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A B S T R A C T

We investigate the impacts of spatial pricing for ride-sourcing services in a Stackelberg
framework considering traffic congestion. In the lower level, we use combined distribution and
assignment approaches to explicitly capture the interactions between drivers’ relocation, riders’
mode choice, and all travelers’ routing decisions. In the upper level, a single transportation
network company (TNC) determines spatial pricing strategies to minimize imbalance in a
two-sided market. We show the existence of the optimal pricing strategies for locational
imbalance minimization, and propose effective algorithms with reliable convergence properties.
Furthermore, the optimal pricing is unique and can be solved in a convex reformulation when
waiting time is small compared to travel time. We conduct numerical experiments on different
scales of transportation networks with different TNC objectives to generate policy insights on
how spatial pricing could impact transportation systems.

1. Introduction

Since the first introduction of UBER services in 2010, ride-sourcing has become an encouraging new form of mobility.
Transportation network companies (TNCs), also known as ride-sourcing companies, serve as both platform providers and operators,
promising to increase the reliability and efficiency of point-to-point transportation. Dynamic pricing1 is one of TNCs’ key operational
techniques to improve locational supply–demand balance in real-time. Conceptually, dynamic pricing sets a surge multiplier (SM)
for each predefined geographic area, which dynamically raises (or reduces) the base trip fare when locational demand is higher
(or lower) than available supply until demand and supply are balanced2. While conceptually appealing, dynamic pricing receives
critiques over the past years due to the opaque of pricing algorithm and concerns that TNCs may surge unnecessarily high or more
frequently to exploit customers in an oligopolistic setting (Zha et al., 2018a).

Determining optimal pricing strategies may be challenging due to spatio-temporal couplings and potential conflicts of interest
between the society and TNCs. On one hand, dynamic pricing tries to balance supply and demand both in time and in space, but
most research attention has been paid to the temporal aspect (Bimpikis et al., 2019). Because pricing information (i.e., SM, base trip
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1 E.g., Uber surge pricing, Lyft prime time charges, and Didi Chuxing’s dynamic pricing.
2 In reality, prices for rides are dynamically calculated based on a variety of factors including route, time of day, ride type, number of available drivers,

current demand for rides, and any local fees or surcharges. While the actual pricing algorithm is unknown to the public, Chen et al. (2015) reverse engineer
the pricing strategies using high-resolution UBER data.
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fare, etc.) is revealed to both demand and supply markets, which are interconnected through a transportation network, prices at
one location affect services at all other locations potentially. In practice, TNCs also benefit from using spatial prices to account for
long-term predictable unbalanced demand patterns (Bimpikis et al., 2019). Studying dynamic pricing from a network perspective
is beneficial for both societal welfare and TNCs’ mission. On the other hand, while TNCs are typically profit-driven, optimal prices
for TNCs themselves may not be optimal for the whole society, which includes riders, drivers, and other transportation users. Better
understanding the impact of TNCs’ pricing decisions on system welfare is critical to generate planning and regulation insights for
policymakers.

Although the current flow share of ride-sourcing traffic is low, several studies have found that ride-sourcing has a negative impact
on traffic congestion. For example, using ride-sourcing data, Qian et al. (2020) showed that increased demand of ride-sourcing is a
major cause of New York City’s traffic congestion. A similar study by Castiglione et al. (2018) reported that congestion increased
by 50% in San Francisco in a few years because of ride-sourcing services. As a result, several cities, such as NYC (NYCTLC, 2019)
and Chicago (Pierog, 2019), have now imposed congestion surcharges on those services in an effort to alleviate congestion. Beojone
and Geroliminis (2021) investigated the impact of ride-sourcing services on traffic congestion using Chinese ride-sourcing data and
revealed that although a larger fleet size reduces waiting time, it intensifies congestion. Additionally, studies have found that young
people have an inclination towards ride-sourcing services than to own private vehicles (Alemi et al., 2018; Dzisi et al., 2020), which
will further increase the market share of ride-sourcing in the future. Given these circumstances, it is imperative to investigate the
effects of ride-sourcing on traffic congestion.

In this paper, we investigate the spatial dimension of surge pricing while considering traffic congestion during the peak period.
We analyze the impacts of spatial pricing for ride-sourcing services in an interconnected transportation network using a Stackelberg
framework. In the lower level, we explicitly capture the interactions between drivers’ relocation, riders’ mode choice, and all
travelers’ routing decisions. In the upper level, a single TNC provider determines spatial pricing strategies to fulfill its objective
in two-sided markets. The main contribution of this work is twofold. First, we explicitly consider the relocation of drivers and
transportation congestion, which not only captures the ride-sourcing behaviors more accurately but also allows for systematic
analyses of the impacts of spatial pricing on transportation efficiency. Second, while optimal spatial pricing problems are challenging
to solve due to a bi-level structure, we propose effective computational algorithms, with rigorous analyses on the existence,
uniqueness, and convergence of the optimal solutions.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature on dynamic pricing in the ride-
sourcing context. Section 3 and Section 4 propose the formulations and algorithms, respectively. We test the models and solution
approaches using different scales of transportation systems in Section 5. Section 6 concludes the paper with the main research
findings and future research directions.

2. Literature review

According to SAE international (2018), ride-sourcing is defined as ‘‘prearranged and on-demand transportation services for
compensation in which drivers and passengers connect via digital applications’’. This definition includes a broad range of mobility
modes. In this paper, we focus on TNCs for automobiles.

As one of the key operational strategies, ride-sourcing pricing has attracted increasing attention from the various research
communities, including transportation (e.g., (Zha et al., 2018a,b)), economics (e.g., (Chen and Sheldon, 2016; Bimpikis et al., 2019)),
management science (e.g., (Guda and Subramanian, 2019)), and computer science (e.g., (Chen et al., 2015)). In addition, some
studies on ride-sourcing modeling are closely related to research on taxi (e.g., (Yang and Wong, 1998; Lagos, 2000; Yang et al.,
2010; Yang and Yang, 2011; He et al., 2018)) and two-sided marketplace (e.g., (Rochet and Tirole, 2006; Rysman, 2009; Hu et al.,
2021)). Given the focus of this paper is on the impacts of spatial pricing on transportation congestion, we focus on the ride-sourcing
pricing issues from a transportation perspective, with references to other domains as needed.

The impacts of dynamics pricing on ride-sourcing driver supply are still inconclusive. The first conjecture, denoted as income-
target theory, is that drivers quit driving once a daily income target is reached. This theory is pioneered by Camerer et al. (1997),
who found negative wage elasticity of cabdriver supply in New York City. In contrast, the second conjecture, denoted as the
neoclassical theory (Farber, 2005), suggests that cabdrivers are greedy for higher income, and cabdrivers supply has a positive wage
rate elasticity. Farber (2005) also pointed out that the differences between income-target theory and neoclassical theory are in the
conception and measurement of the daily wage rate. Chen and Sheldon (2016) provided empirical evidence for neoclassical theory
using high-resolution UBER data. The coexistence of these two competing theories may explain the empirical evidence that the effect
of dynamic pricing on UBER drivers’ supply is limited (Chen et al., 2015). Zha et al. (2018a) proposed a bi-level modeling framework,
with lower-level equilibrium considering both income-target theory and neoclassical theory, and find that compared to static pricing,
surge pricing leads to higher revenue for both the platform and drivers, but lower customer surplus during highly surged periods.
The majority of these studies focus on the temporal dimension of dynamic pricing without considering spatial linkages between
driver availability and traffic congestion. In this paper, due to the inconclusive impacts of dynamic pricing on driver supply, we
assume that total driver supply is inelastic to spatial pricing, but drivers will respond to spatial pricing by choosing their service
location.

Another school of literature investigates the potential value of dynamic pricing on ride-sourcing systems (Banerjee et al., 2015;
Cachon et al., 2017; Castillo et al., 2017; Taylor, 2018; Gurvich et al., 2019). Banerjee et al. (2015) adopted a queueing-theoretical
approach and find that dynamic pricing only outperforms static pricing when TNCs have imperfect knowledge of system parameters.
Although network model is presented, the pricing policies only depend on the number of idle drivers at individual locations. Castillo
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et al. (2017) considered the problem of ‘‘wild goose chase’’ when the price is set too low, and find that dynamic pricing can avoid this
issue and maintain prices within a reasonable range. In contrast, in a deterministic setting, Zha et al. (2018b) adopted a geometric
matching framework and find that dynamic pricing may still set price higher than the societal efficient level. However, idle vehicle
relocation behaviors is not considered in (Zha et al., 2018b). Karamanis et al. (2018) explored the impact of dynamic pricing for
autonomous vehicles in a one-sided market for private and shared rides in both monopoly and duopoly structure. Nourinejad and
Ramezani (2020) investigated TNC’s profit, driver’s wage and rider’s fare under different pricing strategies in a non-equilibrium
two-sided market with pricing determined exogenously. Most of these studies focus on temporal aspects and do not consider traffic
equilibrium and transportation congestion.

