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Inevitably, almost all cancer patients develop resistance to targeted therapy.
Intratumour heterogeneity is a major cause of drug resistance. Mathematical
models that explain experiments quantitatively are useful in understanding
the origin of intratumour heterogeneity, which then could be used to explore
scenarios for efficacious therapy. Here, we develop a mathematical model
to investigate intratumour heterogeneity in breast cancer by exploiting the
observation that HER2+ and HER2− cells could divide symmetrically
or asymmetrically. Our predictions for the evolution of cell fractions are
in quantitative agreement with single-cell experiments. Remarkably, the
colony size of HER2+ cells emerging from a single HER2− cell (or vice
versa), which occurs in about four cell doublings, also agrees with exper-
imental results, without tweaking any parameter in the model. The theory
explains experimental data on the responses of breast tumours under differ-
ent treatment protocols. We then used the model to predict that, not only the
order of two drugs, but also the treatment period for each drug and the
tumour cell plasticity could be manipulated to improve the treatment effi-
cacy. Mathematical models, when integrated with data on patients, make
possible exploration of a broad range of parameters readily, which might
provide insights in devising effective therapies.

1. Introduction
Nearly 10 million people died of cancer worldwide in 2020 [1], despite
innovations in the development of many novel drugs. In principle, the
advent of new technologies ought to make drugs highly efficacious while
minimizing toxicity. The next-generation sequencing allows us to design
personalized therapy, targeting specific genetic variants which drive disease
progression [2,3]. However, drug resistance ultimately occurs, regardless of
targeted therapeutic protocols, which poses a formidable challenge for oncolo-
gists [4]. A deeper understanding of the underlying resistance mechanism could
be useful in controlling the tumour burden and its relapse.

Intratumour heterogeneity, which denotes the coexistence of cancer cell
subpopulations with different genetic or phenotypic characteristics in a single
tumour [5,6], is the prominent cause of drug resistance and recurrence of
cancers [7–9]. With the development of deep-sequencing technologies and
sequencing at the single-cell level [10,11], intratumour genetic heterogeneity
has been observed in many cancer types [12–17]. Meanwhile, increasing evi-
dence shows that phenotypic variations in tumour cells (without clear genetic
alterations) also play a crucial role in cancer development and is presumed to
be one of the major reasons for the development of drug resistance in cancer
therapy [7,18]. However, the underlying mechanism of intratumour hetero-
geneity induced by the phenotypic variability of cancer cells is still elusive,
which represents an obstacle for the development of efficient treatments for
cancer patients [19].

The phenotypic heterogeneity of normal cells can emerge from cellular
plasticity, which is the ability of a cell to adopt different identities. Cellular
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plasticity is widespread in multicellular organisms, dictating
the development of organism, wound repair and tissue
regeneration [20–22]. One of the best-known examples is
the differentiation hierarchies in stem cells, which leads to
the production of progenitor cells, followed by the mature
differentiated cells [23,24].

It has been proposed that cancer might be derived
from cancer stem (or initiating) cells. The cancer stem cells
are similar to normal stem cells, but possess the ability to
produce all cell types found in a tumour sample, resulting in
intratumour heterogeneity [25–27]. However, the prospects of
a hierarchical organization, and also the unidirectional differ-
entiation of cancer stem cells have been challenged by recent
experimental observations [28–31]. Some ‘differentiated’
cancer cells are capable of switching back to the cancer stem
cells in breast cancer [28,29]. Melanoma cells do not show
any hierarchically organized structure as cells are capable of
switching between different phenotypes reversibly [30,31].
Several models that assume reversible state transitions have
been proposed to explain the observed stable equilibrium
among cancer cell subpopulations with different phenotypes
[28,32]. However, a detailed understanding of the underlying
mechanism driving the cell state transition is still lacking, as
most previous experimental observations are based on
measurements from bulk cell populations [28,29,31].

A recent insightful experiment tracked the evolution of
a single circulating tumour cell derived from oestrogen-
receptor (ER)-positive/human epidermal growth factor
receptor 2 (HER2)-negative (ER+ /HER2−) breast cancer
patients in vitro [33]. Surprisingly, HER2+ cells (with expression
ofHER2) emerge fromacell colony grown froma singleHER2−
cell within four cell doublings and vice versa. The single-cell
level experiment demonstrates that reversible transitions
occurred between the two breast cancer cell types, thus provid-
ing a clue to understanding the nature of cancer cell plasticity
observed in this and other experiments [28,29,31,33]. Because
normal stem cells can differentiate into non-stem cells through
asymmetric cell division [23], it is possible that cancer cells
might also change their identity by asymmetric division [34],
which is a potential cause of intratumour heterogeneity.

