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Abstract— Robots deployed in many real-world settings need
to be able to acquire new skills and solve new tasks over time.
Prior works on planning with skills often make assumptions
on the structure of skills and tasks, such as subgoal skills,
shared skill implementations, or task-specific plan skeletons,
which limit adaptation to new skills and tasks. By contrast,
we propose doing task planning by jointly searching in the
space of parameterized skills using high-level skill effect models
learned in simulation. We use an iterative training procedure
to efficiently generate relevant data to train such models.
Our approach allows flexible skill parameterizations and task
specifications to facilitate lifelong learning in general-purpose
domains. Experiments demonstrate the ability of our planner
to integrate new skills in a lifelong manner, finding new task
strategies with lower costs in both train and test tasks. We
additionally show that our method can transfer to the real
world without further fine-tuning.

I. INTRODUCTION

Lifelong-learning robots need to be able to plan with new

skills and for new tasks over time [1]. For example, a home

robot may initially have skills to rinse dishes and place them

individually on a rack. Later, the robot might obtain a new

skill of operating a dishwasher. Now the robot can plan to

either wash the dishes one by one or use the dishwasher

depending on the costs of each skill and the number of dishes

to be cleaned. In other words, robots need to be able to

obtain and use new skills over time to either adapt to new

scenarios, solve new tasks, or to improve performance on

existing tasks. Otherwise, the robot engineer would need to

account for all potential tasks and strategies the robot can

use before deployment. As such, we propose a task planning

system that can efficiently incorporate new skills and plan

for new tasks in a lifelong robot manipulation setting.

To create such a versatile manipulation system, we use

parameterized skills that can be adapted to different scenarios

by selecting suitable parameter values. We identify three

properties of skills that are important to support in this

context: 1) skills can have different implementations, 2)

skills can have different parameters which can take discrete,

continuous, or mixed values, and 3) skill parameters may

or may not correspond to subgoals. Property one means the

skills can be implemented in a variety of manners, e.g., hard-

coded, learned without models, or optimized with models.

This requires relaxing the assumptions placed on the skill

structures made in previous works, such as implementing all
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Fig. 1: Overview of the proposed search-based task planning framework
with learned skill effect models (SEMs) for lifelong robotic manipulation.
New skills and training tasks can be added incrementally. We collect skill
effects data by running the planner using all skills on all training tasks in
simulation. The collected data is used to train GNN SEMs for new skills or
fine-tune models of existing skills. Learned models predict both the terminal
state and cost of skill executions. The planner can use SEMs to plan low-
cost paths on test tasks in the real world. This approach supports planning
1) with a set of differently parameterized skills that can grow over time and
2) for test tasks unseen during training.

skills with the same skill-conditioning embedding space [2]–

[5]. Property two requires the task planner to not assume

any fixed structure for skill parameters. Unlike previous

works [6], [7], each skill can utilize a different number of

parameters, and these parameters can be a mix of discrete

and continuous values. Property three means that instead of

chaining together skill subgoals, the planner needs to reason

about the effects of the skills for different parameter values.

For example, the home robot may need to predict how clean

a plate is for different rinsing durations.

Planning for new tasks requires the planner to be flexible

about the structure of task specifications. One way to do

this is by using either goal condition functions or goal

distributions [8], instead of shared representations like task

embeddings [9] or specific goal states [5], [6], [10], [11].

Using predefined task representations limits the type of

tasks a robot can do, and using learned task embeddings

may require fine-tuning on new tasks. Only having a goal

condition function also makes it more difficult to represent

a task as an input to a general value or policy function

implemented using a function approximator.

To satisfy the skill and task requirements for the lifelong

manipulation planning problem, we propose a task planning

system that performs search-based planning with learned

effects of parameterized skills. Search-based methods di-

rectly plan in the space of skill-parameter tuples. A key
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advantage of search-based planning methods is they can

use skills regardless of parameter choices or implementation

details, and only need a general goal condition check to

evaluate task completion.

To efficiently use search-based planning methods for task

planning, we propose to learn skill effect models (SEMs).

