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Abstract— In this work, we investigate a form of dynamic
contact-rich locomotion in which a robot pushes off from
obstacles in order to move through its environment. We present
a reflex-based approach that switches between optimized hand-
crafted reflex controllers and produces smooth and predictable
motions. In contrast to previous work, our approach does not
rely on periodic movements, complex models of robot and
contact dynamics, or extensive hand tuning. We demonstrate
the effectiveness of our approach and evaluate its performance
compared to a standard model-free RL algorithm. We identify
continuous clusters of similar behaviours, which allows us to
successfully transfer different push-off motions directly from
simulation to a physical robot without further retraining.

I. INTRODUCTION

Humans exploit highly dynamic interactions with the

environment to reach states that would have otherwise been

inaccessible. For instance, to move to an out-of-reach hand-

hold, a rock climber jumps to the new handhold by pushing

against the wall with their legs. Swinging from the current

handhold before the jump can help them gain momentum for

larger jumping distances. In parkour, a popular technique for

scaling high walls is to run towards the wall and then jump

onto and push off the wall with a foot to reach the top. In

contrast to these highly dynamic interactions, robotic systems

typically attempt to avoid obstacles and only navigate and

operate in clear, structured settings such as labs and empty

hallways. If robots can use their arms to dynamically push off

obstacles, they could move more freely, flexibly, and rapidly

in cluttered environments. However, this particular skill is

difficult to learn because of the intermittent contact events

we encounter during a dynamic pushing motion.

In this work, we explore this scenario with the PushBot,

a freely hovering robot, that can only move by interacting

with its environment. To solve pushing tasks we develop

a reflex-based approach that switches between optimized

reflex controllers triggered by specific observations. We show

that our approach can solve push-off tasks in simulation,

and achieves success rates comparable to a standard model-

free RL algorithm. Furthermore, our approach allows us to

identify continuous clusters of similar behaviors, and we

demonstrate how these motion families can be utilized to

directly transfer push-off motions from simulation to a real

robot without further reward engineering or retraining.

II. RELATED WORK

Control of robotic whole-body locomotion. Designing

robots that can achieve dynamic, contact-rich, whole-body
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locomotion similar to human and animal capabilities remains

challenging. Dynamic legged locomotion has often been con-

sidered within the context of walking, running, hopping, and

jumping which involve periodic or semi-periodic movements

[1], [2], [3], [4], [5]. Our interest lies in non-periodic be-

haviors that allow robots to exploit dynamic interactions for

locomotion in unstructured environments. For most mobile

robots with arms, the arms are typically only engaged for

static or quasi-static tasks such as balance and support, object

manipulation, or climbing [6], [7], [8], [9], [10]. Zhao et

al. [11] demonstrate non-periodic humanoid locomotion on

challenging and unpredictable simulated terrain, where both

the arms and legs are used to move dynamically through the

environment.

Previous approaches for legged locomotion have used

simplified template models, such as those based on inverted

pendulums [12], for model-based planning and control; such

models can also be defined for highly dynamic tasks. For

instance, a simplified model was developed for the Park-

ourBot and demonstrated on a chute climbing, or “vertical

running”, task [13]. However, reduced template models are

more difficult to design for unstructured environments and

robots capable of more complex movements. Additionally,

they usually require more hand tuning than learned models

to adapt to new robots and environments.

Learning and optimization techniques, such as quadratic

programming [3], [8], [9], [10], black-box optimization

(BBO) [14], [15], [16], [17], [18], and reinforcement learn-

ing (RL) [19], [20] have been applied for automatic opti-

mization and tuning of locomotion controllers. There has

been increased interest in learning controllers for humanoid

locomotion using model-free RL which does not require

expert domain knowledge or strict assumptions about the

policy [21], [22]. BBO methods can be similarly used in

a model-free way using an approach called direct policy

search. Salimans et al. [23] demonstrated that a black-box

evolutionary algorithm is competitive with popular policy

gradient RL algorithms on a simulated 3D walking task.