We noticed that the emergence of an altered cell pheno-
type is to be coupled to cell division, as indicated by the
experiments in which a cell of a specific genotype produces
daughter cells with an altered phenotype [33]. We developed
a theoretical model to describe the establishment of intratu-
mour heterogeneity from a single type of breast circulating
tumour cells. In quantitative agreement with experiments,
our model captures the tumour growth dynamics under
different initial conditions. It also naturally explains the emer-
gence and evolution of intratumour heterogeneity, initiated
from a single cell type, as discovered in a recent experiment
[33]. Based on the parameter values derived from the
tumour growth experiments, we predict the evolution of
cell fractions, and the colony size for the appearance of
HER2+ (HER2−) cell types starting from a single HER2−
(HER2+) cell. Remarkably, the predictions agree well with
the experimental observations. As a consequence of intratu-
mour heterogeneity, drug resistance develops rapidly, which
is also reproduced by our theory. By exploring a range of
parameters in the mathematical model, we found that
several factors strongly influence the growth dynamics of
the tumour. The insights from our study may be useful in
devising effective therapies [33,35].

2. Model and methods
2.1. Brief summary of the circulating breast cancer cells

experiments [33]
Using microfluidic CTC-iChip and fluorescence-activated cell
sorting (FACS), two different types of tumour cells, HER2+
and HER2− cells, are extracted and separated from fresh
whole blood of patients originally diagnosed with HER2−
breast cancer. No geneticmutation has been identified between
the two types of cells through single-cell sequencing. A hetero-
geneous cell population is observed in a few weeks as a cell
colony (or a single cell) of either type only (tagged with fluor-
escent proteins initially) grows in an ultra-lowattachment plate
with tumour sphere medium (Roswell ParkMemorial Institute
(RPMI) 1640 Medium, epidermal growth factor (20 ng ml−1),
basic fibroblast growth factor (20 ng ml−1), 1X B27, 1X
antibiotic/antimycotic) under hypoxic (4% O2) conditions.

For mouse xenograft assays and drug treatment, six-week-
old femaleNODscid gamma (NSG)mice from Jackson Labora-
tories were used. The green fluorescent protein-luciferase
labelled circulating tumour cells were injected into the fourth
right mammary fat pad. The growth of tumours in the mice
was tracked weekly using IVIS Lumina II (PerkinElmer) for
in vivo imaging.

2.2. Model
A recent experiment shows [33] that HER2+ (HER2−) cells can
produce daughter cells of the other type, HER2− (HER2+)
cells. In addition, a direct observation of the coupling between
cell phenotype changes and cell divisions is reported in other
related experiments [34]. We developed a mathematical model
in which the cell plasticity is coupled to cell division, as illus-
trated in figure 1a to understand the reversible transitions
between different cell types, the establishment of intratumor
heterogeneity, and also the complex drug responses observed
in experiments. The HER2+ (HER2−) cells divide in a sym-
metric way producing two identical HER2+ (HER2−) cells
with a rate K1 (K2) (see the green arrows in figure 1a). Asym-
metric cell division can also occurs for HER2+ (HER2−) cells
generating one HER2+ and one HER2− cell with a rate K12

(K21) (see the blue arrows in figure 1a), as noted in a similar
experiment for breast cancer cells [34]. It is also possible to pro-
duce two identical cells which differ from the parent cell type
through another type of symmetric cell division with a rate K13

(K31) [36] (see the grey dotted arrows in figure 1a). Because
such an event is rare in the experiments [33] we do not con-
sider it. Therefore, instead of a unidirectional process for the
stem cell differentiation [37], we introduced a bidirectional
state transition model through cell divisions without the hier-
archical organization [28,31].

The evolutions of the population size N1(t) for HER2+
cells and N2(t) for HER2− cells are described by the
following coupled equations:

dN1ðtÞ
dt

¼ K1N1ðtÞ þ K21N2ðtÞ ð2:1Þ

and

dN2ðtÞ
dt

¼ K2N2ðtÞ þ K12N1ðtÞ: ð2:2Þ

The total population size is N(t) =N1(t) +N2(t). Several
assumptions are used in our model. First, we do not consider

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210803

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 Ja

nu
ar

y 
20

22
 



apoptosis explicitly (unless drug treatments are applied),
which, if needed, can be incorporated into the rate constants
K1 and K2, allowing us to consider them as effective growth
rates. We also neglected the symmetric division events (K13,
K31 in figure 1a) that would produce two identical cells of a
different type from their mother cell because it rarely occurs
in the experiments and can be simply integrated into
the second terms in equations (2.1) and (2.2) in further
studies. In addition, the carrying capacity is not reached in
the experiments (see figure 3 and also in the electronic
supplementary material, figure S1, where a rapid tumour
growth is still observed at the end of experiments), so we
did not use logistic differential equations.