Bimpikis et al. (2019) are among the first to consider the spatial dimension of ride-sourcing pricing, by modeling whether
and where drivers will join the platform, and where to relocate themselves when they are idle. Bimpikis et al. (2019) found
that spatial pricing contributes to balance supply and demand, and more balanced demand patterns lead to higher profits and
higher consumer surplus, simultaneously. However, the equilibrium formulation in (Bimpikis et al., 2019) is indeterminate and the
conclusion is, therefore, best seen as an ideal bound (Zha et al., 2018b). In addition, since Bimpikis et al. (2019) mainly focused on
the equilibrium of ride-sourcing services rather than traffic equilibrium, transportation topology and congestion effects are ignored.
Similarly, Tang et al. (2022) examined long-term spatial pricing strategies based on long-term interaction between drivers and riders
in different zones, but transportation network congestion effects are not considered. To optimize spatial–temporal pricing, Chen
et al. (2021) proposed a reinforcement learning approach and shows that TNC’s profit increases with dynamic pricing in real-world
situations. Battifarano and Qian (2019) proposed a data-driven framework to predict surge multipliers in real-time. These studies
do not aim to analytically explain the interaction between different components in ride-sourcing systems.

The congestion effect of ride-sourcing services in transportation networks is a relatively new research topic and, thus, less
explored. Nie (2017) has indicated the concerns of ride-sourcing services on worsening the traffic congestion. A more recent work
by Ban et al. (2019) using general equilibrium model to formulate the multi-agent interactions in an e-hailing system, has explicitly
modeled traffic congestion under path independent free-flow travel time assumption. However, pricing is treated as exogenous
parameters and not a focus in (Ban et al., 2019). Beojone and Geroliminis (2021) investigated the impact of ride-sourcing services
on traffic congestion using agent-based modeling. The study reveals larger fleet size reduces waiting time but increases congestion
thereby adds more to total travel time. Vignon et al. (2021) investigated the impact of both solo and pooling ride-sourcing services
on traffic congestion, which provide crucial policy insights for regulating ride-sourcing services effectively. Nevertheless, these
studies do not address the impact of spatial/dynamic pricing on ride-sourcing services under congested network conditions. Li
et al. (2021b) proposed a network market equilibrium model to investigate the optimal spatial pricing for a ride-sourcing platform
to maximize profits under different congestion pricing policies. However, the resulting model is non-convex and the global optimal
is not guaranteed. We aim to fill this gap by proposing a mathematical tractable modeling framework for spatial pricing considering
traffic equilibrium in a congested transportation network.

3. Methodologies

In this section, we present mathematical models for ride-sourcing systems in two cases: (1) ignoring waiting time (Section 3.1),
and (2) considering waiting time (Section 3.2). The waiting time used in this paper is defined as follows. For a rider, waiting time
is the duration between a request being made and the rider being picked up. For a driver, waiting time is the duration between
the time when the driver arrives at the desired service location waiting for ride requests and the time when the driver picks up a
rider. Based on this definition, the waiting time includes matching time and pick up time. This definition is consistent with existing
ride-sourcing literature (e.g., (Yang and Yang, 2011; Zha et al., 2016)).

3.1. Mathematical modeling: Ignoring waiting time

Firstly, we ignore the impacts of waiting time on the behaviors of drivers and riders. This assumption will be relaxed in
Section 3.2. Models ignoring waiting time are appropriate when waiting time is an insignificant factor for drivers’ and riders’ decision
making. For example, for long-term transportation planning problems with congestion, relocation/travel time can significantly
exceed waiting time. In addition, travelers may be able to request rides earlier than their intended departure time, so that ride
request decisions are less sensitive to waiting time.

3.1.1. Traffic modeling
Denote a transportation network by a directed graph G = (N ,A), where N is the set of nodes (indexed by n) and A is the set of

links (indexed by a). The service area we consider is a metropolitan area where ride-sourcing demand and supply are aggregated
in predefined zones (e.g., census tracts or traffic analysis zones), represented by nodes. A link is a sequence of roads that connects
two nodes. Given driver node set R (œ N ) and rider node set S (œ N ), drivers will relocate from r (À R) to s (À S) to provide
ride-sourcing services depends on spatial pricing. In other words, there are two ‘‘origins’’ used in this paper. A driver’s origin,
denoted as r, is the driver’s current location before he/she makes relocation; a rider’s origin or a driver’s relocation destination,
denoted as s, is where the rider makes a ride request or the driver relocates to. If a driver decides to wait at his/her current location
or has accepted a trip in the same area, r equals s.

Drivers are more likely to relocate to locations with higher expected service prices. To capture this effect, we propose utility
function (1). We assume that driver relocation decisions follow multinomial logistic models, with explanatory variables of locational
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attractiveness �0,s, relocation time trs, and locational prices ⇢s. Locational attractiveness indicates how a location is favored by drivers
because of factors other than time and price, such as safety, rider density, and easiness of getting returning trips. Locational prices
⇢
s
represent the expected trip standard rates originated from s times origin-base surge multipliers determined by TNC. The modeling

framework is flexible to incorporate more explanatory factors. The deterministic components of drivers’ utility function are given
in (1).

U
rs
= �0,s * �1trs + �2⇢s (1)

where:

U
rs
: deterministic component of utility measure for a driver going from r to s;

�: utility function parameters (model input);

t
rs
: equilibrium travel time from r to s;

⇢
s
: locational price at s.

Utility function (1) describes the utility of drivers at location r when they make relocation decisions from r to s. Utility function
(1) does not aim to capture the heterogeneity of drivers at location r nor reflect how much each driver will actually get paid, since
supply and demand may not be balanced at each location and drivers may be matched with trips with different trip lengths. But
when drivers make relocation decisions, they do not know the length of trips that they are going to be matched with by the TNC.
In other words, drivers’ revenue from the next trip is a random variable before they relocate. The expectation of drivers’ revenue
depends on the expectation of trip length and the origin-based surge multipliers of their relocation destinations. Therefore, for
drivers, the relocation decision making is independent of the specific destination of the next trip. Instead, it will depend on the
expected trip fares originated from the region a driver relocates to.

While drivers have the flexibility to relocate themselves to other locations, travelers typically have predefined travel origins and
destinations. In this study, we assume the travel demand D

s
is endogenously given but they can choose the travel modes between

requesting TNC services and driving. At each location s (À S), we start with a linear ride-sourcing demand function, as defined
in (2), to calculate ride-sourcing demand d

s
. Driving demand is D

s
* d

s
. We note that the linear demand function (2) is used to

keep a clear focus of this paper and it does not restrict the applicability of our modeling and computational approach for more
sophisticated demand models (see Appendix C.1).

d
s
= D

s
* b

s
⇢
s
, ⇢

s
f D

s
_b

s
(2)

where:

d
s
: flow rate of riders requesting ride-sourcing service at location s;

D
s
, b

s
: total travel demand originated from s and slope of demand function (model input).

To calculate the ride-sourcing OD demand d
sk
, we need to multiply distribution coefficient �

sk
with d

s
. d

s
is independent of

destinations because it is the ride-sourcing demand aggregating all possible destinations. �
sk
will be influenced by destination

characteristics, trip lengths, and other related parameters. This modeling strategy is widely adopted in the classic ‘‘four-step travel
demand model’’ for transportation planning (McNally, 2007), in which travelers are modeled as making four distinct decisions: trip
generation, destination choice, modal choice, and route choice. To facilitate modeling and computation, these four steps are typically
treated separately. In this study, we focus on modeling how travelers choose between different travel modes and routes and consider
the total trip generation D

s
and trip destination choice �

sk
as exogenous parameters. Saying that, we note that traffic distribution

factors can be endogenously determined within the proposed modeling framework based on the travel time (t
sk
) and travel distance

(l
sk
) from s to k, as well as locational attractiveness at location k. The reason travel time/distance is a good proxy to spatial pricing

is because ride-sourcing trip fares are typically determined by trip time and distance.3 The longer the travel time/distance is for a
destination k, the higher the prices riders need to pay. Therefore, riders will less likely to choose that destination. This effect can be
directly modeled using combined distribution and assignment (CDA) model with utility function (3) of destination choice for riders,
where b0, b1, b2 are utility coefficients corresponding to locational attractiveness, travel time, and trip distance.

U
sk

= b0,k * b1tsk * b2lsk (3)

The interactions between drivers, riders, and other passenger vehicles will endogenously determine the mobility of the
transportation system. We extend the combined distribution and assignment (CDA) model (Wilson, 1969) to describe the interactions

3 https://help.uber.com/riders/article/how-are-fares-calculated/?nodeId=d2d43bbc-f4bb-4882-b8bb-4bd8acf03a9d.

https://help.uber.com/riders/article/how-are-fares-calculated/?nodeId=d2d43bbc-f4bb-4882-b8bb-4bd8acf03a9d
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between drivers’ relocation and the routing of all ride-sourcing vehicles and conventional passenger vehicles. The model is described
in (4).

minimize
Çv, äv,qÀR+

…
aÀA 

va

0
t
a
(v

a
)du + 1

�1

…
rÀR

…
sÀS

q
rs

�
ln q

rs
* 1 * �2⇢s * �0,s

�
(4a)

subject to

v =
…

rÀR,sÀS
Çv
rs
+

…
sÀS ,kÀK

äv
sk
, (4b)

( Ç�
rs
) AÇv

rs
= q

rs
E
rs
, ≈r, s (4c)

( ä�
sk
) Aäv

sk
= �

sk
D

s
E
sk
, ≈s, k (4d)

(�
r
)

…
sÀS

q
rs
= Q

r
, ≈r (4e)

where:

Çv
rs
, äv

sk
: link flow vector (each row corresponds to a link, a) grouped by OD for drivers and passenger vehicles, respectively;

q: drivers’ relocation flow vector (each row corresponds to an OD, rs);

v
a
: aggregate traffic flow on link a;

t
a
(�): travel time function of link a;

A: node-link incidence matrix of network, with 1 at starting node and *1 at ending node;

E
rs
: O-D incidence vector of O-D pair rs with 1 at origin r, *1 at destination s. If r = s, E

rs
= 0;

�
sk
: traffic distribution factor from s to k (model input);

Q
r
: drivers initial availability at r;

ä�, Ç�, � , ⌘: dual variables of the corresponding constraints.