Reflex control modules. Our approach is motivated by prior

works related to biologically inspired, whole-body humanoid

locomotion. Human locomotion and the neural circuitry in-

volved in generating locomotion behaviors have been studied

extensively in previous works [24] [25]. Experiments have

shown that neural networks along the spinal cord make a sig-

nificant contribution to generate these behaviors, and various

approaches have been proposed to model the neural circuitry.

In this context, Song et al. [15] demonstrate that a control

structure composed of reflex modules can generate diverse
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Fig. 1. We propose a reflex-based controller approach to learn push-off tasks, which switches between optimized low-level controllers triggered by specific
observations. Each reflex controller is trained on an individual task, e.g. a front push reflex, and within these low-level controllers we identify different
motion families which represent clusters of similar behaviors (colored patches). This approach allows us to transfer different push-off motions directly from
simulation to a physical robot without further retraining. The bottom row shows time-lapses of pushing motions to the right, left and center, respectively.
In each image we accelerate the robot towards the obstacle, contact triggers the pushing motion, and the robot moves to its final position (opaque).

and robust locomotion. These reflex modules are ”simple”

decentralized control units, which map sensory feedback

onto activation of one or multiple muscles. Combined with

a higher level control layer, their model is able to generate

periodic behaviors ranging from walking and running to stair

climbing and obstacle avoidance. Zhao et al. [11] achieve

dynamic, contact-rich humanoid locomotion by combining

whole-body locomotion behaviors using a high level reactive

planner. Similarly, we focus on the development of reactive

controllers that define simple dynamic pushing behaviors.

III. OVERVIEW AND CONTRIBUTIONS

Pushing and pulling are two of the most basic motions that

humans use to navigate through clutter. While it is intuitive

for us to align our arms in anticipation of contact, react to

contact, and adjust our arm stiffness, it is difficult for a robot

to learn these behaviors. We investigate a form of dynamic

locomotion where an omnidirectional robot base with a pair

of two degree of freedom (DoF) arms pushes against nearby

obstacles to move through its environment. Unlike previous

works applied to running, hopping, or climbing, neither the

applied force nor desired net movement direction is aligned

with gravity. Without gravity to help generate momentum,

the robot must utilize contact-rich dynamic interaction with

the environment to reach the desired goal.

Model-free reinforcement learning has shown promising

results for learning contact-rich tasks in simulation, but

comes with the drawbacks of poor sample efficiency and

challenges of sim2real transfer. In this work, we present an

approach that only relies on a kinematic robot model and the

general ability to adjust stiffness, damping and timing of an

end effector trajectory. Our reflex-based controller features

a hierarchical structure and optimized sub-controllers (fig. 1,

top). A high-level controller switches between relatively

simple sub-controllers, triggered by specific observations.

We build the structure of these sub-controllers, the reflex

controllers, from reasoning about human pushing motions,

and find suitable values for the controller parameters through

optimization. We identify clusters of similar motions within

the resulting behaviors, resembling the underlying patterns

observed in human locomotion. We apply our approach to

multiple tasks in simulation and compare the resulting mo-

tions to a baseline RL algorithm (Proximal Policy Optimiza-

tion, PPO [26]). We further show that we can successfully

perform real world pushing tasks by directly transferring

control policies learned in simulation to a real robot.

PushBot – A hovercraft with arms: To demonstrate

that our approach generalizes to the real world we build a

physical robot platform (fig. 1, bottom). To introduce com-

pliance in the arms, we choose a direct drive configuration

using brushless DC motors in each joint. Additionally, we

reduce friction between the floor and the robot by building

a hovercraft-like lift system. This creates a low friction air

cushion that allows the robot to move freely in all directions.

The robot uses piezo-electric vibration sensors [27] in each

end effector to detect contacts.