Let us define the fraction of HER2+ cells in the whole
population as f1(t)≡N1(t)/N(t), and the fraction f2(t) of
HER2− is given by f2(t) = 1− f1(t). Then, the evolution of
f1(t) can be derived from equations (2.1) and (2.2), leading to

df1ðtÞ
dt

¼ ðS% 2K21Þf1ðtÞ % ðSþ K12 % K21Þf1ðtÞ2 þ K21, ð2:3Þ

with S ; K1 % K2. Equation (2.3) shows that the evolution of
the cell fraction f1(t) (f2(t)) only depends on the rate difference
S of the two symmetric cell divisions but not their absolute

values K1 and K2. Therefore, there are only three (K12, K21

and S) free parameters in the model.
For simplicity, we assume that K12 =K21≡K0 for the pro-

duction of one cell type from the other. Actually, we find that
these two rates are quite small as the other cell type appears
only after several rounds of cell division events in the single-
cell experiments, and it is not necessary to give different
values to them in order to explain all the experimental results
discussed in this article. This turns out to be a reasonable
assumption. Then, equation (2.3) can be further simplified as

df1ðtÞ
dt

¼ ðS% 2K0Þf1ðtÞ % Sf1ðtÞ2 þ K0: ð2:4Þ

3. Results
3.1. Phenotypic equilibrium in a heterogeneous cancer

cell population
To demonstrate the cellular plasticity, a colony of a single-cell
type (either HER2+ or HER2− cells) is grown in culture for
eight weeks in the experiments (see Model and methods for
experimental details) [33]. Surprisingly, HER2− (HER2+)
cells naturally emerge from the initial HER2+ (HER2−) cell

HER2+
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Figure 1. The dynamics of HER2+/HER2− cells. (a) Illustration of the intratumour heterogeneity model for breast cancer. Both HER2+ and HER2− breast circulating
tumour cells may divide symmetrically, producing two identical HER2+ and HER2− cells with rates K1 and K2, respectively. They can also divide in an asymmetric
manner by producing one HER2+ and one HER2− cell with rates K12 and K21. The two cell types could divide symmetrically but produce the other cell type (see the
processes with rates of K13 and K31). A heterogeneous cell colony composed of both HER2+ and HER2− cells is established, irrespective of the initial cell states. (b)
Experimental data for the fraction ( f1(t)) of HER2+ cells as a function of time for three initial conditions: starting with HER2+ cells only (symbols in green), HER2−
cells only (symbols in violet) and the parental cultured circulating tumour cells (symbols in navy). Theoretical predictions are shown by the solid lines. The dash-
dotted line for the case of parental cultured circulating tumour cells is to guide the eye. The time course of HER2+ (green) and HER2− (navy) cell fractions ( f1(t)
and f2(t)) under the initial condition (c) f1(t = 0) = 1 and (d ) f1(t = 0) = 0.
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seeding within four weeks. The time course of the HER2+ cell
fraction, f1(t), is shown in figure 1b for different initial con-
ditions. The fraction f1(t) decreases slowly, reaching a plateau
with f1 & 78% after eight weeks of growth (see the green dia-
monds in figure 1b) starting exclusively from HER2+ cells.
On the other hand, f1(t) increases to 63% (not reaching a plateau
yet, a longer time required to reach the steady states) from zero
rapidly during the same time period, if the cell colony is seeded
only from HER2− cells (see the violet squares in figure 1b).
Finally, the HER2+ cell faction, f1(t), almost does not change
with time if the initial population is a mixture of both cell
types derived from the parental cultured circulating tumour
cells directly (see the navy circles in figure 1b). Therefore, a
steady-state level (with f1 & 78%, the value in the parental cul-
tured circulating tumour cells) is established between the two
different cell phenotypes at long times, irrespective of the initial
cell fraction.

To understand the experimental findings summarized in
figure 1b, we developed a mathematical model as illustrated
in figure 1a and described in the Model and methods section.
From equation (2.4) above and the stable equilibrium con-
dition observed for the two cell populations in experiments,
we obtain

0 ¼ ðS% 2K0Þf s1 % Sðf s1Þ
2 þ K0, ð3:1Þ

with the HER2+ cell fraction f s1 ¼ 0:78 in the stationary state.
Hence, we only need one more equation to fix the two free
parameters (K0 and S) in equation (3.1).