In the objective function (4a), the first term corresponds to the travel cost as modeled in a classic static user equilibrium
model (Beckmann et al., 1956), the second term involving qrs ln qrs corresponds to the entropy of trip distribution, and the remaining
terms are constructed in such a way that the first order derivative of the Lagrangian function with respect to q

rs
resembles the utility

measure (1) of drivers. This objective function does not have an intuitive physical interpretation to the authors’ best knowledge,
but it guarantees the first Wardrop principle (Wardrop, 1952) and the multinomial logit location choice assumption being satisfied,
as formally stated in Lemma 1.

Lemma 1 (Combined Distribution and Assignment for Ride-Sourcing System). The optimal solutions ( Çv<, äv<, q<) of problem (4) are the
equilibrium solutions for Wardrop user equilibrium and the relocation choice of drivers with multinomial logit model (1) given spatial prices
⇢.

Proof. See Appendix A. ∏

Constraint (4b) calculates the aggregate link flow v
a
from the link flow associated with OD pairs rs and sk. Constraints (4c),

(4d) are link-based formulations of flow conservation at each node for each OD pair. Note that in the flow conservation constraint
(4d), we consider not only trips fulfilled by ride-sourcing services (d

s
), but also trips fulfilled by driving D

s
* d

s
. The total traffic

originating from node s will be D
s
. The reason is that ride-sourcing traffic flow is (currently) a small proportion of the link flow and

considering external traffic is important to estimate traffic congestion. We model available driver per unit time period at location r

as flow rate Q
r
as given, which will relocate to different destinations s with a flow rate q

rs
, as specified in Constraint (4e). One can

also extend model (4) to consider the network effects of rider’s destination on the spatial distribution of available drivers, i.e., if a
driver takes a rider from s to r, then thereafter the driver will be at r (see Appendix C.2). The equilibrium path travel time t

rs
is

reflected by Ç�
ai
rs * Ç�

aj

rs . For details, please see the proof of Lemma 1.
Note that there are two types of ride-sourcing traffic in model (4). The first type is due to relocation or deadheading trips

(i.e. no passengers on board); the second type is after ride-sourcing vehicles pick up passengers, drivers will drive riders to the
riders’ destinations, in which case origin and destination are known. The first type of ride-sourcing trip is Q

r
in constraint (4e),

which does not have specific destinations. D
s
includes the second type of ride-sourcing trips and other driving trips. We do not

need to separate travel demand by ride-sourcing and driving in mode (4) because the OD travel demand of vehicle traffic from s to
k is fixed, which typically can be estimated from classic travel demand models. Although rider demand d

s
does not directly enter

into the model (4), d
s
is endogenously determined and implicitly influences the locational prices ⇢

s
when we solve the multi-agent

optimization models simultaneously.
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Our proposed model can be extended to model elastic drivers’ supply Q
r
as a function of prices using discrete choice models.

To do that, one can add a dummy relocation destination node for drivers in the transportation network to represent that drivers
may decide to quit the service for the studied time period due to extremely low spatial prices offered at the candidate relocation
destinations. The price parameter at the added dummy node reflects the benchmark revenue drivers may earn or expect to earn
using their time. This approach does not need to modify our modeling (e.g., model (4)) and computational strategies.

3.1.2. TNC behaviors
Due to the uncoordinated behaviors of a large number of drivers and riders, individual drivers and riders do not have market

power and only respond to the spatial prices set by the TNC. The pricing decisions of a TNC will influence the traffic equilibrium
solutions of (4) and rider demand (2), which forms a mathematical programming with equilibrium constraints (MPEC) problem.

In this paper, we only consider TNC using origin-based pricing to influence the spatial distribution of ride-sourcing demand and
supply. Origin-based pricing is widely adopted by TNCs (Zuniga-Garcia et al., 2020). The trip origin determines the amount of surge
pricing for a trip, instead of the driver’s location or trip destination. When prices are surging, TNCs will charge riders in the surge
zone a multiplier to standard rates. The income of drivers serving the trips originated from the surge zone also scales up by the surge
multiplier. The origin-based prices ⇢

s
used in this manuscript can be interpreted as regular fares for expected trip length multiplied

by origin-base surge multipliers. Note that as long as the expected prices paid to drivers and paid by riders are linearly related to
⇢
s
, distinguishing payments from/to riders/drivers does not impact the equilibrium outcomes. This is because the impact will be

implicitly captured by the coefficients �2 in the utility function (1) and b
s
in the demand function (2).

The TNC decision-making can be modeled as a bi-level problem (5). We assume that only one TNC in our study area, who
would like to minimize the imbalance between supply and demand (see, objective (5a))4, which has the advantage of improving
driver/rider satisfaction and ultimately leads to long-term sustainable development and profits. A comparison between different
objectives (minimizing imbalance versus maximizing short-term profits) will be presented in Section 5. Constraint (5b) calculates
the imbalance as the difference between the flow of riders requesting services d

s
and the number of drivers arriving at this location≥

rÀR q
rs
. Calculation of traffic equilibrium patterns q

rs
and ride-sourcing demand d

s
are included in constraint (5c).

minimize
⇢ÀRS

…
sÀS

m
s

(5a)

subject to

m
s
= 

…
rÀR

q
rs
* d

s
, ≈s (5b)

(4), (2) (5c)

where:

m
s : demand–supply imbalance at s.

While constraint (5b) can be reformulated as linear constraints, the bi-level structure still makes the whole problem challenging
to solve to global optimal (Yang and H. Bell, 1998; Sinha et al., 2017). In Section 4, we propose an equivalent single-level convex
reformulation of (5), which can be efficiently solved by commercial nonlinear solvers (e.g. IPOPT (Wächter, 2009)).

3.2. Mathematical modeling: Considering waiting time

In this section, we explicitly model the impacts of waiting time. Waiting time could influence the relocation decisions of drivers
and the mode choices of riders. From an individual perspective, waiting time is heterogeneous and uncertain for each driver and
rider. In this paper, we focus on the aggregated behaviors of drivers/riders and use expected waiting time to reflect the time costs
to provide or receive services in a zone on average.

In reality, there are two phases, ‘‘matching’’ and ‘‘pick-up’’ after a ride request is made. For transportation system modeling
purposes, Cobb–Douglas-type aggregate matching functions are widely adopted (Yang and Yang, 2011; Zha et al., 2016) to estimate
the ‘‘meeting’’ rate and total waiting time (Li et al., 2021a). This modeling strategy is validated in Zha et al. (2016) using an
agent-based simulation study. To consider different matching technologies (e.g., matching radius and matching time interval), a
general matching function has been proposed for both single-interval optimization (Yang et al., 2020) and stationary analyses (Li
et al., 2021a), which includes Cobb–Douglas-type matching functions as a special case. The main disadvantage of these studies is
that there may not be a closed-form solution for the matching function and the waiting time could only be implicitly solved from
a system of equations. Therefore, in this paper, we adopt a Cobb–Douglas matching function (see Eq. (6)) as a starting point to
describe the total waiting time of drivers and riders, which includes waiting time in the matching phase and pick-up phase.

A Cobb–Douglas function is used mainly because of three reasons. First, the Cobb–Douglas function has a constant elasticity,
which is specified by parameters ↵1 and ↵2. The elasticity can reflect the efficiency of the matching technology adopted by a ride-
sourcing platform. Second, ↵0 has a nice interpretation, which is related to the area of the matching zone and the cruising speed of

4 Balancing supply and demand is the goal of dynamic pricing proposed by all TNC companies. See, for example, https://www.ridester.com/training/lessons/
surge-primetime-boost-primezones/ (visited on Feb. 26, 2020).

https://www.ridester.com/training/lessons/surge-primetime-boost-primezones/
https://www.ridester.com/training/lessons/surge-primetime-boost-primezones/
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vacant vehicles (Yang and Yang, 2011). Third, ↵1 + ↵2 is larger than, equal to, or smaller than one when the matching function is
increasing, constant, or decreasing returns to scale. For a given area, it is typically assumed that ↵1 + ↵2 > 1 to represent increasing
returns to scale of matching rate, because the increasing density of supply and/or demand will make it easier to match drivers with
riders. Note that N

D
and N

R
are the number (instead of flow rate) of available drivers and awaited riders in a zone, which may

change over our study time period due to a potential imbalance of supply and demand.

m(t) = ↵0N
↵1
D
(t)N↵2

R
(t) (6)

Denote the locational average and total waiting time for drivers (D) and riders (R) as t
D
, T

D
, t

R
, and T

R
, respectively. Based on

matching rate function (6), average waiting time for drivers D and riders R can be calculated in Eqs. (7),5 where f
i
(i À {D,R}) is

the flow rate of drivers/riders (i.e., f
D,s

= ≥
rÀR q

rs
, f

R,s
= d

s
) and T is the study period. Note that (7) is location specific, but we

omit the location index s for all of the variables in (7) for notation conciseness.