SEMs are learned instead of hardcoded or simulated, since

manually engineering models is not scalable for complex

skills and simulations are too expensive to perform online

during planning. Every skill has its own SEM that predicts

the terminal state and costs of a skill execution given a

start state and skill parameters. We interleave training SEMs

with generating training data by running the planner with the

learned SEMs on a set of training tasks. Our data collection

method efficiently collects skill execution data relevant for

planning, and supports the addition of new skills and tasks

over time. The planner uses the SEMs to plan for existing

tasks with different initial states, as well as new test tasks.

Our contributions are 1) a search-based task planning

framework with learned skill-effect models that 2) relaxes

assumptions of skill and task representations in prior works;

skill effect models are learned with 3) an iterative data

collection scheme that efficiently collects relevant train-

ing data, and together they enable 4) planning with new

skills and tasks in a lifelong manner. Please see sup-

plementary materials, with additional results and experi-

ment videos, at https://sites.google.com/view/

sem-for-lifelong-manipulation.

II. RELATED WORKS

Subgoal skills. Many prior works approached planning

with skills with the subgoal skill assumption. The successful

execution of a subgoal skill always results in the same

state or a state that satisfies the same preconditions of all

skills, regardless of where the skill began in its initiation

set [12]. As such, the skill effects are always known, and

such approaches instead focus on learning preconditions [6]

of goal-conditioned policies, efficiently finding parameters

that satisfy preconditions [7], [13], or learning feasible skill

sequences [11]. While subgoal planning is powerful, it limits

the types of skills the robot can use.

Non-subgoal skills. For works that plan with non-subgoal

skills, many represent the skill policy as a neural network that

takes as input both the state and an embedding that defines

the skill. This can be viewed as planning with one parameter-

ized skill or a class of non-parameterized skills, each defined

by a different embedding. Such skills can be discovered by

experience in the real world [3] and in learned models [2],

[4], or learned from demonstrations [5]. Planning with these

skills is typically done via Model Predictive Control (MPC),

where a short sequence of continuous skill embeddings is

optimized, and replanning occurs after every skill execution.

While these approaches do not assume subgoal skills, they

require skills to share the same implementation and space of

conditioning embeddings, and MPC-style planning cannot

easily support planning with multiple skills with different

parameter representations [3]–[6].

Planning with parameterized skills. To jointly plan

sequences of different skills and parameters, works have pro-

posed a two-stage approach, where the planner first chooses

the skills, then optimizes skill parameters [13]–[15]. Unlike

directly searching with skills and parameters, it is difficult for

two-stage approaches to give guarantees on solution quality.

Some also require hardcoded or learned plan skeletons [13],

[15], which limits the planner’s applicability to new tasks.

Instead of planning, an alternative approach is to learn to

solve Markov Decision Processes (MDPs) with parameter-

ized skills [16]–[18]. However, learning value or policy func-

tions typically requires a fixed representation for function

approximators, so these methods cannot easily adapt to new

skills and skills with parameters with different dimensions

or modalities (e.g. mixed continuous and discrete). Doing so

for search-based planning can be done by directly appending

new skills when expanding a node for successors.

Obtaining skill effects. Many prior works used simulated

skill outcomes during planning [14], [19]–[21]. This can

be prohibitively expensive to perform online, depending on

the complexity of simulation and the duration of each skill.

To avoid simulation rollouts, works have used hardcoded

analytical [22], [23] or symbolic [24]–[26] skill effect mod-

els. Manually engineering such models may not always be

feasible, and they do not easily scale to changes in skills,

dynamics, and tasks. Although symbolic models can be

automatically learned [12], [27]–[30], these approaches also

make the subgoal skill assumption. By contrast, our method,

which learns skill effect models in continuous states without

relying on symbols, can plan with both subgoal skills as well

as skills that do not share this property.

The works most closely related to ours are [15] and [30].

In [15], the authors jointly train latent dynamics, latent

preconditions, and parameter samplers for hardcoded skills

and a model that proposes plan skeletons. Planning is done

MPC-style by optimizing skill parameters with the fixed plan

skeleton. Although this approach does not assume subgoal

skills and supports skills with different parameters, learning

task-specific plan skeletons and skill parameter samplers

makes it difficult to use for new tasks without finetuning.