IV. MODEL AND METHODS

A. Robot states and action spaces

We define the robot state at a time t as

st =
(

vt θr,t cr,t θl,t cl,t ξt ζt

)T

where vt describes x and y component of the velocity of the

trunk. θr,t and θl,t are the joint angles of the right and left

arm, and cr,t ,cl,t are binary contact variables for each end

effector. ξt describes the current pose of the robot relative to

the goal in terms of distance and heading. We define the robot

heading error as the difference between the goal heading and

172

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 14,2022 at 16:18:07 UTC from IEEE Xplore.  Restrictions apply. 



the current robot heading. Finally, an obstacle to interact

with is described by ζt , which encodes the distance from the

spatially closest obstacle, and the relative heading between

that obstacle and the current robot heading. For the scope of

this work we consider the state to be fully observable and

there is only a single obstacle.

We define actions as

u = (θr,θl ,kp,kd)
T

with goal angles θr,θl , and variables kp and kd specifying

the gains of the arm joint PD-controllers. A behavior is

considered successful if the absolute distance between the

robot trunk and goal dg,r = |pr − pg| < 0.1m at the end of

the push (time t = N). A reward is given at each timestep

t to encourage movement towards the goal rtot = γvrd − 1

with distance-based reward rd = 1 − d̂ 0.4
g,r and a velocity-

based discount factor γv = (1−max{|v̂t |,0.1})
max{d̂g,r ,0.4}

−1

with normalized d̂g,r, |v̂t | ∈ [0,1] to discourage overshooting.

B. Modeling pushing motions

We intuitively know that we can generate the momentum

required for pushing off by extending our arms and exerting

a force onto an obstacle. By varying the distance along which

we push and how fast we execute the motion, we can scale

the intensity of a push. A quick and full extension of our arms

will lead to stronger pushes. Instead of learning an optimal

le
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θ2
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ys xs

ys

le,1

le,2

le,3

α3

d3

d2

α1 = 0 α2 = 0
d1 = 0

end effector

workspace
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Fig. 2. Left: Pushing model, described by the effective length of the push.
Right: Qualitative examples of right-arm pushes along different lines of
actions, parameterized by distance di from the shoulder joint origin and
angle αi between line of action and shoulder joint y-axis.

trajectory from scratch, we incorporate our innate knowledge

about this task into a reflexive controller that constrains the

kinematic motion of the arms to retraction and extension

along a fixed direction. For a push, we allow the end effector

to move along a straight line of action as shown in fig. 2 left.

Each possible linear motion is parameterized by the angle

α between the line of action and the y-axis of the shoulder

joint reference frame, and an offset d between the line of

action and the shoulder joint reference frame fig. 2 right.

The resulting kinematic configuration of the robot arm for

a push can be described by κ = (α,d). Each position along

a line of action Li is parameterized by the coordinate li ∈
[0,1], with li = 0 specifying the fully retracted and li = 1

the fully extended arm position. Since this representation

parameterizes end effector motions along a linear trajectory

in cartesian space it also applies to robot arms with more

joints and DoF given that an inverse kinematics model exists.

C. Reflex-based controller for pushing tasks

We propose a hierarchical controller structure, which is

composed by a high-level controller that, based on the current

observation, switches between different reflex controllers.

Each reflex controller is dedicated for controlling specific

parts of the overall motion, such as placing the arms in front

in anticipation of the impact, or extending the arms to push

off while in contact with the obstacle.

l0
l1

t0 t1 t2

κ

lτ = [l0, l1, l2]

tτ = [t0, t1, t2]

trigger event

φ(s̃) kP,kD

arm joint angle
t

θ
θ1
θ2

PD

configuration phase active phase

s̃

l2

trajectory

controller

Fig. 3. Reflex controller at runtime: Contact at end effector triggers reflex
controller (trigger event), configuration policy selects arm configuration
setpoints lτ , timesteps tτ , kinematic pushing configuration κ , and PD gains
kp,kd (configuration phase). Arm joint angle trajectory is executed (active

phase).

