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We study discrete magnetic random Schrödinger operators on the square and hon-

eycomb lattice. For the non-random magnetic operator on the hexagonal lattice with

any rational magnetic flux, we show that the middle two dispersion surfaces exhibit

Dirac cones. We then derive an asymptotic expansion for the density of states on the

honeycomb lattice for oscillations of arbitrary rational magnetic flux. This allows us,

as a corollary, to rigorously study the quantum Hall effect and conclude dynamical

delocalization close to the conical point under disorder. We obtain similar results for

the discrete random Schrödinger operator on the Z2-lattice with weak magnetic fields,

close to the bottom and top of its spectrum.

1 Introduction and Statement of Results

In this article, we study discrete random Schrödinger operators, the tight-binding limits

of continuous random Schrödinger operators, under weak disorder in weak magnetic

fields on the Z2 lattice �� and in addition for magnetic fluxes close to rationals on the
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13448 S. Becker and R. Han

honeycomb lattice ��:

(Hh
�,λ,ωu)(γ ) := −1

4

(
eihγ2/2u(γ + �b1)+ e−ihγ2/2u(γ − �b1)

+ e−ihγ1/2u(γ + �b2)+ eihγ1/2u(γ − �b2)

)
+ λVω(γ )u(γ )

(Hh�,λ,ωu)(v) := −1

3

⎛⎝ ∑
�e∈E ,i(�e)=v

e−iA�eu(t(�e))+
∑

�e∈E ,t(�e)=v

eiA�eu(i(�e))
⎞⎠+ λVω(v)u(v),

where Vω is an i.i.d. random potential on the respective lattice �. For precise definitions

of these operators, we refer to Section 2.2.

The spectral properties of the discrete magnetic Laplacian (DML) on Z2, and of

the almost Mathieu operator, have been extensively studied over the past 40 years, see

for instance a survey [34] and some recent advancements [3, 28, 29]. Significant progress

on the location of the spectrum has been made for magnetic Schrödinger operators using

semiclassical analysis [26, 27, 31, 45]. In two preceding articles [8, 9], by the authors,

this study was extended to spectral properties and the density of states (DOS) of the

magnetic Schrödinger operator on the honeycomb lattice—but without disorder. It was

shown in [9, Theorem 1] that the DOS for the magnetic Schrödinger operator on the

honeycomb quantum graph—close to the conical point—is concentrated at so-called

relativistic Landau levels.

The spectral analysis in [8] showed that for the DML on the hexagonal lattice,

close to the conical point, there is no point spectrum, as the analogy to the magnetic

2D Dirac operator suggests. Instead, the spectrum of the DML on the honeycomb lattice

is either absolutely continuous (a.c.) band spectrum or singular continuous (s.c.) and

a Cantor set of Lebesgue measure zero, depending on the arithmetic properties of the

magnetic flux through a single honeycomb.

Next let us introduce our results. We start with the non-random operator on

the hexagonal lattice Hh�,λ=0. The part of the energy spectrum of graphene, modeled

here by the discrete operator Hh�,λ=0 that is relevant for most of its remarkable physical

properties, is the energy spectrum close to the conical points, the so-called Dirac points

at energy zero, see Figure 3. The existence of Dirac points for the tight-binding graphene

model in the absence of magnetic field is known since [44]. In the absence of magnetic

fields, the operator can be reduced to a 2 × 2 matrix via Floquet–Bloch theory. Hence,

the only two dispersion surfaces can be computed explicitly, whence conical touching of

the two surfaces is evident. It is natural to ask the question if Dirac points still exist for
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Density of States and Delocalization 13449

arbitrary rational magnetic flux, where the operator is still periodic. Indeed, for flux

h = 2πp/q, the operator can be reduced to a 2q × 2q matrix. The dispersion surfaces

thus have to be analyzed implicitly and hence making it much harder to prove conical

structures. Our 1st result is to prove the existence of Dirac cones at energy zero for the

tight-binding model for any rational magnetic flux.

Theorem 1. For any rational flux h = 2π p
q ∈ 2π Q, the operator Hh�,λ=0 possesses Dirac

points at energy zero.

Using the conical structures as a starting point, we are able to carry out the

semiclassical analysis and obtain the expansion of the DOS near the energy zero for flux

2πp/q + h with h being the semiclassical parameter, see Theorems 3 and 4. (Theorem 3

actually proves the expansion of DOS for the operator with disorder.) This in particular

allows us to prove the localization of the spectrum in Landau bands near the zero

energy, characterized by the Bohr–Sommerfeld condition, and the existence of spectral

gaps between any two consecutive Landau bands. Our framework follows [30] but uses

independent arguments for the derivation of the DOS and the presence of spectral gaps

in between Landau bands. In addition to the study of the DML on the honeycomb lattice,

we also derive the expansion of DOS for the operator Hh
�,λ,ω on the Z2 lattice with small

flux near the top and bottom of the spectrum, which is included in Theorem 3.

By combining the expansion of DOS with the Středa formula, we are able to

compute the Hall conductivity explicitly in each of the aforementioned spectral gaps

for the non-random operators Hh�,λ=0 and Hh
�,λ=0, thus giving a rigorous derivation of

the quantum Hall effect (QHE). We then argue using the index-theoretic formulation

that the Hall conductivity is invariant under a random perturbation in the spectral

gaps between any two consecutive disorder-broaden Landau bands. The study of the

QHE of the continuous Laplacian in a homogeneous magnetic field is much simpler, as

the (infinitely-degenerate) eigenfunctions are fully explicit and so all computations can

be done analytically. In contrast to this, the DML does not have point spectrum and

closed form describing it are also not available. This is a major difficulty in the discrete

setting, which can be partly overcome by gap-labeling methods techniques as in [1].

However, we would like to emphasize that such methods are usually not quantitative

in the sense that they do not specify the Hall conductivity at prescribed energies. From

our refined study of the DOS with error bounds, we are able to solve this problem and

get precise information on the Hall conductivity in the gaps between Landau bands that

are quantitative. For the cleanness of the presentation, we present below the QHE for
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13450 S. Becker and R. Han

small magnetic fields and refer the readers to Theorem 4 for Hh�,λ,ω with fluxes close to

rationals.

Proposition 1.1 (QHE under weak disorder; small magnetic fields). For sufficiently

small magnetic flux h > 0, there are spectral gaps between disorder-broadened Landau

bands up to some magnetic-dependent disorder parameter λ0(h) > 0. In the spectral gap

between two consecutive disorder-broadened Landau bands Bh�,λ,n and Bh�,λ,n+1, the Hall

conductivity cH with Fermi energy μ is quantized with its value given below.

cH(Hh�,λ,ω,μ) = 2n+ 1

2π
, with − N�(h, λ0) ≤ n ≤ N�(h, λ0)

cH(Hh
�,λ,ω,μ) = n

2π
, with 1 ≤ n ≤ N�(h, λ0)

Using the jump of Hall conductivity in each disorder-broadened Landau band,

we then show that the discrete magnetic random Schrödinger operators undergo

metal/insulator transitions, using the framework of Germinet–Klein [17] and Klein–

Germinet–Schenker [20]. More precisely, we prove the existence of (at least one) mobility

edge near the Landau levels. Again, we only present the small magnetic fields case here

and refer the readers to Theorem 4 for Hh�,λ,ω with perturbations of rational fluxes.

Theorem 2 (Dyn. delocalization; small fields). Under the same assumptions as Propo-

sition 1.1, there exists in each disorder-broadened Landau band (at least) one energy

that belongs to the region of dynamical delocalization.

The paper is structured as follows: Section 2 serves as preliminary and back-

ground, the study of DOS is presented in Section 3, QHE is studied in Section 4,

dynamical delocalization is proved in Section 5, the proof of Theorem 1 is presented in

Section 6, and finally the semiclassical analysis together with the proofs of Theorems 3

and 4 are presented in Section 7.

Notation. Bx(r) is the ball of radius r centered at x. We write fα = Oα(g)H for ‖f ‖H ≤ Cαg

and f = O(h∞)H means that for any N there exists CN such that ‖f ‖H ≤ CNhN . We write

〈x〉 := √1+ |x|2. U(H) are the unitary operators on a Hilbert space H. The symbol class

Sh0
, of possibly matrix-valued symbols, is defined as

Sh0
:=
{
a(•, h) ∈ C∞(T∗R) : ∀α ∈ N2

0 ∃Cα > 0 ∀h ∈ [0, h0] : |∂αa(•, h)| ≤ Cα

}
.
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Density of States and Delocalization 13451

We write a ∼ ∑∞
j=0 ajh

j to denote an asymptotic expansion of symbols, cf. [46, 4.4.2]

where aj ∈ S, with

S :=
{
a ∈ C∞(T∗R);∀α ∈ N2

0 ∃Cα > 0 : |∂αa| ≤ Cα

}

and denote the class of symbols allowing such an expansion by Scl. The standard basis

vectors of 	2(Z2) are for γ ∈ Z2 denoted by δγ := (δγ ,γ ′)γ ′ and occasionally by �ei if the

Hilbert space is finite dimensional. L(X, Y) are the bounded linear operators between

normed spaces X, Y. E and Var denote expectation and variance. The semiclassical Weyl

quantization of a symbol a ∈ Sh(T
∗R) is for suitable functions u defined as

(Opw
h (a)u)(x) := (aw(x, hpx, h)u)(x) := 1

2πh

∫
R

∫
R

e
i
h 〈x−y,ξ〉a

(
x+y

2 , ξ , h
)

u(y) dy dξ .

Here, px := −i d
dx . Conversely, we write σ

(
Opw

h (a)
)

:= a to denote the Weyl symbol of a


DO and σ0

(
Opw

h (a)
)

for the principal symbol. Analogously, higher-order symbols are

denoted by σk, respectively. The semiclassical wavefront set is denoted by WFh, see [46,

Section 8.4]. We also write Z2∗ := (2πZ)2. For a subset I ⊂ R, we denote by
∮

I a contour

integral over a path in the complex plane that encloses I sufficiently close.

The spectrum of an operator T is denoted by �(T). We sometimes use the

convention h̄ := h
2π where h is the magnetic flux (thus, this notation should not

be confused with Planck’s constant). The p-th Schatten class is denoted by Lp. The

symplectic form on R2 is denoted by σsymp(γ , δ) := γ1δ2 − δ1γ2. Finally, we use Wirtinger

derivatives Dz := 1
2 (∂x− i∂y) and Dz := 1

2 (∂x+ i∂y) where we recall that Dzf is nothing but

the derivative of a holomorphic function f . In particular, holomorphic functions satisfy

Dzf = 0 by the Cauchy–Riemann equations. S (Z2) are the sequences that decay faster

than any polynomial power. We also write S (Rn) or S (Cn) for the Schwartz functions

on Rn or Cn. We also define for one of the two lattices � we study in this article, the

truncated sets

�L :=
{
y ∈ R2; y = γ1

�b1 + γ2
�b2 + [y] for γ ∈ {−L, ..., L}2 and [y] ∈ W�

}
, (1.1)

where �b1 and �b2 are the basis vectors of the lattice and W� a fundamental domain.
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13452 S. Becker and R. Han

Fig. 1. Fundamental cells of lattices.

2 Lattices and Discrete Random Schrödinger Operators

2.1 Geometry of lattices

The Z2 lattice �, see Figure 1a. The square lattice �� := Z2 is spanned by basis vectors
�b�,1 := (1, 0), �b�,2 := (0, 1) and its fundamental cell W�� consists of just the vertex r0 :=
(0, 0). Although we do not study operators on the associated graph, we also introduce

the set of edges E� on the square graph consisting of the two edges

�f↑ := conv
({

r0, (1, 0)
}) \ {r0, (1, 0)

}
,

�f→ := conv
({

r0, (0, 1)
}) \ {r0, (0, 1)

} (2.1)

and translations thereof by basis vectors �b�,1, �b�,2, where conv denotes the convex hull.

To orient the graph, we also define a map i : E� → �� by i(�f↑) := i(�f→) := r0 and extend

it to all edges by translation

i(�f↑ + γ ) = i(�f→ + γ ) = r0 + γ for γ ∈ Z2.

Let us now turn to the hexagonal lattice:

The hexagonal lattice �, see Figure 1b. The hexagonal lattice �� is obtained by

translating its fundamental cell W�� , consisting of vertices

r0 := (0, 0), r1 :=
(

1
2 ,
√

3
2

)
(2.2)
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Density of States and Delocalization 13453

along the basis vectors of the lattice. The basis vectors are

�b�,1 :=
(

3
2 ,
√

3
2

)
and �b�,2 :=

(
0,
√

3
)

. (2.3)

As in the case of the Z2 lattice, we also introduce auxiliary edges

�f := conv
({

r0, r1

}) \ {r0, r1

}
,

�g := conv
({

r0, (−1, 0)
}) \ {r0, (−1, 0)

}
,

�h := conv
({

r0,
(

1
2 ,−

√
3

2

)})
\
{
r0,
(

1
2 ,−

√
3

2

)}
,

(2.4)

and define the set of all edges E� as the set of all translates of these three edges along

the basis vectors �b�,1, �b�,2 of the hexagonal lattice.

We call translates of r0 by basis vectors �b�,1, �b�,2 initial vertices �i� whereas

translates of r1 will be referred to as terminal vertices �t�. Moreover, we consider maps

i : E� → �� and t : E� → �� that map edges to the respective initial or terminal vertex

they contain.

In the sequel, we will use the isomorphism 	2(��) � 	2(Z2;C2) as the honeycomb

has two basis vectors and two vertices in its fundamental domain. More generally, any

lattice with � spanned by two basis vectors with n vertices in its fundamental domain

satisfies 	2(�) � 	2(Z2;Cn).

2.2 Discrete random Schrödinger operators

We consider a constant magnetic field. The vector potential A is a one form on R2 and

the magnetic field is given by B = dA. For homogeneous magnetic fields

B := B dx1 ∧ dx2 (2.5)

we can choose a symmetric gauge for the vector potential A such that

B = dA, A = 1
2B
(−x2 dx1 + x1 dx2

)
. (2.6)

The DMLs with single-site disorder are then defined as follows: first, we take the scalar

potential A�e ∈ C∞(�e) along edges �e = e1 dx∗1 + e2 dx∗2 of the respective graph, where
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13454 S. Becker and R. Han

dxj(dx∗i ) = δi,j is defined by evaluating the 1-form on the graph along the vector field

generated by the respective edge �e:

A�e(t) := A
(
i(�e)+ t�e) (e1 dx∗1 + e2 dx∗2

) = A
(
i(�e)) (e1 dx∗1 + e2 dx∗2

)
. (2.7)

The quantities A�e on the square lattice are given by

A�f↑+γ1�b�,1+γ2�b�,2
= h�

2 γ1 and A�f→+γ1�b�,1+γ2�b�,2
= −h�

2 γ2 (2.8)

and the quantities A�e on the hexagonal lattice are explicitly given by

A�f+γ1�b�,1+γ2�b�,2
= h�

6 (γ1 − γ2), A�g+γ1�b�,1+γ2�b�,2
= h�

6 (γ1 + 2γ2), and

A�h+γ1�b�,1+γ2�b�,2
= −h�

6 (2γ1 + γ2), (2.9)

where the magnetic flux for either lattice is defined as

h� := B and h� := B
|�b1∧�b2| =

3
√

3
2 B. (2.10)

From this point on, we may suppress the dependence on the lattices in some notations

if there is no ambiguity or if the results hold for both lattices.

