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ABSTRACT
Densely deployed base stations/access points (APs) are becoming in-
creasingly common in mmWave networks with the need to provide
high capacity and reliability to clients. However, frequent beam-
forming between clients and APs incurs an unacceptable overhead
in densely deployed mmWave WLANs with many APs. This paper
presents a novel approach of “networked beamforming” where only
a small subset of APs are selected for beamforming in each beacon
interval in mmWave WLANs. By building a prediction model based
on the concept of uncertainty, our networked beamforming scheme
predicts the APs whose beamforming information is likely outdated
and needs updating. The proposed approach complements the exist-
ing per-link beamforming solutions and extends their effectiveness
from link-level to network-level. With experimentation, we show
that our scheme can significantly reduce beamforming overhead
and improve network capacity for dense mmWave WLANs.

CCS CONCEPTS
• Networks → Network experimentation; Wireless local area
networks; • Hardware → Beamforming.
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1 INTRODUCTION
60GHzmillimeter-wave (mmWave)WLANs using IEEE 802.11ad/ay
[7, 8] standards can provide multi-gigabit per second data rates to
support bandwidth-intensive applications such as multi-user vol-
umetric video streaming, AR/VR, robotic manufacturing, etc. In
mmWave WLANs, dense deployment of APs is becoming increas-
ingly common for capacity scaling and coverage [9, 24, 26]. Such
dense deployment of APs can increase the robustness of mmWave
WLANs where fast AP hand-offs can be used to protect against link
blockages and high attenuation [13, 18, 21]. The dense deployments
can also greatly benefit dynamic AP-user associations to combat
interference [9, 11, 21, 26, 27]. In the case of 802.11ay WLANs,
densely deployed APs combined with MIMO, multi-patch antenna
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arrays, and flexible channelization can truly realize the spatial and
frequency diversity gains [3, 7]. However, dense deployment of
APs and clients in mmWave WLANs poses a critical challenge
where the beamforming between a large number of clients and
APs incurs a formidable overhead. For example, it takes approxi-
mately 5ms to train the downlink Tx and Rx sectors of one AP to
its clients in mmWave WLANs. With 10 APs, the overhead could
be approximately 50ms which would consume half of the 100ms
beacon interval (BI) time just for the beamforming.

We try to address the following question in this work: How
can we reduce the beamforming overhead when there are a large
number of densely deployed APs in a mmWave WLAN? Existing
solutions proposed in the literature primarily focus on reducing
the beamforming overhead on a per-link basis. These link-level
solutions [4–6, 10, 15, 17–19] try and reduce the overhead by intelli-
gently searching fewer Tx and Rx sectors for a single AP. However,
the beamforming overhead of the network still increases with the
number of APs. Another type of solution leverages the quasi-optical
properties of mmWave channels. Here, a client’s location and ori-
entation are estimated based on channel state information (CSI)
[13] or motion sensors [21]. Then the beam sectors calculated from
one AP can be used to derive the beam of remaining APs to the
client without actual beamforming using techniques like triangula-
tion [18]. These location-based methods incur additional overhead
to frequently localize mobile clients. Furthermore, the reliance on
quasi-optical properties makes the location-based methods less
suitable for deriving NLoS reflected paths without also extensively
localizing the ambient reflectors [22, 25].

In this paper, we present NetBF, a networked beamforming sys-
tem that addresses the problem of high beamforming overhead in
dense mmWave WLANs. Our key idea is that if we can identify
only a small subset of APs whose beamforming information has
changed to perform beamforming, we can reduce the beamforming
overhead at the network level while ensuring the beamforming in-
formation is up-to-date. However, the real challenge is how to predict
when an AP’s beamforming information to its clients has changed
without actually performing beamforming from that AP.

To motivate our design, we first capture and investigate detailed
beamforming (BF) information in a mmWave WLAN to find that:
(i) not all APs need to do BF in each BI, and (ii) the SNR change
of different APs have different levels of correlations among each
other. Based on these observations, we design a scheme to identify
the necessary subset of APs to do BF. We introduce a concept of
uncertainty which is the probability that an AP’s SNR to its clients
has changed significantly since its last BF. We then develop a pre-
diction model where APs which performed BF recently can predict
the uncertainty of other APs based on the observed correlations
between APs. So, in each BI, only a subset of APs that have high
uncertainty is selected for BF.
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Figure 1: 802.11ay enhanced beacon frame & beamforming.