ÜN
i
(t) = f

i
* m(t) = f

i
* ↵0N

↵1
D
(t)N↵2

R
(t), (7a)

T
i
=  

T

0
N

i
(t)dt, ≈i À {D,R} (7b)

t
i
=

T
i

f
i
T

=
î T

0 N
i
(t)dt

f
i
T

, (7c)

Eq. (7a) calculates the change rate of N
D
(i.e. ÜN

D
) as how many drivers relocate to s (i.e.,

≥
rÀR q

rs
) minus matching rate m.

Similarly, the changing rate of N
R
(i.e., ÜN

R
) is determined by rate of rider demand in s (i.e., d

s
) minus matching rate m. Eqs. (7b)

and (7c) calculate the total and average waiting time for drivers and riders over T , respectively.
In (Yang and Yang, 2011) and some other subsequent studies, the authors assume the number of available drivers and riders are

stationary, which implies that the matching rate will always equal to drivers/riders arrival rate. In contrast, we only assume that the
arrival rates of drivers and riders are stationary during our studied time period. In other words, the flow rate could be greater, equal,
or even lower than the matching rate if there is a reasonable level of available drivers and riders at the beginning of the studied
period. When the flow rate is higher (or lower) than the matching rate for a certain duration, the number of available drivers and
riders will increase (or decrease) and the matching rate will increase (or decrease) based on Eq. (6). The reason for this relaxation
is to have a more realistic representation of the real ride-sourcing market, where the matching rate is typically not constant and
available drivers and riders may fluctuate during the studied period. Our proposed model can be easily degenerated to consider the
case when matching rate equals to drivers/riders flow rate by specifying f

i
= m(t),≈i À {D,R} in Eq. (7a) so that ÜN

i
(t) = 0.

While solving Eq. (7) analytically is challenging, t
i
(≈i À {D,R}) can be solved numerically given f

D
, f

R
and boundary conditions

N
D
(0),N

R
(0). We then apply linear regression techniques to estimate the relationship between t

i
and f

i
, ≈i À {D,R}. The reason

we need to use regression techniques is that the relationship between t
i
and f

i
is not well documented in the literature. We select

↵0 = 0.1, ↵1 = ↵2 = 0.6 for our numerical simulation to generate a sequence of t
i
and f

i
following system dynamic Eqs. (7). With

these data generated, a linear regression model is used to estimate the coefficients in (8). When ↵0 = 0.1, ↵1 = ↵2 = 0.6, we have
a0 = 6.29, a1 = 2.24, a2 = *2.40 as least square estimators. a2 > a1 implies that if both drivers and riders double their flow to a
region, the waiting time for drivers and riders on average will be reduced (i.e., increasing return of scale for matching rate). The
linear regression data generation procedures and output summary are presented in Appendix B.

t
i
= a0f

a1
i
f
a2
*i ≈i À {D,R} (8)

Remark. Our modeling framework can have an equation similar to Eq. (6) to explicitly model the pickup time at a given zone,

i.e., tpickup(t) = ↵
pickup

0 N
↵
pickup

1
D

(t)N
↵
pickup

2
R

(t). Since the pickup time could change over time, we can estimate the average pickup time

over the studied time period as Ñt
pickup = î T

0 t
pickup(t)dt
T

. In this case, the total waiting time (ttotal
i

) the drivers or the riders spend
from placing ride requests to being picked up equates to Ñt

pickup + t
i
. Following the same strategies to estimate the matching time t

i

(i.e., Eqs. (7) and (8), we can estimate the relationship between the average pickup time Ñt
pickup and drivers/riders flow f

R
and f

D

using regression techniques. Note that this extension does not affect the proposed computational strategies below.

To incorporate waiting time in a unified CDA framework, we define an augmented transportation network, ÑG = ( ÑN , ÑA). The
augmenting procedures from G to ÑG is illustrated in Fig. 1 using a three-node transportation network, which has one driver node
(node 1) and two rider nodes (node 2 and 3). For each rider node s in Fig. 1(a), we created s, s®, and s

®®, representing nodes
for markets, connectors, riders, respectively, with directed links connecting between them as shown in Fig. 1(b),6. In augmented
network ÑG, link flow f

s®s, fs®®s and f
s®®s® represent the flow of driver supply, rider demand, and travelers choosing to drive at node s,

while the link cost t
s®s and t

s®®s are the waiting time for drivers (tD,s
) and riders (t

R,s
), respectively. If travelers choose to drive, there

is no waiting time, so that link cost t
s®®s® = 0. In this paper, we do not consider cross-node matching. This is because we assume that

each node represents a relatively large area (e.g., zipcode/city) where the majority of matching is within the node. However, the

5 Eq. (7) is explained graphically in Appendix B.
6 From Fig. 1 we can see that ignoring waiting time is a special case of considering waiting time when a0 = 0 in (8), which makes link cost t

D,2 , tR,2 , tD,3 , tR,3 = 0
in Fig. 1(b). This makes Fig. 1(b) identical as Fig. 1(a).
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Fig. 1. Illustration of Network Augmentation.

augmented network (Fig. 1) can be further extended to consider the cross-node matching by adding single directional arrow from
2® to 3 and from 3® to 2. The ‘‘travel time’’ on these links represents the cross-node waiting time.

With an augmented network ÑG, the utility function of drivers is identical with (1). Note that t
rs
in (1) will include not only the

travel time from r to s
®, t

rs® , but also the waiting time at s, ts®s. The drivers relocation and routing behaviors, therefore, can be
modeled as (4) (replacing G with ÑG), given spatial pricing ⇢.

For travelers at location s, the ride requesting demand function is not only dependent on the prices ⇢
s
, but also depends on

the waiting time, t
s®®s. We formulate the choice of ride-sourcing over driving using a binary logit model, with ride-sourcing utility

function (9),

U
s®®s = �

®
0,s * �

®
1ts®®s * �

®
2⇢s (9)

where �®0,s, �
®
1, �

®
2 are the utility coefficients for ride-sourcing attractiveness, waiting time, and ride-sourcing prices. Since the on-road

travel time for driving and ride-sourcing are the same, travel time will be canceled out when travelers make mode choices and
do not need to be included in (9). Note that the rider demand couples with waiting time (see (8) and (9)), we will formulate the
travelers’ mode choices using the CDA model in the augmented network ÑG, where the destination s represents travelers choosing
ride-sourcing services, and destination s

® represents travelers choosing driving. The CDA model for riders’ mode choice at each
location s is shown in (10), where the first term corresponds to the conventional Wardrop user equilibrium, and the second term
reflects the binomial logit choice between ride-sourcing and driving.

minimize
fR,sÀR+  

fR,s

0
t
R,s

(f
D,s

, u)du + 1
�
®
1

⌧
f
R,s

⇠
ln f

R,s
* 1 + �

®
2⇢s * �

®
0,s

⇡
+ (D

s
* f

R,s
)
�
ln(D

s
* f

R,s
) * 1

��
(10)

Similar to formulation (5) for the ‘‘ignoring waiting time’’ case, the TNC decision making considering waiting time can be modeled
as a bilevel problem, as shown in (11), where objective (5a) minimizes total demand–supply imbalance (calculated by (5b)), subject
to drivers, riders, and all other travelers user equilibrium (4) and travelers’ mode choices (10) in the augmented network ÑG.

minimize
⇢ÀRS

(5a) (11a)

subject to

(5b), (4), replacing G with ÑG, (10) (11b)

Remark. In this paper, we assume that travelers only choose between ride-sourcing and driving to keep a clear focus on the spatial
pricing issues in ride-sourcing systems. However, we note that the proposed modeling framework can incorporate more sophisticated
mode choice models. This can be seen from models (9) and (10), where riders choosing ride-sourcing or not (binary logit model) can
be reformulated as a combined distribution and assignment (CDA) model. Since the CDA model can naturally consider more than
two destinations (Florian et al., 1975), if other transportation modes are of interest, we can introduce dummy destination nodes in
Fig. 1 to represent other travel modes and extend model (10) to solve for a multinomial logit model.

4. Solution approach

4.1. Solution approach: Ignoring waiting time

We start by showing that when problem (5) is solved to optimal, the ride-sourcing market will be balanced at each location. In
addition, optimal solutions ⇢< is unique. This is more formally stated in Lemma 2.
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Lemma 2 (Balancing Ride Supply and Demand). ⇢< optimizes problem (5) if and only if ride supply and demand are balanced at each
location given ⇢<. In addition, ⇢< is unique and ⇢

<
s
À [(D

s
*≥

rÀR Q
r
)_b

s
,D

s
_b

s
],≈s À S.

Proof. See Appendix A. ∏

Lemma 2 says that problem (5) is equivalent to the problem of finding the unique ⇢< that balances supply and demand at each
location. Notice that ⇢< could be negative under extreme scenarios when too many available drivers exist in the system compared
to rider demand. In other words, TNC may provide incentives for riders to use ride-sourcing services only when D

s
<

≥
rÀR Q

r
.

