =€ e o é‘)/1171+}/2l72+r0 and (3.19)
i(—A - - _hytA L ~)
o o — y1b1+(ro+1)bgy+h y1b1+yobo+f o o
§y1b1+(yz+l)b2+r0 =e é'}/1131-i-)/2bz-§-ro

N N N N T
and U, : €2(V(A,)) — (2(Z2,C%), Uy(2) (y) = (z(ro + 71by + v2by) 2(ry + 1 by +V2b2)) -
The unitary transform is then Al(a,,.) = (U,UW")*H}, (U, U3W*), see also

Aw,0

[9, Lemmas 3.3 and 3.5]. [ |
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3.2 Reduction of DOS

We now continue with the derivation of the DOS. For this, we consider a ¥DO
representation of (non-random) magnetic matrices. To start, we observe the following
expansion of the regularized trace of the resolvent of the random operators in terms of

the deterministic one. Recall that we write H" := H" , for the non-random DML.

Lemma 3.3. The resolvent of the discrete random Schrédinger operator H{‘w satisfies

2
~ _ _ k~ _
tra((H, —2) ") = > SRR g, (H" —2) )
k=0

+ 2 Var(np, > (tr (L H" —2)7))? (3.20)

reWy

+O(°| @ — 27 P (L, —2) 7).

Proof. The resolvent identity then yields a 2nd-order approximation in the disorder

parameter A

w

HY, —2) = H 2 Al - 2) 'V, (H —2)”
+A2(H —2) Y, (B - 2) 'V, (H - 2) 7

w

+ O (B —2) ) (B, — 2) ) 3.21)

We study 2nd-order approximations in A since this is the leading-order level at which
the stochastic nature of the perturbation enters. Taking regularized traces in (3.21)
yields
o~ h -1 o~ h -1
try ((H, —2) ) = A = AE(V)D,)tr, (H" —2) ")
+ 2%, (HY - 27y, (H - 271V, (H - 2)7)
+0W3|E" - 27 |?|@EHE, — 7). (3.22)

Interchanging derivatives and regularized traces is easily justified by (2.21). Equation

(3.22) can be rewritten, by separating (independent) potentials on different vertices from
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the squares of potentials such that

tt'}A((I-Ih - z)ilvw(Hh - Z)ilvw(Hh _Z)il)
= by Aby| P Etr (1, H" — 27V, H" — 27V, H - 27Y)
= by Aby P E(W)2 tr 1y, (H! — 2)7°)

+1by Aby| ! Var(v) > tr (1 E" — 27 %) tr (1, E" - 27"). (3.23)

reWpy

Here, we used since (H" — z)~"[y,y] = (H" — z)"![T,y, T,y], cf. (2.14) and (2.19)
> H'-2x), T xH - 2T x,, T x,J(H — 27T, x,, %]
X1,X2€T/|//\,)/€Z2

= > H -2 T,x, xH" — 27 xy, xJH — 2)7 M xy, T, x)]

X1 ,X2€WA,}/EZ2

= > H' -2 rAdE" -2 i vIE - 2) v,

reWpa ,veA
= > (L@ - 272 tr (1 @~ 27). (3.24)
reWy
Inserting this into (3.22) yields (3.23). |

We now continue expressing the regularized traces of discrete Schrodinger
operators in terms of pseudodifferential operators. For vectors e; := (1,0) and e, :=
(0,1), the identity (3.11) reduces to

~h_—h _ ,—ih_—h_—h
T T, =€ T T (3.25)
This is a version of the canonical commutation relation. In semiclassical Weyl quanti-

zation, the same commutation relation is satisfied by
Opy () Op' (%) = e~ Opy¥ (%) Op}¥ (). (3.26)

Rather than analyzing directly the discrete operators H" := Hil:o,w or Ah(a) =

Ah(al\zoyw), we use a pseudodifferential representation that we obtain from the following

2202 J9qUISAON 8Z UO Jasn AJISISAIUN S)e}S BUBISINGT AQ L618/29/LPYEL/L1/Z220Z/2101e/Uiwl/woo"dno"oIuapes.//:Sdny Woly papeojumod



Density of States and Delocalization 13463

x-homomorphism © : .(Z%; C"™") — L (L2(R; C™")):

O = 0P} (Fx,6) = > f(r) Opf ((x,6) 1> €l )

yez?

such that ©(f#,9) = O(f) o ©(g).

See [27, Section 6] for details of this construction. Here, .#(Z2; C**") are the C™*"-
valued functions that decay faster than any polynomial power on Z?. We now define a
regularized trace tr for WDOs with periodic symbol such that tr;2 (A"(f)) = t}(Op;"l’(?)):

Definition 3.4. Let f € C®(RZ%; C™") be 72 periodic. Then we define the regularized

trace

fr(opl (f)) = /Tz tren £(X, £) drfrzdf. (3.27)

We can express the resolvent of the Hamiltonian in (3.6), by the C*-

homomorphism ® and the trace identity, in terms of YDOs

Q@ (x, hp,) := 3 (cos(x) + cos(hp,)) and

" . 0 1 + eiX 4+ eihpx (3.28)
Q¥ (x,hp,) = % . . ,
14+e x4 e—lth 0

which are the semiclassical Weyl-quantizations of

Qu(x,£) i= Gg(x, §) = L300+00sE)

0 1+e*4eft (3.29)
and Q. (x,§) i= @y (x,§) = (1+e_ix+e_ig g )
3
In particular, the C*-homomorphism ® implies
try2 ((A"a@) — 2)71) = &r((QV(x, hp,) — 2)71). (3.30)

The trace on the right-hand side is well defined, as (QY(x, hp,) — z)~! is again a
WDO with periodic symbol in & by the semiclassical Beal's lemma [46, Theorem
8.3], [26, Proposition 5.1]. To conclude, we can express the DOS of Hflw in terms of

pseudodifferential operators (3.29) as follows:
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Proposition 3.5. Let f € C3(R) and ]~” be an almost-analytic extension (3.2), then for

n =1, in case of the square, and n = 2, in case of the hexagonal lattice,

0 3 | ) ami

— e Z / D F )i (@ hp) ~217") dmi@ + OUFO1r®). 331

27T|b1Ab2|

Proof. By inserting (3.20) into the Helffer-Sjéstrand formula (3.6), we find

AP = ‘/ J(z)(zﬂ%ﬁu ((Hh—z)_l)
Ve p 3 (tr (ll{r} (Hh—z)_l)) +O(A3|%(z)|_4)) dm(2). (3.32))

reWy

Using D;f =0 (|?s(z)|4), as in (3.3) for the almost-analytic extension, we can compensate
the |3(z)| ™% singularity. To express the right-hand side in terms of WDOs, rather than
H", we use (3.18) and (3.31), which upon integration by parts yields (3.32). |

Our main result on the DOS for small magnetic fields is stated in the following

theorem:

Theorem 3 (Semiclassical expansion of DOS). For small magnetic fields 2 > 0 and
small disorder A, the DOS satisfies the following:

Square lattice (M): let I be an interval I c [-1,—1+8) orI C (1 — §,1] for some
3 > 0 sufficiently small (this interval is located at the bottom/top of the spectrum in

Figure 2) and f € CE’(I), then for functions gy ,, (independent of 1), defined in (7.19),

Ty (f(Ha ) = 25 D (2, (h) + AE(V))

neN

_ hVaETV))»Z Z (f”(?;(h)) £ (2 (h) G (2o (D), h))

neN

+ OIfligs A2 + k™)) as., (3.33)
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with Landau levels z,(h) = «(nh,h) — 1 defined, for n € N, by a Bohr-Sommerfeld

condition

Fa(c(§, 1), h) = { + O(h™), Fg(s,h) ~ > WF,g(s), FjgcCR),

1 1
Fou(s) = E/ £dx, v, =[0c8) € T?:2 - cos(x) — cos(§) = 25}, F g(s) = 5 (834
Vs

where y, is oriented clockwise in the (x, £) plane.
Hexagonal lattice (0): let I be an interval I C (-4, ) for some § > 0 sufficiently
small (this interval encloses energies around the Dirac points in Figure 3) and f € C2(I),

then for functions onr defined in (7.19),

oA FHS,)) = AblZf(Zn(h)JrME(V))

__ hVar(v)x? Z (f’/(Zn(h)) +f (Zn(h))gon(zn(h) h)) (3.35)
Z

27 |by Aba|
ne

+ O(If llgs A3 + h™)) as.,

with Landau levels z,,(h) = «(nh, h) satisfying «(—¢, h) = —« (¢, h), defined, for n € Z, by

a Bohr—-Sommerfeld condition

Fo(k(Z, )% h) = [¢|+ O(h™), Fo(s,h) ~ Foo(s) + D WF;(s), F;o€CO(R),
j=2

1 , .
Foo(s) = E/ £dx, y, = {(x,g) eT?:|1+e* 4|2 = 95}, F;,(0)=0, (3.36)
Vs
where y, is oriented clockwise in the (x, £) plane.
The proof of Theorem 3 is given at the end of this article in Section 7.

Remark 2. The different prefactor h/2n for the square lattice compared with h/7 for
the hexagonal lattice is due to the two-fold degeneracy of quasimodes on the hexagonal
lattice (two Dirac cones and therefore two potential wells), cf. Figure 3.