To the best of our knowledge, our solution is the first to reduce
the BF overhead from a network-level perspective. A salient ad-
vantage of the proposed networked BF is that it is conceptually
orthogonal to the link-level BF schemes that are widely studied and
can be used in conjunction with them to further reduce the BF
overhead. Furthermore, our scheme is location-agnostic and can be
readily integrated into the off-the-shelf mmWave WLAN devices
without MAC or PHY protocol modifications. We summarize the
key contributions of NetBF as follow:

(1) We present a networked beamforming scheme (called NetBF)
that can reduce the BF overhead in dense mmWave WLANs by
judiciously selecting a subset of APs to do BF. We define “uncer-
tainty” to quantify the BF information change of mmWave APs.
We also propose a prediction model that uses a small amount of
war-walking data to predict the AP uncertainty based on other AP’s
BF observations. Finally, the model is used to select a subset of APs
with high uncertainty to perform BF.

(2) We use commodity 802.11ad devices enhanced with our re-
ceive beamforming implementation to evaluate the uncertainty
prediction model and the effectiveness of networked BF. Our eval-
uation results show that: (i) The proposed prediction model can
effectively capture the uncertainty and SNR change of APs, and
it is robust to small environmental changes. (ii) NetBF improves
the network throughput by effectively reducing the beamforming
overhead within our 802.11ad testbed.

2 MOTIVATION AND OUR APPROACH
2.1 BF overhead in dense mmWave WLANs
In 802.11ay mmWave WLAN, a beacon interval (BI) (Fig. 1a) in-
cludes beacon header interval (BHI) where EDMG (Enhanced Di-
rectional Multi-Gigabit) APs transmit beacons and control frames
to train the downlink sectors, and data transmission interval (DTI)
where APs and STAs exchange data frames. To train both down-
link Tx and Rx sectors, the standard [7] proposes to use enhanced
beacon frames where each of the beacon frames has training fields
(TRN-R) appended to it (Fig. 1b). An STA receives the original part
of the beacon frame using the quasi-omni sector for Tx beam train-
ing, then sweeps through all its receive sectors when receiving the
appended TRN-R frames for Rx sector training.

With the enhanced beacon frames, the time taken to complete
the downlink BF for one AP is𝑇𝐴𝑃 = |𝑆𝑇 | (𝑡𝑏𝑒𝑎𝑐𝑜𝑛 + |𝑆𝑅 | (𝑡𝑇𝑅𝑁−𝑅) +
𝑡𝐵𝐼𝐹𝑆 ), where |𝑆𝑇 | and |𝑆𝑅 | are the number of beam sectors on
AP and client, respectively, 𝑡𝑏𝑒𝑎𝑐𝑜𝑛 is the time to transmit one
beacon frame (without the following TRN-R), 𝑡𝑇𝑅𝑁−𝑅 is the time
to transmit one TRN-R training sequence, and 𝑡𝐵𝐼𝐹𝑆 is the inter
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Figure 2: Measurement setup in a university atrium (AT)
frame spacing between the consecutive beacon frames. Based on
the specifications [7, 8], 𝑡𝑏𝑒𝑎𝑐𝑜𝑛 = 14.5𝜇𝑠 per sector (with beacon
frame size of 50 bytes and transmission rate (MCS0) of 27.5 Mbps),
𝑡𝑇𝑅𝑁−𝑅 = 2.2𝜇𝑠/8.7𝜇𝑠 with 64/256 length Golay sequence for one
TRN unit and 𝑡𝐵𝐼𝐹𝑆 varies from 1𝜇𝑠 to 18𝜇𝑠 . As an example, the
beamforming overhead with 64 Tx sectors and 16 Rx sectors could
be between 3.2𝑚𝑠 to 9.9𝑚𝑠 for one AP. Furthermore, the overhead
linearly increases with the number of APs. In a dense network of 10
APs, 32𝑚𝑠 to 99𝑚𝑠 could bewasted in beamforming out of the 100𝑚𝑠
of beacon interval, significantly reducing the useful time for data
communication. Even though the current link-level beamforming
schemes can reduce the per-link overhead, the total overhead still
increases with the number of APs.