The method in [30] learns to efficiently sample skill param-

eters that satisfy preconditions. Task planning is done using

PDDLStream [31], which supports adding new skills and

tasks. Though this approach does not use subgoal parameters,

the desired skill outcomes are narrow and predefined, and the

learned parameter sampler aims to achieve these predefined

effects. As such, the method shares the limitations of works

with subgoal skills, where the skill-level transition model is

not learned but predefined as the subgoals.

III. TASK PLANNING WITH LEARNED SKILL EFFECT

MODELS

The proposed method consists of two main components -

learning skill effect models (SEMs) for parameterized skills

and using SEMs in search-based task planning. These two

components are interleaved together - we run the planner on

a set of training tasks using SEMs to generate data, which
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is used iteratively to further train the SEMs. New skills and

training tasks can be added to the pipeline because the plan-

ner and the SEMs do not assume particular implementations

of skills and tasks. The planner can also directly apply the

learned SEMs to solve test tasks. See overview in Figure 1.

A. Skill Planning Problem Formulation

Parameterized skills. Central to our approach is the

options formulation of skills [12], [32]. Denote a param-

eterized skill as o with parameters θ ∈ Θ. Parameters

are skill-specific and may contain subgoal information such

as the target object pose for a pick-and-place skill. We

assume a fully observable state x ∈ X that contains all

information necessary for task planning, cost evaluations, and

skill executions. We define the low-level action u ∈ U as the

command sent to the robot by a low-level controller shared

by all skills (e.g. torque).

In our formulation, a parameterized skill o contains

the following 5 elements: an initiation set (precondition)

Io(x, θ) → {0, 1}, a parameter generator that samples valid

parameters from a distribution po(θ|I(x, θi) = 1), a policy

πo(x) → u, a termination condition βo(x, θ, t) → {0, 1},

and the skill effects fo(xt, θ) → xt+T , where T is the

time it took for the skill to terminate. To execute skill o

at state x with parameters θ, we first check if (x, θ) satisfies

the preconditions Io. If it does, then we run the skill’s

policy πo until the termination condition is satisfied. We

assume that the preconditions, parameter generator, policy,

and termination conditions are given, and the skill effects

are unknown but can be obtained by simulating the policy.

To enable reasonable planning speeds, the SEMs learn to

predict these skill-level transitions.

To justify the assumption of given skill preconditions, we

note that our preconditions are broader than ones in prior

works and consequently can be easily manually defined.

Preconditions in many prior works, especially ones that

use subgoal skills, are only satisfied when a specific out-

come is reached, so they may require learning sophisticated

functions to classify which (state, parameter) tuple lead

to the intended outcome [15], [30]. By contrast, because

we allow non-subgoal skills, our preconditions are satisfied

if skill execution leads to any non-trivial and potentially

desirable outcome. For example, for a table sweeping skill,

the preconditions are satisfied as long as the robot sweeps

something, instead of requiring sweeping specific objects

into specific target regions. Due to the broad and simple

nature of our more flexible preconditions, we argue it is

reasonable to assume they are given.

Task planning of skills and parameters. Before speci-

fying tasks, we first define a background, task-agnostic cost

c(xt, ut) ≥ 0 that should be minimized for all tasks. This

cost is accumulated at each step of skill o execution, so the

total skill cost is co =
∑T

t=0
c(xt, ut). A task is specified

by a goal condition G(x) → {0, 1} that classifies whether

or not a state achieves the task. We denote a sequence

of skills, parameters, and their incurred states as a path

P = (x0, o0, θ0, x1, . . . xn, on, θn, xn+1, . . . , xN ), where N

is the number of skill executions, and the subscripts indicate

the nth skill in the sequence (not time). We assume the

environment dynamics and skill policies are deterministic.