In particular, for functions f, whose 1st and 2nd derivative vanishes at the
Landau levels, the randomness only causes a shift of the Landau levels by AE(V). This
can be thought of as a semiclassical universality result for the integrated DOS, if one

takes f to be (a smooth approximation of) an indicator function. By this, we mean that
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Bands accumulating at Landau levels

0.4 i
Landau Level _
0.2
>
> Landau Level
P
o
c
L
02
Landau Level
-0.4

Fig. 4. Energy bands for magnetic flux h = Zn% on Ag close to the zero energy level. Bands
concentrate around certain energies, which are precisely the Landau levels defined in Theorem 3.

the leading-order contribution in the semiclassical parameter A > 0 in the second line
of (3.38) vanishes.

We start by showing that for small enough magnetic fields without disorder
there exist spectral gaps between the Landau levels stated in Theorem 3, cf. Figure 4.
The presence of spectral gaps is crucial for the study of the QHE, as the Hall
conductivity remains unchanged as long as the Fermi energy stays inside a spectral gap.
From the Bohr-Sommerfeld condition stated in Theorem 3 in the absence of

disorder, that is, A = 0, we obtain to leading-order approximative Landau levels zW(h)
Fouls (z(.l}n(h)) = nh, and F, |, (zg;m)) = nlh, (3.37)

where F) is the respective normalized phase space area in the Brillouin zone as stated in
(3.37) and (3.39) and I is the respective region of interest, that is, the respective interval
defined in Theorem 3. While approximate Landau levels z(.ly)n(h) for the square lattice
are uniquely defined by the first of the equations in (3.40), there are two solutions for
the hexagonal lattice (because of the upper and lower cone, see Figure 3): let us recall

from Theorem 3 that the asymptotic expansion yields

Fg(zgn(h), h) = Fy g(zg ,(R) + O(h*zg ,(h), k) = nh + O(h™), .38
F (20, (M%) = Fy (2, (M%) + O(h*z,, ,(W)*) = In|h + O(R™),
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which gives for the leading-order approximations (3.40) of Landau levels

Zg (W) = zg (W) + O(h®) + O(h*™)

. (3.39)
Zon(W? = 250 (W2 + O(nIh%) + O(R™),
Hence, by Taylor expansion, Landau levels are to leading order given by
Zan(h) =Zan(h) + O (nh®) and z,4(h) =0+ Oh™)
(3.40)

Zon(R) = 255 (h) + O (|n|%h%) n #0.

To make these expressions more concrete, we approximate the cross-section for

the square lattice by using that

2 2
cos(x)+cos($)+1:(x )4+ (& —m)

3 3
2 1 + O(x° + £°).

Thus, Fy g(s) = 2s + O(s?), which yvields for the Landau levels

M (n—3h

Zgn () = 5 +Om?h?), neN.

For the hexagonal lattice, we use that |1 4 eix 4 it |2/9 vanishes at (x,&) € Zi:l: (ZT”, —ZT”) ,

that is, at the Dirac points, see Figure 3.

(%,

In small neighborhoods of + —2?”), we can make a symplectic (and thus area-

preserving) change of variables
y=ax+§), n=b(§—x=+ %”) 2ab =1,
and find that

1+e* + e =cixiy) + 0%+ 12,

l+e*te® =cint iy) + OF? +n?), (3.41)

where ¢ = 31272 by choosing a = +2-23% and b = £2-237. We thus conclude that for
a Fermi velocity vy := +/2¢/3 = 37%/4

zély,)l(h) =vgsgn(n)ynlh+O(nlh), nelZ.
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Proposition 3.6 (Spectral gaps between Landau levels). For small & > 0, the intersec-
tion of the region of interest I, in Theorem 3, with the spectrum of Hh .= H{‘zolw, S (HMNI,

is contained in disjoint intervals defined by constants Cg ,,, C, ,, > 0

Ban(h) = [zg ) (h) — Cg ,h%, 2@ (h) + Cg nh%), m € (1, ..., Ng(h)] .42
3.42
Bon(h) =280 (h) — C, yh2, 20 () + C, , R3], € [=N (R), ..., N, ().

Moreover, numbers N(h) have the property that limy o N(h) = oc.

Proof. Since the DOS measure is supported exactly where spectrum is, we conclude
that the contribution to the DOS from the Landau levels, that is, the 1st term on the
right-hand side of (3.36) and (3.38) is contained in closed Landau bands

Ban(h) i= |28y (h) = Cauh® Zan(h) + Cayh®|, meN
(3.43)
5 5
B, o (h) = [zg{;m) — C, ,h2, 20 (h) + Co,nh?] ,ne’

It remains to exclude spectrum of O(h*)-size, see the error bounds in (3.36) and (3.38),
outside intervals B,,, possibly after modifying constants C,. This can be shown, using
semiclassical techniques as in [9, Proposition 5.2]. To be precise, the proposition in [9]
states that there exists an operator Q' (x, hp,) whose point spectrum for the hexagonal
lattice around zero coincides with the Landau levels, such that if for z € nbhd(0), and

some fixed N,
d(z, =(QY (x, hpy))) > k'

then the operator O‘(’)"(X, hp,). that is, isospectral to Hé’) cf. [41, Theorem 6.2], is also
invertible for such z. Hence, Hg does not possess any spectrum between the Landau

bands. The same argument applies to the square lattice in a neighborhood of +1. |

The preceding proposition implies that under small disorder, the closed Landau
bands in the region of interest will broaden but are still non-overlapping since the

decomposition Hf,w = H" + .V, implies

s@],) c {zeRid@ DE) <21V} (3.44)
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It follows from Proposition 3.6 and (3.47) that for sufficiently weak magnetic fields h >
0 and small disorder A € (0, A (h)) there exist for H){‘Iw finitely many (disorder-broadened)
disjoint intervals B,, , (k) D B, (h) with n € {1,..,Ng, (h)}, for the square lattice, or with
n € (=N, (h),.., N, (h)}, in case of the hexagonal lattice, such that

S(HP,) CU,B, ,(h) forall x € (0,4y(h)), (3.45)

where the union of n is taken over the respective sets.
Moreover, we assume without loss of generality that the disorder-broadened

Landau bands are nested, that is, for v < A we have B,, ,(h) C B, , (h).
4 Quantum Hall Effect

4.1 The QHE without disorder

We start by studying the QHE in the absence of disorder using the DOS stated in
Theorem 3 (we assume h € R\Q in the following paragraph). We take Streda'’s formula
[42] as the definition of the Hall conductivity:

Definition 4.1 (Streda formula). For (possibly random) Schrédinger operators H. {'w with

Fermi energy p inside a gap d(u, Z(Hil,w)) > 0 a.s. we define the Hall conductivity by the

Streda formula
Cy(HL,, 11) = |by A byl Dyir, (11(700,#] (H{ﬁw)) . (4.1)
The DOS is differentiable, since by (2.21) the right-hand side of

Etr 1y, llI(wa)

ﬁ“A(ﬂI(H){"w)) = T
1 2

is differentiable. This follows from holomorphic functional calculus
1,H},) = (27i) ! f(z —H',)7! dz,
I

as wa depends analytically on A&, that is, h — III(Hf’w) is differentiable as long as I is
in a spectral gap. Thus, h — fi‘A(]lI(H{"w)) is differentiable as well.
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On ¢2(Z?), we define the rotation algebra A; as the operator norm closure

Ap = 1T € LWA(Z%C);3keN, ¢, eC:T= > ¢ tht . (4.2)
lvl<k

Magnetic matrices introduced in Definition 3.1 form a x-representation of the irrational
rotation algebra.We then focus on the subalgebra A;° C A; of magnetic matrices with
rapidly decaying symbols, that is, with coefficients in (4.2) that satisfy (c,) € S (Z?;C).
The set A7’ is still a locally convex algebra equipped with standard seminorms inducing

decay faster than any polynomial power |(c,)|; := sup, 2

1+ Iyl)icy‘ cnxn. Moreover,
the inverse of a magnetic matrix Ala) € A, is again a magnetic matrix [26, Proposition
5.1], that is, we have for z ¢ %(A"(a)) that (A"(a) — 20! € A%, again. (Equation
(3.25) shows that magnetic matrices satisfy the canonical commutation relation with
—h rather than h.)

The smooth subalgebra A3° is stable under holomorphic functional calculus
[12, Chapter 3, Appendix C], which implies that Fermi projections of A"(a) are again
elements of A%, as long as u ¢ »(AMa))

1o, A"a) = (Zni)—ljf (z—AMa) ™! dz e A%,
% (AMa))

The irrational rotation algebra .A;° possesses a unique normalized trace (since the weak
closure of A; is a (hyperfinite) type IT; factor) [39, Proposition 2.3, 2.4], which therefore
agrees with the trace tr we use in this article. The K, group of the irrational rotation
algebra is given by K,(Ay) = Z + h Z [36, 37]. Moreover, there exists a distinguished
projection [38], the so-called Powers—Rieffel projection Pr, which together with the
identity generate the K, group. The inclusion of K, groups of the dense subalgebra A;°
into the one of A4; is an isomorphism [11, Appendix 3, Proposition 2a], which implies
that the above results remain true for Ap° as well.