2.2 Observations in Multi-AP BF
Wefirst conduct ameasurement study to understand the BF patterns
among different APs in a mmWave WLAN. The observations then
form the basis of our networked BF scheme.

We consider a densely deployed WLAN with many APs and a
client moving around on different routes as shown in Fig. 2. We
measure the BF information including the Tx sector index and their
corresponding SNR for different APs for different routes. These
routes are selected based on typical moving patterns of users. For
instance, in Route 1, the client enters the room, goes to a desk at
the corner, and goes back to the door while route 2 represents a
typical route taken by the client when she leaves the building. In
our experiments, the APs[2] and clients [1] both are equipped with
802.11ad radios. We modified the 802.11ad driver [23] to implement
the Rx beamforming and to extract the BF information to user space.

In Fig. 3, we show the downlink APs’ highest SNR Tx sector
index (selected by the AP) and their corresponding SNR change
for each subsequent step as the client moves on Routes 1 and 2.
Here, each step is approximately 1 m. We make two important
observations that motivate our system design:

(1) Not all APs Tx sector changes frequently, so not all APs need
to perform BF frequently. As shown in Figs. 3a and 3c, when the
client moves towards the AP 5 on Route 1 (first 9 steps) and towards
AP 0 in Route 2 (first 10 steps), their best Tx sector does not change
until the client turns around. This, albeit, is not true for all APs
due to their relative position and user mobility. This longer beam
coherence for some APs means that not all APs need to perform
BF in every beacon interval. They can be triggered to do BF only
when their BF information is expected to be changed significantly.
However, our first question is how to predict when an AP’s BF
information has changed significantly to a client without actually
performing BF.
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Figure 3: (a-d) Sector change and SNR change for selected route 1&2. We found that 1) Not all APs need to do BF in every BI due
to beam coherence. 2) SNR change of different APs have correlations which are used in our prediction model. (e) Correlation of
SNR change between APs by accumulating all instances.

(2) APs can be correlated in terms of the change in their BF
information. In Figs. 3, we also plot the (absolute) SNR change of
every subsequent measurement step and observe similar patterns
of SNR change between different APs when the client moves at
various locations or makes particular movements. For instance, the
SNR of AP 5 (Fig. 3a) and AP 6 (Fig. 3b) changed by more than 4 dB
in Route 1 at step 11 when the client turns around. Similarly, the
SNR of AP 0 (Fig. 3c) and AP 3 (Fig. 3d) also changed together in
Route 2 at step 18. These similar patterns of SNR change show that
the APs can have correlations in terms of their BF information to
clients.

Fig.3e shows the correlation matrix of SNR change between APs
by accumulating all instances among 12 different routes. When two
APs’ SNR change pattern has high similarities with each other, they
have a high correlation value. We note the following points about
the correlations between different APs’ BF information change:
(1) It depends on various factors, including the location and orien-
tation of APs, the underlying layout of the room with blockages
and reflections, and the mobility of clients. (2) Pairwise correlation
is asymmetric. To further verify, we conduct channel simulations
with Remcom [16] for different types of indoor environments and
observe that the correlations between APs widely exist for envi-
ronments with varying levels of blockages and reflections due to
channel correlation [18–21] in mmWave band. The correlation is
a coarse representation of if two APs’ BF information for a client
changes similarly or not. However, we need a fine-grained model that
can predict the significant BF information change for one AP given
the BF information change for another AP for various instances of
client location and mobility.

In this paper, our proposed NetBF scheme reduces the BF over-
head by judiciously selecting a small subset of APs based on how
important it is for those APs to perform the BF. This importance
is formally modeled as “uncertainty” which is the probability that
an AP’s BF information (SNR of different sectors) to its clients has
changed significantly since its last BF. We mine a small amount
of collected war-walking data for different APs’ BF information
change to build a prediction model. Our prediction model can pre-
dict the uncertainty of the APs that have not done the BF by using
a small number of APs that have done BF recently. In addition,
our model is location agnostic and does not require the location of
APs, clients, reflectors, or blockages. Lastly, only a subset of APs
with high uncertainty is selected to perform BF to reduce the BF
overhead.
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Figure 4: (a) AP selection overview (b) Example showing un-
certainty and AP selection.