The task planning problem is to find a path P such that the

goal condition is satisfied at the end of the last skill, but not

sooner, and the sequence of skill executions is feasible and

valid. See equation 1.

min
P

N−1∑

n=0

con (1)

s.t. G(xN ) = 1

∀n ∈ [0, N − 1],G(xn) = 0

Ion(xn, θn) = 1,fon(xn, θn) = xn+1

Note that θ, Io, and fo are all skill-specific, so with M

types of skills, there are M different parameter spaces,

preconditions, and skill effects.

B. Learning Skill Effect Models (SEMs)

Defining SEMs for manipulation skills. We learn a

separate SEM for each skill, which takes as input the current

state xt and a skill parameter θ. The SEM predicts the

terminal state xt+T reached by the skill when it is executed

from xt using θ and the total skill execution cost co. We

assume SEMs are queried only with state and parameter

tuples that satisfy the precondition. Because we focus on

the robot manipulation domain, we assume the state space

X can be decomposed into a list of object-centric features

that describe discrete objects or robots in the scene.

We represent SEMs using Graph Neural Networks

(GNNs), because their inductive bias can efficiently model

interactions among entities through message passing, encode

order-invariance, and support different numbers of nodes and

edges during training and testing [33]–[36]. Each node in

the SEM GNN corresponds to an object in the scene and

contains features relevant to that object from the state x. We

denote these object features as sk ∈ R
S , where k denotes the

kth object in the scene. Because a skill may directly affect

multiple objects, each node also contains the skill parameters

θ as additional node features. The full node feature is the

concatenation of [sk, θ]. There are no edge features. The

network makes one node-level prediction, the change in

object features ∆sk, and one graph-level prediction, the total

skill execution cost co. As SEMs make long-term predictions

about the entire skill execution, the graph is fully connected

to allow all objects to interact with each other, not just

objects that are initially nearby. The loss function to train

SEMs for a single step of skill execution prediction is L =
λc‖co − ĉo‖

2
2 +

λs

K

∑K

k=1
‖∆sk − ∆̂sk‖

2
2. The hat notation

denotes predicted quantities, and the λs are positive scalars

that tune the relative weights between the loss terms. The

GNN is implemented with PyTorch Geometric [37].

SEMs enable efficient planning of diverse parameterized

skills, as well as two additional benefits. First, because the

model is on the skill-level, not action-level, it only needs one

evaluation to predict the effects of a skill execution, which

reduces planning time as well as covariate shift by reducing
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the number of sequential predictions [38]–[41]. Second, a

long-horizon skill-level model can leverage a skill’s ability

to act as a funnel in state space during execution, which

simplifies the learning problem.

Collecting diverse and relevant data for training SEMs.

To learn accurate and generalizable SEMs, they must be

trained on a set of skill execution data that is both diverse

and relevant to task planning. While we assume knowledge

of the initial state distribution of all tasks, we do not know

the distribution of all states visited during planning and

execution. As we cannot manually specify this incurred state

distribution, we obtain it and train the SEMs in an iterative

fashion that interleaves SEM training with data generation

by planning and execution, as seen in Figure 1. First, given

an initial set of skills, we generate single skill execution

transitions from the known initial state distribution. This

data is used to train the initial SEMs. Then, given a set of

training tasks, we use the planner to plan for these tasks

using the learned SEMs across a set of initial states. The

planner terminates when it finds a path to the goal or reaches

a fixed planning budget (reaching maximum number of nodes

expanded, maximum search depth, or maximum planning

time). Then we sample paths in the graph and simulate them

to collect skill execution data, which is added to a dataset

of all skill data collected so far. Path sampling is biased

toward longer paths and ones that have the newly added

skills. The transitions added are filtered for duplicates, since

multiple paths in a planning graph may share the same initial

segments which would bias the dataset towards transitions

closer to the initial states. After a fixed amount of path data

is collected, we continue training the SEMs on the updated

dataset before restarting the data collection process. In the

beginning, it is expected that the planner performance will be

highly suboptimal due to the inaccurate initial SEMs. While

we use simulation data due to benefits in speed, this is not a

requirement and SEMs can be trained with real-world data.

Planning with new skills. The above procedure supports

incrementally expanding the list of skills used by the planner.