Given the initial condition, f1(t = 0) = 0, we find that K0 =
df1(t)/dt|t=0 from equation (2.4) directly. Therefore, the par-
ameter value K0≈ 0.09 per week is obtained using the first
two data points from the experiments starting with only
HER2− cells (see the violet squares in figure 1b). Finally, the
value of S can be calculated from equation (3.1), which
leads to S & 0:3 given the stable equilibrium condition
(f s1 ¼ 0:78) found in the two cell populations in experiments
(figure 1b). Hence, the time course of f1(t) can be calculated
by solving equation (2.4), given any initial condition, f1(t = 0).
Our theoretical predictions agree quantitatively with exper-
iments (see the green solid line and the diamonds with the
root-mean-square error, R = 0.046, and the violet solid line
and squares with the root-mean-square error, R = 0.035, in
figure 1b), which is interesting considering that we only
used two experimental data points. The time course of f1(t)
and f2(t) (the fraction of HER2− cells) in the same plot
under two initial conditions (figure 1c,d ) shows that the cell
fraction conversion from HER2+ to HER2− is very slow. By
contrast, the reverse process is rapid (see the slopes of the
curves in figure 1c,d ). However, it takes shorter time for the
system to reach the stationary state in the former case due
to the large value of f s1 in experiments.

3.2. Growth dynamics of cancer cell populations
The circulating tumour cells of HER2+ have a higher prolifer-
ation rate compared to HER2−, as noted in both in vitro and
in vivo experiments (see the electronic supplementary material,
figure S1, and it is also supported by the experiments showing
a much higher expression of the proliferation marker Ki67 in
HER2+ cells compared to HER2− cells) [33]. It is consistent
with the predictions of our model, which shows the rate
difference, S ; K1 % K2 & 0:3, between the two cell types.
Combined with the assumption that K12 =K21≡K0, it also

explains both the fast increase in f1(t) for the case when
growth is initiated from HER2− cells, and the slowly decay
of f1(t) as initial condition is altered (figure 1b). The different
dynamics of HER2+ is also associated with it being a more
aggressive phenotype, including increased invasiveness,
angiogenesis and reduced survival [38,39].

To understand the growth dynamics of the cell popu-
lations as a function of initial conditions (electronic supple-
mentary material, figure S1) quantitatively, we need to deter-
mine either K1 or K2. The other rate constant can be calculated
using, K1−K2≈ 0.3. We tuned the value of K2 and calculated
the total tumour size from equations (2.1) to (2.2) directly.
Then, we compared our theoretical calculations to the exper-
imental results to find the optimum value of K2≈ 0.7 per
week which captures the tumour growth (see the green,
navy solid lines and symbols in the electronic supplementary
material, figure S1). Note that K2≈ 0.7 implies that K1≈ 1.0
per week. We can also predict the growth dynamics at differ-
ent initial conditions, which could be tested in similar
experiments. From the values of the rate constants, we
would expect that the frequency for symmetric cell division
(the two daughter cells are identical to the parent cell) is
much higher than the asymmetric case for both the cell
types (K1 >K2≫K12, K21). This prediction could be tested
using single-cell experiments.

3.3. Cancer cell plasticity observed in single-cell
experiments

To further validate the model, we calculated the percentage
of HER2+/HER2− cells as a function of the cell colony size
starting from a single HER2+ or HER2− cell (not a cell
colony as the experiments shown in figure 1b). The sizes of
the cell colonies have been measured in experiments (see
the histograms in figure 2) [33]. From equations (2.1) to
(2.2), we computed the HER2+ (HER2−) cell fraction, f1 ( f2),
as a function of the cell colony size N with the initial con-
ditions N1(t = 0) = 1 and N2(t = 0) = 0 (N1(t = 0) = 0 and
N2(t = 0) = 1) using the same parameter values as given
above. Our theoretical predictions (see the solid line in
figure 2a,b) capture the main features of the experimental
observations without adjusting any parameter, especially
for figure 2a (with the root-mean-square error, R = 0.048).
We also found that the HER2− cell fraction (f1) decreases
faster than the HER2+ cell fraction (f2) as a function of the
colony size (N), which is due to the higher symmetric
division rate (K1 > K2) of HER2+ cells (figure 1c,d ).

Similarly, from equations (2.1) to (2.2), we can calculate the
total number of cells Nwhen the number of the other cell type
N1 (N2) is equal to one starting from N2 = 1 (N1 = 1). The value
ofN is around 5 and 8 obtained fromourmodel forHER2+ and
HER2− cells, respectively. And the experimental values
are found to be five to nine cells, which agrees well with our
theoretical predictions. Therefore, the model explains the
experimental observation that one cell phenotype can emerge
from the other spontaneously after four cell divisions.