However, this will not happen in reality given reasonable driver supply Q
r
, since drivers will dynamically respond to extremely low

prices (Bimpikis et al., 2019). On the other hand, based on Lemma 2, since ⇢
<
s
f D

s
_b

s
, d<

s
g 0. In other words, d

s
for all s cannot

be negative in the optimal solution.
Leveraging Lemma 2, the optimal spatial prices can be obtained by solving a single-level convex optimization problem, which

will be illustrated in the remainder of this section.
Problem (5) has three types of agents: drivers, riders, and TNC. Because of Lemma 2, the decision making of TNC can be

reformulated as finding ⇢< such that
…
rÀR

q
<
rs
(⇢<) = D

s
* b

s
⇢
<
s
,≈s À S (12)

where q<
rs
(⇢<) is the optimal solutions of (4) given ⇢<. This problem falls within the framework of multi-agent optimization problem

with equilibrium constraints (MOPEC) (Ferris and Wets, 2013), where drivers make relocation decisions; riders decide whether to
request ride-sourcing services; all travelers make route choices decisions; and the system is subject to equilibrium conditions (12).
MOPEC has been applied in transportation, energy, economics domains, such as charging infrastructure planning (Guo et al., 2016b),
hydro-thermal electricity systems optimization (Philpott et al., 2016), renewable energy supply chain planning (Guo and Fan,
2017), transportation and power system interdependence (Baghali et al., 2022; Guo et al., 2021), and computational Walrasian
equilibrium (Deride et al., 2019).

Define two types of dummy agents in our problem, Driver and Rider. Given ⇢, Driver solves problem (4), which determines the
drivers relocation decision from r to s, q

rs
(⇢),≈r, s; and Rider solves problem (13), which determines the riders demand d

s
(⇢) at

each location s. Note that problem (13) is a constructed unconstrained quadratic programming problem, which has a closed-form
solution d

<
s
(⇢) = D

s
* b

s
⇢
s
,≈s À S, identical to the demand function (2) we assumed.

minimize
dÀRS

+

…
sÀS

1
b
s

[*D
s
d
s
+ b

s
⇢
s
d
s
+ 1

2 (ds)
2] (13)

The equilibrium constraints (12) can be reformulated as (14).
…
rÀR

q
<
rs
(⇢) = d

<
s
(⇢),≈s À S (14)

We construct a single-level convex optimization problem (15), which will yield the same spatial pricing decisions as bilevel
formulation, as stated in Theorem 1.

minimize
Çv, äv,q,dÀR+

�1
�2

…
aÀA 

va

0
t
a
(v

a
)du + 1

�2

…
rÀR

…
sÀS

q
rs

�
ln q

rs
* 1 * �0,s

�
+
…
sÀS

1
b
s

(
d
2
s

2 *D
s
d
s
) (15a)

subject to

(4b) Ì (4e)

(⇢
s
)

…
rÀR

q
rs
= d

s
, ≈s (15b)

The objective function (15a) is a combination of scaled objective functions (13) and (4a) without
≥

rÀR ⇢
s
q
rs
and ⇢

s
d
s
terms. The

purpose of scaling (13) and (4a) is to convert the units of both objective functions into monetary units so that they are addable. In
addition, the optimal dual variables ⇢<

s
of constraints (15b) will have a monetary unit in dollars and balance supply and demand at

each location. Therefore, ⇢< can be interpreted as spatial prices to solve problem (5) based on Lemma 2.

Theorem 1 (Single-Level Convex Reformulation). ⇢ solves bi-level problem (5) if and only if ⇢ is the optimal dual variable corresponding
to constraint (15b) in single-level problem (15).

Proof. See Appendix A. ∏

Problem (15) is a non-linear convex problem, with a convex objective function and linear constraints. So it can be efficiently
solved to global optimal by commercial nonlinear solvers, such as IPOPT. For extreme large-scale problems, this reformulation opens
up opportunities to apply classic and efficient transportation network solution algorithms, such as the Frank–Wolfe algorithm (Sheffi,
1985) and Evans’ procedure (Evans, 1976). In this paper, we focus on small/medium transportation networks to draw policy insights
and leave the development of advanced algorithms for extremely large networks for the future.
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4.2. Solution approach: Considering waiting time

Directly solving TNC upper-level problem (11) is challenging due to non-convexity. We restate (11) as a problem of finding a
maxinf-point for a bivariate function (bi-function) W (⇢,�), as shown in (16).

W (⇢,') = *
…
sÀS

'
s
ES

s
(⇢), onRS ù �

S
(16)

where �
S
corresponds to the S-dimensional unit simplex. ESs is the square of demand–supply imbalance, defined in (17).

ES
s
(⇢) =

L…
rÀR

q
<
rs
(⇢) * f

<
R,s

(⇢)
M2

, ≈s À S (17)

where q
<
rs
and f

<
R,s

are the optimal solutions (as a function of ⇢) of problem (4), replacing G with ÑG) and ((10), respectively.
The relationship between maxinf point of W (⇢,') and the equilibrium spatial prices is stated in Lemma 3.

Lemma 3 (Equilibrium Prices and Maxinf-Points). For ⇢ À RS , ⇢ is a maxinf-point of the Walrasian function W such that W (⇢, �) g 0,
on �

S
if and only if ⇢ is an equilibrium point.

Proof. See Appendix A. ∏

This conversion is inspired by a theoretical development on lopsided convergence of bifunction by Jofré and Wets (2009),
which offers the flexibility of constructing a sequence of approximate bifunctions with desired properties (including convexity and
continuity) to solve for the original maxinf-point of W (⇢,�). A similar approach has been successfully implemented in (Guo et al.,
2016b; Deride et al., 2019). In this paper, we highlight the key steps of the algorithm design.

Since inf' W (⇢,') lack of concavity in ⇢, we apply an augmented Lagrangian for this non-concave formulation. Given sequences
of nonegative, nondecreasing scalars {r⌫}, {M⌫}, one can define a sequence of augmented Walrasian functions for this problem as
shown in Eq. (18).

W
⌫ (⇢,') = inf

z

$
W (⇢, z) + 1

2r⌫ z * '2z À �
S

%
, on [⇢⌫*1 *M

⌫
,⇢⌫*1 +M

⌫ ] ù �
S

(18)

The idea of this procedure is to approximate the problem of finding maxinf-points of the original Walrasian function W , by
computation of approximate maxinf-points ⇢

"
(see Definition 1) given by a sequence of augmented Walrasians W

⌫ , which are
easier to solve. Note that the proposed approach is not a heuristic approach since the convergence of the proposed approximation
scheme is guaranteed, as stated in Theorem 2.

Definition 1 (Approximating Equilibrium Point). ⇢
"
is an "-approximating equilibrium point, denoted as " * argmaxinf W , for " g 0,

if the following inequality holds: ÛÛinfW (⇢
"
, �) * supinfW ÛÛ f ".

Theorem 2 (Convergence of Approximating Maxinf-Points). Suppose that supinfW is finite. Consider non-negative sequences {r⌫}, {M⌫},
and {"⌫} such that r⌫ ûÿ, M⌫ ûÿ, "⌫ ü0. Let {W ⌫} be a family of augmented Walrasian functions associated with each parameters r⌫
and M

⌫ . Let ⇢⌫ À "
⌫ * argmaxinf W ⌫ , and ⇢< be any cluster point of {⇢⌫}. Then ⇢< À argmaxinf W .

Proof. See (Guo et al., 2016b). ∏

Following Theorem 2, we propose the computational algorithm, as summarized in Algorithm 1, to achieve a sequence of
approximating maxinf-points.
Algorithm 1 Approximating Maxinf-Point Algorithm
Result: ⇢⌫

initialization: ⌫ = 0, "0, M0, r0, gap0, ⇢0, ✏, 0 < c1 < 1, c2 > 1
while gap⌫ g ✏ do

Phase I: solve the minimization problem '⌫+1 À argminW ⌫+1(⇢⌫
, �)

Phase II: solve the maximization problem ⇢⌫+1 À argmaxW ⌫+1(�,'⌫+1)
evaluate: ES

s
(⇢⌫+1), s À S

let: gap⌫+1 = max{ES
s
(⇢⌫+1), s À S}

let: "⌫+1 = c1"
⌫ , M⌫+1 = c2M

⌫ , r⌫+1 = c2r
⌫

let: ⌫ := ⌫ + 1
end

Phase I consists of the minimization of a quadratic objective function over the S-dimensional simplex. This can be solved using
Cplex/Gurobi solver. Phase II is done without considering first-order information and relying on the BOBYQA algorithm (Powell,
2009), which performs a sequentially local quadratic fit of the objective functions, over box constraints, and solves it using a
trust-region method. As r⌫ ûÿ, and M

⌫ ûÿ, and "
⌫ ü0, in virtue of Theorem 2, ⇢⌫ ô ⇢<, a maxinf-point of W .
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Fig. 2. Three Nodes Test Network.