We now define the discrete magnetic random Schrödinger operators:

Definition 2.1 (Discrete magnetic Schrödinger operators). We define discrete magnetic

random Schrödinger operators Hh
� ∈ L(	2(��)) and Hh� ∈ L(	2(��)) on the square �,

using (2.8), and hexagonal �, lattice, using (2.9), respectively

(Hh
�,λ,ωu)(γ ) := 1

4

(
eihγ2/2u(γ + �f→)+ e−ihγ2/2u(γ − �f→)

+ e−ihγ1/2u(γ + �f↑)+ eihγ1/2u(γ − �f↑)
)
+ λVω(γ )u(γ )

(Hh�,λ,ωu)(v) := 1

3

⎛⎝ ∑
�e∈E�,i(�e)=v

e−iA�eu(t(�e))+
∑

�e∈E�,t(�e)=v

eiA�eu(i(�e))
⎞⎠+ λVω(v)u(v),

(2.11)

where the parameter λ > 0 measures the disorder strength. The random potential

satisfies Vω(v) = ω(v), where {ω(v)}v∈� is a family of i.i.d with common probability

distribution ν of compact support on R. We write (�,P) the underlying probability

space, and E the expectation.
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Density of States and Delocalization 13455

Fig. 2. Energy band of the non-magnetic discrete Laplacian on ��. The bottom of the spectrum

forms a potential well.

We will write (�,P) for the underlying probability space; hence, � = ×v∈�R, and

P = ×v∈�ν. We define the shifts operators {T�
δ }δ∈Z2 on � by

T�
δ ω(v) = ω(v − δ1

�b1 − δ2
�b2). (2.12)

The sample space � of the configuration space of impurities (�,P) is, without loss of

generality, assumed to be compact, cf. [12, p. 372f.] for details.

We then write Hh := Hh
λ=0,ω for the non-random DML.

2.3 Magnetic translations, regularized traces, and the DOS measure

We start our analysis by introducing discrete translation operators Tγ with γ ∈ Z2 for

ψ ∈ 	2(�)

Tγ ψ(v) := ψ(v − γ1
�b1 − γ2

�b2). (2.13)

The magnetic Schrödinger operator Hh does, in general, not commute with standard

lattice translations Tγ but with magnetic translations Th
γ instead. These operators

and powers of them, do not commute with each other, if Th
(0,1) and Th

(1,0) generate the

irrational (h̄ ∈ R\Q) rotation algebra. Magnetic translations Th
γ : 	2(�) → 	2(�) are

unitary operators of the form

Th
γ ψ := uh(γ )Tγ ψ , ψ = (ψv)v∈� ∈ 	2(�), |uh(γ )| = 1, γ ∈ Z2 (2.14)
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13456 S. Becker and R. Han

Fig. 3. The two energy bands of the non-magnetic discrete Laplacian on ��. The Dirac cones are

located at zero energy.

that satisfy the commutation relation

Th
γ Th

δ = eihσsymp(γ ,δ)Th
δ Th

γ . (2.15)

On the square lattice, we define magnetic translations as

(Th
(1,0)u)(γ ) = eih/2γ2u(γ − �b1) and (Th

(0,1)u)(γ ) = e−ih/2γ1u(γ − �b2) (2.16)

and set then Th
γ := (Th

(1,0))
γ1(Th

(0,1))
γ2 .

On the hexagonal lattice, the magnetic translations Th
γ : 	2(��) → 	2(��) are

unitary operators of the above form (2.14) with prefactors (uh(γ )v)v∈�� defined as

follows: Let α(γ ) = h
6 (γ1 − γ2), then we can define uB(γ )r∗−δ1�b1−δ2�b2

= ei h
2 σsymp(γ ,δ)uB(γ )r∗

with ∗ ∈ {0, 1} where uB(γ )r0
= 1 and uB(γ )r1

= eiα(γ ). This way, the magnetic

translations on both lattices satisfy

Th
γ Hh

λ,ω = Hh
λ,T�

γ ω
Th
γ . (2.17)

The functional calculus implies that for measurable f : R→ R

Th
γ f (Hh

λ,ω) = f (Hh
λ,T�

γ ω
)Th

γ (2.18)
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Density of States and Delocalization 13457

such that for the Schwartz kernels f (Hh
λ,ω)[x, y] := 〈δx, f (Hh

λ,ω)δy〉 on the diagonal

f (Hh
λ,ω)[x, x] = f (Hh

λ,T�
γ ω

)[x − γ1
�b1 − γ2

�b2, x − γ1
�b1 − γ2

�b2]. (2.19)

To study the DOS of the model, we define, for a lattice � ⊂ R2 and operators

A ∈ L(	2(�,Cn)) given by A(s)(γ ) :=∑β∈� A[γ ,β]s(β) with possibly matrix-valued kernel

A[γ ,β] ∈ Cn×n, the regularized trace

t̃r�(A) := lim
r→∞

1∣∣B0(r)
∣∣ ∑
γ∈�∩B0(r)

trCn A[γ , γ ] (2.20)

provided the limit exists.

Birkhoff’s ergodic theorem implies the a.s. existence of the regularized trace

t̃r�(f (Hh
λ,ω)) = E

(∑
x∈W�

f (Hh
λ,ω)[x,x]

|�b1∧�b2|

)
= E tr 1lW�

f (Hh
λ,ω)

|�b1∧�b2| , (2.21)

where |�b1∧�b2|−1 normalizes the number of vertices per unit volume. By Riesz’s theorem,

one can then associate to the regularized trace a Radon measure ρHh
λ,ω

, the DOS measure,

and by the preceding discussion, this measure is a.s. non-random. Thus, ρHh
λ,ω
=: ρHh

λ
a.s.

and therefore
∫
R

f (x) dρHh
λ
(x) = t̃r�(f (Hh

λ,ω)) a.s..

3 The Semiclassical Expansion of the DOS

We study the DOS by investigating operators f (Hh
λ,ω) using the functional calculus of

Helffer–Sjöstrand [26]. We first recall that any function f ∈ C∞c (R) can be extended to

functions f̃ ∈ S (C) such that f̃ |R = f and Dzf̃ = O(|�z|∞). Such functions f̃ are then

called almost-analytic extensions of f . One possible way of defining f̃ is by

f̃ (x + iy) = 1

2π
χ(y)ψ(x)

∫
R

χ(yξ )̂f (ξ)ei(x+iy)ξ dξ ,

χ ,ψ ∈ C∞c (R), ψ |suppf+(−1,1) = 1, χ |(−1,1) = 1,

(3.1)
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13458 S. Becker and R. Han

[15, see Chapter 8] for details. A more pedestrian, but also more restrictive, way of

defining almost-analytic extensions, for smooth functions f ∈ C∞c (R), is for n ∈ N by

f̃ (x + iy) =
(

n∑
r=0

f (r)(x)
(iy)r

r!

)
ζ(x + iy)

ζ(x + iy) := χ(y/〈x〉), χ ∈ C∞, χ |[−1,1] = 1, supp(χ) ⊂ [−2, 2].

(3.2)

Differentiating (3.2), one finds that
∣∣Dzf̃ (z)

∣∣ = O
(|�z|n), which follows from

Dzf̃ (x + iy) =
n∑

r=0

f (r)(x)
(iy)r

r!
Dzζ(x + iy)+ f (n+1)(x)

(iy)n

n!

ζ(x + iy)

2
. (3.3)

A similar computation shows that the quasi-analytic extension satisfies

∣∣∣Dzf̃ (k)(z)
∣∣∣ = O

(
|�z|n−k

)
. (3.4)

The almost-analytic extension enters then in the Helffer–Sjöstrand formula,

which states that for any self-adjoint operator P,

f (P) = 1

π

∫
C

Dzf̃ (z)(P − z)−1 dm(z), (3.5)

where m is the Lebesgue measure on C. For discrete random Schrödinger operators

(2.11), this yields by applying the regularized trace

t̃r�(f (Hh
λ,ω)) =

1

π

∫
C

Dzf̃ (z)t̃r�
(
(Hh

λ,ω − z)−1
)

dm(z). (3.6)

3.1 Magnetic matrices

Definition 3.1 (Magnetic matrices). Let fω(γ ) ∈ Cc(� × Z2;Cn×n) at first, where ω ∈ �

and γ ∈ Z2. We define magnetic matrices as discrete operators as

Ah(fω) ∈ L
(
	2(Z2;Cn×n)

)
, Ah(fω) :=

(
e−i h

2 σsymp(γ ,δ)fT�
γ ω(γ − δ)

)
γ ,δ∈Z2

. (3.7)

These matrices act on 	2(Z2;Cn) by matrix-like multiplication

(Ah(fω)u)γ =
∑
δ∈Z2

(
Ah(fω)

)
γ ,δ

uδ. (3.8)
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For yet another set of discrete magnetic translation operators τh
γ on the

Z2-lattice

τh
δ (fω)(γ ) := e−i h

2 σsymp(γ ,δ)fT�
γ ω(γ − δ), (3.9)

we find, in analogy to (2.17), that magnetic matrices are covariant with respect to

discrete magnetic translations (3.9)

Ah(fT�
γ ω)τ

h
γ = τh

γ Ah(fω). (3.10)

Moreover, translations (3.9) satisfy the Weyl commutation relations

τh
γ τh

δ = eihσsymp(γ ,δ)τh
δ τh

γ . (3.11)

For f , g ∈ Cc(�× Z2;Cn×n), we introduce the product

(f #hg)ω(γ ) :=
∑
z∈Z2

fω(γ − z)gT�
γ−zω

(z)e−i h
2 σsymp(γ ,z)

=
∑
z∈Z2

fω(z)gT�
z ω(γ − z)e−i h

2 σsymp(γ ,z).
(3.12)

This product is reconcilable with multiplication of magnetic matrices

Ah(f #hg)ωu(ξ) = Ah(fω)(A
h(gω)(u))(ξ). (3.13)

Moreover, defining the involution

f ∗ω(γ ) := fT�−γ ω
(−γ ), (3.14)

we see that the adjoint of a magnetic matrix is again given by a magnetic matrix

〈Ah(fω)(g), h〉 = 〈g, Ah(f ∗ω)(h)〉. (3.15)

Remark 1. The preceding computations show that magnetic matrices are the

∗-representation of a C∗-algebra Ch, which is the closure of functions f ∈ Cc(�×Z2;Cn×n)

with composition (3.12) and involution (3.14) under the norm ‖f ‖Ch
:= supω∈�

∥∥Ah(f )
∥∥ .

This defines a continuous field (as a function of h) of C∗-algebra Ch, cf. [6, Section F]

and [43].
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13460 S. Becker and R. Han

To connect operators Hh
λ,ω with magnetic matrices, we define symbols

a�(1, 0) = a�(0, 1) = a�(−1, 0) = a�(0,−1) = 1
4 , and for the hexagonal lattice

a�(0, 0) := 1
3

(
0 1

1 0

)
, a�(1, 0) := a�(0, 1) := 1

3

(
0 1

0 0

)
,

a�(−1, 0) := a�(0,−1) := 1
3

(
0 0

1 0

)
, (3.16)

and a(η) = 0 otherwise. The random symbols are then defined as aλ,ω,�(γ ) = a�(γ ) +
λδ0(γ )Vω(0) or aλ.ω,�(γ ) = a�(γ )+ λδ0(γ )diag(Vω(r0), Vω(r1)).

Lemma 3.2. There exist unitary multiplication operators U� : 	2(Z2;C) → 	2(Z2;C)

and U� : 	2(Z2;C2)→ 	2(��;C) such that

Hh
λ,ω,� = U�Ah(aλ,ω,�)U

∗
� and Hh

λ,ω,� = U�Ah(aλ,ω,�)U∗�. (3.17)

In particular, since operators U are multiplication operators, we find

t̃r�
(
(Hh

λ,ω − z)−1
)
= |�b1 ∧ �b2|−1t̃rZ2

(
(Ah(aλ,ω)− z)−1

)
. (3.18)

Proof. The 1st equivalence on the Z2 lattice in (3.17) is obtained by 1st passing from

the symmetric to the Landau gauge and then conjugating this operator by Wu(γ ) :=
e−i h

2 γ1γ2u(γ ). For the hexagonal lattice, the transformation is slightly more involved. We

start by defining two unitary maps: the 1st one is U1z := (ζvz(v)
)
v∈V(��)

with recursively

defined factors

ζr0
:= 1, ζ

γ1 �b1+γ2 �b2+r1
:= e

iA
γ1 �b1+γ2 �b2+�f ζ

γ1 �b1+γ2 �b2+r0

ζ
(γ1+1) �b1+γ2 �b2+r0

:= e
i
(
−A

(γ1+1) �b1+γ2 �b2+�g+A
γ1 �b1+γ2 �b2+�f

)
ζ
γ1 �b1+γ2 �b2+r0

and

ζ
γ1 �b1+(γ2+1) �b2+r0

:= e
i
(
−A

γ1 �b1+(γ2+1) �b2+�h−hγ1+A
γ1 �b1+γ2 �b2+�f

)
ζ
γ1 �b1+γ2 �b2+r0

(3.19)

and U2 : 	2(V(�
�
)) → 	2(Z2,C2), U2(z) (γ ) :=

(
z(r0 + γ1

�b1 + γ2
�b2) z(r1 + γ1

�b1 + γ2
�b2)

)T
.

The unitary transform is then Ah(aλ,ω,�) = (U1U∗
2W∗)∗Hh

λ,ω,�(U1U∗
2W∗), see also

[9, Lemmas 3.3 and 3.5]. �
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3.2 Reduction of DOS

We now continue with the derivation of the DOS. For this, we consider a 
DO

representation of (non-random) magnetic matrices. To start, we observe the following

expansion of the regularized trace of the resolvent of the random operators in terms of

the deterministic one. Recall that we write Hh := Hh
λ=0,ω for the non-random DML.

Lemma 3.3. The resolvent of the discrete random Schrödinger operator Hh
λ,ω satisfies

t̃r�
((

Hh
λ,ω − z

)−1) = 2∑
k=0

(−λE(V)Dz)
k

k! t̃r�
((

Hh − z
)−1)

+ λ2

2 Var(V)Dz

∑
r∈W�

(
tr
(

1l{r}(Hh − z
)−1))2

+O
(
λ3
∥∥(Hh − z)−1

∥∥3
∥∥(Hh

λ,ω − z
)−1∥∥).

