Gradient Inversion with Generative Image Prior
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Abstract

Federated Learning (FL) is a distributed learning framework, in which the local
data never leaves clients’ devices to preserve privacy, and the server trains models
on the data via accessing only the gradients of those local data. Without further
privacy mechanisms such as differential privacy, this leaves the system vulnerable
against an attacker who inverts those gradients to reveal clients’ sensitive data.
However, a gradient is often insufficient to reconstruct the user data without
any prior knowledge. By exploiting a generative model pretrained on the data
distribution, we demonstrate that data privacy can be easily breached. Further,
when such prior knowledge is unavailable, we investigate the possibility of learning
the prior from a sequence of gradients seen in the process of FL training. We
experimentally show that the prior in a form of generative model is learnable
from iterative interactions in FL. Our findings strongly suggest that additional
mechanisms are necessary to prevent privacy leakage in FL.

1 Introduction

Federated learning (FL) is an emerging framework for distributed learning, where central server
aggregates model updates, rather than user data, from end users [5, 17]. The main premise of
federated learning is that this particular way of distributed learning can protect users’ data privacy as
there is no explicit data shared by the end users with the central server.

However, a recent line of work [34, 31, 9, 29] demonstrates that one may recover the private user
data used for training by observing the gradients. This process of recovering the training data from
gradients, so-called gradient inversion, poses a huge threat to the federated learning community, as it
may imply the fundamental flaw of its main premise.

Even more worryingly, recent works suggest that such gradient inversion attacks can be made even
stronger if certain side-information is available. For instance, Geiping et al. [9] show that if the
attacker knows a prior that user data consists of natural images, then the gradient inversion attack
can leverage such prior, achieving a more accurate recovery of the user data. Another instance is
when batch norm statistics are available at the attacker in addition to gradients. This can actually
happen if the end users share their local batch norm statistics as in [17]. Yin et al. [29] show that such
batch normalization statistics can significantly improve the strength of the gradient inversion attack,
enabling precise recovery of high-resolution images.

In this paper, we systematically study how one can maximally utilize and even obtain the prior
information when inverting gradients. We first consider the case that the attacker has a generative
model pretrained on the exact or approximate distribution of the user data as a prior. For this,
we propose an efficient gradient inversion algorithm that utilizes the generative model prior. In
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existing method [9]

Figure 1: An example showing the superiority of GIAS compared to existing method. Images of the
authors are reconstructed from gradients by exploiting a generative model pretrained on human face
images.

particular, the algorithm consists of two steps, in which the first step searches the latent space (of
lower dimension) defined by the generative model instead of the ambient input space (of higher
dimension), and then the second step adapts the generative model to each input given the gradient.
Each step provides substantial improvement in the reconstruction. We name the algorithm as gradient
inversion in alternative spaces (GIAS). Figure 1 represents reconstruction results with the proposed
method and existing one.

We then consider a realistic scenario in which the user data distribution is not known in advance,
and thus the attacker needs to learn it from gradients. For this scenario, we develop a meta-learning
framework, called gradient inversion to meta-learn (GIML), which learns a generative model on user
data from observing and inverting multiple gradients computed on the data, e.g. across different FL
epochs or participating nodes. Our experimental results demonstrate that one can learn a generative
model via GIML and reconstruct data by making use of the learned generative model.

This implies a great threat on privacy leakage in FL since our methods can be applied for any data
type in most FL scenarios unless a specialized architecture prevents the gradient leakage explicitly,
e.g., [18].

Our main contributions are as follows:

e We introduce GIAS that fully utilizes a pretrained generative model to invert gradient. In
addition, we propose GIML which can train generative model from gradients only in FL.

e We demonstrate significant privacy leakage occurring by GIAS with a pretrained generative
model in various FL scenarios which are challenging to other existing methods, e.g., [9, 29].

e We experimentally show that GIML can learn a generative model on the user data from only
gradients, which provides the same level of data recovery with a given pretrained model. To
our best knowledge, GIML is the first capable of learning explicit prior on a set of gradient
inversion tasks.

e We note that a gradient inversion technique defines a standard on defence mechanism in
FL for privacy [28]. By substantiating that our proposed methods are able to break down
defense mechanisms that were safe according to the previous standard, we give a strong
warning to the FL. community to use a higher standard defined by our attack methods, and
raise the necessity of a more conservative choice of defense mechanisms.