Remarks.
1. The network augmenting procedures proposed in Section 3.2 result in a transportation network with a non-separable link-

cost function (i.e., t
D
and t

R
), and the Jacobian of link-cost function is asymmetric, for which there is no known mathematical

program whose solutions are the equilibrium flow pattern (Sheffi, 1985). But, the traffic equilibrium solutions can be achieved by
the diagonalization method (Sheffi, 1985). We note that since the Jacobian of the link-cost functions is not positive definite when
a1 f a2 and f

D,s
˘ f

R,s
, the convergence of traffic equilibrium is not guaranteed in theory, although the algorithm may still

convergence when this condition is violated (Fisk and Nguyen, 1982). To make our algorithm robust to the non-convergence of
traffic equilibrium, the algorithm (Algorithm 1) we develop here does not require convergence for every iteration.

2. Notice that problem (11) has at least S trivial equilibrium solutions, where only one location s attracts all the drivers≥
rÀR Q

r
. This is because when driver supply approaches 0 and price is finite at one location, rider demand will also approach 0 due

to infinite waiting time, and vice versa. The insight from this is that the ride-sourcing market may need a critical mass of drivers
and riders to sustain. In this paper, we only focus on non-trivial equilibrium.

5. Numerical examples

In this section, we test our models and solution approaches on a three-node system (Fig. 2) and Sioux Falls network (Fig. 7).
We implement our model on Pyomo 5.6.6 (Hart et al., 2017). We solve the problems using IPOPT 3.12.13 (Wächter, 2009) for the
‘‘ignoring waiting time’’ case, and Cplex 12.8 & BOBYQA (in NLopt 2.4.2) for the ‘‘considering waiting time ’’ case, both with 0.1%
optimality gap. All the numerical experiments presented in this section were run on a 3.5 GHz Intel Core i5 processor with 8 GB of
RAM memory, under Mac OS X operating system.

5.1. Three-node network

The three-node test instance (Fig. 2) has one driver node (node 1) and two demand nodes (nodes 2 and 3). 50 drivers decide
where to pick up riders at node 1. �0 = 0, �1 = 1, �2 = 0.6. The link travel time has a form of t

a
= t

0
a
[1 + 0.15 < (v

a
_c

a
)2], where t

0
a
is

the free flow travel time and c
a
is the link capacity parameter. The value of t0

a
and c

a
for each link are shown in Fig. 2. Notice that

this test instance is symmetric except that links between nodes 1 and 3 have lower capacity than other links.

5.1.1. Ignoring waiting time
We assume both node 2 and 3 have a demand function of d

s
= 300*5⇢

s
. Solving this problem using our single-level reformulation

(15), we have ⇢2 = 53.5, ⇢3 = 56.5. Notice that with these locational prices, the demand market at both nodes 2 and 3 are balanced.
The difference between ⇢2 and ⇢3 is because of the link congestion between nodes 1 and 3. In other words, node 3 is more congested
to travel to due to limited link capacity. This is because, in order to attract more drivers to pick up riders at node 3, TNC needs to
offer a higher locational price. If TNC does not consider transportation congestion, the optimal locational prices are ⇢

®
2 = ⇢

®
3 = 55.0,

which will lead to an unbalance of supply and demand on both demand nodes in reality. These optimal solutions are validated by
applying global solver SCIP (Achterberg, 2009) directly on mixed-integer nonlinear programming (MINLP) reformulation of bi-level
problem (5). Reformulating bi-level problem into MINLP is standard, so we omit the detailed procedures for conciseness. For the
three-node example, our reformulation (15) can be solved by IPOPT in 0.1 s, while MINLP formulation takes SCIP 5.6 s to solve.
Although both SCIP and IPOPT solve the problem for global optimal, MINLP formulation is sensitive to the selection of big-M
parameters, which is a challenging issue for mixed integer programming with switching constraints (Guo et al., 2016a).

Because TNC aims to balance supply and demand, transportation congestion can be worse under spatial pricing. We compare
two scenarios: surge pricing and uniform pricing. If we change from uniform pricing to surge pricing, the total travel time increases
slightly from 1333 to 1336. The increase in total travel time is because TNC gives incentives (surge pricing) to drivers traveling
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Fig. 3. Impact of Ride-sourcing Service on Traffic Congestion.

through congested areas in order to balance demand. This result matches the empirical findings in (Nie, 2017) that ride-sourcing
may increase transportation congestion compared to taxi services. We also investigated the sensitivity of different ride-sourcing
penetration levels on the total system travel time, as shown in Fig. 3. We can see that when the number of driver supply is at a low
level compared to total travel demand, the impact of increasing ride-sourcing market share on total travel time is less significant.
However, with the increasing driver supply, the system’s total travel time increases non-linearly. The main reason is the additional
relocation and pick-up VMT added to the transportation system in addition to the original traveler VMT. Regulations may be needed
to prevent pricing selfishly by TNCs to improve overall transportation mobility, especially in congested areas.

Next, we compare the impacts of TNC’s objectives between maximizing profits and minimizing imbalance. The problem of
maximizing profits is shown in (19).

maximize
⇢ÀRS

…
sÀS

⇢
s
n
s

(19a)

subject to

n
s
= min(

…
rÀR

q
rs
,D

s * b
s
⇢
s
), ≈s (19b)

(4) (19c)

where:

n
s
: : ride-sourcing matches at s.
(19a) maximizes total revenues. Since the majority of TNC operating costs go to marketing, administrative, and R&D,7 which do

not depend on the pricing decision variables. Therefore, the optimal pricing maximizes total revenues will also maximize total profits
in the service territory. But we note that operating costs can be easily incorporated in (19a) if operating costs data is available. (19b)
calculates the matches at each location s. For problem (19), we are not able to directly make the single-level reformulation as in (15).
So we solve the bilevel problem (19) as MINLP using SCIP solver. The numerical results are shown in Figs. 4(a) and 4(b), in which
we conduct sensitivity analyses of the total number of drivers Q

r
and interception of demand function D

s
on equilibrium prices

with different TNC objectives. When TNC aims to minimize imbalance for each location, the optimal prices are almost linearly
decreasing (increasing) with increasing supply (demand) for this toy test instance. The trend of optimal prices is slightly more
complex when TNC aims to maximize profits. When supply is relatively high or demand is relatively low, TNC’s profits are not
restricted by drivers’ availability, so TNC will set prices converging to monopoly prices, which are Ds_2bs,≈s. This means that when
a TNC aims to maximize profits, the supply and demand may not necessarily be balanced at each location. This finding is consistent
with the results in (Bimpikis et al., 2019) where endogenously determined spatial prices aiming to maximize profits may not always
balance supply and demand. Notice that when demand is comparable to supply, prices minimizing imbalance of ride requests are
identical with prices maximizing TNC profits, which indicates that maximizing balance of supply and demand leads to maximum
profits for TNC.

5.1.2. Considering waiting time
When waiting time cannot be ignored for both drivers’ and riders’ decision making, we can solve problem (11) using Algorithm

1. We assume D
s
= 300, ≈s. The riders’ utility coefficients �®0 = 0, �®1 = 1, �®2 = 0.6.

With different initial locational prices, the convergence pattern of prices and ES are shown in Fig. 5. The average computation
time is 27.8s, and all of the experiments converged efficiently to the same equilibrium solutions, ⇢<2 = 37.4, ⇢<3 = 38.0, f <

D,2 = f
<
R,2 =

33.1, f <
D,3 = f

<
R,3 = 16.9. Notice that TNC offers a slightly higher price at location 3, which is more congested to travel to. This

observation is consistent with the observation in the ‘‘ignoring waiting time’’ case.

7 https://news.crunchbase.com/news/understanding-uber-loses-money/.

https://news.crunchbase.com/news/understanding-uber-loses-money/
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Fig. 4. Impacts of Supply and Demand on Optimal Surge Pricing.

Fig. 5. Convergence Patterns with Different Starting Points ⇢0.
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Fig. 6. Equilibrium Solutions For Ignoring and Considering Waiting Time Cases.

We compare the equilibrium solutions between the ignoring and considering waiting time cases, with the results of equilibrium
spatial pricing, driver supply, and rider demand shown in Fig. 6. We can see that, compared to equilibrium prices, driver and rider
flows are less sensitive to whether the waiting time is considered or not. The reason is that different locations have similar waiting
times when supply and demand are balanced. For drivers, their relocation choices only depend on the utility difference between
locations, which will not change if a similar waiting time is ignored. Therefore, driver supply remains unchanged (see Fig. 6(a)).
Given the similar amount of driver supply, TNC will need to raise up locational prices (see Fig. 6(c)) to compensate for the ignored
waiting time, so that rider demand still balances driver supply (see Fig. 6(b)).

5.2. Sioux Falls network

We implement our model using a medium-size test system, Sioux Falls network,8 as shown in Fig. 7. In Fig. 7, the red and blue
nodes (12 of each) represent the original locations of drivers and riders, respectively. Drivers supply at each red node is 50, while
the demand function at each blue node is d

s
= 300* 5⇢

s
. We adopt a 4th-order Bureau of Public Roads (BPR) function for link cost:

t
a
= t

0
a
[1 + 0.15 < (v

a
_c

a
)4]. Coefficients of utility function for base case (1) are �0 = 0, �1 = 1, �2 = 0.6.

5.2.1. Ignoring waiting time
The optimal locational pricing decisions and total equilibrium travel time are shown in Fig. 8. With price sensitivity coefficient

�2 increase from 0.1 to 10, the price variances decrease (see Fig. 8(a)). This is because when drivers are more sensitive to prices,
TNC needs a smaller price difference to attract drivers to the desired locations. At the same time, drivers are more willing to travel
long distances to reach a location with higher prices. This will lead to higher system total travel time, as shown in Fig. 8(b).