(3.20)

Proof. The resolvent identity then yields a 2nd-order approximation in the disorder

parameter λ

(
Hh

λ,ω − z
)−1 = (Hh − z

)−1 − λ
(
Hh − z

)−1Vω

(
Hh − z

)−1

+ λ2(Hh − z
)−1Vω

(
Hh − z

)−1Vω

(
Hh − z

)−1

+O
(
λ3
∥∥(Hh − z

)−1∥∥3
∥∥(Hh

λ,ω − z
)−1∥∥). (3.21)

We study 2nd-order approximations in λ since this is the leading-order level at which

the stochastic nature of the perturbation enters. Taking regularized traces in (3.21)

yields

t̃r�
((

Hh
λ,ω − z

)−1) = (1− λE(V)Dz)t̃r�
((

Hh − z
)−1)

+ λ2t̃r�
(
(Hh − z)−1Vω(H

h − z)−1Vω(H
h − z)−1)

+O
(
λ3
∥∥(Hh − z)−1

∥∥3
∥∥(Hh

λ,ω − z)−1
∥∥). (3.22)

Interchanging derivatives and regularized traces is easily justified by (2.21). Equation

(3.22) can be rewritten, by separating (independent) potentials on different vertices from
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13462 S. Becker and R. Han

the squares of potentials such that

t̃r�
((

Hh − z
)−1Vω

(
Hh − z

)−1Vω

(
Hh − z

)−1)
= |�b1 ∧ �b2|−1 E tr

(
1lW�

(Hh − z)−1Vω(H
h − z)−1Vω(H

h − z)−1)
= |�b1 ∧ �b2|−1 E(V)2 tr

(
1lW�

(Hh − z)−3)
+ |�b1 ∧ �b2|−1 Var(V)

∑
r∈W�

tr
(

1l{r}(Hh − z)−2) tr
(

1l{r}(Hh − z)−1). (3.23)

Here, we used since (Hh − z)−1[γ , γ ] = (Hh − z)−1[Tνγ , Tνγ ], cf. (2.14) and (2.19)

∑
x1,x2∈W�,γ∈Z2

(Hh − z)−1[x1, T−γ x2](Hh − z)−1[T−γ x2, T−γ x2](Hh − z)−1[T−γ x2, x1]

=
∑

x1,x2∈W�,γ∈Z2

(Hh − z)−1[Tγ x1, x2](Hh − z)−1[x2, x2](Hh − z)−1[x2, Tγ x1]

=
∑

r∈W�,v∈�
(Hh − z)−1[r, r](Hh − z)−1[r, v](Hh − z)−1[v, r]

=
∑

r∈W�

tr
(
1l{r}(Hh − z)−2

)
tr
(
1l{r}(Hh − z)−1

)
. (3.24)

Inserting this into (3.22) yields (3.23). �

We now continue expressing the regularized traces of discrete Schrödinger

operators in terms of pseudodifferential operators. For vectors �e1 := (1, 0) and �e2 :=
(0, 1), the identity (3.11) reduces to

τ−h
�e1

τ−h
�e2
= e−ihτ−h

�e2
τ−h
�e1

. (3.25)

This is a version of the canonical commutation relation. In semiclassical Weyl quanti-

zation, the same commutation relation is satisfied by

Opw
h

(
eix)Opw

h

(
eiξ ) = e−ih Opw

h

(
eiξ )Opw

h

(
eix). (3.26)

Rather than analyzing directly the discrete operators Hh := Hh
λ=0,ω or Ah(a) :=

Ah(aλ=0,ω), we use a pseudodifferential representation that we obtain from the following
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∗-homomorphism � : S (Z2;Cn×n)→ L
(
L2(R;Cn×n)

)
:

�(f ) := Opw
h (̂f (x, ξ)) =

∑
γ∈Z2

f (γ )Opw
h

(
(x, ξ) �→ ei〈γ ,(x,ξ)〉)

such that �(f #hg) = �(f ) ◦�(g).

See [27, Section 6] for details of this construction. Here, S (Z2;Cn×n) are the Cn×n-

valued functions that decay faster than any polynomial power on Z2. We now define a

regularized trace t̃r for 
DOs with periodic symbol such that t̃rZ2(Ah(f )) = t̃r(Opw
h (̂f )):

Definition 3.4. Let f̂ ∈ C∞(R2;Cn×n) be Z2∗ periodic. Then we define the regularized

trace

t̃r(Opw
h (̂f )) :=

∫
T2∗

trCn f̂ (x, ξ)
dx dξ

|T2∗|
. (3.27)

We can express the resolvent of the Hamiltonian in (3.6), by the C∗-
homomorphism � and the trace identity, in terms of 
DOs

Qw
� (x, hpx) := 1

2

(
cos(x)+ cos(hpx)

)
and

Qw� (x, hpx) := 1
3

(
0 1+ eix + eihpx

1+ e−ix + e−ihpx 0

)
,

(3.28)

which are the semiclassical Weyl-quantizations of

Q�(x, ξ) := â�(x, ξ) = cos(x)+cos(ξ)
2

and Q�(x, ξ) := â�(x, ξ) =
(

0 1+eix+eiξ

3
1+e−ix+e−iξ

3 0

)
.

(3.29)

In particular, the C∗-homomorphism � implies

t̃r
Z2

(
(Ah(a)− z)−1) = t̃r

(
(Qw(x, hpx)− z)−1). (3.30)

The trace on the right-hand side is well defined, as (Qw(x, hpx) − z)−1 is again a


DO with periodic symbol in S by the semiclassical Beal’s lemma [46, Theorem

8.3], [26, Proposition 5.1]. To conclude, we can express the DOS of Hh
λ,ω in terms of

pseudodifferential operators (3.29) as follows:
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13464 S. Becker and R. Han

Proposition 3.5. Let f ∈ C5
c (R) and f̃ be an almost-analytic extension (3.2), then for

n = 1, in case of the square, and n = 2, in case of the hexagonal lattice,

t̃r�(f (Hh
λ,ω)) =

2∑
k=0

λk
E(V)k

π |�b1∧�b2|k!

∫
C

Dzf̃ (k)(z)t̃r
(
(Qw(x, hpx)− z)−1

)
dm(z)

− Var(V)λ2

2π |�b1∧�b2|

n∑
i=1

∫
C

Dzf̃ ′(z)t̃r
(
(Qw(x, hpx)− z)−1

ii

)2
dm(z)+O(‖f (5)‖L∞λ3). (3.31)

Proof. By inserting (3.20) into the Helffer–Sjöstrand formula (3.6), we find

t̃r�(f (Hh
λ,ω)) = 1

π |�b1∧�b2|

∫
C

Dzf̃ (z)
( 2∑

k=0

(−λE(V)Dz)
k

k! t̃r�

((
Hh − z

)−1
)

+ λ2 Var(V)
2 Dz

∑
r∈W�

(
tr
(

1l{r}
(
Hh − z

)−1
))2

+O
(
λ3 |�(z)|−4

))
dm(z). (3.32) )

Using Dzf̃ = O
(|�(z)|4), as in (3.3) for the almost-analytic extension, we can compensate

the |�(z)|−4 singularity. To express the right-hand side in terms of 
DOs, rather than

Hh, we use (3.18) and (3.31), which upon integration by parts yields (3.32). �

Our main result on the DOS for small magnetic fields is stated in the following

theorem:

Theorem 3 (Semiclassical expansion of DOS). For small magnetic fields h > 0 and

small disorder λ, the DOS satisfies the following:

Square lattice (�): let I be an interval I ⊂ [−1,−1 + δ) or I ⊂ (1 − δ, 1] for some

δ > 0 sufficiently small (this interval is located at the bottom/top of the spectrum in

Figure 2) and f ∈ C5
c (I), then for functions g�,n (independent of λ), defined in (7.19),

t̃r�(f (Hh
�,λ,ω)) = h

2π

∑
n∈N

f (zn(h)+ λE(V))

− h Var(V)λ2

4π

∑
n∈N

(
f ′′(zn(h))

2π + f ′(zn(h))g�,n(zn(h), h)
)

+O(‖f ‖C5 (λ3 + h∞)) a.s., (3.33)
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Density of States and Delocalization 13465

with Landau levels zn(h) = κ(nh, h) − 1 defined, for n ∈ N, by a Bohr–Sommerfeld

condition

F�(κ(ζ , h), h) = ζ +O(h∞), F�(s, h) ∼
∞∑

j=0

hjFj,�(s), Fj,� ∈ C∞(R),

F0,�(s) =
1

2π

∫
γs

ξ dx, γs =
{
(x, ξ) ∈ T2∗ : 2− cos(x)− cos(ξ) = 2s

}
, F1,�(s) =

1

2
, (3.34)

where γs is oriented clockwise in the (x, ξ) plane.

Hexagonal lattice (�): let I be an interval I ⊂ (−δ, δ) for some δ > 0 sufficiently

small (this interval encloses energies around the Dirac points in Figure 3) and f ∈ C5
c (I),

then for functions g�,n, defined in (7.19),

t̃r�(f (Hh�,λ,ω)) = h
π |�b1∧�b2|

∑
n∈Z

f (zn(h)+ λE(V))

− h Var(V)λ2

2π |�b1∧�b2|
∑
n∈Z

(
f ′′(zn(h))

2π + f ′(zn(h))g�,n(zn(h), h)
)

+O(‖f ‖C5 (λ3 + h∞)) a.s.,

(3.35)

with Landau levels zn(h) = κ(nh, h) satisfying κ(−ζ , h) = −κ(ζ , h), defined, for n ∈ Z, by

a Bohr–Sommerfeld condition

F�(κ(ζ , h)2, h) = |ζ | +O(h∞), F�(s, h) ∼ F0,�(s)+
∞∑

j=2

hjFj,�(s), Fj,� ∈ C∞(R),

F0,�(s) =
1

4π

∫
γs

ξ dx, γs =
{
(x, ξ) ∈ T2∗ : |1+ eix + eiξ |2 = 9s

}
, Fj,�(0) = 0, (3.36)

where γs is oriented clockwise in the (x, ξ) plane.

The proof of Theorem 3 is given at the end of this article in Section 7.

Remark 2. The different prefactor h/2π for the square lattice compared with h/π for

the hexagonal lattice is due to the two-fold degeneracy of quasimodes on the hexagonal

lattice (two Dirac cones and therefore two potential wells), cf. Figure 3.

In particular, for functions f , whose 1st and 2nd derivative vanishes at the

Landau levels, the randomness only causes a shift of the Landau levels by λE(V). This

can be thought of as a semiclassical universality result for the integrated DOS, if one

takes f to be (a smooth approximation of) an indicator function. By this, we mean that
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13466 S. Becker and R. Han

Fig. 4. Energy bands for magnetic flux h = 2π 4
30 on �� close to the zero energy level. Bands

concentrate around certain energies, which are precisely the Landau levels defined in Theorem 3.

the leading-order contribution in the semiclassical parameter λ > 0 in the second line

of (3.38) vanishes.

We start by showing that for small enough magnetic fields without disorder

there exist spectral gaps between the Landau levels stated in Theorem 3, cf. Figure 4.

The presence of spectral gaps is crucial for the study of the QHE, as the Hall

conductivity remains unchanged as long as the Fermi energy stays inside a spectral gap.

From the Bohr–Sommerfeld condition stated in Theorem 3 in the absence of

disorder, that is, λ ≡ 0, we obtain to leading-order approximative Landau levels z(1)(h)

F0,�|I
(
z(1)

�,n(h)
)
= nh, and F0,�|I

(
z(1)�,n(h)

)
= |n|h, (3.37)

where F0 is the respective normalized phase space area in the Brillouin zone as stated in

(3.37) and (3.39) and I is the respective region of interest, that is, the respective interval

defined in Theorem 3. While approximate Landau levels z(1)
�,n(h) for the square lattice

are uniquely defined by the first of the equations in (3.40), there are two solutions for

the hexagonal lattice (because of the upper and lower cone, see Figure 3): let us recall

from Theorem 3 that the asymptotic expansion yields

F�(z�,n(h), h) = F0,�(z�,n(h))+O(h2z�,n(h), h) = nh+O(h∞),

F�(z�,n(h)
2) = F0,�(z�,n(h)

2)+O(h2z�,n(h)
2) = |n|h+O(h∞),

(3.38)
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which gives for the leading-order approximations (3.40) of Landau levels

z�,n(h) = z(1)
�,n(h)+O(nh3)+O(h∞)

z�,n(h)
2 = z(1)�,n(h)

2 +O(|n|h3)+O(h∞).
(3.39)

Hence, by Taylor expansion, Landau levels are to leading order given by

z�,n(h) = z(1)
�,n(h)+O

(
nh3

)
and z�,0(h) = 0+O(h∞)

z�,n(h) = z(1)�,n(h)+O
(
|n| 1

2 h
5
2

)
, n �= 0.

(3.40)

To make these expressions more concrete, we approximate the cross-section for

the square lattice by using that

cos(x)+ cos(ξ)

2
+ 1 = (x − π)2 + (ξ − π)2

4
+O(x3 + ξ3).

Thus, F0,�(s) = 2s+O(s2), which yields for the Landau levels

z(1)
�,n(h) =

(n− 1
2 )h

2
+O(n2h2), n ∈ N.

For the hexagonal lattice, we use that |1+ eix + eiξ |2/9 vanishes at (x, ξ) ∈ Z2∗±
(2π

3 ,−2π
3

)
,

that is, at the Dirac points, see Figure 3.

In small neighborhoods of ±(2π
3 ,−2π

3 ), we can make a symplectic (and thus area-

preserving) change of variables

y = a(x + ξ), η = b
(
ξ − x ± 4π

3

)
, 2ab = 1,

and find that

1+ eix + eiξ = c(η ∓ iy)+O(y2 + η2),

1+ e−ix + e−iξ = c(η ± iy)+O(y2 + η2), (3.41)

where c = 3
1
4 2− 1

2 by choosing a = ±2− 1
2 3− 1

4 and b = ±2− 1
2 3

1
4 . We thus conclude that for

a Fermi velocity vF := √2c/3 = 3−3/4

z(1)�,n(h) = vFsgn(n)
√|n|h+O(|n|h), n ∈ Z.
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Proposition 3.6 (Spectral gaps between Landau levels). For small h > 0, the intersec-

tion of the region of interest I, in Theorem 3, with the spectrum of Hh := Hh
λ=0,ω, �(Hh)∩I,

is contained in disjoint intervals defined by constants C�,n, C�,n > 0

B�,n(h) := [z(1)
�,n(h)− C�,nh3, z(1)

�,n(h)+ C�,nh3], n ∈ [1, ..., N�(h)]

B�,n(h) := [z(1)�,n(h)− C�,nh
5
2 , z(1)�,n(h)+ C�,nh

5
2 ], n ∈ [−N�(h), ..., N�(h)].