3.4. Drug response in a heterogeneous breast cancer
cell population

It is known that HER2+ cells appear in patients initially diag-
nosed with ER+/HER2− breast cancer during treatment
[40,41]. Although each cell subpopulation is sensitive to a
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specific drug, the heterogeneous tumour shows varying
responses for distinct treatment protocols (see figure 3 as an
example). The size of an untreated tumour increases rapidly
(see the green circles) initiated from a mixture of two cell
types. A clear response is noted when Paclitaxel (targeting
HER2+ cells) is used, which results in reduced tumour
growth (see the navy down triangles). Surprisingly, the
tumour continues to grow rapidly, with no obvious response,
if treated by Notch inhibitor (see the dark yellow squares).
This is unexpected as the growth of HER2− cells (sensitive to
Notch inhibitor) is supposed to be inhibited by the drug.
Finally, the combination therapy with both the drugs, Pacli-
taxel and Notch inhibitor, administered to the tumours
simultaneously effectively delays the tumour recurrence (see
the violet up triangles). Given the potential synergies between
these drugs to constrain the growth of heterogeneous popu-
lations of cancer cells, a deeper understanding of the drug
resistance mechanism and evolutionary dynamics of each sub-
population quantitatively is warranted. Here, we use the
theoretical model above (figure 1a) to explore diverse
responses under different drug treatments (figure 3).

Parameter values that are similar to the ones used to
describe the experimental results in vitro are used but with

the least changes for all the parameters in order to capture
the tumour growth observed in in vivo experiments. By chan-
ging a rescaled factor β for K1 and K2 to estimate the rates
(Kvivo

a ¼ Ka=b, with α = 1 or 2) in vivo, we can calculate the
tumour (untreated) growth as a function of time and compare
it to the experimental results. We find the optimum value β≈
2.06, which captures the tumour growth behaviour in the in
vivo experiments (see the green circles and dashed line in
figure 3). The tumour seems to grow slower in vivo compared
to in vitro (β > 1), which could be caused by the different
imaging methods, or spatial constraint from other tissues,
extracellular matrix, nutrient supply, etc. [42].

HER2+ cells are sensitive to cytotoxic/oxidative stress
(such as Paclitaxel treatment) while the HER2− cell shows a
negligible response to Paclitaxel. On the other hand, Notch
and DNA damage pathways are activated in the HER2−
cell leading to sensitivity to Notch inhibition. However, the
HER2+ cells are resistant to drugs for Notch inhibition [33].
To assess the influence of drugs on tumour growth, we set
the effective growth rate Kvivo

1 (Kvivo
2 ) of symmetric cell div-

ision to a value γ1 = γ2 ≡ γ when the drug Paclitaxel (Notch
inhibitor) is used during treatment. Then, we calculate the
tumour size as a function of time under the treatment of
both drugs and compared it to the experimental results. We
find the best value γ≈−0.5, which captures the experimental
observation for tumour growth (see the dash-dotted line in
figure 3). We did not change the values of the asymmetric
division rate constants, K12 and K21, due to the small value
and also for simplicity.

Following the experimental protocol, we first let the
tumour grow from parental circulating tumour cells (78% of
HER2+ and 22% of HER2− cells) with an initial size taken at
week one. We then mimicked drug treatment from the third
week to the sixth week. Surprisingly, our theory describes the
growth dynamics of the heterogeneous tumour for different
drug treatments well (see the different lines in figure 3). Our
model successfully captured the inhibition of tumour growth
under Paclitaxel treatment. Also the weak response of
tumour under the treatment of Notch inhibitor emerges from
our model naturally.

To understand the three distinct responses of the tumours to
the drug treatments, shown in figure 3 further, we computed
the time dependence of the tumour size in the first six weeks
derived from our model with the treatment of either Notch
inhibitor or Paclitaxel (see the electronic supplementary
material, figures S2a and S2b). The tumour continues to grow
rapidly without showing any clear response when treated
with Notch inhibitor (see the symbols in navy in electronic sup-
plementary material, figure S2a), inhibiting the growth of
HER2− cells. Although unexpected, the observed response
can be explained from the cellular composition of the tumour.
The fraction of HER2+ cells is high (greater than 70%) before
drug treatment, and it increases monotonically to even higher
values (approx. 90%) during treatment, as shown in electronic
supplementary material, figure S2c. Considering the prolifer-
ation rate of HER2+ cells is higher than that of HER2− cells, it
is clear that Notch inhibitor only targets a minority of the
tumour cell population and its reduction can be quickly replen-
ished by the rapid growth of HER2+ (see the simple illustration
in electronic supplementary material, figure S2e, under the
treatment of Notch inhibitor).