This implies that for any projection P € A°
tr,2(P) = y;tr72(id) + y,try2 (PR) = ¥; + ¥oh. (4.3)

In the language of noncommutative geometry, our trace 7, := try2 is called the 0-cocycle.

For the QHE the 2-cocycle 1, with ay, a;, a, € Aj° is of particular importance

7,(ag, a1, ay) 1= 15(ag(81(a;),(ay) — 8,(aq)é1(ay))) (4.4)
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with derivations
§,(x)) =iyt and 8,(z)) =iy, (4.5)

In particular, we write ®(ay) = t5(ag, ag, ay) and will revisit © in the Kubo-Chern
formula for the Hall conductance. It follows then from [12, Corollary 16 in Chapter III,
Section 3] (see also [12, p. 359]) that for any a, € K,(Aj}°) one has

where y, € Z coincides with the eponymous integer in (4.3).

The semiclassical description of the DOS in Theorem 3 implies together with
the results from the previous paragraph the following proposition (we gauge the
Hall conductivity for the hexagonal lattice in such a way that a full band has Hall

conductivity zero):

Proposition 4.2 (Quantum Hall effect). Let 2 > 0 be small enough and consider zero
disorder, that is, A = 0. The Hall conductivity is then in the spectral gaps between closed
Landau bands (3.45) for the discrete Schrodinger operators H” given by

cy(H"(ag).w) = 2, 1 between By, & Bg,,; with ne{l,. Ng(h)} and

2rzz;r1, n between B, &B,,.; with 0<n<N_(h) (4.7)

cyH" (a,), 1) =

Zn-1 )i between B,, 1&B,, with 0>n>-N_(h).
Proof. We just have to find the integer-valued coefficients in (4.3), which we can obtain
from the semiclassical expressions for the DOS in Theorem 3. Since Theorem 3 does
not allow us immediately to study spectral projections HI(Hf,w), we use smooth cut-
off functions ﬂI(H)}},w) that coincide with the indicator function in the Landau bands and
decay to zero in the spectral gaps (the DOS is supported on the spectrum, only). Theorem

3 implies that for Fermi energies © between Landau bands

A (1o, (HR) = 25 D Uy ,1(Z, (M) + OR™)

neN

iy (g, (HD) = —= 3 Tig 192, (R) + O().
nez

(4.8)
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Since the Hall conductivity is constant in spectral gaps and continuous in the
magnetic field, the O(h*°) error term in Theorem 3 does not contribute to (4.3). We
therefore find in (4.3) that y; =0 and

Yom =7, i between By, & By, ., with ne{l,. Ngh)}

2n+1, pbetweenB,, & B, ,, with0 <n <N_(h) (4.9)

V2,0 =
2n—1, u between By, 1&B,, with 0 > n > —N_(h).

Let us recall how the Hall conductivity relates to the geometric framework of
condensed matter physics [7], see also [40], following the construction in [12, pp. 237-
238]: we study the algebra Q* := A ® A*C2. Using derivations (4.5), we can define the

differentials

dla®a) =38 (a)e; Na+8(a)é, A
(4.10)
d(a, ®e +a,®e,) = (8(ay) —8,(a)) ®e; A&,

For forms of top degree, there is the trace | : Q*? — C given by Ja® (é; néy) = agy. Let
p € A}’ be a projection with module M* := pA7°. For m € M* and a € Aj°, we define

connections (Berry connections) V; : M — M
Vi€a) = Vi(§)a+§ §;(a) :=p §;(§) a+ £ §;(a), i € {1,2}.

The curvature tensor (Berry curvature) is then defined as R := [V, V,] ® (&; A &,).

The 1st Chern number (Berry phase) is an invariant of the module, independent
of the connection, defined by Ch(p) := (271)~! [R = (27i)~1O(p).

With this vocabulary at hand, we now come to an equivalent 2nd definition of

the Hall conductivity:
Definition 4.3 (Kubo-Chern formula). Let u be an energy in an a.s. spectral gap of

Ah(akyw) with associated spectral projection P, := 1_, (Ah(axlw)), then the conductiv-

. 2 2 . .
ity tensor (oj;);;, € C°*< satisfies

oy i= —1 Tz (PallPa, X0, P4, x,l1) = —iE [O(P,)].
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The following proposition states that the definitions of the Hall conductivity
by the Kubo-Chern and Streda formula yield the same result and are the same for all

equivalent versions of the (random) DML.:

Proposition 4.4. Let I be an interval such that 9I is in an a.s. spectral gap of
Ah(akyw) and let P, := ]lI(Ah(aklw)), then the Streda formula agrees with the off-diagonal

conductivity in the Kubo-Chern formula
Dytrya(Py) = —i trys (PAlIP,, %11, [Py, x,]1) = —iO(Py).

Moreover, let Pyn (I) = HI(H){‘Iw) be the Fermi projection of H" | the Kubo-Chern

Ao Aw!

formulas of projections coincide for Xi(yll;1 + VZBZ + 1) =
try (PyllPy, X,1, [Py, X,11) = by A byl ™! {12 (PAIIP,, X,1, [Py, X,11) - (4.11)

Proof. The 1st part of the proposition follows from the noncommutative framework
and a direct computation can be found in [43, Theorem 7]. (The different sign compared
with [43, (51)] is due to a different sign convention that we use for magnetic matrices.)
The 2nd part follows as UH;{Z,w = Ah(a,\'w)U for a unitary multiplication operator U, by

Lemma 3.2,

|Bl AN Bz|fi‘A (PH[[PH’XI]’ [PH!XZ]])

=E tr ((U*8y, PyllPy, X,], [Py, X,11U*,))
(4.12)
=E trcn (80, PallPa, x,1, [P4, %51180)

]

Finally, we shall use a 3rd way of expressing the Hall conductivity using the
relative index of projections. This representation is due to Avron et al. [4]. The version

used here can be found in [5, Chapter 14.5].

Definition 4.5 (Index-theoretic formulation). Let P, , be an orthogonal projection

on ¢?(Z?) satisfying the covariance relation T;’}PA,TW = P)\,wt}tl with translations (3.9)
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such that

Z |x] (1[«:|Px,w[0,x]|3)1/3 < oo. (4.13)

xeZ2

Using unitary operators (U,¥)(x) := e %™y (x) with 6,(x) = arg(x — a) € (-=x,7],
(here we use the obvious identification of R? with C), the off-diagonal component of the
conductivity tensor o, , is given by the almost sure and a € T} independent value of the

relative index
2n0y , = ind(P, ,, U,P, ,Us) = Etr(P, , — U,P, ,Us)?

and coincides, if P, , is a spectral projection satisfying the conditions of Proposition

4.4, with the value given by the Kubo-Chern formula in Definition 4.3.

Remark 3. The index-theoretic formulation implies that the Hall conductivity is
integer-valued (up to the prefactor (2m)~!) under disorder, too. This follows of course

also from the Kubo-Chern formula using the approach presented in [6].

The index-theoretic formulation of the Hall conductivity implies that the Hall
conductivity is invariant, see Proposition 4.2, under mild disorder in the spectral gaps

between closed disorder-broadened Landau bands:

Proof of Proposition 1.1. Consider a Fermi level u between disorder-broadened
Landau bands B, , and B, ,, that is, u is in a spectral gap of Ah(axlw). We need to
show that for Fermi projections P, , := 1_., (Ah(akyw)) and A sufficiently close to zero,

we have almost sure equality
ind(P, ,, U,P; ,U) = ind(P,,,,, U Py, UL). (4.14)

By the resolvent identity and holomorphic functional calculus, we find for the difference

A

Pk,w_PO,w: 2_7Tl

7{ A" -2 'vaha, ) - 27" dz,
(—oo,ul

which implies that lim, |, P, ,x = Py ,x by dominated convergence, which can be argued

using the usual Combes—-Thomas estimate for the pointwise bound.
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LetT, , =P, , — U,P, ,U; be the difference operator, we then find

[ind(P, ., UpP, ,Us) = ind(Py o, UpPo,, Up)| = [tx(T},,) — tr(T,)|

(4.15)
< |2 tren (8, (@2, = T80, )| + | X tren (8, (T8, = T8,)9,)

lyl=n lyl>n

It suffices to argue that for A small, the difference of indices is less than one almost
surely to show (4.14). The 1st term on the right-hand side is continuous in A by strong
convergence and can therefore (for any fixed threshold n) be made arbitrarily small by

taking A small enough. Thus, by Hélder's inequality, we find for the 2nd term

3 2
sup z <8V’T}~rw8)’> = ” T)\,a) H[,3 TA,w5|y|>n 3’ (4.16)
1€(0.20) || 12n,
We can then use the elementary identity
o i0a (0 _ efiG‘,(X+y)‘ _ ‘ o0 () _ efiea_y(x)) < min [ 2, |yl ] ,
B Vix—eallx+y—af
see [5, (14.24)], to estimate [5, Lemma 14.3 and (14.27)]
1/3
3
E HTA,a)8|y|>n 3 /S Z E Z |Tk,w[X+y'X]|
yez? |x|>n
1/3
S| DB lx+y,x|? e i) — gt 3 (4.17)
yezZ? \|x|>n
1/3
1/3 . .
< (BB 07) [ 3 [t - )3} <o,
yeZ? |x|>n