SCIP is not able to solve the MINLP reformulation of problem (5) for Sioux Falls network, while IPOPT can efficiently solve (15)
in 11.3, 6.1, and 4.9 s for b2 = 0.1, 1, and 10, respectively.

5.2.2. Considering waiting time
Considering the waiting time, the problem can be solved by Algorithm 1 in 6.4 h, which is significantly longer than the

computation time for the ‘‘ignoring waiting time’’ case. This is because of the lack of convexity for problem (11). But the algorithm
converges reliably in 12 iterations, with convergence patterns of ES and ⇢ shown in Fig. 9.

Comparing the impact of spatial pricing on transportation congestion, the total travel cost is 3805.5 when spatial pricing is
adopted, which is higher than a total travel cost of 3770.4 when TNC adopts uniform pricing. This observation is again consistent
with the results in the ‘‘ignoring waiting time’’ case.

6. Discussion

In this paper, we have presented a new modeling framework and effective computational techniques for ride-sourcing spatial
pricing problems, considering the leader–follower structure of TNCs, riders, and drivers in the peak traffic period. In the lower level,
interactions between drivers’ relocation, riders’ mode choice, all travelers’ routing behaviors, and network congestion are explicitly
modeled. In the upper level, a single TNC provider optimally determines spatial prices to achieve its own objectives. When waiting

8 Sioux Falls network consists of 24 nodes and 76 directed links. The number on each node/link in Fig. 7 is the node/link index.
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Fig. 7. Sioux Falls Test Network.

Fig. 8. Impacts of Supply and Demand on Optimal Surge Pricing.

time can be ignored, we show that the problem is equivalent to a convex optimization problem, which can be efficiently solved
to global optimal by commercial nonlinear solvers. The existence and uniqueness of optimal solutions are proved. When waiting
time cannot be ignored, we show that the lower-level drivers’ and riders’ two-sided interactions can be reformulated in a unified
CDA framework with a non-separable link-cost function through network augmentation. The problem can be solved reliably by a
lopsided convergence algorithm.

In addition to showing the effectiveness of our solution approaches, we demonstrated that (1) transportation congestion affects
spatial pricing strategies, and spatial pricing strategies may aggravate transportation congestion compared to uniform pricing; (2)
spatial pricing strategies that minimize supply–demand imbalance also maximize TNC profits when maximum demand and supply
are comparable; (3) drivers’ sensitivity to surge multipliers will significantly impact spatial prices and transportation congestion;
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Fig. 9. Convergence of ES and ⇢ Considering Waiting Time.

and (4) the impacts of waiting time may be small on the distribution of drivers and riders but may be large on the scale of spatial
pricing.

This research can be extended in several directions. From a methodological viewpoint, our model mainly focuses on spatial
aspects. Coupling temporal and spatial dimensions are critical to fully understand the impacts of dynamic pricing on transportation
systems. A spatial–temporal model will be needed to fully capture other important characteristics of the ride-sourcing system, such as
(1) partitioning of driver-hours (driving time with riders, repositioning time, idle waiting time, and pick-up time) ; (2) network effects
of riders destination and travel time on the spatial and temporal distribution of available drivers. In addition, several assumptions in
this study can be relaxed. For example, the assumption on single TNC and inelastic total driver supply could be relaxed to generalize
our findings. Our augmented network approach may be further extended to consider multiple TNCs by duplicating the ‘‘market’’
nodes in Fig. 1 to represent different service providers. However, single-level convex reformulation and equilibrium uniqueness
may not be guaranteed. After gaining a clear understanding of the impacts of spatial pricing on transportation systems, strategies to
mitigate the negative impacts from regulators’ perspectives are urgently needed. Extending our model to a stochastic environment
is another immediate next step considering the high level of uncertainties involved in the ride-sourcing market, such as congestion,
rider demand, and driver supply. Although our model can be efficiently solved for small and medium transportation networks,
algorithm development is needed for extremely large cases. Classic traffic assignment algorithm could be leveraged to solve the
lower-level problem more efficiently. Solving a stochastic version of our model might also present further numerical challenges, for
which decomposition methods (such as scenario decomposition and Benders decomposition) developed for stochastic programs may
be integrated with the reformulation techniques in this study.
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Appendix A. Proofs.

Proof (Lemma 1). The proof of Lemma 1 is outlined as follows. Since (4a) is strictly convex (assuming t
a
(�) is a strictly monotone

increasing function) and constraints of model (4) are linear, Karush–Kuhn–Tucker (KKT) conditions are the sufficient and necessary
optimality conditions, as shown in (A.1a)–(4b) and (A.1c) &–(4e), where a

i
and a

j
are starting and ending nodes of link a.

0 f q
rs
⌅ 1

�1
(ln q

rs
* �2⇢s * �0,s) + ( Ç�r

rs
* Ç�

s

rs
) * �

r
g 0 (A.1a)

0 f Çv
a

rs
⌅ t

a
(v

a
) * Ç�

ai
rs + Ç�

aj

rs g 0 (A.1b)

0 f äv
a

rs
⌅ t

a
(v

a
) * ä�

ai

sk
+ ä�

aj

sk
g 0 (A.1c)
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(4b) * (4e)

We need to show that the KKT conditions (A.1) are equivalent to (i) the Wardrop equilibrium conditions (i.e., travel time in all
routes actually used are equal and less than those that would be experienced by a single vehicle on any unused route) and (ii) logit
model solutions. We outline the proofs of (i) and (ii) as follows.

Proof of (i): On one hand, for any path p connecting r and s with positive flow (i.e. x
p
> 0), ≈a À p, Çva

rs
> 0. Because of (A.1b),

t
a
(v

a
) = Ç�

ai
rs * Ç�

aj

rs . Path travel time
≥

aÀp ta(va) = Ç�
r

rs
* Ç�

s

rs
. On the other hand, for any path p

® connecting r and s with zero flow
(i.e. x

p® = 0), ≥
aÀp ta(va) g Ç�

r

rs
* Ç�

s

rs
. Similarly, we can show the Wardrop equilibrium conditions for OD pairs s and k using (A.1c).

Therefore, the traffic flows achieved by optimization problem (4) satisfy the Wardrop equilibrium conditions.
Proof of (ii): based on (A.1a), note that q

rs
> 0, 1

�1
(ln q

rs
*�2⇢s*�0,s)+( Ç�r

rs
* Ç�

s

rs
)*�

r
= 0, which means q

rs
= e

�0,s*�1( Ç�rrs* Ç�
s

rs
)+�2⇢s+�r =

e
Urs+�r . Because of (4e), Q

r
= ≥

sÀS q
rs
= e

�r
≥

sÀS e
Urs . So e

�r = 1≥
sÀS e

Urs
Q

r
. We have q

rs
= e

Urs≥
sÀS e

Urs
Q

r
, which follows the Logit model

results. ∏

Proof (Lemma 2). Denote the optimized drivers distribution of model (4) as q<
rs
. Because of constraint (4e), the total driver supply

is:
…
rÀR

…
sÀS

q
<
rs
=

…
rÀR

Q
r
Å ÑQ,

which is a constant.
Because of constraint (5b), m

s
f ≥

rÀR q
<
rs
. Therefore,

≥
sÀS m

s
f ≥

sÀS ≥
rÀR q

<
rs

= ÑQ. Denote the optimal value of m
s
as m<

s
, we

have:
…
sÀS

m
<
s
f ÑQ (A.2)

On the other hand,
…
sÀS

m
<
s
g 0 (A.3)

The equality in (A.3) holds if and only if
…
rÀR

q
<
rs
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* b

s
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s
,≈s À S (A.4)

In other words, we just need to show that «⇢ À RS , s.t. (A.4) holds.
Define excess supply ES

s(⇢) = ≥
rÀR q

<
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monotone decreasing function. To show that, we take first order derivative of h
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s
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Therefore, we have proved function h(�) is a mapping from H to H . In addition, because h(�) is monotone and continuous; and H

is a convex compact subset of Euclidean space, based on Brouwer’s fixed-point theorem, there exists ⇢< À H , such that ⇢< = h(⇢<).
Therefore, for any s, «⇢<

s
such that ⇢<

s
= ⇢

<
s
* ESs(⇢<)

bs
, which leads to ES

s
(⇢<) = 0,≈s.

To show the uniqueness of ⇢<, assuming that there exist ⇢<< such that ES
s
(⇢<<) = 0,≈s. Therefore, h(⇢<<) = ⇢<<, i.e., ⇢<< is another

fixed point of ⇢® = h(⇢). Without lost of generality, assuming ⇢<<
s

> ⇢
<
s
. Since h

s
(�) is monotone decreasing, ⇢<<

s
= h

s
(⇢<<

s
) f h

s
(⇢<

s
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s
,

which is a contraction with the assumption that ⇢<<
s

> ⇢
<
s
. ∏

Proof (Theorem 1). Because problem (15), (4) and (13) are convex optimization, with convex and continuously differentiable
objective function, closed and convex constraint sets, the optimal solutions to (15), (4) and (13) are equivalent to the solutions to
certain variational inequalities (Nagurney and Siokos, 1997).