Such a weak response is explained directly from the mean
fitness, the growth rate ω = (K1 +K12)f1 + (K2 +K21)f2, landscape

100
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Figure 2. The interconversion between HER2+ and HER2− cell types. (a)
The HER2+ cell fraction, f1 ( percentage), as a function of the total population
size N in a colony grown from a single HER2+ cell. (b) The HER2− cell frac-
tion, f2 ( percentage), as a function of N as the system develops from a single
HER2− cell. The error bar in y-axis gives the standard variation, while the
error bar in x-axis indicates the cell number range in which the cell fraction
is calculated.
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of the population, shown in figure 4. Without treatment, the
mean fitness ω has a large constant value (see the dotted and
solid lines in figure 4a,b), indicating that the tumour grows at
a steady rate aggressively. On the other hand, a relatively
large initial value (ω∼ 0.3; see the location of yellow parts of
the dotted or solid lines in figure 4c,d ) is still found, which
shows a continuous growing phase of the tumourwhen subject
to Notch inhibitor treatment. Therefore, no clear response
would be observed if this treatment protocol is used. In
addition, the tumour becomes even more aggressive with
time (see the increasing value of ω in figure 4c,d) until it reaches
a maximum rate close to the untreated case.

In contrast to the negligible effect of Notch inhibitor to the
progression of the heterogeneous tumour, Paclitaxel treat-
ment that targets the HER2+ cell leads to a clear reduction
in the tumour size, and delays cancer recurrence (see elec-
tronic supplementary material, figure S2b). Such a response
is due to the high fraction of the HER2+ cell in the tumour.
It leads to the slowly growing of HER2− cells, which
cannot compensate for the quick loss of HER2+ cells at the
start of the treatment (see the rapid decay of HER2+ cell frac-
tion in electronic supplementary material, figures S2d
and S2e, for illustration). However, the tumour recovers the
fast-growing phase in the fourth week (see electronic
supplementary material, figure S2b) after the drug is
used, corresponding to the time when the fraction of
HER2+ cell reaches around 0.5 (derived from our model
with ð0:5% K12Þf1ðtÞ ¼ ðKvivo

2 þ K21Þf2ðtÞ, and see also elec-
tronic supplementary material, figure S2d). Once the
fraction of HER2+ cells decreases to small values, the prolifer-
ation of resistant HER2− cells can compensate for the loss of
HER2+ cells. Just as discussed above, such a response can
also be seen directly from the fitness landscape of the popu-
lation under treatment of Paclitaxel (figure 4e,f ). The initial ω
(approx. −0.2) is negative during treatment (see the location

of yellow parts of the dotted or solid lines in figure 4e,f ),
which indicates a shrinkage of the tumour. Such a state
remains for some time until ω becomes positive. Although
the value of ω increases with time, the tumour grows at a
much lower rate at the end of Paclitaxel treatment compared
to the situation when Notch inhibitor is used (figure 4c–f ).

The fraction of HER2+ cells quickly recovers to the value
in the stationary state after drug removal (see electronic sup-
plementary material, figures S2c and S2d), and the tumour
grows aggressively again (see the insets in electronic sup-
plementary material, figures S2a,b and S2e, for illustration).
Therefore, the progression of the heterogeneous tumour
cannot be controlled by a single drug, as demonstrated in
the experiments, explained here quantitatively.

3.5. Sequential treatment strategy
Our theory and, more importantly, experiments show that the
utilization of two drugs simultaneously could significantly
delay the recurrence of tumours compared to the treatments
using only a single drug of either type (figure 3). However,
the quantity of drugs used in the former protocol is much
higher than in the latter case. Also, both drugs (Paclitaxel
and Notch inhibitor) have strong toxic side effects on normal
tissues [43,44]. In the following, we consider a sequential treat-
ment strategy with one drug followed by the treatment with
the other, which would reduce the quantity of drugs used,
and possibly reduce the toxic side effects.