(3.42)

Moreover, numbers N(h) have the property that limh↓0 N(h) = ∞.

Proof. Since the DOS measure is supported exactly where spectrum is, we conclude

that the contribution to the DOS from the Landau levels, that is, the 1st term on the

right-hand side of (3.36) and (3.38) is contained in closed Landau bands

B�,n(h) :=
[
z(1)

�,n(h)− C�,nh3, z(1)
�,n(h)+ C�,nh3

]
, n ∈ N

B�,n(h) :=
[
z(1)�,n(h)− C�,nh

5
2 , z(1)�,n(h)+ C�,nh

5
2

]
, n ∈ Z.

(3.43)

It remains to exclude spectrum of O(h∞)-size, see the error bounds in (3.36) and (3.38),

outside intervals Bn, possibly after modifying constants Cn. This can be shown, using

semiclassical techniques as in [9, Proposition 5.2]. To be precise, the proposition in [9]

states that there exists an operator Qw
0 (x, hpx) whose point spectrum for the hexagonal

lattice around zero coincides with the Landau levels, such that if for z ∈ nbhd(0), and

some fixed N0,

d(z,�(Qw
0 (x, hpx))) > hN0

then the operator Qw�(x, hpx), that is, isospectral to Hh�, cf. [41, Theorem 6.2], is also

invertible for such z. Hence, Hh� does not possess any spectrum between the Landau

bands. The same argument applies to the square lattice in a neighborhood of ±1. �

The preceding proposition implies that under small disorder, the closed Landau

bands in the region of interest will broaden but are still non-overlapping since the

decomposition Hh
λ,ω = Hh + λVω implies

�(Hh
λ,ω) ⊂

{
z ∈ R; d(z,�(Hh)) ≤ λ ‖V‖∞

}
. (3.44)
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It follows from Proposition 3.6 and (3.47) that for sufficiently weak magnetic fields h >

0 and small disorder λ ∈ (0, λ0(h)) there exist for Hh
λ,ω finitely many (disorder-broadened)

disjoint intervals Bn,λ(h) ⊃ Bn(h) with n ∈ {1, .., N�,λ(h)
}
, for the square lattice, or with

n ∈ {−N�,λ(h), .., N�,λ(h)}, in case of the hexagonal lattice, such that

�(Hh
λ,ω) ⊂ ∪nBn,λ(h) for all λ ∈ (0, λ0(h)), (3.45)

where the union of n is taken over the respective sets.

Moreover, we assume without loss of generality that the disorder-broadened

Landau bands are nested, that is, for ν ≤ λ we have Bn,ν(h) ⊂ Bn,λ(h).

4 Quantum Hall Effect

4.1 The QHE without disorder

We start by studying the QHE in the absence of disorder using the DOS stated in

Theorem 3 (we assume h̄ ∈ R\Q in the following paragraph). We take Středa’s formula

[42] as the definition of the Hall conductivity:

Definition 4.1 (Středa formula). For (possibly random) Schrödinger operators Hh
λ,ω with

Fermi energy μ inside a gap d(μ,�(Hh
λ,ω)) > 0 a.s. we define the Hall conductivity by the

Středa formula

cH(Hh
λ,ω,μ) := |�b1 ∧ �b2|Dht̃r�

(
1l(−∞,μ](H

h
λ,ω)
)

. (4.1)

The DOS is differentiable, since by (2.21) the right-hand side of

t̃r�(1lI(H
h
λ,ω)) =

E tr 1lW�
1lI(H

h
λ,ω)

|�b1 ∧ �b2|

is differentiable. This follows from holomorphic functional calculus

1lI(H
h
λ,ω) = (2π i)−1

∮
I
(z− Hh

λ,ω)
−1 dz,

as Hh
λ,ω depends analytically on h, that is, h �→ 1lI(H

h
λ,ω) is differentiable as long as ∂I is

in a spectral gap. Thus, h �→ t̃r�(1lI(H
h
λ,ω)) is differentiable as well.
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On 	2(Z2), we define the rotation algebra Ah̄ as the operator norm closure

Ah̄ :=
⎧⎨⎩T ∈ L(	2(Z2;Cn)); ∃k ∈ N, cγ ∈ C : T =

∑
|γ |≤k

cγ τ
h
γ

⎫⎬⎭
‖•‖

. (4.2)

Magnetic matrices introduced in Definition 3.1 form a ∗-representation of the irrational

rotation algebra.We then focus on the subalgebra A∞h̄ ⊂ Ah̄ of magnetic matrices with

rapidly decaying symbols, that is, with coefficients in (4.2) that satisfy (cγ ) ∈ S (Z2;C).

The set A∞h̄ is still a locally convex algebra equipped with standard seminorms inducing

decay faster than any polynomial power |(cγ )|i := supγ∈Z2

∣∣∣(1+ |γ |)icγ

∣∣∣ Cn×n . Moreover,

the inverse of a magnetic matrix Ah(a) ∈ A∞−h̄ is again a magnetic matrix [26, Proposition

5.1], that is, we have for z /∈ �(Ah(a)) that (Ah(a) − z)−1 ∈ A∞−h̄, again. (Equation

(3.25) shows that magnetic matrices satisfy the canonical commutation relation with

−h rather than h.)

The smooth subalgebra A∞h̄ is stable under holomorphic functional calculus

[12, Chapter 3, Appendix C], which implies that Fermi projections of Ah(a) are again

elements of A∞−h̄, as long as μ /∈ �(Ah(a))

1l(−∞,μ](A
h(a)) = (2π i)−1

∮
�(Ah(a))

(z− Ah(a))−1 dz ∈ A∞−h̄.

The irrational rotation algebra A∞h̄ possesses a unique normalized trace (since the weak

closure of Ah̄ is a (hyperfinite) type �1 factor) [39, Proposition 2.3, 2.4], which therefore

agrees with the trace t̃r we use in this article. The K0 group of the irrational rotation

algebra is given by K0(Ah̄) = Z + h̄ Z [36, 37]. Moreover, there exists a distinguished

projection [38], the so-called Powers–Rieffel projection PR, which together with the

identity generate the K0 group. The inclusion of K0 groups of the dense subalgebra A∞h̄
into the one of Ah̄ is an isomorphism [11, Appendix 3, Proposition 2a], which implies

that the above results remain true for A∞h̄ as well.

This implies that for any projection P ∈ A∞h̄

t̃rZ2(P) = γ1t̃rZ2(id)+ γ2t̃rZ2(PR) = γ1 + γ2h̄. (4.3)

In the language of noncommutative geometry, our trace τ0 := t̃rZ2 is called the 0-cocycle.

For the QHE the 2-cocycle τ2 with a0, a1, a2 ∈ A∞h̄ is of particular importance

τ2(a0, a1, a2) := τ0(a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2))) (4.4)
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with derivations

δ1(τ
h
γ ) := iγ1τ

h
γ and δ2(τ

h
γ ) := iγ2τ

h
γ . (4.5)

In particular, we write �(a0) := τ2(a0, a0, a0) and will revisit � in the Kubo–Chern

formula for the Hall conductance. It follows then from [12, Corollary 16 in Chapter III,

Section 3] (see also [12, p. 359]) that for any a0 ∈ K0(A∞h̄ ) one has

�(a0) = 2π iγ2, (4.6)

where γ2 ∈ Z coincides with the eponymous integer in (4.3).

The semiclassical description of the DOS in Theorem 3 implies together with

the results from the previous paragraph the following proposition (we gauge the

Hall conductivity for the hexagonal lattice in such a way that a full band has Hall

conductivity zero):

Proposition 4.2 (Quantum Hall effect). Let h > 0 be small enough and consider zero

disorder, that is, λ = 0. The Hall conductivity is then in the spectral gaps between closed

Landau bands (3.45) for the discrete Schrödinger operators Hh given by

cH(Hh(a�),μ) = n
2π , μ between B�,n & B�,n+1 with n ∈ {1, .., N�(h)

}
and

cH(Hh(a�),μ) =
⎧⎨⎩

2n+1
2π , μ between B�,n & B�,n+1 with 0 ≤ n ≤ N�(h)

2n−1
2π , μ between B�,n−1 & B�,n with 0 ≥ n ≥ −N�(h).

(4.7)

Proof. We just have to find the integer-valued coefficients in (4.3), which we can obtain

from the semiclassical expressions for the DOS in Theorem 3. Since Theorem 3 does

not allow us immediately to study spectral projections 1lI(H
h
λ,ω), we use smooth cut-

off functions 1̃lI(H
h
λ,ω) that coincide with the indicator function in the Landau bands and

decay to zero in the spectral gaps (the DOS is supported on the spectrum, only). Theorem

3 implies that for Fermi energies μ between Landau bands

t̃r�(1l(−∞,μ](H
h
�)) = h

2π

∑
n∈N

1l(−∞,μ](zn(h))+O(h∞)

t̃r�(1l[0,μ](H
h� )) = h

π |�b1∧�b2|
∑
n∈Z

1l[0,μ](zn(h))+O(h∞).
(4.8)
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Since the Hall conductivity is constant in spectral gaps and continuous in the

magnetic field, the O(h∞) error term in Theorem 3 does not contribute to (4.3). We

therefore find in (4.3) that γ1 = 0 and

γ2,� = n, μ between B�,n & B�,n+1 with n ∈ {1, .., N�(h)
}

γ2,� =
⎧⎨⎩ 2n+ 1, μ between B�,n & B�,n+1 with 0 ≤ n ≤ N�(h)

2n− 1, μ between B�,n−1 & B�,n with 0 ≥ n ≥ −N�(h).

(4.9)

�

Let us recall how the Hall conductivity relates to the geometric framework of

condensed matter physics [7], see also [40], following the construction in [12, pp. 237–

238]: we study the algebra �∗ := A∞h̄ ⊗ ∧∗C2. Using derivations (4.5), we can define the

differentials

d(a⊗ α) := δ1(a)�e1 ∧ α + δ2(a)�e2 ∧ α

d
(
a1 ⊗ �e1 + a2 ⊗ �e2

) = (δ1(a2)− δ2(a1))⊗ �e1 ∧ �e2.
(4.10)

For forms of top degree, there is the trace
∫

: �∗2 → C given by
∫

a⊗ (�e1 ∧ �e2) = a00. Let

p ∈ A∞h̄ be a projection with module M∞ := pA∞h̄ . For m ∈ M∞ and a ∈ A∞h̄ , we define

connections (Berry connections) ∇i : M∞ → M∞

∇i(ξa) = ∇i(ξ)a+ ξ δi(a) := p δi(ξ) a+ ξ δi(a), i ∈ {1, 2} .

The curvature tensor (Berry curvature) is then defined as R := [∇1,∇2]⊗ (�e1 ∧ �e2).

The 1st Chern number (Berry phase) is an invariant of the module, independent

of the connection, defined by Ch(p) := (2π i)−1
∫

R = (2π i)−1�(p).

With this vocabulary at hand, we now come to an equivalent 2nd definition of

the Hall conductivity:

Definition 4.3 (Kubo–Chern formula). Let μ be an energy in an a.s. spectral gap of

Ah(aλ,ω) with associated spectral projection PA := 1l(−∞,μ](A
h(aλ,ω)), then the conductiv-

ity tensor (σjk)jk ∈ C2×2 satisfies

σjk := −i t̃r
Z2

(
PA[[PA, xj], [PA, xk]]

)
= −iE

[
�(PA)

]
.
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The following proposition states that the definitions of the Hall conductivity

by the Kubo–Chern and Středa formula yield the same result and are the same for all

equivalent versions of the (random) DML:

Proposition 4.4. Let I be an interval such that ∂I is in an a.s. spectral gap of

Ah(aλ,ω) and let PA := 1lI(A
h(aλ,ω)), then the Středa formula agrees with the off-diagonal

conductivity in the Kubo–Chern formula

Dht̃r
Z2(PA) = −i t̃r

Z2

(
PA[[PA, x1], [PA, x2]]

) = −i�(PA).

Moreover, let PHh
λ,ω

(I) := 1lI(H
h
λ,ω) be the Fermi projection of Hh

λ,ω, the Kubo–Chern

formulas of projections coincide for Xi(γ1
�b1 + γ2

�b2 + rj) := γi

t̃r�
(
PH [[PH , X1], [PH , X2]]

) = |�b1 ∧ �b2|−1 t̃rZ2

(
PA[[PA, x1], [PA, x2]]

)
. (4.11)

Proof. The 1st part of the proposition follows from the noncommutative framework

and a direct computation can be found in [43, Theorem 7]. (The different sign compared

with [43, (51)] is due to a different sign convention that we use for magnetic matrices.)

The 2nd part follows as UHh
λ,ω = Ah(aλ,ω)U for a unitary multiplication operator U, by

Lemma 3.2,

|�b1 ∧ �b2|t̃r�
(
PH [[PH , X1], [PH , X2]]

)
= E tr

(〈
U∗δ0, PH [[PH , X1], [PH , X2]]U∗δ0

〉)
= E trCn

(〈
δ0, PA[[PA, x1], [PA, x2]]δ0

〉)
= t̃rZ2

(
PA[[PA, x1], [PA, x2]]

)
.

(4.12)

�

Finally, we shall use a 3rd way of expressing the Hall conductivity using the

relative index of projections. This representation is due to Avron et al. [4]. The version

used here can be found in [5, Chapter 14.5].

Definition 4.5 (Index-theoretic formulation). Let Pλ,ω be an orthogonal projection

on 	2(Z2) satisfying the covariance relation τh
γ Pλ,Tγ ω

= Pλ,ωτ
h
γ with translations (3.9)
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such that

∑
x∈Z2

|x|
(
E|Pλ,ω[0, x]|3

)1/3
<∞. (4.13)

Using unitary operators (Uaψ)(x) := e−iθa(x)ψ(x) with θa(x) := arg(x − a) ∈ (−π ,π ],

(here we use the obvious identification of R2 with C), the off-diagonal component of the

conductivity tensor σ1,2 is given by the almost sure and a ∈ T∗2 independent value of the

relative index

2πσ1,2 = ind(Pλ,ω, UaPλ,ωU∗
a) = E tr(Pλ,ω − UaPλ,ωU∗

a)
3

and coincides, if Pλ,ω is a spectral projection satisfying the conditions of Proposition

4.4, with the value given by the Kubo–Chern formula in Definition 4.3.

Remark 3. The index-theoretic formulation implies that the Hall conductivity is

integer-valued (up to the prefactor (2π)−1) under disorder, too. This follows of course

also from the Kubo–Chern formula using the approach presented in [6].