Given a new skill, we first train an initial SEM by sampling

from the initial state distribution, then during planning data

generation the search-based planner can use the new SEM

to get successors. SEMs for new and existing skills will be

improved and continuously trained on this new planning data.

Fine-tuning previous SEMs is needed, because the new skill

might have incurred states that were previously absent from

the dataset. Although this fine-tuning may not be necessary

in specific cases, we leave detecting such scenarios and

reducing overall training budget to future work. Learning

one SEM for each skill allows for different parameter spaces

(e.g. dimensions, discrete, continuous, mixed) that cannot be

easily represented with a shared, common model.

Planning with new tasks. Because the planner does not

rely on predefined plan skeletons, it can directly use SEMs

to plan for new tasks. Two main factors about data collection

affect the generalization capability of the SEMs when applied

to unseen test tasks. The first is whether the states incurred

while planning for training tasks are sufficiently diverse and

Task A Task B Task C Task D

Fig. 2: Different tasks used in our experiments. The top row shows
examples of initial states, the bottom shows examples of goal states. Left:

blocks to bin tasks (tasks (A,B)). Right: blocks to far bin tasks (tasks (C,D)).

relevant to cover the states incurred by planning for test

tasks. The second is the planner itself — how greedy is

its search and how much it explores the state space. Many

planners have hyperparameters that can directly balance this

exploration-exploitation trade-off.

C. Search-based Task Planning

We pose task planning as a graph search problem over

a directed graph, where each node is a state x, and each

directed edge from x to x′ is a tuple (o, θ) such that

fo(x, θ) = x′. Edges also contain the costs of skill executions

co. During search, this graph is constructed implicitly. Given

a node to expand, we iterate over all skills, generate up

to Bo parameters per skill that satisfy the preconditions,

then evaluate the skill-level dynamics on all state-parameter

tuples to generate successor states. Bo decides the maximum

branching factor on the graph. This number varies per

skill, because some skills have a broader range of potential

parameters than others, requiring more samples.

To search on this graph, we apply Weighted A* (WA*),

which guarantees completeness on the given graph. If the

heuristic is admissible, WA* also guarantees the solution

found is no worse than εc∗, where c∗ is the cost of the

optimal path and ε determines how greedily the search

follows the heuristic. We assume an admissible heuristic is

given. This is in line with previous works that have shaped

rewards or costs that guide the planner [3], [5], [6], [15].

The proposed method enables planning with new skills

and to solve new tasks in continuous states. Planning for new

tasks is done by replacing the heuristic and goal conditions,

which does not affect the graph construction procedure or the

SEMs. Searching in continuous states is more flexible than

searching in symbolic states, and it is not necessarily slower.

Flexibility comes from the ability to integrate new skills and

tasks without needing to create new symbols. Planning speed

depends on the size of the action space (branching factor)

and the state space. Using symbolic instead of continuous

states does not reduce the branching factor, and partitioning

continuous states into symbolic states without subgoal skills

yield little benefits [12].

IV. EXPERIMENTS

Our main experiment analyzes the effect of incrementally

adding new skills to the proposed method on planning

performance of both train and test tasks. We apply our

method to a block manipulation domain (Figure 2) because it

can be reliably simulated, contains a diverse set of skills, and
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the skills have broader applications in desktop manipulation

and tool use. In addition, we show our approach compares

favorably against planning with simulation and the benefits

of using planning data to train SEMs. Lastly, we show the

generalizability of our method by deploying it in a real-world

setup. More experiment details are in Appendix-II.

A. Task Domain

The task domain has a Franka Emika Panda 7 DoF

arm, a set of colored blocks, a table, a tray, and a bin.

On the table, blocks of the same size and different colors

are initialized in random order on a grid with noisy pose

perturbations. The tray on the table can be used as a tool

to carry and sweep the blocks. Beside the table is a bin,

which is divided into two regions, the half which is closer to

the robot, and the half that is farther away. The state space

contains the 3D position of each block, color, and index.

We implement the task domain in Nvidia Isaac Gym [42],

a GPU-accelerated robotics simulator [43] that enables fast

parallel data collection.