In the sequential treatment, there are two alternative
methods depending on the order in which the drugs are
administered. We first let the tumour grow until the third
week, and then apply the first drug, Notch inhibitor (Pacli-
taxel), from the third to the sixth week followed by the
utilization of the second drug, Paclitaxel (Notch inhibitor),
from the sixth to the ninth week. We used the same parameter
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r s
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e
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Notch (experiment)
Paclitaxel (experiment)

Notch + Paclitaxel (experiment)
untreated (theory)
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Paclitaxel (theory)
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1 2 3 4 5

time (weeks)

6 7 8 9 10
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0

Figure 3. The dynamics of tumour growth under different conditions. The symbols represent results extracted from a recent experiment under four conditions [33].
The green circle shows the growth of mammary xenografts generated from parental circulating tumour cells (a mixture of HER2+ and HER2− cells) of breast cancer
patients without any drugs. The dark yellow square and blue down triangle illustrate the growth of mammary xenografts under treatment of Notch inhibitor
(γ-secretase inhibitor) and Paclitaxel from the third to the sixth week (indicated by the double-headed arrow), respectively. The violet up triangle corresponds
to the growth of mammary xenografts under treatment of both drugs simultaneously in the same period of time. The theoretical predictions for tumour
growth under the four different cases are shown by the lines. The tumour is imaged using IVIS Lumina II. Its size is in the unit of the photon flux, which is
proportional to the number of tumour cells.
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values as taken in figure 3. Interestingly, we predict a dramatic
difference between the responses of the tumours to the two
treatment methods (figure 5a). The tumour size shows no
clear response to the treatment by Notch inhibitor, increasing
rapidly until Paclitaxel is used (see the circles in navy in
figure 5a and a schematic illustration in the upper panel of
figure 5c). From the phase trajectory (see the circles in
figure 5b), a rapid increase of HER2+ cell population (N1) is
found while HER2− cell population (N2) decays slowly. By
contrast, just as shown in figure 3, a clear delay is observed

for the tumour growth when treated with Paclitaxel first fol-
lowed by Notch inhibitor (see the diamonds in pink and navy
in figure 5a and the lower panel of figure 5c for illustration).
Meanwhile, HER2+ and HER2− cell populations shrink
rapidly during each drug treatment, as illustrated by the
phase trajectory in figure 5b (see the diamonds). It indicates
the effectiveness of these two drugs. In addition, the
tumour size is always much smaller in the second protocol
compared to the first, reaching threefold difference in size
(see the tumour size at the sixth week in figure 5a). It follows
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Figure 4. Fitness landscapes of cancer cell populations with and without drug administration. The mean fitness (ω) of the population as a function of the sizes (N1, N2)
of the two subclones without any drugs (a) for the first three weeks, treated by Notch inhibitor (c) or Paclitaxel (e) from the third to the sixth week, as shown in
figure 3. The dotted lines show the phase trajectories for two cell populations along the fitness landscapes during treatment (all end with a larger total population
size). The corresponding contour plots for (a), (c), (e) are shown in (b), (d ), ( f ), respectively, with the phase trajectories indicated by the solid lines. The fitness ω
( per week) is also coloured by its value as indicated by the colour bar on the right of each panel. The arrow indicates the direction of increasing time.
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that the order of drug administration greatly influences the
treatment effects in the sequential treatment method, which
is consistent with recent studies [45,46]. We also illustrate
the tumour response when treated with the two drugs simul-
taneously (see the pentagons in figure 5a). A much better
response is predicted compared to the treatment by Notch
inhibitor first, followed by Paclitaxel (see the circles in
figure 5a). However, the treatment by Paclitaxel first followed
by Notch inhibitor shows a similar good response with a
close tumour burden at the end of treatment (see the dia-
mond and pentagon in figure 5a). Hence, it is possible to
find an optimal strategy to obtain a similar treatment effect
with attenuated side effects.

3.6. Effect of duration of treatment
In the previous sections, a futile treatment with rapid tumour
growth is frequently found (see figure 3 or the data in figure
5a,b). We surmise that one drug should be removed at an
appropriate time once it produces no benefits. We studied
the influence of treatment period length (τd) on tumour
responses. First, we investigated the sequential treatment by
Notch inhibitor followed by Paclitaxel for different τd values
(figure 6a). The phase trajectories show that the variations
in N1 and N2 and their maximum values become smaller as
τd is shortened. In addition, the response for each drug treat-
ment is strengthened and the total tumour size (see the inset

in figure 6a) is always smaller for a smaller τd. Therefore, a
small τd should be used when such a treatment method
is applied.

Next, we performed a similar analysis for the treatment
with Paclitaxel first, followed by Notch inhibitor (figure 6b,c).
In contrast to the situation described above, the variations for
N1, N2, and their responses to each drug treatment are similar
even as τd varies. However, the total population size (see the
inset in figure 6b,c) is smaller for the two-week treatment com-
pared to three- and one-week treatments. We surmise that
instead of using one-week treatment for each drug, a two-
week period would be a better choice in this treatment strategy.
Figure 6 shows that theminimumvalues ofNmin

1 ,Nmin
2 (figure 6a,c)

and the total minimum tumour size Nmin (see the inset in
figure 6) at each treatment cycle increase with time, irrespec-
tive of the value of τd. This would result in uncontrolled
tumour growth. In the following sections, we will discuss
potential approaches to control the tumour burden even if
it cannot be fully eradicated.