The standard Combes-Thomas estimate implies that (4.13) is uniformly bounded for
A € (0,Ay). This implies that the summand in (4.17) is uniformly bounded and by the

dominated convergence theorem, this expression goes to zero as n — oc. |
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5 The Metal/Insulator Transition
5.1 Measures of transport

For our discussion of metal/insulator transitions, we first recall the definition of
transport coefficients stated in [19]. Even though the results in that article are stated
for non-magnetic Schrodinger operators, the results still apply to(discrete) magnetic
Schrodinger operators as the authors state in the beginning of [20, Section 4]. Dynamical

properties are studied using weighted norms

_is77h 2

where ¢ € Cg° (R) localizes to a fixed energy window. In particular, we say that at
energies E, Hi‘,w exhibits Hilbert-Schmidt localization if there is an open interval I > E
such that for all ¢ € C2°, (I) and allp > 0

E [supMi"w(p,;“, t)] < 00.
teR

The union of all such energies comprises the set Ef'loc. We also define expected time-

Césaro averages

h _ Y et T g
M (p,¢,T) = M, (p,¢.t))e t.
0
The (lower) transport exponent is defined by

log, Mf(p, Z, )
plog(T)

B, ) = lim inf , for p>0,¢eCP(R)

and from this one defines the p-th local transport exponent

Bl(p,B) =inf sup Bl(p,¢)€l0,1].
IBE{EC??+(I)

The local lower transport exponent is then defined as ,Bi’(E) = SUPp. ﬁi‘(p,E). The

exponent ,Bi’ (E) is a measure of transport at energy E. This coefficient allows us to define
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two complementary regions: the (relatively open) region of dynamical localization or

insulator region
s = {F e R; 1E) = 0} (5.1)

that coincides with Zf'loc [19, Theorem 2.8] and the (relatively closed) region of

dynamical delocalization or metallic transport region
shoD {E e R; pI(E) > 0} . (5.2)

An energy E at which the transport coefficient ﬁf jumps from zero to a non-zero value

is called a mobility edge.

Remark 4. Germinet and Klein [19, Theorem 2.10] imply that in two dimensions, the
random Schrédinger operator Hf » has the property that for all E € R for which the
transport exponent is positive ,Bi’(E) > 0, the coefficient satisfies already ,Bil(E) > 1/4.

Fix ¢ > 0 and let K be the multiplication operator by (x)! ™. The random measure
of Hf,w is defined for Borel sets B C R by u;, ,(B) := |[K~? llB(Hi"w) ||2£2 is supported on
the spectrum of H;{L,w' such that u; ,(B) < 00 if B C E(H{”w) is bounded.

Whenever the multiscale analysis in [21], which applies to magnetic Schrédinger
operators, as explained in the beginning of their Section 2, applies to energies in the
region of dynamical localization, this has a strong implication on the eigenfunctions
that the authors call summable uniform decay of eigenfunction correlations (SUDEC),

see [21, Corollary 3], which we recall in the following definition:

Definition 5.1 (SUDEC). For a bounded interval I withI C Zf’DL (H{‘,w), we say that Hi’w
exhibits SUDEC in I if the spectrum of H{‘w is a.s. pure point and for each eigenvalue
E

nos € I there is an ONB (@, o)je{1,..vm,,) Of the finite-dimensional eigenspace

.....

ker (H!', —E, ,,) such that for any & € (0, 1) thereis C;, , . > 0 such that

||¢n,i,k,w(x) ” ||¢n,j,k,w(y) ” = Cl,g,w,k\/an,i,k,w\/an,j,k,w(X>1+8 (Y>1+€e_|X_Y|§- (5.3)

Moreover, ZnEN,je{l,Z ..... Un,k,a)} an,j,k,w = H’A,w(l)'

It follows from standard arguments that the operator H

o and equivalently

Ah(akyw) satisfy SUDEC in the regime of dynamical localization.
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5.2 Dynamical delocalization

We now turn to the proof of Theorem 2 showing that between disjoint disorder-
broadened Landau bands there exists a mobility edge.

We study covariant projections that satisfy the following condition:

Definition 5.2 (P). A covariant projection on ¢2(Z?; C") is said to satisfy condition (P) if

for constants &£ € (0,1), k > 0, and K, < co the following bound holds
x|t
1PLO, X1l = {89, P8} || < Kp(x)¥e™ ™"
Clearly, for covariant eigenprojections P, , := llEnm(Ah(akyw)) on a single energy,

(SUDEC) implies (P) with k =1 + ¢ and Kp := Cy¢ , 5 Z:ii\” o

The index formulation of the Hall conductivity implies immediately by the

niiw:
cyclicity of the trace that if P is a covariant finite-rank projection satisfying (4.13) then
ind(p, ,, U,P, ,Us) =tr (P, , — U,P, ,Us) =0. (5.4)

Moreover, for two orthogonal covariant projections satisfying sufficient decay proper-

ties, one finds that [6, Section E, Lemma 12] for ® as in Definition 4.3
AP+ Q) = O(P) + O(Q). (5.5)

Lemma 5.3. Let P be a covariant projection satisfying condition (P). Then the quantity

©(P) is finite and is bounded for any ¢ € (0, 1) by a finite constant C; , > 0
IE(S0, PIIP, %41, [P, x,1160) Il < KpC .-
Proof. Condition (P) implies the following bound:

IE(8o,PIIP, x,1, [P, x,118¢) g2 [l cn = I{E([Lxy, P1, P15y, [x5, P18g) 2 [l cn

< ElllLxy, P, P13y |12 Elx,P%01% < \/EllxyPol% /EllxyPogl1%

< Ellx; Psol% + Ellx,Psoll% < D X112 Ell (39, P3y) 212 (5.6)
xeZ?
2(1+k) — &
SKED IxlE Ve M < K22,
xe7?
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We can now finish the proof of Theorem 2:

Proof of Theorem 2. Let us assume that Hil,w would have only spectrum belonging
to the region of dynamical localization. For an interval I = [A;, A,] where A, is in one
spectral gap between disorder-broadened Landau bands and %, in another such gap,
it follows for &, , the set of eigenvalues of Hflw inIand ¢, , = Upey My with M, a

subset of &, , of cardinality min {m, dim (ran(1,(H},))}

o4 a, = >, 0dg, @A"a,,))+0dg \um, A"%a, ),
En,A,(ueMm (57)

=0

which vanishes by letting m — oo due to (SUDEC) and Definition 5.2. Hence, the
Hall conductivity must not jump for operators wa which contradicts the findings of

Proposition 1.1. u

Remark 5. To prove delocalization, the type of disorder was in so far irrelevant, as we
only assumed the disorder to be small. Other discrete models to which this argument

applies are discussed in [17, Remark 3.13].

6 Honeycomb Structures with Flux Close to a Rational

Hitherto, we studied the case of small magnetic flux h > 0 on both the square and
hexagonal lattice. We will now continue by studying small magnetic perturbations of
rational magnetic fluxes 27 p/q for the hexagonal lattice, see [26] for a similar analysis
in case of Harper's model.

We start by showing the existence of Dirac cones for rational flux ¢ = 27 p/q for
Hg at energy level 0. In the sequel, we write ¢ for the magnetic flux and use the variable

h to denote small perturbations thereof.

6.1 Dirac points

For magnetic flux ¢ = 27p/q, Hg is a periodic operator. Let k = (k;,k,) € T}, and let
Hg(k) be the operator Hg on ¢%(A) subject to the pseudo-periodic condition:

Z(]/ + qurrJ) = eiklz()/,rj): Jll = ]-! 2/
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where {51,52} is the basis vector of A and {ry,r,} are the vertices in the fundamental
domain W, .

We say that an energy E corresponding to some quasi-momentum k in the
dispersion surface of Hg is a Dirac point, if in a neighborhood of such quasi-momentum,
for some positive ¢ > 0, there are two distinct branches of eigenvalues Fi(Hé(k))
such that

F . (HY(k) =E and
) ) 6.1)
F (H?(k)) — E = +clk — k| + O(|k — k|?).

Next we will present the proof of Theorem 1.

Proof of Theorem 1

The proof is built on some results of [24]. Recall Hg; is a tight-binding Schrodinger
operator with flux ¢ on the hexagonal lattice, acting on ¢2(Z?, C?).
The Floquet matrix of Hg(k) is

1 0 I, +é*g, +eRK 0 A
Mo(k) - 5( —iky 7% —ikg g ! P )= * ! (6.2)
I, +e " Jp ,+e 2Ky 0 A* 0
where J,, , and K, are g x q matrices, which are defined as
—di 1—1)¢14q
Jpq = diag ({e }jzl) , (6.3)

and

1 if k=j+ 1(mod
Kjr = U ? (6.4)
0 otherwise.