The index-theoretic formulation of the Hall conductivity implies that the Hall

conductivity is invariant, see Proposition 4.2, under mild disorder in the spectral gaps

between closed disorder-broadened Landau bands:

Proof of Proposition 1.1. Consider a Fermi level μ between disorder-broadened

Landau bands Bn,λ and Bn+1,λ, that is, μ is in a spectral gap of Ah(aλ,ω). We need to

show that for Fermi projections Pλ,ω := 1l(−∞,μ](A
h(aλ,ω)) and λ sufficiently close to zero,

we have almost sure equality

ind(Pλ,ω, UaPλ,ωU∗
a) = ind(P0,ω, UaP0,ωU∗

a). (4.14)

By the resolvent identity and holomorphic functional calculus, we find for the difference

Pλ,ω − P0,ω =
λ

2π i

∮
(−∞,μ]

(Ah(a)− z)−1V(Ah(aλ,ω)− z)−1 dz,

which implies that limλ↓0 Pλ,ωx = P0,ωx by dominated convergence, which can be argued

using the usual Combes–Thomas estimate for the pointwise bound.
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Let Tλ,ω = Pλ,ω − UaPλ,ωU∗
a be the difference operator, we then find

∣∣ind(Pλ,ω, UaPλ,ωU∗
a)− ind(P0,ω, UaP0,ωU∗

a)
∣∣ = ∣∣∣tr(T3

λ,ω)− tr(T3
0,ω)

∣∣∣
≤
∣∣∣∣∣∣
∑
|γ |≤n

tr
Cn

〈
δγ , (T3

λ,ω − T3
0,ω)δγ

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
|γ |>n

tr
Cn

〈
δγ , (T3

λ,ω − T3
0,ω)δγ

〉∣∣∣∣∣∣ .
(4.15)

It suffices to argue that for λ small, the difference of indices is less than one almost

surely to show (4.14). The 1st term on the right-hand side is continuous in λ by strong

convergence and can therefore (for any fixed threshold n) be made arbitrarily small by

taking λ small enough. Thus, by Hölder’s inequality, we find for the 2nd term

sup
λ∈(0,λ0)

∣∣∣∣∣∣
∑
|γ |>n

〈
δγ , T3

λ,ωδγ

〉∣∣∣∣∣∣ ≤ ∥∥Tλ,ω

∥∥2
L3

∥∥∥Tλ,ωδ|γ |>n

∥∥∥
L3

. (4.16)

We can then use the elementary identity

∣∣∣e−iθα(x) − e−iθα(x+y)
∣∣∣ = ∣∣∣e−iθα(x) − e−iθα−y(x)

∣∣∣ ≤ min
{

2,
|y|√|x − α||x + y − α|

}
,

see [5, (14.24)], to estimate [5, Lemma 14.3 and (14.27)]

E
∥∥∥Tλ,ωδ|γ |>n

∥∥∥
L3

�
∑
y∈Z2

E

⎛⎝∑
|x|>n

∣∣Tλ,ω[x + y, x]
∣∣ 3

⎞⎠1/3

�
∑
y∈Z2

⎛⎝∑
|x|>n

E
∣∣Pλ,ω[x + y, x]

∣∣ 3
∣∣∣e−iθα(x+y) − e−iθα(x)

∣∣∣ 3

⎞⎠1/3

�
∑
y∈Z2

(
E
∣∣Pλ,ω[y, 0]

∣∣ 3
)1/3

⎛⎝∑
|x|>n

∣∣∣e−iθα(x+y) − e−iθα(x)
∣∣∣ 3

⎞⎠1/3

<∞.

(4.17)

The standard Combes–Thomas estimate implies that (4.13) is uniformly bounded for

λ ∈ (0, λ0). This implies that the summand in (4.17) is uniformly bounded and by the

dominated convergence theorem, this expression goes to zero as n →∞. �
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5 The Metal/Insulator Transition

5.1 Measures of transport

For our discussion of metal/insulator transitions, we first recall the definition of

transport coefficients stated in [19]. Even though the results in that article are stated

for non-magnetic Schrödinger operators, the results still apply to(discrete) magnetic

Schrödinger operators as the authors state in the beginning of [20, Section 4]. Dynamical

properties are studied using weighted norms

Mh
λ,ω(p, ζ , t) =

∥∥∥〈x〉p/2e−itHh
λ,ωζ(Hh

λ,ω)δ0

∥∥∥2

L2
,

where ζ ∈ C∞c,+(R) localizes to a fixed energy window. In particular, we say that at

energies E, Hh
λ,ω exhibits Hilbert–Schmidt localization if there is an open interval I # E

such that for all ζ ∈ C∞c,+(I) and all p > 0

E

[
sup
t∈R

Mh
λ,ω(p, ζ , t)

]
<∞.

The union of all such energies comprises the set �
h,loc
λ . We also define expected time-

Césaro averages

Mh
λ (p, ζ , T) = 1

T

∫ ∞

0
E
(
Mh

λ,ω(p, ζ , t)
)

e−t/T dt.

The (lower) transport exponent is defined by

βh
λ (p, ζ ) = lim inf

T→∞
log+ Mh

λ (p, ζ , T)

p log(T)
, for p > 0, ζ ∈ C∞c,+(R)

and from this one defines the p-th local transport exponent

βh
λ (p, E) = inf

I#E
sup

ζ∈C∞c,+(I)
βh
λ (p, ζ ) ∈ [0, 1].

The local lower transport exponent is then defined as βh
λ (E) := supp>0 βh

λ (p, E). The

exponent βh
λ (E) is a measure of transport at energy E. This coefficient allows us to define
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two complementary regions: the (relatively open) region of dynamical localization or

insulator region

�
h,DL
λ =

{
E ∈ R;βh

λ (E) = 0
}

(5.1)

that coincides with �
h,loc
λ [19, Theorem 2.8] and the (relatively closed) region of

dynamical delocalization or metallic transport region

�
h,DD
λ =

{
E ∈ R;βh

λ (E) > 0
}

. (5.2)

An energy E at which the transport coefficient βh
λ jumps from zero to a non-zero value

is called a mobility edge.

Remark 4. Germinet and Klein [19, Theorem 2.10] imply that in two dimensions, the

random Schrödinger operator Hh
λ,ω has the property that for all E ∈ R for which the

transport exponent is positive βh
λ (E) > 0, the coefficient satisfies already βh

λ (E) > 1/4.

Fix ε > 0 and let K be the multiplication operator by 〈x〉1+ε. The random measure

of Hh
λ,ω is defined for Borel sets B ⊂ R by μλ,ω(B) := ∥∥K−1 1lB(H

h
λ,ω)
∥∥2
L2 , is supported on

the spectrum of Hh
λ,ω, such that μλ,ω(B) <∞ if B ⊂ �(Hh

λ,ω) is bounded.

Whenever the multiscale analysis in [21], which applies to magnetic Schrödinger

operators, as explained in the beginning of their Section 2, applies to energies in the

region of dynamical localization, this has a strong implication on the eigenfunctions

that the authors call summable uniform decay of eigenfunction correlations (SUDEC),

see [21, Corollary 3], which we recall in the following definition:

Definition 5.1 (SUDEC). For a bounded interval I with I ⊂ �
h,DL
λ (Hh

λ,ω), we say that Hh
λ,ω

exhibits SUDEC in I if the spectrum of Hh
λ,ω is a.s. pure point and for each eigenvalue

En,ω,λ ∈ I there is an ONB (φn,j,λ,ω)j∈{1,...,νn,λ,ω} of the finite-dimensional eigenspace

ker
(
Hh

λ,ω − En,ω,λ

)
such that for any ξ ∈ (0, 1) there is CI,λ,ω,ξ > 0 such that

∥∥φn,i,λ,ω(x)
∥∥ ∥∥φn,j,λ,ω(y)

∥∥ ≤ CI,ξ ,ω,λ
√
αn,i,λ,ω

√
αn,j,λ,ω〈x〉1+ε〈y〉1+εe−|x−y|ξ . (5.3)

Moreover,
∑

n∈N,j∈{1,2,...,νn,λ,ω} αn,j,λ,ω = μλ,ω(I).

It follows from standard arguments that the operator Hh
λ,ω, and equivalently

Ah(aλ,ω) satisfy SUDEC in the regime of dynamical localization.
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13478 S. Becker and R. Han

5.2 Dynamical delocalization

We now turn to the proof of Theorem 2 showing that between disjoint disorder-

broadened Landau bands there exists a mobility edge.

We study covariant projections that satisfy the following condition:

Definition 5.2 (P). A covariant projection on 	2(Z2;Cn) is said to satisfy condition (P) if

for constants ξ ∈ (0, 1), k > 0, and KP <∞ the following bound holds

‖P[0, x]‖ = ‖〈δ0, Pδx〉‖ ≤ KP〈x〉ke−|x|ξ .

Clearly, for covariant eigenprojections Pλ,ω := 1lEn,ω,λ
(Ah(aλ,ω)) on a single energy,

(SUDEC) implies (P) with k = 1+ ε and KP := CI,ξ ,ω,λ
∑νn,λ,ω

i=1 αn,i,λ,ω.

The index formulation of the Hall conductivity implies immediately by the

cyclicity of the trace that if P is a covariant finite-rank projection satisfying (4.13) then

ind(Pλ,ω, UaPλ,ωU∗
a) = tr

(
Pλ,ω − UaPλ,ωU∗

a

) = 0. (5.4)

Moreover, for two orthogonal covariant projections satisfying sufficient decay proper-

ties, one finds that [6, Section E, Lemma 12] for � as in Definition 4.3

�(P +Q) = �(P)+�(Q). (5.5)

Lemma 5.3. Let P be a covariant projection satisfying condition (P). Then the quantity

�(P) is finite and is bounded for any ξ ∈ (0, 1) by a finite constant Cξ ,κ > 0

‖E〈δ0, P[[P, x1], [P, x2]]δ0〉‖ ≤ KPCξ ,κ .

Proof. Condition (P) implies the following bound:

‖E〈δ0,P[[P, x1], [P, x2]]δ0〉	2‖Cn = ‖〈E〈[[x1, P], P]δ0, [x2, P]δ0〉	2‖Cn

≤
√
E‖[[x1, P], P]δ0‖2

	2

√
E‖x2Pδ0‖2

	2 �
√
E‖x1Pδ0‖2

	2

√
E‖x2Pδ0‖2

	2

� E‖x1Pδ0‖2
	2 + E‖x2Pδ0‖2

	2 �
∑
x∈Z2

‖x‖2
Cn E‖〈δ0, Pδx〉	2‖2

� K2
P

∑
x∈Z2

‖x‖2(1+k)
Cn e−2‖x‖ξ � K2

PC2
ξ ,κ .

(5.6)

�
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We can now finish the proof of Theorem 2:

Proof of Theorem 2. Let us assume that Hh
λ,ω would have only spectrum belonging

to the region of dynamical localization. For an interval I = [λ1, λ2] where λ1 is in one

spectral gap between disorder-broadened Landau bands and λ2 in another such gap,

it follows for Eλ,ω the set of eigenvalues of Hh
λ,ω in I and Eλ,ω =

⋃
m∈NMm with Mm a

subset of Eλ,ω of cardinality min
{
m, dim

(
ran(1lI(H

h
λ,ω)
)}

�(1lI(A
h(aλ,ω))) =

∑
En,λ,ω∈Mm

�(1lEn,λ,ω
(Ah(aλ,ω)))︸ ︷︷ ︸

=0

+�(1lEλ,ω\Mm
(Ah(aλ,ω))),

(5.7)

which vanishes by letting m → ∞ due to (SUDEC) and Definition 5.2. Hence, the

Hall conductivity must not jump for operators Hh
λ,ω, which contradicts the findings of

Proposition 1.1. �

Remark 5. To prove delocalization, the type of disorder was in so far irrelevant, as we

only assumed the disorder to be small. Other discrete models to which this argument

applies are discussed in [17, Remark 3.13].

6 Honeycomb Structures with Flux Close to a Rational

Hitherto, we studied the case of small magnetic flux h > 0 on both the square and

hexagonal lattice. We will now continue by studying small magnetic perturbations of

rational magnetic fluxes 2πp/q for the hexagonal lattice, see [26] for a similar analysis

in case of Harper’s model.

We start by showing the existence of Dirac cones for rational flux φ = 2πp/q for

Hφ� at energy level 0. In the sequel, we write φ for the magnetic flux and use the variable

h to denote small perturbations thereof.

6.1 Dirac points

For magnetic flux φ = 2πp/q, Hφ� is a periodic operator. Let k = (k1, k2) ∈ T∗2, and let

Hφ�(k) be the operator Hφ� on 	2(�) subject to the pseudo-periodic condition:

z(γ + q�bl, rj) = eiklz(γ , rj), j, l = 1, 2,
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13480 S. Becker and R. Han

where {�b1, �b2} is the basis vector of � and {r0, r1} are the vertices in the fundamental

domain W�.

We say that an energy E corresponding to some quasi-momentum k̃ in the

dispersion surface of Hφ� is a Dirac point, if in a neighborhood of such quasi-momentum,

for some positive c > 0, there are two distinct branches of eigenvalues F±(H
φ�(k))

such that

F±(H
φ� (k̃)) = E and

F±(H
φ� (k))− E = ±c|k− k̃| +O(|k− k̃|2).

(6.1)

Next we will present the proof of Theorem 1.

Proof of Theorem 1

The proof is built on some results of [24]. Recall Hφ� is a tight-binding Schrödinger

operator with flux φ on the hexagonal lattice, acting on 	2(Z2,C2).

The Floquet matrix of Hφ�(k) is

M�(k) =
1

3

(
0 Iq + eik1Jp,q + eik2Kq

Iq + e−ik1J∗p,q + e−ik2K∗q 0

)
=:

(
0 A
A∗ 0

)
, (6.2)

where Jp,q and Kq are q× q matrices, which are defined as

Jp,q = diag
(
{ei(j−1)φ}qj=1

)
, (6.3)

and

(Kq)jk =
⎧⎨⎩1 if k ≡ j+ 1(mod q)

0 otherwise.
(6.4)

The solutions of the characteristic equation det(M�(k) − λ) = 0 are the Floquet

eigenvalues of Hφ�(k), which we label in increasing order:

F1(k) ≤ F2(k) ≤ · · · ≤ F2q(k).

Take Bj := ∪k∈T∗2Fj(k), 1 ≤ j ≤ 2q, to be the j-th spectral band of Hφ�. The following was

shown in [24].
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Proposition 6.1. We have

• {Bj}2q
j=1 are non-overlapping.

• Bq ∩ Bq+1 = {0}.

The set Sj := {(k, Fj(k)) : k ∈ T∗2} is called the j-th dispersion surface.