1) High-level controller: During a pushing task, the robot

experiences changes in contact modes. Based on the current

robot state, the high-level controller switches between dif-

ferent control modes. We implement this as a finite state

machine with explicit transition rules, where the switching

mechanism is dictated by a set of handcrafted rules (e.g. if

a contact occurs at either end effector, switch on front-push

reflex controller).

2) Low-level reflex controller: Whenever a reflex con-

troller is triggered by the high-level controller, it runs through

two separate phases as described in fig. 3. Before the reflex

controller starts to execute an arm motion, the parameters

required for a successful push need to be selected based

on the current observation s̃ (configuration phase). The

controller then stays active for a fixed period of timesteps

and executes a specific dynamic motion (active phase).

Configuration phase: Each reflex controller constitutes a

configuration policy

φ : s̃ →{lτ , tτ ,κ,kp,kd} (1)

that maps the state s̃ observed at configuration time to a

sequence of arm configuration setpoints lτ , timesteps tτ ,

kinematic pushing configuration κ = (α,d), and low-level

controller gains kp, kd . Depending on the type of the reflex

controller, it can either produce a single target position l0
or a sequential trajectory along the line of action L for the

end effector to reach. This corresponds to either a single

desired arm configuration (e.g. lτ = 0 → retracted, lτ = 1 →
extended), or a desired motion (e.g. lτ = [0,1]→ first fully

retract, then fully extend the arms). A trajectory along a

line of action L is encoded by a sequence of setpoints

lτ = [l0, l1, . . . , ln] and desired number of timesteps to reach

each l, given by tτ = [t0, t1, . . . , tn]. Given an arbitrary setpoint

l we can calculate the corresponding joint angles directly

from the kinematics model described in section IV-B.
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In order to execute the desired kinematic motion plan, the

reflex controller uses low-level PD joint controllers to move

the end effector. In addition to lτ , tτ ,κ , the configuration

policy also selects kp,kd , effectively adjusting the stiffness

of each arm during the active phase. We find a suitable

configuration policy for a task through optimization, as

described in section IV-D.

Active phase: After a reflex controller has been triggered,

it stays active for Nt = ∑ tτ timesteps, and executes the

configured trajectory. The kinematics model maps the arm

configuration setpoints to joint angles θi based on the desired

configuration, and the final trajectory in joint angle space

is obtained though linear interpolation. Finally, these target

angles, along with the desired gains kp,kd , are passed to the

low-level PD-controllers, which generate the required joint

torques. Configuration phase and active phase at runtime are

shown in fig. 3.

D. Learning reflex controllers

To learn the trajectory and controller gains for a reflex

controller, we formulate the following learning problem.

Our goal is to find a configuration policy φ(s̃), such that

given the current state s̃ at configuration time (when the

reflex controller is triggered) the resulting controller creates

a dynamic motion that accelerates the robot trunk towards

the goal.

We can define the optimization problem

φ(s̃) = argmax
φ

N

∑
t=0

rtot(st)

where we seek to maximize the sum of total rewards over N

timesteps, with total reward rtot defined in section IV-A.

Initial grid search: We organize the space of possible

configuration states s̃ into a discrete space Ω, such that each

point ω ∈ Ω represents a distinct value of s̃. In the push

task setting, different values of s̃ correspond to different

initial conditions, such as goal position and initial position

and velocity of the robot. For instance, goal positions gn ∈
[gmin,gmax] and initial robot velocities v0,m ∈ [v0,min,v0,max],
result in a grid space Ω ∈ R

n×m.

For each grid point ω , we seek to find the optimal

configuration φ ∗(ω), i.e. the optimal set of PD-controller

gains kp,kd , motion setpoints lτ , timesteps tτ , and kinematic

pushing configuration κ , that maximize the task reward.