The solutions of the characteristic equation det(Mn(k) — 2) = 0 are the Floquet

eigenvalues of Hg (k), which we label in increasing order:
F (k) <Fyk)<--- < qu(k)-

Take Bj = UkeTsz(k), 1 <j < 2q, to be the j-th spectral band of Hg The following was

shown in [24].
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Proposition 6.1. We have
. {Bj}]?gl are non-overlapping.
e B,NB ., ={0}

The set S = {(k,Fj(k)) : k € T3} is called the j-th dispersion surface.
Taking the square of My (k), we arrive at

M2(k) = AA* 0\ 1 (81 + Mqp(k) oA , 6.5)
0o AA4) 9 0 31, + My (k)

where

Mp(k) =e*g,  +e ™y tefek, +e ek

i(k1—k2) g+ —i(k1—kz) 7%
+et't™ KgJpqte 1 Jp.qKq (6.6)

and for M, (k) one just exchanges Jp.q and K, Furthermore, M(k) and MT(k) have the
same non-zero eigenvalues. Let us denote the eigenvalues of M,(k) by {Ej(k)}f:l, where
each E; is an analytic function in k, note that we do not arrange them in increasing order

here. Clearly, we have

q
dety(k) — 1) = [ [Ek) - ). (6.7)
j=1

By (6.5), M, (k) + 3Iq is positive semidefinite; hence, Ej(k) > —3for 1 <j < g, and the
following holds:

1 1
(Froll .\ = H§ /Ej(k)+3} :j=19 and {F,, (b} _, = [_g /Ej(k)+3] L j=14.

(6.8)

By Proposition 6.1, one concludes that —3 € UJ‘.]:1 UkeTy E;(k). Without loss of generality,
let

E (k) = -3. 6.9)
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Since the bands are non-overlapping, E; (k) must be a single eigenvalue; hence, for 2 <

J < q, we have E]-(I:',) > —3. Now, since —3 is the minimal value of E;, we have

oE

The following Chambers formula was derived in [24], see similar formulas in [1].

Proposition 6.2. We have
det(Mp (k) — ) = f,, ;) + 2(—1)9" (cos gk, + cos gk, + (—1)?*! cos q(k; — ky)), (6.11)

where f, ;(3) is a polynomial in A (independent of k) with leading coefficient (—1)%.

Clearly, this proposition yields that

det(M;(k,, ky) — A) = det(M,(k, —+— 2 kz) — ) =detMy(k,, ky + 27”) —2), and
det(My(k,, ky) — 1) = det(Mp(—ky, —ky) — A).

Hence, we can restrict our attention to

(ky k) € [o, 5) x [—f,z).
q q'q

In the following, we denote
2(—1)%(cos gk, + cos gk, + (—1)9" cos q(k; — k,)) := 9,k (6.12)
for simplicity. A direct consequence of Chambers’ formula (6.11) is that
Ugers Z(Mp(k)) = {2 : gé%lgq(k) <fpq®) = rkré%gigq(k)}- (6.13)
Use the fact that the energy —3 is the bottom of the spectrum UkeT; ¥ (My(k)), we have

Jp.q(—=3) = maxgq(k) (6.14)
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Simple computations show that
Igé%)ggq(k) =3. (6.15)
Furthermore, for even g, the maximum is attained at
gk € {(/3, —7/3), (=7 /3,7/3)} + 2n7?, (6.16)
and for odd g, the maximum is attained at
gk € {(21/3, —27/3), (—27/3, 270/3)} + 27w Z2. (6.17)

Plugging k = k and A = —3 into (6.11), using (6.7), and the fact that E; (k) = -3,

we have

q
0= []E k) +3) = det@y (k) +3) = £, ,(~3) — g, (k). (6.18)
j=1
Hence, we have
~ T T - 2 2
k= (— ——) forevenq, and k= (— ——) for odd gq. (6.19)
3" 3q 3g 3q

Differentiating (6.7) w.r.t. kj,j =1, 2, and taking (6.11) into account, we have

2q(—1)T (—sin gk, + (~Dsing(k; —ky)) = >0 ) T [T, Ek) — 1)
j#Em

(6.20)

2q(—-1)T (—singk, — (~1)Ising(k; —k;)) = >0 ) G20 [0, Bk - 2.
j#Em
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Differentiating (6.20) again w.r.t. kj,j = 1,2, we have

2¢*(—=1)7T (= cos gk; + (—1)9cos q(k; —ky)) = > L, %ET'I"(k)g%(k) qu:1 (E;(k) —2)

m#t j#Eme
2
+ 30 S [T, (k) — 1)
! j#m

2% cos q(k; — ky) =>4 OEn, (k)g—fg(k) qu=1 (Ej(k) — 1)

m, =1 0k;
m#l j#Em,L
q 2B, q
+ 2 m=1 skt R [T (k) — 1)

j#m

2¢*(~1)7 (— cos gk, + (D)% cos qky —ky) = X1 SRR [1%_, (E;(k) — 1)

m#L jEmL
2
+ 3o S (o [T, (k) — ).
2 g
j#m
(6.21)
We plug in k = k and A = —3. Using (6.9) and (6.10), we have
[2¢2(-1)% (— cos gy + (-1 cos q(ky — ky) = TE B [T, E k) +3)
2q? cos q(ky — ky) = 72 (k) [T, (E;(k) + 3) (6.22)
2¢% (=197 (— cos gk, + (~1)9 cos q(k; — k) = ?jTE%l(fc) [T, & (k) +3).
Hence, the Hessian matrix
D} i Ei(k)
_ 2q2(—1)‘1 cos ql~c1 — (=14cos q(l~c1 - I~c2) (=1)4cos q(l~<1 - l~c2)
J'?:z(Ej(fc) +3) (=1)42cos q(l},1 —ky) cos gk, — (—1)2cos q(k; — k)

(6.23)
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Plugging in the values of k, see (6.19), we see that the Hessian matrix for either case is

the same:

DikEl(fc)zL L=z , (6.24)
[L,E R +3) \-5 1

which is a positive definite matrix. By doing symplectic change of variables

4
y(k) = a(k, +ky), n(k) =b (kz kot %) if q is odd, and

2
3q

(6.25)

yk)=a(k, +k;), nk)=b (kz —k + ) if q is even, where

a=2"123"1/4 agnd b=2"1231/4

clearly y := y(fc) =0and 7 := 77(]:7) = 0. Let E‘l (v,n) = E;(ky,ky). One then checks that
using (6.24)

2 = _(3(ky, k) )T 5 - [0k, ky) )
Dy,nEl(0,0)_(—a(y’n) 0,0)) D% . E k) B (0,0)

___V¥3¢ (10
C,Ek) +3)\0 1 (6.26)

d(k ’k 2—1/231/4 2—1/23—1/4
with M(O,O) = )
oy, n) 2-1/231/4  _gl/23-1/4

Thus, we have in new coordinates close to each well

V3¢q?
2[T, Bk +3)

By =3+ (v +n%) + Ol ). 6.27)

This yields for the hexagonal lattice using (6.8) the Dirac cones

q
3 2L, E () +3)

Fyyy (k) = Iy, mIl+ Oy, M. (6.28)

6.2 Semiclassical analysis close to any rational

In this subsection, we use variables (x,&) instead of k = (k;,k,) to emphasize the
underlying phase space structure. This will generalize magnetic matrices in Definition

3.7 and their connection to pseudodifferential operators as in Definition 3.4. For the
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study of magnetic fluxes ¢ = 271% + h with gcd(p, @) = 1, we use that [30, Section 1] there

is a C*-homomorphism mapping scalar-valued WDOs with Z2-periodic Weyl symbol

Opy (@) = > a,(y)Opy ((X,g) . ei<<x,s>,y>)
yeZ?

to matrix-valued ¥DOs Op‘}’l"(@)) on L%(R, C? ® C9) with symbols that are the Fourier

transform of

bla,) = (efinyzh/zao(y) ® [(Jp,q)y1 (Kg)yz])yezz

with J,, . and K as in (6.3) and (6.4). Note that y,;y, = 0 for any an(y) # 0, hence

d(a,) = (%(V) ® [(Jp,q)yl (KZ)VZ]))/EZZ '

In particular, the C*-homomorphism preserves regularized traces, up to constants,

tr (Op;v (&;)) = /1r2 trez (@5(x, €)) % =a,(0)=q 'ftr (Op‘,’l" (CD/(a\O))) (6.29)

*

and, as follows by combining [32, Theorem 2.1] with [30, 1.2], also spectra
S(#H*) = £0py @) = = (Op} (®(@y))) (6.30)

Recall that M = df(cg), see (6.2). We conclude by (3.16), (3.18), (3.31), and (6.29)
that for M (x, hp,) = Opy’ My,

tr (MY (x,hp,) —2)71)
qlb; A byl

&y, ((H¢ _ z)*l) = .
We are concerned with the analysis of this operator close to the Dirac energy
E = 0. To analyze the spectrum of M (x, hp,) close to energies E = 0, we want to focus
on the two bands touching at E = 0, first.
The obstruction to do so is that for rational flux 271% the two bands touching
at E = 0 may not be isolated from the rest of the spectrum, cf. Figure 5. At 1st glance,
this creates an obstruction to block-diagonalize the operator Op;’ M, at zero energy to

leading order. A way to overcome this issue is explained in the following remark:
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Fig. 5. Dispersion surface of Hg. The Dirac cones at energy level zero persist for magnetic flux

¢=m.