Taking the square of M�(k), we arrive at

M2�(k) =
(
AA∗ 0

0 A∗A

)
= 1

9

(
3Iq +MT(k) 0

0 3Iq + M̂T(k)

)
, (6.5)

where

M̂T(k) = eik1Jp,q + e−ik1J∗p,q+eik2Kq + e−ik2K∗q

+ei(k1−k2)K∗qJp,q + e−i(k1−k2)J∗p,qKq, (6.6)

and for MT(k) one just exchanges Jp,q and Kq. Furthermore, MT(k) and M̂T(k) have the

same non-zero eigenvalues. Let us denote the eigenvalues of MT(k) by {Ej(k)}pj=1, where

each Ej is an analytic function in k, note that we do not arrange them in increasing order

here. Clearly, we have

det(MT(k)− λ) =
q∏

j=1

(Ej(k)− λ). (6.7)

By (6.5), MT(k) + 3Iq is positive semidefinite; hence, Ej(k) ≥ −3 for 1 ≤ j ≤ q, and the

following holds:

{Fm(k)}2q
m=q+1 =

{
1

3

√
Ej(k)+ 3

}
: j = 1q and {Fm(k)}qm=1 =

{
−1

3

√
Ej(k)+ 3

}
: j = 1q.

(6.8)

By Proposition 6.1, one concludes that −3 ∈ ∪q
j=1 ∪k∈T∗2 Ej(k). Without loss of generality,

let

E1(k̃) = −3. (6.9)
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13482 S. Becker and R. Han

Since the bands are non-overlapping, E1(k̃) must be a single eigenvalue; hence, for 2 ≤
j ≤ q, we have Ej(k̃) > −3. Now, since −3 is the minimal value of E1, we have

∂E1

∂km
(k̃) = 0 for m = 1, 2. (6.10)

The following Chambers formula was derived in [24], see similar formulas in [1].

Proposition 6.2. We have

det(MT(k)− λ) = fp,q(λ)+ 2(−1)q+1(cos qk1 + cos qk2 + (−1)q+1 cos q(k1 − k2)), (6.11)

where fp,q(λ) is a polynomial in λ (independent of k) with leading coefficient (−1)q.

Clearly, this proposition yields that

det(MT(k1, k2)− λ) = det(MT(k1 +
2π

q
, k2)− λ) = det(MT(k1, k2 +

2π

q
)− λ), and

det(MT(k1, k2)− λ) = det(MT(−k1,−k2)− λ).

Hence, we can restrict our attention to

(k1, k2) ∈
[
0,

π

q

)
×
[
−π

q
,
π

q

)
.

In the following, we denote

2(−1)q(cos qk1 + cos qk2 + (−1)q+1 cos q(k1 − k2)) := gq(k) (6.12)

for simplicity. A direct consequence of Chambers’ formula (6.11) is that

∪k∈T∗2�(MT(k)) = {λ : min
k∈T∗2

gq(k) ≤ fp,q(λ) ≤ max
k∈T∗2

gq(k)}. (6.13)

Use the fact that the energy −3 is the bottom of the spectrum ∪k∈T∗2�(MT(k)), we have

fp,q(−3) = max
k∈T∗2

gq(k). (6.14)
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Simple computations show that

max
k∈T∗2

gq(k) = 3. (6.15)

Furthermore, for even q, the maximum is attained at

qk ∈ {(π/3,−π/3), (−π/3,π/3)} + 2πZ2, (6.16)

and for odd q, the maximum is attained at

qk ∈ {(2π/3,−2π/3), (−2π/3, 2π/3)} + 2πZ2. (6.17)

Plugging k = k̃ and λ = −3 into (6.11), using (6.7), and the fact that E1(k̃) = −3,

we have

0 =
q∏

j=1

(Ej(k̃)+ 3) = det(MT(k̃)+ 3) = fp,q(−3)− gq(k̃). (6.18)

Hence, we have

k̃ =
(

π

3q
,− π

3q

)
for even q, and k̃ =

(
2π

3q
,−2π

3q

)
for odd q. (6.19)

Differentiating (6.7) w.r.t. kj, j = 1, 2, and taking (6.11) into account, we have

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2q(−1)q+1(− sin qk1 + (−1)q sin q(k1 − k2)) =
∑q

m=1
∂Em
∂k1

(k)
∏q

j=1
j �=m

(Ej(k)− λ)

2q(−1)q+1(− sin qk2 − (−1)q sin q(k1 − k2)) =
∑q

m=1
∂Em
∂k2

(k)
∏q

j=1
j �=m

(Ej(k)− λ).

(6.20)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/17/13447/6278191 by Louisiana State U
niversity user on 28 N

ovem
ber 2022



13484 S. Becker and R. Han

Differentiating (6.20) again w.r.t. kj, j = 1, 2, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2q2(−1)q+1(− cos qk1 + (−1)q cos q(k1 − k2)) =
∑q

m,	=1
m�=	

∂Em
∂k1

(k) ∂E	

∂k1
(k)
∏q

j=1
j �=m,	

(Ej(k)− λ)

+∑q
m=1

∂2Em
∂k2

1
(k)
∏q

j=1
j �=m

(Ej(k)− λ)

2q2 cos q(k1 − k2) =
∑q

m,	=1
m�=	

∂Em
∂k1

(k) ∂E	

∂k2
(k)
∏q

j=1
j �=m,	

(Ej(k)− λ)

+∑q
m=1

∂2Em
∂k1∂k2

(k)
∏q

j=1
j �=m

(Ej(k)− λ)

2q2(−1)q+1(− cos qk2 + (−1)q cos q(k1 − k2)) =
∑q

m,	=1
m�=	

∂Em
∂k2

(k) ∂E	

∂k2
(k)
∏q

j=1
j �=m,	

(Ej(k)− λ)

+∑q
m=1

∂2Em
∂k2

2
(k)
∏q

j=1
j �=m

(Ej(k)− λ).

(6.21)

We plug in k = k̃ and λ = −3. Using (6.9) and (6.10), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2q2(−1)q+1(− cos qk̃1 + (−1)q cos q(k̃1 − k̃2)) = ∂2E1
∂k2

1
(k̃)
∏q

j=2(Ej(k̃)+ 3)

2q2 cos q(k̃1 − k̃2) = ∂2E1
∂k1∂k2

(k̃)
∏q

j=2(Ej(k̃)+ 3)

2q2(−1)q+1(− cos qk̃2 + (−1)q cos q(k̃1 − k̃2)) = ∂2E1
∂k2

2
(k̃)
∏q

j=2(Ej(k̃)+ 3).

(6.22)

Hence, the Hessian matrix

D2
k1,k2

E1(k̃)

= 2q2(−1)q∏q
j=2(Ej(k̃)+ 3)

(
cos qk̃1 − (−1)q cos q(k̃1 − k̃2) (−1)q cos q(k̃1 − k̃2)

(−1)q cos q(k̃1 − k̃2) cos qk̃2 − (−1)q cos q(k̃1 − k̃2)

)
.

(6.23)
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Plugging in the values of k̃, see (6.19), we see that the Hessian matrix for either case is

the same:

D2
k1,k2

E1(k̃) =
2q2∏q

j=2(Ej(k̃)+ 3)

(
1 −1

2

−1
2 1

)
, (6.24)

which is a positive definite matrix. By doing symplectic change of variables

y(k) = a
(
k1 + k2

)
, η(k) = b

(
k2 − k1 +

4π

3q

)
if q is odd, and

y(k) = a
(
k1 + k2

)
, η(k) = b

(
k2 − k1 +

2π

3q

)
if q is even, where

a = 2−1/23−1/4 and b = 2−1/231/4,

(6.25)

clearly ỹ := y(k̃) = 0 and η̃ := η(k̃) = 0. Let Ẽ1(y, η) := E1(k1, k2). One then checks that

using (6.24)

D2
y,η Ẽ1(0, 0) =

(
∂(k1, k2)

∂(y, η)
(0, 0)

)T

D2
k1,k2

E1(k̃)
(
∂(k1, k2)

∂(y, η)
(0, 0)

)

=
√

3q2∏q
j=2(Ej(k̃)+ 3)

(
1 0

0 1

)

with
(
∂(k1, k2)

∂(y, η)
(0, 0)

)
=
(

2−1/231/4 2−1/23−1/4

2−1/231/4 −21/23−1/4

)
.

(6.26)

Thus, we have in new coordinates close to each well

Ẽ1(y, η) = −3+
√

3q2

2
∏q

j=2(Ej(k̃)+ 3)

(
y2 + η2

)
+O(‖(y, η)‖3). (6.27)

This yields for the hexagonal lattice using (6.8) the Dirac cones

Fq+1(k̃) =
q

33/4

1√
2
∏q

j=2(Ej(k̃)+ 3)
‖(y, η)‖ +O(‖(y, η)‖2). (6.28)

6.2 Semiclassical analysis close to any rational

In this subsection, we use variables (x, ξ) instead of k = (k1, k2) to emphasize the

underlying phase space structure. This will generalize magnetic matrices in Definition

3.7 and their connection to pseudodifferential operators as in Definition 3.4. For the
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study of magnetic fluxes φ = 2π p
q +h with gcd(p, q) = 1, we use that [30, Section 1] there

is a C∗-homomorphism mapping scalar-valued 
DOs with Z2∗-periodic Weyl symbol

Opw
φ (â�) =

∑
γ∈Z2

a�(γ )Opw
φ

(
(x, ξ) �→ ei〈(x,ξ),γ 〉)

to matrix-valued 
DOs Opw
h (�̂(a�)) on L2(R,C2 ⊗Cq) with symbols that are the Fourier

transform of

�(a�) =
(
e−iγ1γ2h/2a�(γ )⊗

[(
Jp,q

)γ1
(
K∗q
)γ2
])

γ∈Z2

with Jp,q and Kq as in (6.3) and (6.4). Note that γ1γ2 = 0 for any a�(γ ) �= 0, hence

�(a�) =
(
a�(γ )⊗

[(
Jp,q

)γ1
(
K∗q
)γ2
])

γ∈Z2
.

In particular, the C∗-homomorphism preserves regularized traces, up to constants,

t̃r
(
Opw

φ

(
â�
)) = ∫

T2∗
trC2

(
â�(x, ξ)

) dx dξ

|T2∗|
= a�(0) = q−1 t̃r

(
Opw

h

(
�̂(a�)

))
(6.29)

and, as follows by combining [32, Theorem 2.1] with [30, 1.2], also spectra

�(Hφ) = �(Opw
φ (â�)) = �

(
Opw

h

(
�̂(a�)

))
. (6.30)

Recall that M� = �̂(a�), see (6.2). We conclude by (3.16), (3.18), (3.31), and (6.29)

that for Mw� (x, hpx) = Opw
h M�,

t̃r��
(
(Hφ − z)−1

)
= t̃r

(
(Mw� (x, hpx)− z)−1

)
q|�b1 ∧ �b2|

.

We are concerned with the analysis of this operator close to the Dirac energy

E = 0. To analyze the spectrum of Mw� (x, hpx) close to energies E = 0, we want to focus

on the two bands touching at E = 0, first.

The obstruction to do so is that for rational flux 2π p
q the two bands touching

at E = 0 may not be isolated from the rest of the spectrum, cf. Figure 5. At 1st glance,

this creates an obstruction to block-diagonalize the operator Opw
h M� at zero energy to

leading order. A way to overcome this issue is explained in the following remark:
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Fig. 5. Dispersion surface of Hφ�. The Dirac cones at energy level zero persist for magnetic flux

φ = π .

Remark 6 (Isolating bands touching at Dirac energies). We recall that M� vanishes

only at points z0 := (x0, ξ0) as defined in (6.16) or (6.17), respectively. To analyze the

operator Opw
h M� in a neighborhood of zero energy, it suffices therefore to consider an

auxiliary operator with symbol

M̃�(z) := χ(z)M�(z)+ (1− χ(z))M�
(

2ε
(z− z0)

‖z− z0‖
)

(6.31)

where χ ∈ C∞(R2) and χ(z) = 1 in a neighborhood of z0 and 0 outside. The parameter

ε is chosen small enough such that the two eigenvalues of M�
(
2ε (z−z0)‖z−z0‖

)
that belong

to the two bands, which touch at the Dirac energies are distinct from all remaining

eigenvalues of M�
(
2ε (z−z0)‖z−z0‖

)
. Such a parameter ε > 0 exists since the remaining bands

of M� are possible touching the two bands that make up the Dirac cones, but they are

not intersecting, cf. Figure 5.

This way, Opw
h (M̃�) and Opw

h (M�) coincide microlocally, that is, for any χ ∈
C∞c (nbhd(z0)), we have

∥∥Opw
h χ

(
Opw

h (M̃�)− Opw
h (M�)

)
Opw

h χ
∥∥ = O(h∞),

see for example [46, Theorem 4.25]. For our subsequent analysis, we may therefore just

assume without loss of generality that the two touching bands of M� at zero energy are

gapped from the rest of its spectrum.
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To analyze Opw
h M�, we recall a few properties about the matrix-valued symbol

M� first. Clearly, ∪(x,ξ)∈T2∗M�(x, ξ) has band spectrum B	 = [γ	, δ	], 1 ≤ 	 ≤ 2q, and we

denote associated energy eigenvalues by μ	(x, ξ). The q-th and q+1-st band always touch

at the Dirac point, that is, δq = γq+1 = 0 by Theorem 1. The phase space coordinates

at which the q-th and q + 1-st band touch are denoted by zj := (xj, ξj) ∈ T2∗, where

j ∈ {1, .., 2q2
}
, that is, μq(zj) = μq+1(zj) = 0. There are by (6.16) and (6.17) precisely

2q2 such points in a single fundamental domain T2∗. For the analysis close to individual

conical points, we fix a sufficiently small ε > 0 and consider energies E ∈ Iε = (−ε, ε).

We define for such energies the phase space level set �j(E) := μ	|−1
nbhd(zj)

(E) ⊂ T2∗ for

	 ∈ {q, q+1} here, close to a single potential well centered at zj and the phase space area

Vj,ε :=⋃E∈Iε �j(E) of all energies in the interval Iε.

Remark 6 allows us to make two simplifying coordinate changes near the conical

points, which we discuss now:

There exists a unitary operator U such that (we assume here by a simple change

of coordinates that the Dirac point is located at (x, ξ) = 0) [30, Proposition 3.1.1 and

Corollary 3.1.2]

U∗ Opw
h M�U = diag(Opw

h MD,�︸ ︷︷ ︸
∈C2×2

, Opw
h MR,�︸ ︷︷ ︸

∈C(2q−2)×(2q−2)

)

where Opw
h MD,� =

(
0 Opw

h b

Opw
h b∗ 0

)
+O(h).

(6.32)

The subscript D stands for Dirac and R for rest, and the symbol b satisfies b(x, ξ) =
vF
2 (ξ + ix)+O(‖(x, ξ)‖2) where the Fermi velocity vF satisfies by (6.8) and (6.28)

vF =
q

33/4

1

3q−1
∏2q

j=q+2(Fj(k̃))
. (6.33)

For the pseudodifferential operator Opw
h =

(
0 Opw

h A
Opw

h A∗ 0

)
, with A as in (6.2),

we obtain by squaring the operator

(
Opw

h M�
)2 = (Opw

h AOpw
h A∗ 0

0 Opw
h A∗ Opw

h A

)
. (6.34)
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Density of States and Delocalization 13489

By supersymmetry, it follows that away from 0 both operators Opw
h AOpw

h A∗ and

Opw
h A∗ Opw

h A have the same spectrum. The principal symbols are

σ0

(
Opw

h AOpw
h A∗

) = MT(x, ξ)+ 3Iq and

σ0

(
Opw

h A∗ Opw
h A

) = M̂T(x, ξ)+ 3Iq

(6.35)

with the notation as in (6.5). Let Z(x, ξ) now be either MT(x, ξ) + 3Iq or M̂T(x, ξ) + 3Iq.