3 NETBF DESIGN
3.1 AP Uncertainty
Intuitively, the uncertainty of an AP’s BF information can be re-
garded as the probability that its last known BF information (SNR
of Tx and Rx sectors) to its clients has changed significantly. If an
AP’s uncertainty has increased substantially, it could be a potential
candidate for BF in the next BI. A key challenge here is how we
can predict the uncertainty of an AP. We have observed that APs in
mmWave WLANs exhibit correlation which can enable us to esti-
mate the uncertainty of one AP based on the BF information change
observed by another AP. Fig. 4 (b) demonstrates this concept. Here,
𝐴𝑃𝑎 performed BF in BI 𝑡 and 𝑡 − 𝑙 . Similarly, 𝐴𝑃𝑒 performed BF
in BI 𝑡 − 𝑛. Given the change observed by 𝐴𝑃𝑎 at BI 𝑡 compared
to BI 𝑡 − 𝑙 for a client 𝑐𝑘 , the link uncertainty of 𝐴𝑃𝑒 to 𝑐𝑘 is the
probability that its last known BF information from BI 𝑡 − 𝑛 has
changed significantly. The uncertainty of an AP is the cumulative
link uncertainty for all its clients.

3.2 Uncertainty Prediction Model
We first define uncertainty formally and use conditional probability
to capture the correlations. Then we describe how to build the
uncertainty prediction model.

The channel quality observed when an 𝐴𝑃𝑖 ∈ 𝑀 performs BF
with a client 𝑐𝑘 ∈ 𝑁 in a BI 𝑡 can be represented using a |𝑆𝑇 | × |𝑆𝑅 |
matrix 𝐷 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡 where 𝑑𝑘𝑖 ∈ 𝐷 is the observed SNR value, 𝑆𝑇 is
the set of Tx sectors on 𝐴𝑃𝑖 , 𝑆𝑅 is the set of Rx sectors on client
𝑐𝑘 and 𝑠𝑝 ∈ 𝑆𝑇 , 𝑠𝑞 ∈ 𝑆𝑅 . If 𝐴𝑃𝑖 performed BF in BI 𝑡 − 𝑙 and is also
selected for BF in BI 𝑡 , let 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 be the matrix of element-
wise absolute difference between the two matrices 𝐷 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡 and
𝐷 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡−𝑙 , and Δ(𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 = Σ

|𝑆𝑇 |
𝑠𝑝=1Σ

|𝑆𝑅 |
𝑠𝑞=1𝛿 [𝑠𝑝 , 𝑠𝑞] is the to-

tal observed change in SNR between the BF at two BIs. The link
uncertainty between an 𝐴𝑃𝑖 and 𝑐𝑘 at BI 𝑡 is the probability that
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Δ(𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 > 𝜅𝑇𝐻 where 𝜅𝑇𝐻 is a predetermined threshold in-
dicating a significant change. Furthermore, the link uncertainty
between 𝐴𝑃 𝑗 (which did BF at 𝑡 − 𝑛) and 𝑐𝑘 in BI 𝑡 + 1 can be
predicted by 𝐴𝑃𝑖 which performed BF at 𝑡 and 𝑡 − 𝑙 due to the
underlying correlation. Specifically, given an observed change in
SNR 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 for input𝐴𝑃𝑖 , the link uncertainty for output𝐴𝑃 𝑗
and 𝑐𝑘 in the next BI 𝑡 + 1 can be predicted as the probability that
Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )𝑡+1𝑡−𝑛 > 𝜅𝑇𝐻 (conditioned on the observed SNR change
for 𝐴𝑃𝑖 ).
Pairwise prediction model. Our uncertainty prediction model
is a pairwise model where the input AP is the one where channel
change is observed, and the output AP is the one for which the
uncertainty is being predicted. The pairwise models are developed
by the following steps.
(1) Warwalking data collection. First, during an offline data
collection phase, a client walks around in theWLAN area, collecting
SNR values for all Tx and Rx sectors with each AP in its range at
different locations. The warwalking can be performed on more
frequently used indoor routes/areas. This offline step needs to be
completed only once.
(2) Data curation. The collected data is traversed to calcu-
late all observed pairs of input and output APs’ BF information
changes using a sliding time window 𝑊 . We refer to 𝑊 as the
beam relevance window as shown in Fig.4 (b). It is used to spec-
ify the last𝑊 BIs when calculating the BF information change
for APs. BF performed in BIs older than𝑊 are considered out-
dated and are disregarded. For every pair of BF instances for 𝐴𝑃𝑖
(say at BI 𝑡 and 𝑡 − 𝑙) within the last 𝑊 BIs, we calculate the
BF information change 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 . Similarly, for every pair of
BF instances for 𝐴𝑃 𝑗 at 𝐵𝐼 𝑡 and 𝑡 − 𝑛 within the last 𝑊 BIs,
we calculate the total BF information change Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )𝑡𝑡−𝑛 . The
tuples 𝑒 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) = {𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )𝑡𝑡−𝑙 ,Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )

𝑡
𝑡−𝑛} are added to

𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) to create a pairwise set using all warwalking clients
𝑐𝑘 . We normalize the change using the time difference between
BIs. The process is repeated while traversing the entire collected
warwalking data to create pairwise sets 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) consisting of
tuples of 𝑒 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) calculated as above.
(3) Clustering and uncertainty estimation. Our next step is
to cluster the pairwise AP set 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) based on the similar-
ity in input 𝐴𝑃𝑖 ’s observed BF change (i.e., 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 )) to calcu-
late the probability of significant change for the output 𝐴𝑃 𝑗 (i.e.,
uncertainty). We use clustering where an instance 𝑒 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) =
{𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ),Δ(𝐴𝑃 𝑗 , 𝑐𝑘 )} is randomly selected from set 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 )
and all instances in 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) that are within a predetermined
Euclidean distance (𝜖𝑇𝐻 ) from 𝑒’s input 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ) are grouped to
form a cluster. Note that 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ) is a matrix of size |𝑆𝑇 | × |𝑆𝑅 |
which can be reduced to |𝑆𝑇 | by selecting the best Rx sector for each
Tx sector. The process is repeated until all instances in 𝐸 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 )
are clustered. For each cluster, we find the uncertainty of the output
𝐴𝑃 𝑗 by calculating the fraction of instances that have total BF change
higher than a predetermined threshold (i.e., Δ(𝐴𝑃 𝑗 , 𝑐𝑘 ) > 𝜅𝑇𝐻 ). Each
cluster is represented by 𝑓 (𝑣𝑛, 𝑝𝑛) ∈ 𝐹 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) where 𝑣𝑛 is the
centroid of the cluster and 𝑝𝑛 is the calculated uncertainty. The
process is repeated for all pairs of APs to create their clusters (i.e.,
set 𝐹 ) and uncertainty.
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Figure 5: NetBF uncertainty prediction model (a) can predict
the BF change effectively, and (b) is robust to small environ-
ment changes (Different furniture layout between set1 and
set2).

Here, we make three important remarks. First, we note that the
clusters formed after the clustering process do not simply depend
on locations. This is because due to different orientations during
warwalking and variations in multipath at different locations, two
different locations away from each other might end up having sim-
ilar BF information change and are clustered together. Second, a
relatively small amount of warwalking data is sufficient because the
model focuses on learning the uncertainty probability through clus-
tering which is coarser than predicting the actual channel change
(e.g., predicting how much the SNR of each sector between an AP
and client has changed). Lastly, the clustering model could be ex-
tended to an online version to consider the real-time data, which is
part of our ongoing work.