Finding φ ∗(ω) ∀ ω ∈ Ω constitutes a non-convex problem.

However, given the nature of the task locally convex regions

exist, which represent families of motions.

In order to find such families we start an initial global

search to find the optimal set of parameters φ ∗(ω0) for

the first point in the discrete space. Many classes of BBO

algorithms work well to solve this problem. In our imple-

mentation, we use Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [18] due to its ability to handle ill-

conditioned and rugged landscapes. φ ∗(ω0) is then used as

initial guess in a local search to find φ ∗(ω1). We use the

SciPy [28] implementation of L-BFGS-B [29]. We continue

this process iteratively for neighboring points in Ω until

the local search does not converge to an optimal solution,

meaning the robot does not successfully complete the task.

This implies that φ ∗(ωi+1) and effectively the dynamic

motion required to complete the task is substantially different

from previous φ ∗(ωi). We then re-run a global search to find

a different locally convex region for ωi+1, and continue with

the local searches until we exhaustively found solutions for

all ω ∈Ω. The search process is shown for a 2D grid example

space in fig. 4 A-C.

Iterative process to refine families of motions: To further

improve the controller performance, we refine the locally

convex regions, which we term motion families. For each

grid point, we take solution candidates from neighboring

grid points as initial guesses for local searches. If a solution

candidate obtains a higher reward, we update the current

solution for the grid point. We repeat this process until

convergence. As shown in fig. 4 C-D, this leads to changes

in shape and area of the solution families, or shrinking and

extension of individual families.

The set of optimal reflex controller configurations φ ∗(Ω)
found by our search and refinement process is then used

to train a k-Nearest-Neighbor regression model. This model

serves as configuration policy φ(s̃) for the reflex controller;

given a state s̃ it predicts a suitable pushing configuration.

A. D.B. C.

Fig. 4. Grid search: Starting with an initial global solution (A top left),
we apply local search to neighboring grid points, using the initial solution
as starting point for each local search (A,B). If a local optimum is not
successful at completing the task (’x’ in A,B), a new global search is
initiated, creating a new starting point for neighboring local searches. We
continue this iterative search until solutions have been found for all grid
points. C, D show the resulting grid from 2D push (section V-B), before
and after our refinement process, respectively. Same colors indicate same
families of motion.

V. EXPERIMENTS AND RESULTS

A. Simulation environment

To evaluate the performance of our reflex-based approach,

we set up a 2D simulation environment using the Box2D

simulation engine [30]. We model a simple dual arm planar

robot, which consists of a circular trunk and two 2DOF

arms, as shown in fig. 5 left. Each task is implemented as

an environment using the OpenAI Gym ecosystem [31].

B. Simulated pushing tasks

Learning to push off along one direction - 1D: We create

two environments in each of which the robot has to learn to

push off from an obstacle along a fixed direction (x-axis) in

order to reach its goal.

In the first environment (static 1D push) the robot is

placed in front of the obstacle with arms positioned in a pre-

push configuration (flexed elbows). The initial position of the

robot is sampled along the x-axis, from a uniform distribution

xtrunk ∼U (0.77,0.8), such that the obstacle surface is always
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TABLE I

PERFORMANCE OF PPO AND REFLEX-BASED APPROACH, EVALUATED

ON 10K EPISODES WITH RANDOM INITIAL CONFIGURATIONS.

REFLEX-BASED APPROACH REPORTED FOR 5X5 AND 10X10 GRID SIZES.

Env Metric Reflex-10x10 Reflex-5x5 PPO

1D
static

success rate
mean reward
train time [s]

98.85%
−5.47±2.12

556.28

93.77%
−7.4±3.2

60.52

98.97%
−4.8±2.3

1444

1D

success rate
mean reward
train time [s]

96.10%
−16.4±5.9

839.15

92.94%
−17.7±7.3

994.98

97.72%
−14.7±5.8

3449

2D

success rate
mean reward
train time [s]

98.65%
−15.6±3.7

3361.93

93.74%
−17.9±6.0

1013.67

97.52%
−16.0±4.8

2876

located inside the reachable workspace of both arms. We

further sample the goal position along the x-axis, such that

xgoal ∼U (0.35,0.6). Initially the robot is static, such that it

needs to generate the entire momentum needed for reaching

the goal through interaction with the obstacle.