The lowest eigenvalue of Z(x, ξ) is given by a smooth scalar function (x, ξ) �→ ν(x, ξ) =
|μq+1(x, ξ)|2, see Remark 6. Thus, there are analytic unitary matrices V separating the

lowest eigenvalue from the rest of the matrix

(V∗ZV)(x, ξ) = diag(ν(x, ξ), B(x, ξ)), (6.36)

where by Remark 6 we may assume that inf(x,ξ)∈T∗R |�(B(x, ξ))− ν(x, ξ)| > 0 and B(x, ξ) ∈
C(q−1)×(q−1).

Thus, as for the Dirac-type operator above, [30, Proposition 3.1.1 and Corollary

3.1.2] implies that since the lowest band of Z, described by ν, is gapped from the rest of

the spectrum, there is a unitary operator U and symbols ν̃, B̃ with asymptotic expansions

in S, such that

U∗ (Opw
h AOpw

h A∗
)

U =
(

Opw
h ν̃ 0

0 Opw
h B̃

)
+OL(L2(R))(h

∞), (6.37)

where σ0(̃ν) = ν and σ0(̃B) = B.

The main result of this section, a semiclassical trace formula close to rational

flux, is then stated in the following theorem:

Theorem 4 (Semiclassical DOS and QHE close to a rational). For small h > 0

sufficiently small, with respect to p, q, and magnetic flux φ = 2π p
q + h, the DOS of

Hφ� admits the following expansion: Let I be an interval I ⊂ (−δ, δ) for some δ > 0

sufficiently small (this interval encloses energies around the Dirac points in Figure 3)

and f ∈ Cα
c (I), then

t̃r�(f (Hφ� )) = qh
π |�b1∧�b2|

∑
n∈Z

f (zn(h, p, q))+O(‖f ‖Cαh∞), (6.38)
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13490 S. Becker and R. Han

with Landau levels zn(h, p, q) = κ(nh, h, p, q) satisfying κ(−ζ , h, p, q) = −κ(ζ , h, p, q),

defined by a Bohr–Sommerfeld condition

F(κ(ζ , h, p, q)2, h, p, q) = |ζ | +O(h∞), F(s, h, p, q) =
∞∑

j=0

Fj(s, p, q)hj, Fj(0, p, q) = 0,

where F0(s, p, q) :=
∫
ν(x,ξ)∈[0,s]

dx dξ

4πq2 and

F1(s, p, q) := 1

2
− d

dζ

∣∣∣
ζ=s

∫
ν(x,ξ)∈[0,ζ ]

σ1(̃ν)(x, ξ)
dx dξ

4πq2 .

(6.39)

With the Fermi velocity vF defined in (6.33), zn satisfies

z0 = O(h∞) and

zn = sgn(n)vF

√|n|h+O(h) n �= 0.
(6.40)

In addition, the spectrum of the magnetic Schrödinger operator around zero �(Hφ�)∩ I is

contained in disjoint closed Landau bands B�,n(h, p, q) # zn(h, p, q) with spectral gaps

d
(
B�,n(h, p, q), B�,n+1(h, p, q)

) ≥ Cn,p,qh (6.41)

for some constant Cn,p,q > 0. The Hall conductivity satisfies for Fermi energies μ

cH(Hφ� ,μ) =
⎧⎨⎩

(2n+1)q
2π , μ betw. B�,λ,n and B�,λ,n+1 with 0 ≤ n ≤ N�(h, λ0)

(2n−1)q
2π , μ betw. B�,λ,n−1 and B�,λ,n with 0 ≥ n ≥ −N�(h, λ0).

(6.42)

An illustration of the Hall conductivities is given in Figure 6.

Remark 7 (Dynamical delocalization). In particular, using the results from Subsection

5.2, we conclude from (6.41) that for sufficiently weak disorder, such that the (disorder-

broadened) Landau bands remain non-overlapping, there exists at least one mobility

edge inside each Landau band at which delocalization occurs.

7 Proofs

We now state the proof of Theorems 3 and 4 with several references to details that are

already discussed in [9, 26].
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Density of States and Delocalization 13491

Fig. 6. Hall conductivity (colored) as a function of magnetic flux h ∈ [0, 2π ] (horizontal axis) and

energy (vertical axis). Dark regions do not carry spectrum. Different colors represent different

conductivities.

Proof of Theorems 3 and 4. Step 1: quasimodes and Landau levels. Quasimodes and

Landau levels are constructed as eigenfunctions and eigenvalues to localized operators,

that is, operators that coincide microlocally, up to a constant shift of the spectrum,

with 
DOs (3.29) in a neighborhood of a single potential well. For the square lattice,

such a localized operator with discrete spectrum at the bottom of the potential well, see

Figure 2, is defined by the Weyl symbol

Q0
�(x, ξ) := Q�(x, ξ)+ 2− χ�(x, ξ), where

χ� ∈ C∞c (R2; [0, 1]), χ�(x, ξ) =
{

1, ‖(x, ξ)− (π ,π)‖∞ < 1
10 ,

0, ‖(x, ξ)− (π ,π)‖∞ > 1
5 .

(7.1)

Thus, Opw
h Q0

� − z is elliptic [46, Section 4.7] for z in a small neighborhood of zero and

(x, ξ) /∈ nbhd(π ,π) where the neighborhood depends on z.
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13492 S. Becker and R. Han

On the hexagonal lattice such a localized operator with discrete spectrum close

to zero energy, the energy level of the Dirac points, see Figure 3, is defined by the symbol

M0�(x, ξ) := M�(x, ξ)+
(
(χ�(x, ξ)− 1)Iq 0

0 (1− χ�(x, ξ))Iq

)
,

χ� ∈ C∞c (R2; [0, 1]),χ�(z) = χ�(−z),

(7.2)

where χ�(x, ξ) = 1 on all ∪j∈{1,..,2q2}Vj,δ for some δ > 0 sufficiently small and vanishes

outside of T2∗.
Next, we argue that the spectrum of both Opw

h Q0
� and Opw

h M0� is indeed

contained in discrete intervals around zero. To do so, we define another pair of symbols

Q1
�(x, ξ) := Q�(x, ξ)+ 2 and M1�(x, ξ) := M�(x, ξ)+ diag(−Iq, Iq). (7.3)

The two associated operators with upper index 1 are invertible close to zero and we

have

Opw
h Q0

� − z =
(
Opw

h Q1
� − z

) (
id+K�(z)

)
and

Opw
h M0� − z =

(
Opw

h M1� − z
) (

id+K�(z)
) (7.4)

for some compact operators

K�(z) =
(
Opw

h Q1
� − z

)−1
χw

0 for z /∈ �(Opw
h Q1

�) and

K�(z) =
(
Opw

h M1� − z
)−1

diag(χw
0 ,−χw

0 ) for z /∈ �(Opw
h M1�).

(7.5)

By analytic Fredholm theory [46,Theorem D.4], this implies the discreteness of the

spectrum of Q0
� and M0� close to zero. Thus, there exists a family of eigenvalues and

orthonormal eigenfunctions such that

(
Opw

h Q0
� − κ�(nh, h)

)
un,� = 0 and

(
Opw

h M0� − κ�(nh, h)
)

un,� = 0. (7.6)

Localized operators with upper index 0 have the property that their spectra for energies

close to zero stay close to the spectra of operators Opw
h Q� and Opw

h M�, respectively. In

fact, an immediate adaptation of the proof of [9, Lemma 5.2] shows that after possibly

shrinking the energy window around zero to some ε1 with 0 < ε1 < ε and z ∈ [0, ε1] −
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Density of States and Delocalization 13493

i[−1, 1] such that d
(
z,�

(
Opw

h Q0
�
))

> hn, for some arbitrary but fixed n ∈ N, there is h0

such that for h ∈ (0, h0),

(
Opw

h Q� − z
)−1 = OL2→L2

(
d
(
z,�

(
Opw

h Q0
�
))−1) (7.7)

and the analogous result is true for Mw� as well.

Since Opw
h M� and Opw

h M0� in ∪j∈{1,..,2q2}Vj,δ coincide microlocally, we infer from

(7.6) that

(
Opw

h M� − κ�(nh, h)
)

un,� = O(h∞). (7.8)

Thus, one has to find all such microlocal solutions with WFh(un, �
∪j∈{1,..,2q2}Vj,δ. Microlocal solutions

(
Opw

h M� − z
)

u = O(h∞) for z ≥ c
√

h are in one-to-

one correspondence with microlocal solutions v ∈ WFh(un, �
∪j∈{1,..,2q2}Vj,δ such that by (6.34)

(
Opw

h AOpw
h A∗ − λ

)
v = O(h∞)

z = ±λ, u := (u1, u2) :=
(
v, z−1 Opw

h A∗v
)
∈ C2q.

(7.9)

Since 0 is in the spectrum of Hh� for all h ∈ [0, 2π ] [8, Lemma 5.1], we have that

0 ∈ �(Opw
h M�) for all h by (6.30). Invoking now (7.7) for the hexagonal lattice implies

that there exists an eigenvalue O(h∞) to the localized operator Opw
h M�.

We can now apply the following Bohr–Sommerfeld condition [13, 25, 30]:

Let H : T∗R→ R be a classical symbol with expansion H ∼∑∞
i=0 Hih

i. Moreover,

we assume the principal symbol H0 to satisfy

(1) H0(z) = 0 and (D2H0)(z) > 0,

(2) The set {ν ∈ R2 : H0(ν) < δ} is compact and connected for some δ > 0

sufficiently small.

(3) H0 is strictly positive and does not possess any other critical points, apart

from z in a sufficiently small nbhd of z.

Then, the spectrum of Opw
h (H) close to zero is given by the Bohr–Sommerfeld condition

F(E, h) =
∞∑

j=0

Fj(E)hj = nh

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/17/13447/6278191 by Louisiana State U
niversity user on 28 N

ovem
ber 2022



13494 S. Becker and R. Han

where the leading-order term is the Bohr–Sommerfeld term

F0(E) = 1

2π

∫
{H0≤E}

dx dξ

and the subprincipal term F1 includes the Maslov correction and the contribution from

the subprincipal symbol H1

F1(E) = 1

2
− 1

2π

d

ds

∣∣∣
s=E

∫
{H0≤s}

H1(x, ξ) dx dξ . (7.10)

Expressions for higher-order terms Fj with j ≥ 2 can be found in [13].

This immediately yields the Bohr–Sommerfeld condition for the square lattice

(3.37), by applying it to the microlocally equivalent symbol Q0
� in (7.1), since the

subprincipal is zero and therefore F1(E) = 1
2 .

In case of the hexagonal lattice, we use that by (7.9) and (6.37) it suffices to study

the quasimodes to the symbol ν̃. Clearly, ν̃ satisfies both assumptions (1) and (3) of the

Bohr–Sommerfeld condition.

By using cut-off functions χj,� that are localized to neighborhoods Vj,δ of a single

well, the localized symbol

ν̃j(x, ξ) := ν̃(x, ξ)+ (1− χj,�)(x, ξ)

satisfies then all three conditions of the Bohr–Sommerfeld rule, which yields (6.39).

When q = 1 and A is scalar, a direct computation of (7.10) shows that F1 = 0 [10].

This yields the Bohr–Sommerfeld condition stated in Theorem 3.

Finally for the analysis close to rationals, the asymptotics of Landau levels (6.40)

and the presence of gaps (6.41) follow immediately from both (6.32) and (6.33), and the

explicit spectral analysis of the 2D-magnetic Dirac operator, cf. [30, Proposition 3.6.1

and (3.6.22)].

Step 2: the Grushin problem. To prove the trace formulae, we fix one Landau level and

take z1 and ε0 with

{κ(nh, h)}n ∩ [z1 − 2ε0h, z1 + 2ε0h] = {κ(n1h, h)}, n1 = n1(z1, h). (7.11)

Since symbols Q� and M� are 2π-periodic, they possess infinitely many potential

wells. Therefore, we introduce a translation operator rγ u(x) := e
i
h γ2xu(x − γ1) to define
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translations of the quasimodes wγ := rγ u for γ ∈ Z2∗. We then define operators

R+ : L2(R,Cm)→ 	2(Z2∗;Cn) and R− : 	2(Z2∗;Cn)→ L2(R,Cm) by

(
R+u+

)
(γ ) :=

∫
R

u+(x) twγ (x) dx ∈ Cn, R−u−(x) :=
∑
γ∈Z2∗

wγ (x)u−(γ ), (7.12)

where

• n = m = 1 for the square lattice and

• n = 2q2, m = 2q on the hexagonal lattice close to the flux 2πp/q, in which

case

u−(γ ) =
(
u1−(γ ) . . .u2q2

− (γ )

)t ∈ C2q2
and wγ (x) =

(
w1

γ . . .w2q2

γ

)
∈ C2q×2q2

.

This way, the following Grushin problem [9, Proposition 5.4] is well posed for z ∈ (z1 −
ε0h, z1+ ε0h)+ i(−1, 1), where P(z) := Opw

h Q�− z for the square and P(z) := Opw
h M�− z

for the hexagonal lattice,

(
P(z) R−
R+ 0

)−1

=:

(
E(z, h) E+(z, h)

E−(z, h) E−+(z, h)

)
. (7.13)

Schur’s complement formula implies that

P(z)−1 = E(z, h)− E+(z, h)E±(z, h)E−(z, h),

where E+, E±, and E− can be approximated by

E0+ := R−, E0− := R+, E0± = (z− κ(hn1, n1))δγ ,0. (7.14)

Here, E±(γ ) = E0±(γ )+O(h∞〈γ 〉−∞) for |�(z)| > hm, for some fixed m, and

E+(z, h)v+(x) =
∑
γ∈Z2∗

rγ W0(x)v+(γ ), W0 = w0 + e0, e0 = O(h∞)S ,

(E−(z, h)v)(γ ) = 〈v, rγ W−〉, W− = w0 + f0, f0 ∈ O(h∞)S ,

(7.15)

where the estimates follow as in [9, Proof of Proposition 5.4]. Moreover, we define the

function G(z, h) := ∫
T2∗ σ(E(z, h)))(x, ξ)dx dξ

|T2∗| , which is holomorphic in z ∈ (z1 − ε0h, z1 +
ε0h)+ i(−1, 1) [9, (6.1)].
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To study

J(z, h) =
∫
T2∗

trCm σ
(
E+E±E−

)
(x, ξ)

dx dξ

|T2∗|

we define, for fixed M, the approximation J0 for

z ∈ (z1 − ε0h, z1 + ε0h)+ i(−1, 1), n = n1(z1, h), and |�z| > hM

by using approximations (7.14)

J0(z, h) =
∫
T2∗

(z− κ(n1h, h))−1 tr
Cm σ

(
E0+E0−

)
(x, ξ)

dx dξ

|T2∗|
. (7.16)

Estimates (7.15) imply then that J(z, h) = J0(z, h)+O(h∞).