3.3 AP selection Process
During the runtime, the uncertainty prediction model developed
in the last section is used for selecting a subset of APs to do BF.
The objective here is to identify the APs that potentially have high
(predicted) uncertainty. This objective is captured by accumulat-
ing link uncertainty among all clients for that AP with 𝜆𝐴𝑃 𝑗

=

(∑ |𝑁 |
𝑘=1 𝑝

𝑐𝑘
𝐴𝑃 𝑗

)/|𝑁 | where 𝑝 is the link uncertainty. To estimate the
link uncertainty 𝑝𝑐𝑘

𝐴𝑃 𝑗
between 𝐴𝑃 𝑗 and each client 𝑐𝑘 , we find the

nearest cluster 𝑓 (𝑣𝑛, 𝑝𝑛) ∈ 𝐹 (𝐴𝑃𝑖 , 𝐴𝑃 𝑗 ) from the observed change
𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ) (smallest distance between centroid 𝑣𝑛 and 𝛿 (𝐴𝑃𝑖 , 𝑐𝑘 ))
and use its uncertainty 𝑝𝑛 as the link uncertainty, i.e., 𝑝𝑐𝑘

𝐴𝑃 𝑗
= 𝑝𝑛 .

The idea here is to match the current observed BF change of the input
AP with the warwalking clusters, find the cluster with similar change,
and use the probability of significant change for that cluster as the
uncertainty of the output AP to the client.

After calculating the 𝜆 for all APs, the top 𝐾 APs are selected
to do BF in the next BI by considering 𝜆 > 𝛾𝑇𝐻 , so that if the
predicted uncertainty is high for a large group of APs, more APs
are selected for BF. On the other hand, when all APs observed low
BF information change such as in more stationary scenarios, the
predicted uncertainty is small and fewer APs are selected to do BF.

4 EVALUATION
We developed a 60 GHz WLAN testbed to evaluate the uncertainty
prediction model and the feasibility of networked beamforming.
The testbed consists of 8 802.11ad APs deployed in a university
atriumwith a lobby (referred to as ATwith size 18𝑚×11𝑚 as shown
in Fig. 2). We use Airfide [2] 802.11ad radios as the APs (64 sectors
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Figure 6: (a,b,c) NetBF can maintain good SNR, improve the network throughput, and reduce the BF overhead. (d) The prediction
model needs reasonable war-walking data.
in the codebook and 8 phased array patches) and Acer TravelMate-
648 laptops [1] as the stations (32 sectors in the codebook), both
of which use the Qualcomm 802.11ad chipset and the open-source
wil6210 driver [23]. We modify the wil6210 driver to implement
downlink receive beamforming (RxBF is not implemented by de-
fault in 802.11ad devices) with the same codebook of TxBF, set a
specific Tx and Rx sector for a link, and extract channel information
including per sector SNR and MCS.
Uncertainty prediction model. To build the prediction model
and learn the uncertainty correlations between APs, we move a
client to different locations and collect the Tx/Rx BF data. At each
location, the client collects the SNR for AP Tx sectors and client
Rx sectors (64 × 36) for all APs in the range at that location. We
collected BF information data for 250 different locations in AT and
then stitched them together offline to build the prediction model as
shown in section 3. We empirically selected 𝜅𝑇𝐻 as 70th percentile
of all Δ to define the significant BF information change and selected
𝜖𝑇𝐻 = 10 (Euclidean distance between two centroids of clusters) as
the similarity threshold to form clusters.

Fig. 5a shows how well our uncertainty prediction model cap-
tures the BF SNR change. Here, we include all samples of predicted
uncertainty in our experimental data and compare that with the
BF SNR change observed by the APs. We find that our estimated
uncertainty accurately represents the BF information change and
we can use it to guide the BF AP selection process.

Next, we further show that our uncertainty prediction model is
not sensitive to small changes in the environment. Fig.5b shows
the CDF of normalized BF information change among two pairs
of correlated APs (AP5-AP6 and AP4-AP7) for two different sets
of warwalking data collected for the same route but with different
furniture layout (desk and chair positions). The CDF difference for
the two sets of warwalking data is observed to be 8.5% on average.
It is because of (1) the sparsity of mmWave channel, where only the
LoS and a few strong NLoS contribute to the received signal, and (2)
the robustness of our prediction model, which focuses on learning
uncertainty relationships through clustering (coarser than precise
channel change prediction), making it tolerant to small changes in
the environment.
Networked Beamforming. To evaluate the feasibility and effec-
tiveness of networked BF, we conducted a controlled experiment
with 4 APs (AP4, AP5, AP6,and AP7) in AT. A mobile client moves
step by step in the room and we run the BF AP selection process in
real-time to select which APs to do BF. After triggering the APs to
do BF, the client connects with the AP with the highest SNR and