Denote the following items for notation conciseness.

• X : constraint set (4b)–(4e);
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• {x, q}: decision variables of model (4), where x include all the decision variables except q;
• f (x, q): objective function of model (4) excluding ≥

rÀR ≥
sÀS q

rs
⇢
s
. That is f (x, q) = �1

�2

≥
aÀA î va

0 t
a
(v

a
)du + 1

�2

≥
rÀR ≥

sÀS q
rs�

ln q
rs
* 1 * �0,s

�
;

• {d}: decision variables of model (13);
• g(d): objective function of model (13) excluding ≥

sÀS ⇢
s
d
s
. That is g(d) = ≥

sÀS 1_b
s
[*D

s
d
s
+ 1

2 (ds)
2];

Following these notation, model (15) can be denoted as:

min
x,q,dg0 f (x, q) + g(d), s.t.{x, q} À X ,

…
rÀR

q
rs
= d

s
, ≈s

The equivalent variational inequalities for model (4), (13), (14) are shown in (A.5), (A.6), and (A.7), respectively.

(xf (x<, q<)(x * x<) + (qf (x<, q<)(q * q<) *
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r,s
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<
s
(q

rs
* q

<
rs
) g 0, ≈x, q À X , x, q g 0 (A.5)
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) g 0, ≈d g 0 (A.6)

(
…
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rs
* d

<
s
)(⇢ * ⇢<) g 0, ≈⇢ (A.7)

On the other hand, model (15) can be solved by relaxing constraint (15b), whose KKT conditions are equivalent to VI (A.8).

(xf (x<, q<)(x * x<) + (qf (x<, q<)(q * q<) + (dg(d<)(d * d<)
*
…
r,s
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…
rÀR

q
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* d
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≈x, q À X , x, q,d g 0 (A.8)

Next, we just need to show that combining (A.5), (A.6), (A.7) is equivalent to (A.8). To show that, we will explain for any
solutions satisfy (A.5), (A.6), (A.7), they also satisfy (A.8), and vice versa.

For solutions (x<, q<,d<
,⇢<) satisfying (A.5), (A.6), (A.7), they also satisfy (A.8) by combining VI (A.5), (A.6), (A.7). On the

other hand, for (x<, q<,d<
,⇢<) satisfying (A.8), by selecting d = d<

,⇢ = ⇢<, (A.8) becomes (A.5). Similarly, (A.6) and (A.7) are also
satisfied.

Note that we do not derive VIs for the bilevel problem (5) when we prove Theorem 1. The reason why bilevel formulation
(5) is equivalent to solving (4), (13), and (14) simultaneously is because of Lemma 2. In Lemma 2, we showed that the optimal
pricing solutions to bilevel problem (5) are equivalent to market clearing prices for a single-level multi-agent optimization problem
with (market) equilibrium constraints (MOPEC). The MOPEC problem considered here has two dummy decision makers: ‘‘drivers’’
(collectively) solve model (4), ‘‘riders’’ (collectively) solve model (13). And market is cleared by (14). In this MOPEC problem, all
the decision makers are at the same level, i.e., there is no lower level decision makers but just equality market clearing constraints,
so that each of model (4), (13), (14) can be written as VIs and be solved simultaneously. ∏

Proof (Lemma 3). On one hand, if ⇢< is a maxinf-point of the Walrasian with W (⇢<, �) g 0, it follows that for all unit vectors
e
s = (0,… , 1,…), the sth entry is 1, W (⇢<, es) g 0 which implies ES

s
(⇢<) = 0. On the other hand, if ⇢< is an equilibrium prices,

i.e. ES
s
(⇢<) = 0, it follows that W (⇢<, �) = 0. Because W (⇢, �) f 0 for any ⇢, ⇢< is a maxinf point of the Walrasian. ∏

Appendix B. Relationship between waiting time and driver/rider flow

Eq. (7) can be better explained graphically in Fig. B.10. Line 1 and 2 indicates the accumulative drivers (slope f1) and riders
(slope f2) arrival curves, respectively. Line 3 represents the accumulative matching (with slope m calculated from Cobb–Douglas
matching function). Fig. B.10 illustrates the case when the arrival rate of drivers f1 is higher than riders f2. We use waiting time for
drivers t1 as an example. The calculation process for waiting time of riders t2 are similar. The area of the shaded region indicates
the total delay of drivers T1 till time period T , which can be numerically calculated based on Eq. (7b). Then, the average delay per
driver (t1) can be calculated based on Eq. (7c). By varying f1 and f2, we are able to generate a corresponding t1 numerically, which
will be used for estimating parameters in (8).

Following this data generation procedures outlined above, we randomly sample 10,000 pairs of f1 and f2 uniformly between
[0, 100] with a maximum difference of 10 and calculate t1 and t2. To use linear regression techniques, we take ln of both sides
in Eq. (8) and estimate coefficients ln a0, a1, and a2 in ln t

i
Ì ln a0 + a1 ln fi + a2 ln f*i. A sample of data input for regression is

summarized in Table B.1. The linear regression output is summarized in Table B.2.

Appendix C. Extensions
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Fig. B.10. Graphical Representation of Waiting Time.

Table B.1
Sample regression input.

Table B.2
Regression summary output of (8).

C.1. Extension of linear demand function

We note that the linear demand function (2) in Section 3.1 is used to keep a clear focus of this paper and it does not restrict
the applicability of our modeling and computational approach for more sophisticated demand models. For example, one can adopt
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Fig. C.11. Convergence of Available Drivers Distribution.

nonlinear demand models, such as a logit model, to describe the ride-sourcing demand as a non-linear (decreasing) function of
prices. We can choose a utility function of choosing ride-sourcing (with driving as the base option) as given in Eq. (C.1).

U
s
= �

®
0,s * �

®
2⇢s (C.1)

where �
®
0,s and �

®
2 are the utility coefficients for ride-sourcing attractiveness and ride-sourcing prices at location s. The logistic

demand model given utility function (C.1) can be derived in a closed-form expression as Eq. (C.2).

d
s
= e

Us

1 + eUs

D
s

(C.2)

We can see that the overall modeling strategy for rider demand is the same for both the linear and nonlinear demand cases,
i.e. Eqs. (2) and (C.2). We assume a total of D

s
travelers choosing between ride-sourcing and driving. Prices are one of the key

components influencing travelers’ mode choices in both cases. Following these two models, within a total of travelers D
s
, we can

determine how many travelers choose ride-sourcing (denoted as d
s
) and driving (denoted as D

s
* d

s
).

When rider utility of choosing ride-sourcing over driving is modeled using a logistic model and matching time can be ignored,
i.e., model (C.1), the ride-sourcing demand at each location s, i.e., Eq. (C.2), can be obtained by solving a strictly convex optimization
model (C.3), ≈s.
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Following similar computational strategies as linear demand case (Section 4.1), when equilibrium prices ⇢ exist, model (5)
(replacing linear demand function (2) with logistic model (C.2)) can be reformulated as model (C.4), which is a convex optimization
problem.
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subject to

(4b) Ì (4e)

(⇢
s
)

…
rÀR

q
rs
= d

s
, ≈s (C.4b)

C.2. Extension of network effects of available drivers

In model (4), we treat spatial availability of drivers Q
r
as exogenous variables. Exogenous vehicle fleet size assumption has

also been made in (Zhou et al., 2021) to study ride-sourcing platform-integration. But the proposed model can also consider the
network effects of the rider’s destination on the spatial distribution of available drivers, i.e., if a driver takes a rider from s to r,
then thereafter the driver will be at r.

Q
r
not only depends on how many riders arrive at location r (denoted as d

r
), but also depends on the rate of drivers start/end

their service during the studied period (denoted as Q
0
r
À R). The flow rate of drivers available at location r can be calculated
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in Eq. (C.5).

Q
r
= d

r
+Q

0
r

(C.5)

Denote the proportion of riders going from s to r as �
sr
(
≥

rÀR �
sr
= 1). d

r
can be calculated in Eq. (C.6).

d
r
=

…
sÀS

�
sr
d
s

(C.6)

There are two approaches to consider the network effects within our modeling framework.
The first approach is an iterative approach. Because the formulation (4) and convex reformulation (15) are valid for any Q

r
.

We can recalculate Q
r
iteratively by replacing d

r
with the values from the last iteration. The equilibrium Q

r
achieved in this way

has incorporated the spatial distribution of riders’ drop-off locations. The convergence of Q
r
is shown in Fig. C.11 for Sioux Falls

network example. We can see that within three iterations, the available drivers flow rate Q
r
is stabilized for every location.

The second approach, we can add constraint (C.5) as a global constraint. Since we have proved Lemma 2 for any given Q
r
À R+,

adding constraint (C.5) does not affect the existence and uniqueness of equilibrium prices and the convex reformulation thereafter.
In addition, solving model (15) with additional global constraint (C.5) has minimum impact on the computational complexity since
model (15) remains a convex optimization. After we solve for Q

r
that satisfies condition (C.5), we can solve (15) separately with the

equilibrium Q
r
as input to get the corresponding dual variables ⇢

s
. The solution of Q

r
following the second approach, i.e. adding

global constraint of (C.5), is identical with the results from the first approach presented in Fig. C.11.
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