Remark 6 (Isolating bands touching at Dirac energies). We recall that My vanishes
only at points z; = (xy,%,) as defined in (6.16) or (6.17), respectively. To analyze the
operator Opj My in a neighborhood of zero energy, it suffices therefore to consider an

auxiliary operator with symbol

~ (z — zqy)
M, (2) := x(2)M,(2) + (1 — x(2)M, (28—) (6.31)
1z — zll

where x € C*®(R?) and x(z) = 1 in a neighborhood of zy and 0 outside. The parameter

¢ is chosen small enough such that the two eigenvalues of M, (28 (Z_ZO)) that belong

lz—zoll
to the two bands, which touch at the Dirac energies are distinct from all remaining

eigenvalues of M (28 ﬁ:ggﬂ) . Such a parameter ¢ > 0 exists since the remaining bands
of M, are possible touching the two bands that make up the Dirac cones, but they are
not intersecting, cf. Figure 5.

This way, Op‘,’l"(lv.fo) and Opy' (Mg) coincide microlocally, that is, for any x €

C¥(nbhd(zy)), we have
|op}Y x (Op}y (M) — Op¥¥ (M) Op} x| = Or™),

see for example [46, Theorem 4.25]. For our subsequent analysis, we may therefore just
assume without loss of generality that the two touching bands of M, at zero energy are

gapped from the rest of its spectrum.
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To analyze Opj My, we recall a few properties about the matrix-valued symbol
My, first. Clearly, U(X,S)ETEMO(X'S) has band spectrum B, = [y;,8,], 1 < £ < 2q, and we
denote associated energy eigenvalues by u,(x, £). The g-th and g+1-st band always touch
at the Dirac point, that is, 8q =Vg41 =0 by Theorem 1. The phase space coordinates
at which the g-th and g + 1-st band touch are denoted by z; := (x;,§;) € T2, where
j € {1,..2¢%}, that is, 14q(Z;) = igi1(Z;) = 0. There are by (6.16) and (6.17) precisely
2@? such points in a single fundamental domain T2. For the analysis close to individual
conical points, we fix a sufficiently small ¢ > 0 and consider energies E € I, = (—¢,¢).
We define for such energies the phase space level set TiE) = u£|;];hd(zj) (E) c T? for
¢ € {q,q+ 1} here, close to a single potential well centered at z; and the phase space area
V. = Uges, Zj(E) of all energies in the interval I,.

Remark 6 allows us to make two simplifying coordinate changes near the conical
points, which we discuss now:

There exists a unitary operator U such that (we assume here by a simple change
of coordinates that the Dirac point is located at (x,£) = 0) [30, Proposition 3.1.1 and
Corollary 3.1.2]

U* Op, MU = diag(Opj/ Mp Opy, Mg, )
—_—

cC2x2 cC(24-2)%(2g-2)

(6.32)

0 OpY'b
where Opy My = P + O(h).
' Opy, b* 0

The subscript D stands for Dirac and R for rest, and the symbol b satisfies b(x,&) =
VZ—F(S +ix) + O(||(x, £)||?) where the Fermi velocity vy satisfies by (6.8) and (6.28)

q 1

= — (6.33)
33/4 3q-1 nggq+2 (F](k))

VE

0 Opy A
For the pseudodifferential operator Op}’ = ( P ), with A as in (6.2),
Opy’ A*
we obtain by squaring the operator
Opy AOpy A* 0
oran )= (A ) 634
0 Op; A* Opy
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w *

By supersymmetry, it follows that away from O both operators Op;’ .AOpy and
Op;’ A* Op;’ A have the same spectrum. The principal symbols are

oo (Opy AOpy A*) = My(x,§) + 31, and
_ (6.35)
oo (Opy A* Opy' A) = My(x, ) + 3,

with the notation as in (6.5). Let Z(x,£) now be either My (x,&) + 3I, or ]TJ\T(X,E) + 31,
The lowest eigenvalue of Z(x, &) is given by a smooth scalar function (x,£) — v(x,&) =
|,uq+1(X,§)|2, see Remark 6. Thus, there are analytic unitary matrices V separating the

lowest eigenvalue from the rest of the matrix
(V*ZV)(x,§) = diag(v(x, §), B(x, £)), (6.36)

where by Remark 6 we may assume that inf(x,g)eT*R |2 (B(x,£)) —v(x,&)] > 0and B(x,£&) €
C@-Dx(@-1)

Thus, as for the Dirac-type operator above, [30, Proposition 3.1.1 and Corollary
3.1.2] implies that since the lowest band of Z, described by v, is gapped from the rest of
the spectrum, there is a unitary operator U and symbols 7, B with asymptotic expansions
in S, such that

Opy v 0

L R

)+ Orazmyh™), (6.37)

where oy(V) = v and UO(E) =B.
The main result of this section, a semiclassical trace formula close to rational

flux, is then stated in the following theorem:

Theorem 4 (Semiclassical DOS and QHE close to a rational). For small h > 0
sufficiently small, with respect to p,q, and magnetic flux ¢ = 271% + h, the DOS of
Hg admits the following expansion: Let I be an interval I C (—4,8) for some § > 0
sufficiently small (this interval encloses energies around the Dirac points in Figure 3)
and f € C¥(I), then

fr, (FHD)) = m__‘b??}/lxbﬂ Zf(zn(hrprq)) + OIf e h™), (6.38)
nez
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with Landau levels z,(h,p,q) = «(nh,h,p,q) satisfying «(-¢,h,p,q) = —« (&, h,p, @),

defined by a Bohr—-Sommerfeld condition

F(c(¢,h,p, @)% h,p,@) = |t| + O(R™), F(s,h,p,q) = >_Fi(s,p,@W, F;(0,p,q) =0,

j=0
dx d
where Fy(s,p,q) := / —f and (6.39)
v(x)elo,s] 47q
1 d ~ dx d¢&
Py, q) = = — — / oy () (x,86) S8
! 2 d¢ ‘s’zs v(x,£)€l0,c] ! 47 q?
With the Fermi velocity vy defined in (6.33), z,, satisfies
zo = O(h*) and
(6.40)

z, =sgn(n)vgy/Inlh+ Oh) n #0.

In addition, the spectrum of the magnetic Schrédinger operator around zero & (Hg) NIis

contained in disjoint closed Landau bands B, ,,(h, p, q) > z,(h, p, q) with spectral gaps

d (B, (D, @), Bon1(hD, @) = Cppp o1 (6.41)

for some constant C, , , > 0. The Hall conductivity satisfies for Fermi energies u

@ntl)q
2

@4, betw. B, ,_q and B, , with 0 = n > —N_(h, Ay).

, wbetw. B, , and B, ., with0 <n < N_(h, 1)

cyHS, 1) = (6.42)

An illustration of the Hall conductivities is given in Figure 6.

Remark 7 (Dynamical delocalization). In particular, using the results from Subsection
5.2, we conclude from (6.41) that for sufficiently weak disorder, such that the (disorder-
broadened) Landau bands remain non-overlapping, there exists at least one mobility

edge inside each Landau band at which delocalization occurs.

7 Proofs

We now state the proof of Theorems 3 and 4 with several references to details that are

already discussed in [9, 26].
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(A) The square lattice Am. The Hall
conductivity on the lower and upper
spectral edge that is computed in this
paper, in the regime of small mag-
netic flux, is located on the strip be-
low/above the respective arrow. The
energy on the vertical axis covers the

Density of States and Delocalization 13491

(B) The hexagonal lattice Ag (lower
band, only). The Hall conductivity on
the lower Dirac cone that is computed
in this paper is located on the strip to
the left and above the arrow. The en-
ergy scale on the vertical axis covers
the interval [—1,0].

full range of the operator.

Fig. 6. Hall conductivity (colored) as a function of magnetic flux i € [0, 2] (horizontal axis) and
energy (vertical axis). Dark regions do not carry spectrum. Different colors represent different

conductivities.

Proof of Theorems 3 and 4. Step 1: quasimodes and Landau levels. Quasimodes and
Landau levels are constructed as eigenfunctions and eigenvalues to localized operators,
that is, operators that coincide microlocally, up to a constant shift of the spectrum,
with WDOs (3.29) in a neighborhood of a single potential well. For the square lattice,
such a localized operator with discrete spectrum at the bottom of the potential well, see

Figure 2, is defined by the Weyl symbol

Qg (x,8) := Qg(x,&) + 2 — xg(x,£), where

(7.1)

— 1
X- c CSO(RZ, [0, 1]), X-(X,S) _ { ]-, ”(XIS) (7T,7T)||oo < }OI
5

0, IIx,8) — (@, 1)l >

Thus, Opy’ Q4 — z is elliptic [46, Section 4.7] for z in a small neighborhood of zero and
(x,&) ¢ nbhd(x, 7) where the neighborhood depends on z.
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On the hexagonal lattice such a localized operator with discrete spectrum close

to zero energy, the energy level of the Dirac points, see Figure 3, is defined by the symbol
(Xo(x, &) — I, 0

MJ(x,§) = M, (x,§) +( ° 4 :

0 (1~ xo(x, 6, (7.2)

Xo € CX(R%[0,1]), x0(2) = xo(—2),

where xo(x,§) = 1 on all Uje(y  942,V; 5 for some § > 0 sufficiently small and vanishes
outside of T2.
Next, we argue that the spectrum of both Op} Q3 and Op‘,’l"M(oj is indeed

contained in discrete intervals around zero. To do so, we define another pair of symbols
Qn(x,£) 1= Qg(x,£)+2 and M;(x,§) := M,(x,&) + diag(—I,, I,). (7.3)

The two associated operators with upper index 1 are invertible close to zero and we

have

Opy 0§ — z = (Op} Of -~ 7) (id +Ka(2) and

(7.4)
Opy M — z = (Opy M2 - z) (id +K,(2))
for some compact operators
-1
Kg(z) = (Opyj al — z) X for z¢ =(OpYak) and
(7.5)

-1
K. (2) = (Op‘;’lvMé —z) diag(xy', —xg) for z¢ E(Op‘;’lvMé).