2 Related work

Privacy attacks in FL. Early works [19, 24] investigate membership inference from gradients to
check the possibility of privacy leakage in FL. Phong et al. [21] demonstrate that it is possible to
reconstruct detailed input image when FL trains a shallow network such as single-layer perceptron.
Fan et al. [7] and Zhu and Blaschko [32] consider a wider class of learning model and propose an
analytical approach solving a sequence of linear systems to reveal the output of each layer recursively.
To study the limit of the gradient inversion in practical scenarios of training deep networks via
FL, a sequence of effort has been made formulating optimization problem to minimize discrepancy
comparing gradients from true data and reconstructed data [9, 27, 29, 31, 34].

Gradient inversion with prior. The optimization-based approaches are particularly useful as one
can easily utilize prior knowledge by adding regularization terms, e.g., total variation [27, 9] and
BN statistics [29], or changing discrepancy measure [9] . In [29], a privacy attack technique using
a generative model is introduced. They however require a pretrained model, while we propose a
meta learning framework training generative model from gradients only. In addition, our method of
inverting gradient maximally exploit a given generative model by alternating search spaces, which
are analogous to the state-of-the-art GAN inversion techniques [3, 4, 33].

Generative model revealing private data. Training a generative model with transmitted gradients
also demonstrates privacy leakage in FL. Hitaj et al. [11] introduce an algorithm to train a GAN
regarding shared model in FL framework as a discriminator. Wang et al. [27] use reconstructed
data from gradient to train a GAN. Those works require some auxiliary dataset given in advance
to enable the training of GAN, while we train a generative model using transmitted gradients only.
Also, we not only train a generative model but also utilize it for reconstruction, while the generative
models in [11, 27] are not used for the reconstruction. Hence, in our approach, the generative model
and reconstruction can be improved interactively to each other as shown in Figure 6. In addition,
[27] is less sample-efficient than ours in a sense that they use gradients to reconstruct images and
then train a generative model with the reconstructed images, i.e., if the reconstruction fails, then
the corresponding update of the generative model fails too, whereas we train the generative model
directly from gradients.

3 Problem formulation

In this section, we formally describe the gradient inversion (GI) problem. Consider a standard
supervised learning for classification, which optimizes neural network model fy parameterized by

as follows:

min Y ((fo(),y) (1)

(z,y)eD

where / is a point-wise loss function and D is a dataset of input z € R™ and label y € {0, 1}~
(one-hot vector). In federated learning framework, each node reports the gradient of ¢( fy(x),y) for
sampled data (z,y)’s instead of directly transferring the data. The problem of inverting gradient is
to reconstruct the sampled data used to compute the reported gradient. Specifically, when a node
computes the gradient g using a batch {(z},y7), ..., (z},y}5)}. ie. g = & Zle Ve fo(x3),y5),
we consider the following problem of inverting gradient:
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where d(-, ) is a measure of the discrepancy between two gradient, e.g., {o-distance [34, 29] or

negative cosine similarity [9]. It is known that label y can be almost accurately recovered by simple
methods just observing the gradient at the last layer [31, 29], while reconstructing input x remains
still challenging as it is often under-determined even when the true label is given. For simplicity, we
hence focus on the following minimization to reveal the inputs from the gradient given the true labels:

min C(xl,...,xB;O,g) ) (3)
Z1,...,xgER™

where we denote by ¢ (z1, ..., xp; 6, g) the cost function in (2) given y; = yj foreachj =1,..., B.



4 Methods

The key challenge of inverting gradient is that solving (2) is often under-determined, i.e., a gradient
contains only insufficient information to recover data. Such an issue is observed even when the
dimension of gradient is much larger than that of input data. Indeed, Zhu and Blaschko [32] show
that there exist a pair of different data having the same gradient, so called twin data, even when the
learning model is large. To alleviate this issue, a set of prior knowledge on the nature of data can be
considered.