runs a 10s downlink Iperf. Here, the client also acts as a central con-
troller connecting to all APs over a 5 GHz 802.11ac control channel.
The control channel is used to communicate which AP(s) should
do BF and which AP should send downlink data to the client. We
note that NetBF can be implemented on a central controller that
connects with all APs over a wired or wireless backhaul. The BF
AP selection process is triggered by a BF information change (SNR
drop) when the client moves between different locations, activating
a set of APs to perform BF.

We evaluate our scheme (NetBF) with 12 different client walking
traces in AT and compare it with three other AP selection schemes:
(1) FixedOneAP: A client is always connected with one fixed AP and
performs BF with only that AP (default 802.11ad implementation
without any central controller); (2) AllAP: All APs perform BF and
the client receives data from the best AP with the highest Tx-Rx
sector SNR. (3) OracleBF: We assume that the highest SNR AP is
known to the client in advance and just that AP conducts BF if
needed (Upper bound). In contrast, our NetBF scheme selects only
a subset of APs to perform BF based on the uncertainty model
developed on the war-walking data.
SNR difference. We first try to understand the following: given
thatNetBF scheme limits the number of APs doing BF, howwell can
it maintain the link SNR? Fig. 6a shows the selected sector’s SNR
difference betweenNetBF and AllAP (where all APs do BF) for each
AP. We find that the median SNR difference is below 1 dB and the 75
percentile is below 1.5 dB. This shows that our NetBF scheme can
achieve comparable SNR as AllAP as our BF AP selection process
can always select the APs that have high potential SNR change
(high uncertainty) to probe.
Throughput and BF overhead. The Iperf throughput of dif-
ferent schemes is shown in Fig. 6b. We find that NetBF scheme
achieves higher throughput than FixedOneAP and AllAP schemes
because FixedOneAP scheme cannot exploit the gains achievable
through connecting with other potentially higher SNR APs while
AllAP has much higher BF overhead. As shown in Fig. 6c, NetBF
utilizes the uncertainty model to trigger only a small number of APs
to do BF (1.23 on average). This reduces the BF overhead (amount
of airtime used for BF) by 69% compared to AllAP, resulting in 30.8%
higher throughput. OracleBF achieves the highest throughput as
it can select the best SNR AP while incurring the BF overhead of
at most 1 AP. Besides, there are times when NetBF uses all 4 APs
to do BF (high uncertainty for all APs in high mobility scenario)
or none of the APs to do BF (no SNR change in a static scenario),
which shows that NetBF can capture the mobility and adapt to the
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environment change by utilizing the uncertainty model. So, NetBF
not only reduces the number of APs doing BF but it carefully selects
the BF APs such that the client can consistently achieve high SNR.
We expect even better performance when the APs in the mmWave
WLAN become denser.
Different amount of warwalking data. We also evaluate how
much warwalking data is sufficient to build the uncertainty predic-
tion model. Fig. 6d shows the percentage throughput increment as
more and more warwalking instances are added, starting with no
warwalking data at all (i.e., random select an AP). Fig. 6d shows that
30 steps warwalking in AT achieves 23.7% throughput increment
and convergence is observed after 120 steps with 32.4% throughput
increment. Therefore, building NetBF uncertainty model requires
a reasonable amount of warwalking data which can be easily col-
lected in practice. Note that carefully choosing the locations and
mobility routes for warwalking could further reduce the warwalk-
ing time.