Skills. We experiment with four skills: Pick and Place

(Figure 1 skill 1) moves a chosen block to a target location.

It has a mixed discrete and continuous parameter space —

which object to pick and its placement location. Tray Slide

(Figure 1 skill 2) grasps the tray, moves it to the bin, and tilts

it down, emptying any blocks on it into the bin. Its parameter

is a continuous value defining where along the length of the

bin to rotate the tray. Tray Sweep (Figure 1 skill 3) uses

the tray to perform a sweeping motion along the table. Its

parameter specifies where to start the sweeping motion, and

the sweep motion ends at the table’s edge. Bin Tilt (Figure 1

skill 4) grasps the handle at the side of the bin and tilts the bin

by lifting the handle, which moves blocks in the bin from the

close half to the far half. Skills are implemented by following

open-loop trajectories defined by the skill parameters. We did

not learn more complex skills as our work focuses on task

planning and not skill learning.

Tasks. We evaluate on four different tasks (Figure 2) that

are variations of moving specific sets of blocks to different

regions in the bin. Two tasks are used to collect SEM training

data: Move All Blocks to Bin (A) and Move All Blocks to

Far Bin (C), while the remaining two are used to evaluate

learned SEMs: Move Red Blocks to Bin (B) and Move Red

Blocks to Far Bin (D). Each task uses the same background

cost function, which is the distance the robot’s end-effector

travels, plus a small penalty for placing the gripper inside

the bin. The admissible heuristic used is the mean distance

of each block to the closest point in their target regions.

While Pick and Place can make substantial progress on all

tasks, it alone is not sufficient because kinematic constraints

inhibit the robot from directly placing blocks on the far side

of the bin, so Bin Tilt or Tray Slide is needed. Additionally,

using other skills can achieve lower costs; Tray Sweep can

quickly move multiple blocks into the bin, but this may move

blocks that need to stay on the table. The sequence of skills

may change depending on the initial placement of the blocks,

and the path needs to be low-cost.

Tasks A, B

Tasks C, D

Fig. 3: Task execution costs plotted over time as new skills are learned and
integrated in a lifelong manner. Blue vertical lines signify the addition of
a new skill. Weighted costs are calculated by weighting the task cost with
the success rate.

Tasks A, B

Tasks C, D

Fig. 4: Task execution success rate for each new added skill. Each skill is
being added over time. Orange are train tasks; purple are test tasks. Solid
lines are planning with new skills; dashed are with any skills.

B. Lifelong Task Planning Results

To evaluate our approach for lifelong integration of new

skills, we add the four skills over time using the iterative

training procedure. We evaluate two scenarios, first in which

the train-test task pair are respectively tasks A and B, and

second with C and D. In each case, the robot starts with

only Pick and Place, while Tray Slide, Tray Sweep, and Bin

Tilt are added successively in that order at pre-determined

intervals. We measure planning performance using execution

costs, execution success, and planning time. For each goal,

the robot plans only once from the initial state, which

terminates when it succeeds or times out.

Figure 3 plots the execution costs over time for both

scenarios. The proposed method is able to incorporate new

skills over time, lowering execution costs when applicable

by planning with new skills. For example, adding Tray Slide

allows the planner to find plans with significantly reduced
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Task Sim SEMs (Ours)

A 776.19 (46.9) 1.3 (0.7)
C 1736.8 (187.) 0.98 (0.3)

TABLE I: Comparing plan times in seconds using simulator vs. SEMs.
Parenthesis indicate standard deviations.

Task Pick-Place +Tray-Slide +Tray Sweep +Tilt Bin

A 11.3 (3.4) 20.2 (7.9) 0.6 (0.5) 1.3 (0.7)
B 7.4 (2.3) 14.9 (8.2) 18.0 (14.3) 22.1 (12.4)

TABLE II: Plan times (seconds) using SEMs for objects to bin tasks (A,
B) with an increasing number of skills.