When inverting images, Geiping et al. [9] propose to add the total variation regularization Ry (x) to
the cost function in (3) since neighboring pixels of natural images are likely to have similar values.
More formally,

Rrv(a):=>_ > (i, 4) — =, )], )
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where 0(3, j) is the set of neighbors of (i, j). This method is limited to the natural image data.

For general type of data, one can consider exploiting the batch normalization (BN) statistics from
nodes. This is available in the case that the server wants to utilize batch normalization (BN) in
FL, and thus collects the BN statistics (mean and variance) of batch from each node, in addition,
with every gradient report [17]. To be specific, Yin et al. [29] propose to employ the regularizer
Rgn (21, ..., zp; 0) which quantifies the discrepancy between the BN statistics of estimated x;’s and
those of true «;’s on each layer of the learning model. More formally,

Rex(1, ., 2530):= Y _ |~ pr.exactl2 + 107 = 07 exaee 12
l

where (1, ..., x5;0) and 07 (21, ..., ©3; 0) (resp. pexact (27, -, 55 0) and o7 o (25, .0, 255 60))
are the mean and variance of [-th layer feature maps for the estimated batch x4, ..., x g (resp. the true
batch 7, ..., £ ) given 6. This is available only if clients agree to report their exact BN statistics at
every round. But not every FL framework report BN statistics [15, 2]. In that case, Yin et al. [29] also
propose to use the BN statistics over the entire data distribution as a proxy of the true BN statistics,
and reports that the gain from the approximated BN statistics is comparable to that from the exact
ones. The applicability of Rgn with the approximated BN statistics is still limited as the proxy needs
to be additionally recomputed over the entire data distribution at every change of . However, this
demonstrates the significant impact of knowing the data distribution in the gradient inversion and
motivates our methods using and learning a generative model on the user data, described in what
follows.

4.1 Gradient inversion with trained generative model

Consider a decent generative model G, : R¥ — R™ trained on the approximate (possibly exact)
distribution of user data D such that z* ~ G, (z*) for (z*,-) € D and its latent code z* =
arg min, |G, (z) — «*||. To fully utilize such a pretrained generative model, we propose gradient
inversion in alternative spaces (GIAS), of which pseudocode is presented in Appendix A, which
performs latent space search over z and then parameter space search over w. We also illustrate the
overall procedure of GIAS in Figure 2.

Latent space search. Note that the latent space is typically much smaller than the ambient input
space, i.e., k < m, for instances, DCGAN [25] of £ = 100 and StyleGAN [12] of £k = 512 x 16
for image data of m = (width) x (height) X (color) such as 32 x 32 x 3, 256 x 256 x 3, or larger.
Using such a pretrained generative model with k£ < m, the under-determined issues of (3) can be
directly mitigated by narrowing down the searching space from R™ to {G,,(z) : z € R¥}. Hence,
GIAS first performs the latent space search in the followings:

min__ ¢ (Gy(z1),....,Gu(zB)) - Q)

Z1,...,2BER

Considering a canonical class of neural network model fy, we can show that the reconstruction of z*
by latent space search in (5) aligns with that by input space search in (3) if the generative model G,
approximates input data with small enough error.
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Figure 2: An overview of GIAS. GIAS optimizes a latent code z and generative model parameters w
to reconstruct the data which matches the gradient.

Property 1. For an input data x* € [0,1]™ consider the gradient inversion problem of minimizing
cost ¢ in (3), where a canonical form of deep learning for classification is considered and the
discrepancy measure d is {s-distance. Suppose that it has the unique global minimizer at x*. Let
€ > 0 be the approximation error bound on x* for generative model G, : [0,1]¥ + [0, 1]™ Then,
there exists §(g) > 0 such that for any z* € argmin, c(G,(2)),

[Gw(z") — 27| <6(e) , (6)
of which upper bound §(¢) — 0 as ¢ — 0.