By analytic Fredholm theory [46,Theorem D.4], this implies the discreteness of the
spectrum of Q% and Mg close to zero. Thus, there exists a family of eigenvalues and

orthonormal eigenfunctions such that
(Op‘}’l" QY — kg(nh, h)) U,m=0 and (Op‘,’l" M° — k (nh, h)) Upo=0.  (7.6)

Localized operators with upper index 0 have the property that their spectra for energies
close to zero stay close to the spectra of operators Op};’ Qg and Op;’ M, respectively. In
fact, an immediate adaptation of the proof of [9, Lemma 5.2] shows that after possibly

shrinking the energy window around zero to some ¢; with 0 < ¢; < ¢ and z € [0,¢;] —
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il—1,1] such that d (z, = (Op} Qg)) > h", for some arbitrary but fixed n € N, there is h,
such that for h € (0, h),

(OpY Qg —2) " = Opa_2(d(z, =(0pY QF)) ) (7.7)

and the analogous result is true for ME’)" as well.
Since Op}’ M and Opy’ Mg in Ujery . 242)Vj,s coincide microlocally, we infer from
(7.6) that

(Opy M, — k(nh, b)) u, , = Oh™). (7.8)

Thus, one has to find all such microlocal solutions with WF (u,, o

Uje(1,..242) Vj,5- Microlocal solutions (Op}y M, — z) u = O(h*°) for z > cv/h are in one-to-
one correspondence with microlocal solutions v € WFj, (u,, o

Uje(1,..242} Vj,5 such that by (6.34)

(Opy) AOpy A" — 1) v = O(h™)
(7.9)
z=%A, U= (U, Uy) 1= (V, z! Opy/ A*V) e C%,

Since 0 is in the spectrum of Hg for all h € [0, 27] [8, Lemma 5.1], we have that
0 € X(Opy’ M,,) for all h by (6.30). Invoking now (7.7) for the hexagonal lattice implies
that there exists an eigenvalue O(h*) to the localized operator Op}’ M.

We can now apply the following Bohr-Sommerfeld condition [13, 25, 30]:

Let H : T*R — R be a classical symbol with expansion H ~ 3 2° H;h'. Moreover,
we assume the principal symbol H; to satisfy

(1) Hy(z) =0 and (D*Hy)(z) > 0,

(2) The set {v € R? : Hy(v) < 8} is compact and connected for some § > 0

sufficiently small.
(3) H, is strictly positive and does not possess any other critical points, apart

from z in a sufficiently small nbhd of z.

Then, the spectrum of Opj/(H) close to zero is given by the Bohr-Sommerfeld condition

F(E, h) = ZFJ-(E)hf =nh
j=0
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where the leading-order term is the Bohr-Sommerfeld term

1
F.(E) = —
0B = o /{HosE}dX a

and the subprincipal term F; includes the Maslov correction and the contribution from

the subprincipal symbol H;

1 1 d

Fi(E)= 5~ 5= SZE/{HOSS}HI(x,g) dx d&. (7.10)

Expressions for higher-order terms F; with j > 2 can be found in [13].

This immediately yields the Bohr-Sommerfeld condition for the square lattice
(3.37), by applying it to the microlocally equivalent symbol Q% in (7.1), since the
subprincipal is zero and therefore F, (E) = %

In case of the hexagonal lattice, we use that by (7.9) and (6.37) it suffices to study
the quasimodes to the symbol v. Clearly, v satisfies both assumptions (1) and (3) of the
Bohr-Sommerfeld condition.

By using cut-off functions x; ~ that are localized to neighborhoods V; ; of a single

well, the localized symbol
Ti(x,8) 1= T(x, ) + (1 — X)X, 6)

satisfies then all three conditions of the Bohr-Sommerfeld rule, which yields (6.39).

When g = 1 and A is scalar, a direct computation of (7.10) shows that F; = 0 [10].
This yields the Bohr—-Sommerfeld condition stated in Theorem 3.

Finally for the analysis close to rationals, the asymptotics of Landau levels (6.40)
and the presence of gaps (6.41) follow immediately from both (6.32) and (6.33), and the
explicit spectral analysis of the 2D-magnetic Dirac operator, cf. [30, Proposition 3.6.1
and (3.6.22)].

Step 2: the Grushin problem. To prove the trace formulae, we fix one Landau level and

take z; and ¢; with
{x(nh, )}, Nz, — 2¢yh, z; + 2¢xh] = {k(n,h, h)}, n, =n,(z;,h). (7.11)

Since symbols Qg and My are 2r-periodic, they possess infinitely many potential

wells. Therefore, we introduce a translation operator r,u(x) = e%}’zxu(x — y;) to define
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translations of the quasimodes w, := r,u for y € 7Z2. We then define operators

R, :L*(R,C™) — ¢%(Z%;C") and R_ : £%(Z2; C") — L*(R,C™) by

(Riuy) () = /Ru+(x) 'w,(x)dx € C", R_u_(x):= > w,(X)u_(y), (7.12)
y€z?

where

e n =m =1 for the square lattice and
e n = 2%, m = 2q on the hexagonal lattice close to the flux 27p/q, in which

case

¢ 2
u_(y) = (ul_(y)...uz_qz(y)) eC2’ and w, (%) = (W; wi ) € C20¥24",

This way, the following Grushin problem [9, Proposition 5.4] is well posed for z € (z; —
€oh,z; + €gh) +i(—1, 1), where P(z) := Op;’ Qg — z for the square and P(z) := Opy My —z

for the hexagonal lattice,
- R R
(7;(? RO—) - ( ]f ((ZZ, Z) E’f:i((zz’ ;)) . (7.13)
Schur’'s complement formula implies that
Pz ! =E(zh) - E (z,hWE. (z,h)E_(z,h),

where E,E,, and E_ can be approximated by

E):=R_, E°:=R,, EJ =(z—«k(hn,,n))s,,. (7.14)
Here, E.(y) = E2(y) + O(h*®(y)~) for |3(z)| > h™, for some fixed m, and

E (z, v, (x)= D 1, WoxVv, (v), Wy=w,+e, e =0hr )y,
yeZ2 (7.15)

E_(z,hv)(y)=(v,r,W_), W_=wy+f, fo€ Oh*) &,

where the estimates follow as in [9, Proof of Proposition 5.4]. Moreover, we define the
function G(z, h) := [, 0(E(z, h)))(x,&)%, which is holomorphic in z € (z; — gyh, z; +
goh) +i(—1,1) [9, (6.1)].
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To study

_ dx d§
J(z,h) = /w trem o (ELELE) (x,g)W

*

we define, for fixed M, the approximation J, for
z € (z, — eph, z; + €gh) +i(—=1,1),n =n,(z;,h), and |3z > Y

by using approximations (7.14)

Jo(z,h)z/ (z-x(nlh,h))—ltrcma(EﬁEQ) (x,g)dxzdg. (7.16)
T2 Tz

Estimates (7.15) imply then that J(z, h) = Jy(z, h) + O(h*).
To find a more explicit expression for J;;, we study the Schwartz kernel K of the

operator EYE? given by

Kx,y) = D EY(x,0)E(a,y) = D w,(x)w, ()",

R/

from which the symbol of the pseudodifferential operator, appearing in (7.16), can be

derived from the Schwartz kernel

o (EY(z, WE° (z,h))(x,6) = D> / w, (x — Wyw (x — Wyer™s dw
R

2
acls

= Z / enWE—yy (x — T —apwyx 4§ —ay) dw.
aecZ?2 R

Hence, we obtain for the integral over the Weyl symbol

dx de
472

/ (B2, WE° 2, 1) (x,€)
T

*

i dx
= Z/TZ/ReEW@*“Z)WO(X— Y —awox+ % —ap*dw
o *

dé
472

(7.17)
i dxd
= /RZ/RehWEWO(X— PIwp(x + F)" dw 47125

h k
= Z/RWO(X)WO(X) dx.
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This implies for J, as in (7.16)

dx de
|T2|

*

N S

i=1 j=1

_ -1 "
_ h(Z K(nlh,h,p:q)) Z/R‘WJ(X))ZdX
=1

Jo(z, h) = /TZ (z — k(myh, b)) trm o (EQES) (x,8)

(7.18)

27
hn
= - (@—xmh, h,p,q)" "
T

For the hexagonal lattice with magnetic flux h, the reflection symmetry of the Dirac

points located at quasimomenta + ((%°,—2F)) implies that the eigenfunctions uf =

+ + .
Uy 1 Uy o) = (Ul 5, uf ) satisfy
1 1 1 1

/uwo(x)*éinz dx=/ luyt ;@1 + 1y, (07 dx = 1+ O(h™).
R R

n1,i

Taking the regularized trace and exhibiting leading-order contributions shows that for