To find a more explicit expression for J0, we study the Schwartz kernel K of the

operator E0+E0− given by

K(x, y) =
∑
α∈Z2∗

E0+(x,α)E0−(α, y) =
∑
α

wα(x)wα(y)
∗,

from which the symbol of the pseudodifferential operator, appearing in (7.16), can be

derived from the Schwartz kernel

σ(E0+(z, h)E0−(z, h))(x, ξ) =
∑
α∈Z2∗

∫
R

wα(x − w
2 )w∗

α(x − w
2 )e

i
h wξ dw

=
∑
α∈Z2∗

∫
R

e
i
h w(ξ−α2)w0(x − w

2 − α1)w0(x + w
2 − α1)

∗dw.

Hence, we obtain for the integral over the Weyl symbol

∫
T2∗

σ(E0+(z, h)E0−(z, h))(x, ξ)
dx dξ

4π2

=
∑
α

∫
T2∗

∫
R

e
i
h w(ξ−α2)w0(x − w

2 − α1)w0(x + w
2 − α1)

∗ dw
dx dξ

4π2

=
∫
R2

∫
R

e
i
h wξw0(x − w

2 )w0(x + w
2 )∗ dw

dx dξ

4π2

= h

2π

∫
R

w0(x)w0(x)
∗dx.

(7.17)
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This implies for J0 as in (7.16)

J0(z, h) =
∫
T2∗

(z− κ(n1h, h))−1 trCm σ
(
E0+E0−

)
(x, ξ)

dx dξ

|T2∗|

= h(z− κ(n1h, h, p, q))−1

2π

m∑
i=1

n∑
j=1

∫
R

∣∣∣〈̂ei, wj(x)
〉∣∣∣2 dx

= h(z− κ(n1h, h, p, q))−1

2π

n∑
j=1

∫
R

∣∣∣wj(x)
∣∣∣2 dx

= hn

2π
(z− κ(n1h, h, p, q))−1.

(7.18)

For the hexagonal lattice with magnetic flux h, the reflection symmetry of the Dirac

points located at quasimomenta ± ((2π
3 ,−2π

3

))
implies that the eigenfunctions u±n1

=
(u±n1,1, u±n1,2) = (u∓n1,2, u∓n1,1) satisfy

∫
R

‖w0(x)
∗�ei‖2 dx =

∫
R

|u+n1,i(x)|2 + |u−n1,i(x)|2 dx = 1+O(h∞).

Taking the regularized trace and exhibiting leading-order contributions shows that for

|�(z)| > hM , with arbitrary M, and |z− z1| ≤ εh there are analytic functions

g�,n1
(z, h) := G(z, h)+ h

2π

∑
n�=n1

(z− zn(h))
−1,

g�,n1
(i, z, h) := 〈�ei, G(z, h)�ei〉C2 + h

2π

∑
n�=n1

(z− zn(h))
−1,

g�,n1
(z, h) := g�,n1 (1,z,h)+g�,n1 (2,z,h)

2 ,

g�,n1
(z, h, p, q) := trC2q G(z, h, p, q)+ hn

2π

∑
n�=n1

(z− zn(h, p, q))−1,

(7.19)

such that we obtain [9, Proposition 6.1]

t̃r
(
(Qw

� (x, hpx)− z)−1
)
= h

2π (z− zn1,�(h))
−1 + g�,n1

(z, h)+O(h∞),

t̃r
(
〈�ei, (Q

w� (x, hpx)− z)−1�ei〉C2

)
= h

2π (z− zn1,�(h))−1 + g�,n1
(i, z, h)+O(h∞), and

t̃r
(
(Mw� (x, hpx)− z)−1

)
= hq2

π
(z− zn1,�(h))−1 + g�,n1

(z, h, p, q)+O(h∞).

(7.20)
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We also observe for later that

(
t̃r(Qw

� (x, hpx)− z)−1
)2 = − h2

4π2 Dz(z− zn1,�(h))
−1

+ h
2π (z− zn1,�(h))

−1g�,n1
(z, h)+ g�,n1

(z, h)2 +O(h∞) and(
t̃r〈�ei, (Q

w� (x, hpx)− z)−1�ei〉C2

)2 = − h2

4π2 Dz(z− zn1,�(h))−1

+ h
2π (z− zn1,�(h))−1g�,n1

(i, z, h)+ g�,n1
(i, z, h)2 +O(h∞).

(7.21)

Step 3: trace formulae.

We can now assume that $(z) ∈ (z1 − εh, z1 + εh) is close to a Landau level and

apply (7.20), as analyticity of the resolvent (Qw(x, hpx) − z)−1 away from the Landau

bands implies that there is no contribution from z outside these intervals (integration

by parts in Helffer–Sjöstrand formula).

Trace formulae in Theorem. 3. From (3.3), we have since f ∈ C5(I) that Dzf̃ (z) =
O
(‖f ‖C5 |�(z)|4). By Proposition 3.5, we obtain, by writing the adjusted prefactors for

the hexagonal lattice in parenthesis [] and for the square lattice without parenthesis,

t̃r�(f (Hh
λ,ω)) = [2]h

2π2|�b1∧�b2|

∫
C

2∑
k=0

λkE(V)kDzf̃ (k)(z)

k!

∑
n

(z− zn(h))
−1 dm(z)

− [2]h2 Var(V)λ2

8π3|�b1∧�b2|
∑

n

∫
C

Dzf̃ ′′(z)(z− zn(h))
−1 dm(z)

− [2]h Var(V)λ2

2π2|�b1∧�b2|
∑

n

∫
C

Dz(f̃
′(z)gn(z, h))(z− zn(h))

−1 dm(z)

+ 1
π

∫
|�z|<hM

Dzf̃ (z)O
(
|�z|−1

)
dm(z)+O

(
‖f ‖C5(λ

3 + h∞)
)

= [2]h
2π |�b1∧�b2|

∑
n

2∑
k=0

λkE(V)k

k!
f (k)(zn(h))+O

(
‖f ‖C5(λ

3 + h3M + h∞)
)

− [2]h Var(V)λ2

2π |�b1∧�b2|
∑

n

(
f ′′(zn(h))

4π + f ′(zn(h))gn(zn(h), h)
)

= [2]h
2π |�b1∧�b2|

∑
n

f (zn(h)+ λE(V))+O
(
‖f ‖C5(λ

3 + h3M + h∞)
)

− [2]h Var(V)λ2

2π |�b1∧�b2|
∑

n

(
f ′′(zn(h))

4π + f ′(zn(h))gn(zn(h), h)
)

.

(7.22)

By taking M arbitrarily large the trace formulae (3.36) and (3.38) of Theorem 3 follow.
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Trace formula in Theorem. 4. Since f is now only assumed to be Hölder continuous, we

require an additional approximation argument:

Let ψ ∈ C∞c ((0, 1)) be a positive function with
∫
R
ψ(s) ds = 1 and define ψh(s) :=

h−1ψ(h−1s) with fh := f ∗ ψhM0 . Moreover, we find
∥∥f − f ∗ ψhM0

∥∥
L∞ ≤ ‖f ‖Cα hαM0 and

since the interval I can contain only O(h−1) many Landau levels, we have

h
∑

|n|≤C/h

∣∣f (zn(h))− fh(zn(h))
∣∣ = O

(
‖f ‖ CαhαM0

)
. (7.23)

We observe that by (3.3) we have

‖Dzf̃h(z)‖L∞ ≤ ‖fh‖C2‖|�(z)| = O(‖f ‖L∞ h−2M0 |�(z)|). (7.24)

We then use (7.24) and (6.29) for the hexagonal lattice to conclude that

t̃r�(fh(H
h
λ,ω)) = qh

π2|�b1∧�b2|

∫
C

Dzf̃h(z)
∑

n

(z− zn(h))
−1 dm(z)

+ 1
π

∫
|�z|<hM

Dzf̃h(z)O
(
|�z|−1

)
dm(z)+O

(‖fh‖L∞h∞
)

= qh
π |�b1∧�b2|

∑
n

fh(zn(h))+O
(
‖f ‖L∞ hM−2M0

)
+O

(‖f ‖L∞h∞
)

.

(7.25)

Thus, we have from (7.23) that

t̃r�(f (Hh
λ,ω)) = qh

π |�b1∧�b2|
∑

n

f (zn(h))+O
(
‖f ‖L∞ hM−2M0 + ‖f ‖Cα hαM0

)
, (7.26)

which by choosing M = 3M0 and M0 arbitrarily large implies (6.38).

Step 4: QHE and mobility edges for the hexagonal lattice.

From (4.3), we conclude that for any Fermi projection P = 1lJ(H
a�) such that J ⊂ I

with ∂J located inside a spectral gap of Ha� there are γ1, γ2 ∈ Z such that

t̃r��(P) = |�b1 ∧ �b2|−1
(
γ1 + γ2

(
p
q + h

2π

))
. (7.27)

The trace formula (6.38) on the other hand yields that

t̃r��(P) = hq
|�b1∧�b2|π

∑
n∈Z

1lJ(zn(h, p, q))+O(h∞). (7.28)
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Comparing coefficients (4.1) implies that the Hall conductivity, when gauged to be zero

at zero energy, is given by (6.42) for sufficiently small h. �

A Multiscale analysis

Lemma A.1 (Combes-Thomas estimate). Let z be such that d
(
z,�

(
Hh

λ,ω

∣∣
�L(x)

))
= ε ≤ 1,

then for any n, m ∈ �L(x), with �L(x) defined in (1.1), one has∣∣∣∣(Hh
λ,ω

∣∣
�L(x)

− z
)−1

[m, n]

∣∣∣∣ = O
(
ε−1e−

ε
24 ‖n−m‖1

)
. (A.1)

Proof. The proof of (A.1) is a direct adaptation of [?? ,Theorem 11.2]. �

Lemma A.2 (SGEE). For γ > 1+ λ ‖V‖∞ and any ν > 1 it follows that

tr
(
〈•〉−ν(Hh

λ,ω + γ )−1〈•〉−ν
)
≤ Cν <∞ a.s..

Proof. By the Combes-Thomas estimate stated above as Lemma A.1, which holds for

some δ > 0 since γ /∈ �(Hh
λ,ω), we have for W�n

:= W� − n1
�b1 − n2

�b2

tr
(
〈•〉−ν(Hh

λ,ω + γ )−1〈•〉−ν
)

=
∑

n,m∈Z2

tr
(
id	2(W�n )↪→	2(W�n )〈•〉−ν 1lW�n

(Hh
λ,ω + γ )−1 1lW�m

〈•〉−ν
)

≤ Cδ

∑
n,m∈Z2

e−δ/24‖n−m‖1 sup
x∈W�n

∣∣〈•〉−ν
∣∣ sup

x∈W�m

∣∣〈•〉−ν
∣∣

� Cδ

∑
n∈Z2

e−δ/24‖n‖1
∑

m∈Z2

(1+ |n+m|)−ν(1+ |m|)−ν

� Cδ

∑
n∈Z2

e−δ/24‖n‖1
∑

m∈Z2

(1+ |m|)−2ν <∞

(A.2)

where we applied the Cauchy-Schwarz inequality in the last step to the inner series. �

Proof of Prop. ??. We estimate the tail probability with respect to the new density

ρν,m ({|x| ≥ ε}) = cν,m

∫
[−ν,ν]\[−ε,ε]

mρ(mx) dx

�
∫

[−ν,ν]\[−ε,ε]

m

(mx)γ
dx = O((mε)1−γ ).

(A.3)

Let us define the finite volume truncation Hh
λ,ω,�L(x)

:= Hh
λ,ω

∣∣
�L(x)

where �L(x) is defined

in (1.1). Consider the set �ε(H
h) := {x ∈ R; x ∈ [y − ε, y + ε], y ∈ �(Hh)

}
, containing the ε-

broadened non-random spectrum of Hh. We have the following lower bound, with I being
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the region of interest on the probability, using Bernoulli’s inequality (1 − x)α ≥ 1 − αx

and the decay of the probability distribution,

P
(
�(1lI(H

h
λ,ω,�L(x))) ⊂ �ε(H

h)
)
≥ P

(|λVω(v)| ≤ ε for v ∈ �L(x)
)

≥ (1− C(mε)1−γ )|�L(x)| ≥ 1− CL2

(mε)γ−1

(A.4)

where C is allowed to change in the last line. We will use this estimate to infer that with

high probability an energy E between Bn(h)+ 2ε and Bn+1(h)− 2ε is in the resolvent set

of Hh
λ,ω,�L(x)

and has a distance ε to the spectrum of Hh for m large enough.

Choosing ε = μm−1(3L2)
1

γ−1 in (A.4) with μ sufficiently large implies that

P
(
�(1lI(H

h
λ,ω,�L(x)

)) ⊂ �ε(H
h)
)

is arbitrarily close to 1, uniformly in m. Since for both

the square and hexagonal lattice

L �
∣∣{n ∈ �; ‖n‖1 ∈ [L− 1, L+ 1]

}∣∣ � L and L2 �
∣∣{n ∈ �; ‖n‖1 ≤ L/3

}∣∣ � L2,

the Combes-Thomas estimate, stated in Lemma A.1, shows that for E between Bn(h)+2ε

and Bn+1(h)− 2ε with high probability

L
16
3

∑
n,m∈�;‖n‖1∈[L−1,L+1],

‖m‖1≤L/3

∣∣∣(Hh
λ,ω,�L(x) − E)−1[n, m]

∣∣∣ = O
(
L

25
3 ε−1e−C1εL

)
.

(A.5)

By the choice of ε, this implies for sufficiently large L ≥ L0(m)

L
25
3 ε−1e−C1εL � mL

25
3 − 2

γ−1 e−
C2
m L

γ+1
γ−1

< 1. (A.6)

In particular, choosing L0(m) ∝ m
(1+ε′)(γ−1)

γ+1 for some fixed ε′ ∈ (0, (γ − 1)/2)

implies (A.6). This choice of L0 ensures that also

lim
m→∞L0(m)

2
γ−1 m−1 = lim

m→∞m
2(1+ε′)−(1+γ )

1+γ = 0.

This implies by (A.6) that ε := μm−1(3L2)
1

γ−1 can be chosen arbitrarily small by taking

m large enough such that by [18, Theorem 2.4]{
E ∈ R; E between Bn−1(h) and Bn(h)

} ⊂ �
h,DL
λ .

�
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