A rigorous statement of Property 1 and its proof are provided in Appendix B, where we prove and use
that the cost function is continuous around x* under the assumptions. This property justifies solving
the latent space search in (5) for FL scenarios training neural network model while it requires an
accurate generative model.

Parameter space search. Using the latent space search only, there can be inevitable reconstruction
error due to the imperfection of generative model. This is mainly because we cannot perfectly
prepare the generative model for every plausible data in advance. Similar difficulty of the latent
space search has been reported even when inverting GAN [33, 3, 4] for plausible but new data
directly, i.e., min, |G, (z) — x*|| given x*, rather than inverting gradient. Bau et al. [3] propose an
instance-specific model adaptation, which slightly adjusts the model parameter w to (a part of source
image) x* after obtaining a latent code z* for x*. Inspired by such an instance-specific adaptation,
GIAS performs the following parameter space search over w preceded by the latent space search
over z:

min  ¢(Gy,(21), s Guwy (2B)) (7)

wi,...,WHB

where 21, ..., zp are obtained from (5).

Remark. We propose the optimization over w followed by that over z sequentially This is to
maximally utilize the benefit of mitigating the under-determined issue from reducing the searching
space on the pretrained model. However, the benefit would be degenerated if z and w are optimized
jointly or w is optimized first. We provide an empirical justification on the proposed searching
strategy in Section 5.1.

We perform each search in GIAS using a standard gradient method to the cost function directly.
It is worth noting that those optimizations (5) and (7) with generative model can be tackled in a
recursive manner as R-GAP [32] reconstructs each layer from output to input. We provide details
and performance of the recursive procedure in Appendix C, where employing generative model
improves the inversion accuracy of R-GAP substantially, while R-GAP apparently suffers from an
error accumulation issue when fy is a deep neural network.
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Figure 3: Comparison of different searching spaces. (a) Each row shows reconstructed images of
different optimization domains. The first three rows share the same latent space search of 1, 500
iterations, and GI-z/w is verified to be the best option to fully exploits the knowledge inside the
generative model. (b) Cost function over iterations of different optimization domains.

4.2 Gradient inversion to meta-learn generative model

For the case that pretrained generative model is unavailable, we devise an algorithm to train a
generative model G, for a set S = {(0;, g;)} of gradient inversion tasks. Since each inversion task
can be considered as a small learning task to adapt generative model per data, we hence call it gradient
inversions to meta-learn (GIML). The detailed procedure of GIML is presented in Appendix A. We
start with an arbitrary initialization of w, and iteratively update toward w’ from a variant of GIAS
for N tasks sub-sampled from S, which is different than multiple applications of GIAS for each
task in two folds: (i) £o-regularization in latent space search; and (ii) an integrated optimization on
model parameter. The variant first finds optimal latent codes z} = (2, ..., z/5) for each task ¢ with
respect to the same cost function of GIAS but additional ¢5-regularization. Note that the latent space
search with untrained generative model easily diverges. The ¢5-regularization is added to prevent
the divergence of z}. Once we obtained z}’s, w’ is computed by few steps of gradient descents for
an integrated parameter search to minimize ) , ¢(Guw (2])), ..., G (25); 63, gi). This is because in
GIML, we want meta information w to help GIAS for each task rather than solving individual tasks,
while after performing GIML to train w, we perform GIAS to invert gradient with the trained w. This
is analogous to the Reptile in [20].

5 Experiments

Setup. Unless stated otherwise, we consider the image classification task on the validation set
of ImageNet [22] dataset scaled down to 64 x 64 pixels (for computational tractability) and
use a randomly initialized ResNetl8 [10] for training. For deep generative models in GIAS,
we use StyleGAN2 [13] trained on ImageNet. We use a batch size of B = 4 as default
and use the negative cosine to measure the gradient dissimilarity d(-,-). We present detailed
setup in Appendix H. Our experiment code is available at https://github.com/ml-postech/
gradient-inversion-generative-image-prior.