5 RELATED WORK
mmWave beamforming. The problem of reducing beamform-
ing overhead has been studied extensively in recent years. Hierar-
chical searching [19] by iteratively probing from wider to narrower
beamwidth sectors can reduce the overhead to 𝑙𝑜𝑔(𝑁 ) but needs
additional overhead of feedback after each round. Compressive
searching [10, 15, 17] can reduce the BF overhead to 𝑂 (𝑙𝑜𝑔(𝑁 )) to
find the LoS path without additional feedback overhead. Authors in
[6] designed a multi-armed probing framework with the complexity
of 𝑂 (𝐾𝑙𝑜𝑔(𝑁 )) where 𝐾 is the underlying number of paths of the
mmWave link. Authors in [18] reduced the BF overhead to 4𝐾 using
the signal’s power delay profile. Authors in [14] use 4𝑁 probing to
get the CSI information on COTS devices and use that for adaptive
beamforming. Our networked beamforming is orthogonal to the
link-level BF strategies and could be augmented by them to further
reduce the overhead.
mmWave WLANs. Given the BF information of a subset of
APs, mmWave localization through WLAN APs [12, 13], triangu-
lation between APs and a client [18] or sensor-based prediction
of client’s mobility [21] can be used to calculate beams for other
APs. This could also reduce the BF overhead. The localization and
triangulation approach can work in calculating the LoS path but
is likely to perform poorly in predicting reflected paths without
extensive profiling of reflectors in indoor space [22]. Additionally,
frequent changes due to rotation and mobility require continuous
localization and path discovery which themselves can incur over-
head. Compared to this,NetBF takes a different approach where the
number of APs that perform BF is intelligently reduced to reduce the
BF overhead. BounceNet[9] focuses on addressing the problem of
interference along with link scheduling in dense mmWave WLANs.
Their algorithms utilize complete BF information at each BI for
scheduling to optimize spatial reuse in dense deployments. On the
other hand, our work focuses on reducing the BF overhead in the
presence of multiple APs. In this sense, our work can complement
BounceNet to further enhance its performance.

6 DISCUSSION
Fine-tuning the prediction model. Currently, in the prediction
model, we empirically tune the parameters such as SNR change

threshold 𝜅𝑇𝐻 , and the clustering distance 𝜖𝑇𝐻 to improve the
performance of the model. We are conducting studies to investigate
how these parameters will affect the system’s performance. For
example, reducing the clustering distance will increase the number
of clusters with more fine-grained clustering able to match users’
observed BF change better. It improves the uncertainty prediction
but increases the lookup time due to more clusters. In addition, our
uncertainty prediction model is built using the warwalking data.
We plan to improve the model by using online learning to include
new users’ BF information to create a more customized model.
Combining with link-level BF schemes. NetBF reduces the
BF overhead by reducing the number of APs that beamform in
each BI. However, when an AP performs the BF, it searches all
Tx/Rx sectors with the enhanced beacons in compliance with the
current standards [7, 8]. NetBF can be combined with other link-
level BF schemes to further reduce the overhead within each AP’s
BF process. For example, compressive searching [17] could reduce
the complexity to find the best Tx/Rx sector to logarithmic order
by randomly probing a limited number of BF sectors while UbiG
[18] reduces the complexity to a constant order using Power Delay
Profile (PDP) to estimate all paths.
Resource allocation with limited BF information. NetBF
can effectively reduce the BF overhead at the network level but the
gap between our scheme and the oracle comes from some of the
suboptimally chosen sectors in our limited BF information. Under
this limited channel information, the potential interference between
multiple users will affect the scheduling process. To further improve
the performance of NetBF, we plan to introduce the uncertainty
in the scheduling process, such as prioritizing the APs with low
uncertainty to serve clients, utilizing multi-channel and channel
bonding, etc.
System overhead. Our model is currently designed primarily for
downlink traffic. However, if we consider the channel reciprocity,
both Tx and Rx sectors selected in our model can be directly used for
uplink traffic without increasing uplink overhead. In addition, we
note that after building the prediction model with the war-walking
process, the lookup time in the running process is negligible. Lastly,
NetBF utilizes seamless handoff between dense deployed APs in the
enterprise-level mmWave WLAN. The control overhead of these
handoffs should be further investigated to deploy NetBF in the
mmWave WLAN.

7 CONCLUSIONS
In this work, we presented a novel approach of networked beam-
forming (NetBF) to reduce the BF overhead in dense mmWave
WLANs. NetBF judiciously selects a small subset of APs based on
AP uncertainty to perform BF. Our experiments and preliminary re-
sults showed that NetBF can substantially reduce BF overhead and
improve network throughput. We also show that the uncertainty
prediction model can be built using a reasonably small amount of
warwalking data in practice.
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