For the second environment (1D push) the robot is ap-

proaching the obstacle with varying initial velocities. We

apply a force Finit,x ∼ U (6.0,12.0) which accelerates the

robot and sample the goal position from xgoal ∼U (0.0,0.4).
For training a pushing configuration policy φ(s̃) (eq. (1))

we restrict the kinematic configuration κ =(α = 0.0,d = 0.1)
and arm configuration setpoints lτ = [0,1]. This corresponds

to a straight push to the front (fig. 2), and allows for a

large effective length. We optimize for the remaining stiffness

(kp,kd) and timing (tτ = [t0, t1]) parameters.

As described in section IV-D, we create a n-by-m grid of

different initial conditions for each environment. For static

1D push, the grid axes represent possible goal locations and

robot positions, and for 1D push the axes represent possible

goal locations and robot velocities.

Learning to push off along two directions - 2D: For this

task, the robot needs to learn to push off from the obstacle

surface at an oblique angle. It is accelerated by a constant

force and we vary the goal position along both x and y-axis

from x ∼ U (0.2,0.4), y ∼ U (−0.2,0.2). We optimize for

configuration parameters [αl ,αr, l1,l , l1,r, t0, t1,kp,kd ], and fix

d = 0.1. Results are reported in table I.

C. Results

Table I shows the success rate, mean reward and train

time for the three simulated tasks. We compare our reflex-

based approach to PPO (stable-baselines PPO2 with Mlp-

Policy [32]) using the same OpenAI Gym environments. As

shown, both methods achieve comparable results with respect

to success rate and mean reward; this indicates that both

techniques can generate diverse and flexible motions which

generalize to previously unseen states. Train times generally

increase with rising complexity of the tasks, and grid size in

the case of the reflex-based approach.

For the 2D push task we find the solution grid shown in

fig. 4-D. The corresponding robot arm motions are visualized

in fig. 6 and fig. 7. The solution grid depicts motion families

y
x

Fig. 5. Left: PushBot in Box2D. The robot’s task is to reach the goal (green
circle) by interacting with the obstacle. The front trunk orientation is marked
by a red line. Right: Overlay of motion families for 10x10 solution grid for
2D push (section V-B). Colors indicate different motion families. Points
marked in the color of a motion family indicate that the robot successfully
completed the task (reached the target) using a push generated by this family.

each marked by a distinct color and the corresponding lines

of action (fig. 6) and joint angle trajectories (fig. 7) are

colored accordingly. For comparison, we show the joint angle

trajectories generated by PPO in the same gridpoints in fig. 8.

Fig. 6. Lines of actions for 10x10 solution grid for 2D push (section V-B).
Colors indicate different motion families, and three exemplary resulting arm
movements are shown on the right.

Fig. 7. 2D push: Joint angle trajectories produced by reflex approach.
Colors correspond to grid points in fig. 4-D and lines of action in fig. 6.

VI. DISCUSSION

As shown in fig. 4-D, for the 2D task motion families

are primarily distributed along the y-axis which for this task

corresponds to goal locations ranging from left to right. We

note that in fig. 4-D not all families are continuous across

the grid. However, the underlying distribution of successful
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Fig. 8. 2D push: Joint angle trajectories produced by PPO. Colors
correspond to the same grid points as the trajectories in fig. 7.

motions, visualized in fig. 5 right, shows that for most grid

points multiple families can produce successful motions. For

the final policy we select the family resulting in the highest

reward for each grid point, which can lead to discontinuities.