Algorithms. We evaluate several algorithms for the gradient inversion (GI) task in (3). They differ
mainly in which spaces each algorithm searches over: the input x, the latent code z, and/or the model
parameter w. Each algorithm is denoted by GI-(-), where the suffix indicates the search space(s).
For instances, GI-z/w is identical to the proposed method, GIAS, and GI-z is the one proposed by
Geiping et al. [9].
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Figure 4: Comparison of state-of-the-art models and ours. Replacing GI-x with GI-z/w (GIAS)
regardless of using BN [29] or not [9] provides substantial improvement in the reconstruction accuracy.
(a) Average PSNR and best PSNR in a batch throughout the experiments. (b) An ablation study and
comparison of reconstruction results with our models and state-of-the-art models. We highlight the
proposed models in bold.

Table 1: Comparison of our methods with state-of-the-art methods. Adding our method makes
performance improvement versus two baseline methods. PSNR, SSIM, and LPIPS[30] are used to
evaluate reconstruction results. We highlight the best performances in bold.

Method || GI-z [9] GlI-z (ours) Gl-w (ours) Gl-z/w (GIAS, ours) ~ GI-z+BN [29]  GI-z/w+BN (ours)

PSNR 1 13.78 14.27 14.70 15.58 15.52 16.31
SSIM t 0.2542 0.3106 0.3519 0.3895 0.3513 0.4311
LPIPS | | 0.4376 0.3233 0.5121 0.3023 0.3645 0.2861

5.1 Justification of GIAS design

We first provide an empirical justification of the specific order of searching spaces in GIAS (corre-
sponding to GI-z /w) to fully utilize a pretrained generative model. To do so, we provide Figure 4b
comparing algorithms with different searching spaces: GI-z/w, GI-z/z, GI-z, and GI-z, of which
the first three share the same latent space search over z for the first 1, 500 iterations. As shown in
Figure 3(a), the latent space search over z quickly finds plausible image in a much shorter number
of iterations than GI-z, while it does not improve after a certain point due to the imperfection of
pretrained generative model. Such a limitation of GI-z is also captured in Figure 3(b), where the cost
function of GI-z is not decreasing after a certain number of optimization steps. To further minimize
the cost function, one alternative to GI-z/w (GIAS) is GI-z/x, which can further reduce the loss
function whereas the parameter search in GI-z/w seems to provide more natural reconstruction of
the image than GI-z/z. The superiority of GI-z/w over GI-z/x may come from that the parameter
space search exploits an implicit bias from optimizing a good architecture for expressing images, c.f.,
deep image prior [26]. In Appendix E and Figure 1, we also present the same comparison on FFHQ
(human-face images) [12] where diversity is much smaller than that of ImageNet. On such a less
diverse dataset, the distribution can be easily learned, and the gain from training a generative model
is larger.

5.2 The gain from fully exploiting pretrained generative model

Comparison with state-of-the-art models. Our method can be easily added to previous methods
[9, 29]. In Table 1 and Figure 4, we compare the state-of-the-art methods both with and without the
proposed generative modelling. In Table 1, comparing GI-z to GI-z/w and GI-z + BN to GI-z/w +
BN, adding the proposed generative modelling provides additional gain in terms of all the measures
(PSNR, SSIM, LPIPS) of reconstruction quality. GI-z/w without BN has lower reconstruction error
than GI-z + BN, which is the method of [29]. This implies that the gain from the generative model is
comparable to that from BN statistics. However, while the generative model only requires a global
(and hence coarse) knowledge on the entire dataset, BN statistics are local to the batch in hand and
hence requires significantly more detailed information on the exact batch used to compute gradient.
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Figure 5: Comparison of state-of-the-art models and GI-z /w with varying difficulties. Larger batch
size, higher sparsity, and larger gradient noise increases reconstruction difficulty. GI-z/w always
surpasses GI-z thanks to the pretrained generative model. All subfigures share the y-axis.

As shown in Figure 4, the superiority of our method compared to the others is clear in terms of the
best-in-batch performance than the average one, where the former is more suitable to show actual
privacy threat in the worst case than the latter. It is also interesting to note that GI-w with untrained
w provides substantial gain compared to GI-z. This may imply that there is a gain of the implicit
bias, c.f., [26], from training the architecture of deep generative model.