I3(z)| > hM, with arbitrary M, and |z — z,| < eh there are analytic functions

Jun, (2 h) =Gz h) + 45 D" (z—2,(A) ",

n#ng
Gon, 6,2, h) = (&, Gz, W)z + 5= D, (z— 2z, ()",
n#m (7.19)
o, (z,h) = Jomny (l,z,h)ergo,n1 (2,z,h)’
Gon, (2 h,D, Q) = trezq Gz, h,p, Q) + 52 D (z— z,(h,p, )",
n#ng

such that we obtain [9, Proposition 6.1]

i ((QE G kD) = 27) = 252~ 24, () ™! + G, (2, B) + O(R™),
tr ((éi, (Q¥(x, hp,) — Z)_léi)(cz) =(z—2z, (W) +gon Gz, +OK), and

& (MY, hpy) = 271) = "2 = 2, o)) + o, (2,1, P, D + OH™).
(7.20)
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We also observe for later that

~ 2
(tr(aV.V(x, hp,) — z)—l) — D,z 2, a(h)"
+ g (z— 2p, a(M) ' gm,, (2 1) + gu,, (2, W) + O(R®)  and 21
7.21
~ 2
(tr(éi, Q¥ (x,hp,) — z)—léi>cz) — 2D,z -z, (W)

+ g (2 — 2y, 5 (W) T Gom, (0 2, R) + G, (2, W) + O(R™).

Step 3: trace formulae.

We can now assume that R(z) € (z; — ¢h, z; + ¢h) is close to a Landau level and
apply (7.20), as analyticity of the resolvent (Q"(x, hp,) — z)~! away from the Landau
bands implies that there is no contribution from z outside these intervals (integration

by parts in Helffer-Sjoéstrand formula).

Trace formulae in Theorem. 3. From (3.3), we have since f e C®(I) that D;(z) =
O (||fllcs|3(z)|4). By Proposition 3.5, we obtain, by writing the adjusted prefactors for

the hexagonal lattice in parenthesis [] and for the square lattice without parenthesis,

2 AkE(VkDF®

= 2n2(by by k!

_ @ varwn? Z / Dof"(2)(z — z,(h) ™ dm(2)
n JC

873|by Aby|

_ et 5 /C D,(F ()92, W)z — 2, ()" dm(2)

272|by Abs|

+l/ Df ()0 (13217) dm(z)+ 0 33+ h™
P ] oy DT @0 (13217) dmi@) + 0 (s ) -

= o ZZAE(V) FO @) + 0 (Iflles G2 + A + 1))

27T\b1/\b2‘
=0

__ [21hVar(V)»? f”(zn(h))
27T|BlAb2| ;( +f (Z (h))gn(z (h) h))

—2h__ Zf(zn(h)JrME:(V))+O(||f||cs(/\3 + M h°°))

ey

_ [2]h‘{ar(V)Kz Z (f”(ir;t[(h)) +f/(zn(h))gn(zn(h)l h)) .
n

27T|b1Ab2|

By taking M arbitrarily large the trace formulae (3.36) and (3.38) of Theorem 3 follow.
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Trace formula in Theorem. 4. Since f is now only assumed to be Hélder continuous, we

require an additional approximation argument:

Let ¥ € C((0,1)) be a positive function with fR ¥ (s) ds = 1 and define v, (s) :=
h=Yy (h~'s) with fj, = f * ¥yu,. Moreover, we find |f — f * Y0 | ;0 < Ifllge h*M0 and

since the interval I can contain only O(h~!) many Landau levels, we have

B> |f@a ) — fo@, ()| = O (I o ho™0)

In|<C/h

We observe that by (3.3) we have

1D (@) Iz < Ifullc2llS@)] = OUIf Iz B~2M0|3(2))).

We then use (7.24) and (6.29) for the hexagonal lattice to conclude that
trA(fh(HA w)) w/ szh(Z) Z(Z—Z (h)) 1 dm(Z)

ﬁ[w hMDZﬁl(z)o(wzrl) dm(2) + O (Ifpllzh>)

g 2 W) 0 (Il BY=2M0) 4 O ((f N h)

= zr|b1Ab |
Thus, we have from (7.23) that

(A, = g 2] )+ (Il BYM=240 4 | £l o h#M0),

which by choosing M = 3M,, and M, arbitrarily large implies (6.38).

Step 4: QHE and mobility edges for the hexagonal lattice.

(7.23)

(7.24)

(7.25)

(7.26)

From (4.3), we conclude that for any Fermi projection P = llJ(H%) such thatJ C I

with 9J located inside a spectral gap of Hg there are y,, y, € Z such that
f0 (P) = by A Dyl (yl + 7, (g + %)) .
The trace formula (6.38) on the other hand yields that
iy, (P) =

by Abal /\b - Z 1;(z, (h, p, @) + O(h™).

(7.27)

(7.28)
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Comparing coefficients (4.1) implies that the Hall conductivity, when gauged to be zero

at zero energy, is given by (6.42) for sufficiently small h. |

A Multiscale analysis

Lemma A.1 (Combes-Thomas estimate). Let z be such that d (z, b)) (Hi"w|AL(X))) =¢e<1,

then for any n,m € A;(x), with A;(x) defined in (1.1), one has

- o(e—le—fi""—mlll). (A.1)

" -1
‘(Hk,w|AL(x) — z) [m, nl
Proof. The proof of (A.1) is a direct adaptation of [?? ,Theorem 11.2]. |

Lemma A.2 (SGEE). Fory > 1+ A||V|,, and any v > 1 it follows that

tr ((.>—“(Hf,w + 7/)_1(.)_”) <C, <ooas..

Proof. By the Combes-Thomas estimate stated above as Lemma A.1, which holds for

some § > O since y ¢ E(Hil,w)' we have for W, =W, —n;b, — n2132
tr (0@, + 1))

= >t (idew,, ez, 0 Tu,, EEy ) Iy, (07

n,meZ?

<C; >, e’/ mh sup [(e)7V] sup [(e)7"|

n.meZ2 xeWpy, XeEWp,, (A.2)

<Cy > e N (1 m) A+ m)

neZz? meZ?2

neZz? meZ>2

where we applied the Cauchy-Schwarz inequality in the last step to the inner series. W

Proof of Prop. ??. We estimate the tail probability with respect to the new density

Pom (1% = £)) = 6, / mo(mx) dx
[—v,v]\[—¢,¢] (A.3)
5/ T dx = O((me)' 7).
[—v,v\[—¢,e] (mx)v

Let us define the finite volume truncation Hf

in (1.1). Consider the set ES(Hh) = {X eRxely—¢e,y+elye E(Hh)}, containing the ¢-

. h . .
AL = HA’w|AL(X) where A;(x) is defined

broadened non-random spectrum of H”. We have the following lower bound, with I being

2202 J9qUISAON 8Z UO Jasn AJISISAIUN S)e}S BUBISINGT AQ L618/29/LPYEL/L1/Z220Z/2101e/Uiwl/woo"dno"oIuapes.//:Sdny Woly papeojumod



Density of States and Delocalization 13501

the region of interest on the probability, using Bernoulli's inequality (1 — x)* > 1 — ax

and the decay of the probability distribution,

P (Z(]lI(walAL(X))) c Es(Hh)) > P(MV, | <& for ve A x)

- (A.4)

> (1 = C(me)l™NAt®l > 1 _
> ( (me)~~") e (me)yr 1
where C is allowed to change in the last line. We will use this estimate to infer that with
high probability an energy E between B, (h) + 2¢ and B, ; (h) — 2¢ is in the resolvent set

of wa’AL(X) and has a distance ¢ to the spectrum of H” for m large enough.

Choosing ¢ = /Jcm_l(SLz)ﬁ in (A.4) with u sufficiently large implies that
P(z(n,(Hf

,w’AL(X))) C Eg(Hh)) is arbitrarily close to 1, uniformly in m. Since for both

the square and hexagonal lattice
L<|{neA;nl, elL—1,L+11}| SL and L?<|{neA;lnl, <L/3}| SL?%

the Combes-Thomas estimate, stated in Lemma A.1, shows that for E between B,,(h) + 2¢
and B, (h) — 2¢ with high probability

L% > (] 7y — B rymi| = O (LF e lemCreL).
n,meA;|nl|;elL—1,L+1], (A.5)
Iml,<L/3
By the choice of ¢, this implies for sufficiently large L > Ly(m)
25 _ 1 _ciel 25__2_ Cszﬂ
Lseg e " <mL3 vle"m < 1. (A.6)

A+e)y-1
In particular, choosing Ly(m) « m yel for some fixed ¢ € (0,(y — 1)/2)

implies (A.6). This choice of L, ensures that also
2(1+&")—(1+y)

= lim m T+y =
m—0o0

2
lim Ly(m)7Tm™!
m— o0

This implies by (A.6) that ¢ := ,um_1(3L2)V1f1 can be chosen arbitrarily small by taking
m large enough such that by [18, Theorem 2.4]

{E€R;E between B, ,(h) and Bn(h)}CEQ'DL-
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