Alternatively, the space could be segmented into continuous

families based on the results shown in fig. 5 right.

The observed joint angle trajectories are tightly clustered

within each motion family as depicted in fig. 7. This indi-

cates that arm motions are similar within the same motion

family and that each family produces distinct behaviors.

For instance, goal locations to the left require pushes using

primarily the right arm (fig. 6 magenta). For central goal

locations the robot uses both arms (light purple) and for

locations to the right mainly the left arm is used (green).

This can be especially useful for motion planning to solve

tasks that require multiple pushes in sequence.

To compare our approach to PPO, we evaluate pushing

behaviors generated by PPO for the same grid points as

discussed previously, and plot the corresponding observed

joint angle time series in fig. 8. Overall, PPO is able to

generate diverse motions across the grid, however, as can

be seen in fig. 8 the policy exploits the simulation physics

resulting in unnatural and jerky motions. For example, the

robot oscillates the arms to generate momentum towards

the goal. Contrary to the reflex based approach, there is

no distinct correlation between joint angle trajectories and

goal locations. In addition to the typical caveats of sim2real

(small changes in the environment or unknown obstacles

could cause failure), this behavior is undesirable as it creates

unpredictable and unsafe motions. Reward engineering and

dynamics or domain randomization [33] could help to create

more transferable RL policies, but would further decrease

sample efficiency and significantly increase training time.

VII. REAL ROBOT EXPERIMENTS

To validate that we can directly transfer a learned control

policy from simulation to the real robot, we use the PushBot

robot described in section III to run the reflex controller

learned for the 2D push simulation task. In the experiment,

we accelerate the robot towards an obstacle, and trigger the

push off reflex controller when either piezo vibration sensor

returns a binary contact signal. We select three goal locations

to the right, left and center of the robot, and for each goal,

we choose a corresponding pushing configuration from the

motion families found in simulation. The resulting push off

motions are shown in fig. 1 and in the supplemental video.

VIII. CONCLUSION AND FUTURE WORK

In this work we investigate the problem of learning highly

dynamic interactions. We present a reflex-based approach,

and show that we are able to learn to push off in a

simulated environment. Our approach achieves success rates

comparable to state-of-the-art model-free RL, but produces

distinct clusters of smooth and predictable arm trajectories.

We show that these can directly be deployed on a real robot

without further retraining and hand tuning.

In future, we hope to compare sim2real results from the

reflex controller to those from PPO. The challenge is that

sim2real with PPO requires that the real robot observes its

full state at all times. In contrast, for the reflex controller, it

is sufficient for the robot to know its initial velocity (fixed for

our examples) and the goal position relative to contact. No

observations were required for the reflex controller except

to recognize when the contact event occurred, which was

accomplished with sensors at the end effectors.

A second area of future work would be to explore inverse

dynamics as an alternative to reflex control. The challenge is

that inverse dynamics control requires the robot to maintain

desired contact forces during the push. In contrast, our reflex

controller learns and optimizes the effect of simple kinematic

controls that are easy for the robot to achieve.

Finally, we look forward to scaling these results to more

complex systems and scenarios. For the reflex controller, the

state information required may be represented as velocity of

the robot prior to contact and location of the goal in the local

coordinate frame of the surface. Although the required state

information has greater dimension than the examples shown

in this paper, the number of additional parameters is not

large. In contrast, unless similar abstractions are employed,

the PPO algorithm must scale up to the full state space of the

more complex robot and scenarios, and will have many more

additional parameters. To further improve scalability of the

reflex approach, we intend to explore adaptive sampling —

the presence of continuous families allows us to make good

estimates within large regions using simple interpolation of

parameters. An adaptive sampling approach would evaluate

random samples based on their interpolation result and

only optimize a new solution if the interpolated result was

inadequate. We look forward to testing these ideas with the

CMU ballbot and its 7 DoF arms [34].
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