Evaluation against possible defense methods We evaluate the gain of using a generative model
for various FL scenarios with varying levels of difficulty in the inversion. As batch size, gradient
sparsity! [28] and gradient noise level increase, the risk of having under-determined inversion
increases and the inversion task becomes more challenging. Figure 5 shows that for all the levels
of difficulty, the generative model provides significant gain in reconstruction quality. In particular,
the averaged PSNR of GI-z with a batch size of 4 is comparable to that of GI-z/w with a batch
size 32. It is also comparable to that of GI-z/w with a gradient sparsity of 99%. To measure the
impact of the noisy gradient, we experimented gradient inversion with varying gaussian noise level in
aforementioned settings. Figure 5(c) shows that adding enough noise to the gradient can mitigate
the privacy leakage. GI-z/w with a noise level of 0.01, which is relatively large, still surpasses GI-z
without noise. A large noise of 0.1 can diminish the gain of exploiting a pretrained generative model.
However, the fact that adding large noise to the gradient slows down training makes it difficult for
FL practitioners to choose suitable hyperparameters. The results imply our method is more robust
to defense methods against gradient inversion, but can be blocked by a high threshold. Note that
our results of gradient sparsity and gradient noise implies the Differential Privacy(DP) is still a
valid defense method, when applied with a more conservative threshold. For more discussion about
possible defense methods in FL framework, see Appendix F.

5.3 Learning generative model from gradients

We demonstrate the possibility of training a generative model only with gradients. For computational
tractability, we use DCGAN and images from FFHQ [12] resized to 32x32. We generate a set of
gradients from 4 rounds of gradient reports from 200 nodes, in which node computes gradient for a
classification task based on the annotation provided in [6]. From the set of gradients, we perform
GIML to train a DCGAN to potentially generate FFHQ data.

Figure 6 shows the evolution of generative model improves the reconstruction quality when perform-
ing either GI-z and GI-z /w. We can clearly see the necessity of parameter space search. Figure 6(a)
shows that the quality of images from the generative model is evolving in the training process of
GIML. As the step ¢ of GIML increases, the generative model G, (z) for arbitrary z outputs more
plausible image of human face. When using generative model trained on wrong dataset (CIFAR10),
GI-z completely fails at recovering data.

"Having gradient sparsity 0.99% implies that we reconstruct data from 1% of the gradient after removing
99% elements with the smallest magnitudes at each layer.
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Figure 6: Qualitative and quantitative result of GIML. (a) Results validating generative model trained
with GIML. Images on the first row are sampled from different GIML training steps. The same
latent code z was used to sample images in same rows. Images on the second row and third row are
results of GI-z and GI-z /w using generative model trained with GIML and pretrained model which
is trained with CIFAR10 images. Experiments were done with gradient sparsity 0.95 for comparison
in difficult setting. Last column represents the ground truth image and result of GI-w with untrained
model. (b) A comparison of GIAS with meta-learned generative model and GIAS using improper
generative model. Proper generative model boosts GIAS performance.

In Figure 6(b), as GIML iteration step increases, the performance of GI-z and GI-z/w with GIML
surpass GI-z and GI-z/w with wrong prior knowledge. GI-z/w using generative model trained on
wrong dataset and GI-w which starts with an untrained generative model show lower averaged PSNR
compared to GI-z/w with GIML. GI-z/w with GIML to train generative model on right data shows
the best performance in terms of not only quality (Figure 6) but also convergence speed. We provide
a comparison of the convergence speed in Appendix G.

6 Conclusion

We propose GIAS fully exploit the prior information on user data from a pretrained generative model
when inverting gradient. We demonstrate significant privacy leakage using GIAS with pretrained
generative model in various challenging scenarios, where our method provides substantial gain
additionally to any other existing methods [9, 29]. In addition, we propose GIML which can train a
generative model using only the gradients seen in the FL classifier training. We experimentally show
that GIML can meta-learn a generative model on the user data from only gradients, which improves
the quality of each individual recovered image. To our best knowledge, GIML is the first capable of
learning explicit prior on a set of gradient inversion tasks.
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