Fig. 5: Success on task B with SEM trained on random vs. planner data.

costs across all tasks, since multiple blocks can now be

moved together. In other cases, adding a new skill does not

affect task performance. One example is adding Bin Tilt to

the blocks to anywhere in bin tasks (A,B), because the main

use of the skill is to move blocks to the far side of the bin.

Another is on adding Tray Sweep — it significantly reduced

costs for moving all blocks to the bin (A,C), but less so for

moving only red blocks to the bin (B,D). This is because

sweeping is only useful for the latter task when multiple red

blocks line up in a column near the bin, which rarely occurs

in the randomly initialized states.

Figure 4 plots the success rate of finding successful

plans (dashed) and optimal plans (solid) with new skills.

Immediately after adding a new skill, there is insufficient

data to learn a robust SEM, so the planner is unlikely to

find optimal plans using the new skill. Or, if it does find

a plan, the plan often leads to execution failures. As more

data is collected, SEM accuracy improves and the probability

of finding optimal plans increases. Figure 4 also shows

how some tasks can only be completed after a new skill

is incorporated. For instance, with just Pick and Place, the

robot can accomplish blocks to bin tasks (A,B), but fails to

plan for the blocks in far bin tasks (C,D). Adding new skills

for (A,B) did not change the success rate of the task, which

remained at 100%, although the composition of the plans

found does change. For (C,D), adding Tray Slide enabled

100% success rate, while adding Tray Sweep did not affect

plan compositions, but adding Bin Tilt did. These results

show that our proposed method can learn skill effects and

plan with SEMs in a lifelong manner, and that SEMs can

plan for new tasks without additional task-specific learning.

Qualitative results can be found in Appendix V.

Planning with a Simulator. To highlight the need for

learning SEMs instead of simulating skill effects for task

Success Cost

Pick and Place 1.0 6.68 (0.3)
+Tray Slide 0.9 3.9 (0.9)
+Tray Sweep 0.8 2.61 (0.7)

TABLE III: Real-world results on Red Blocks to Bin. Costs: mean (std).

planning, we compare their planning times in Table I. We

only benchmarked cases where the tasks are about moving

all blocks and all skills are available. On average, using

the learned model takes less than a second while using the

simulator takes ten minutes to half an hour. Note that these

results leverage the simulator’s ability to simulate many skill

executions concurrently. Thus, using the simulator for more

complex scenarios is prohibitively time consuming due to 1)

the large branching factor and 2) a skill’s extended horizon,

which is much longer than single-step low-level actions or

short-horizon motion primitives. Additionally, Table II shows

the plan times for SEMs with increasing number of skills.

In all cases our planner find plans in less than half a minute.

Training on Planning Data vs. Random Data. To

evaluate the benefits of using planning data for the iterative

training of SEMs, we compare the test-task success rate be-

tween our approach and one that generates data by executing

random skill sequences. See results in Figure 5. Training

on planning data achieves higher success rates using fewer

samples than training on random data does, illustrating the

benefit of guiding data collection using a planner.

Real-world Results. We built our task domain in the real

world (test tasks in Figure 1) and used the learned SEMs to

plan for the test task B. Three sets of planning experiments

were performed, one with only Pick and Place, one

with the addition of Tray Slide, and one with the addition of

Tray Sweep. Each set of experiments in Table III consists of

10 planning trials with different initial block configurations.

These results are similar to the ones shown in the task

A test curves in Figure 3. The differences are due to the

small changes in real-world object locations and controller

implementations. While we did not fine-tune SEMs on real-

world data, doing so may improve real-world performance.

V. CONCLUSION

We propose using search-based task planning with learned

skill effect models (SEMs) for lifelong robotic manipulation.

Our approach relaxes prior works’ assumptions on skill and

task representations, enabling planning with more diverse

skills and solving new tasks over time. Using SEMs improves

planning speed, while the proposed iterative training scheme

efficiently collects relevant data for training.

In future work, we will scale our method to larger number

of skills and parameters by using partial expansions and

learned parameter samplers. We will also explore estimating

model uncertainty, using that to both steer planning away

from uncertain regions and also fine-tune existing SEMs only

on data about which the models are sufficiently uncertain.
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