3.7. Control of tumour burden
Despite the good response through certain treatment proto-
cols as discussed above, tumour suppression is only
transient, and the tumour recurs sooner or later due to
drug resistance. Nevertheless, we can still seek, at least theor-
etically, a stable tumour burden as a compromise, which is
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Figure 5. Tumour response using a sequential protocol for two drugs. (a) Comparison of drug responses for tumours under different treatments. The green squares
show tumour growth before treatment. The tumour under the treatment of Notch inhibitor first (navy), then Paclitaxel ( pink) is indicated by the circles. The
diamonds show the tumour growth under the reverse order of drug treatment, Paclitaxel first ( pink), followed by Notch inhibitor (navy). The pentagons demonstrate
the treatment with both drugs administered simultaneously (violet colour). The pentagons in yellow show the tumour growth after the removal of all drugs. The
parameter values are the same as in figure 3. (b) The phase trajectories for the two subpopulations, HER2+ (N1), HER2− (N2), under two sequential treatments
considered in (a), respectively. The same symbols (circle and diamond) are used in (a) and (b). The initiation of the drug treatment is indicated by the red star and
the trajectory colour indicating the time is shown by the colour bar. The drug name during each treatment period is also listed in the figure. (c) Illustration of the
tumour responses under a sequential treatment of two drugs in different orders.
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similar to the goals of adaptive therapy [47]. For the breast
circulating tumour cells consisting of HER2+ and HER2−
cells, the model suggests that it is possible to control
the tumour maintained at a constant size (with relatively
small variations; figure 7a). Using a sequential treatment
strategy, with Paclitaxel first, followed by Notch inhibitor
and repeating the procedure periodically, the tumour
burden may be kept at bay as it was before any treatment.
The order of drug administration is important, as described
above. During the treatment, it is efficacious to target the
larger cell subpopulation with one specific drug until it
becomes the minority, and then treat with the second drug.
The quantity of drugs during each treatment should also be
tuned to inhibit the growth of HER2− cells more efficiently
(see the different values of g1,2 used in figure 7a). The time
periods during the treatment of the two drugs are quite
different. According to theory, a longer period of treatment
is required for HER2+ cells (around two weeks as discussed
in the previous section; see also figure 6b,c) compared to
the HER2− cells (around one week as discussed above; see
also figure 6a). From the phase trajectory shown in figure
7b, a ‘limit cycle’-like structure is found in which the two sub-
populations are well controlled, and almost return to their
original values after each round of treatment. In addition,
we also found that the plasticity of breast cancer cells influ-
ences the tumour response during treatment. It appears that

the tumour may be controlled or even eliminated eventually
if we can inhibit the cellular plasticity by regulating related
pathways such as EZH2, and Notch [34] (see figure S3 and
the detailed discussions in the electronic supplementary
material). Therefore, theoretical models based on the
tumour evolutionary process are likely to be useful in predict-
ing the tumour progression, the clinical response and
possibly in designing better strategies for cancer therapy
[48–52].

4. Discussion
We investigated the emergence of intratumour heterogeneity in
breast cancer arising from cellular plasticity, which is embodied
in the conversion between theHER2+ andHER2− phenotypes.
In contrast to the unidirectional differentiation of normal stem
cells [53,54], many cancer cells demonstrate a great degree of
plasticity that results in reversible transitions between different
phenotypes, leading to intratumour heterogeneity without
genetic mutations [28,31]. Such transitions are frequently
observed in rapidly growing tumours, which is often neglected
in theoretical models [28]. Although some studies have recog-
nized the need for taking a growing population, the models
typically have many unknown parameters [32,55], which are
hard to interpret.
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Figure 6. Phase trajectories for the two subpopulations under two different treatments. (a) Same as figure 5b, treated by Paclitaxel first, followed by Notch
inhibitor. The treatment period (τd) for each drug is one (solid line), two (dashed line) and three weeks (dotted line), respectively. (b) Same as (a) but the
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By introducing a direct coupling between cell division
and transition between phenotypes into a theoretical model,
we provide a quantitative explanation for the emergence of
a stable intratumour heterogeneity, a hallmark in HER-nega-
tive breast cancer patients. Our model accurately describes
the evolution of different cancer cell fractions, and also the
total tumour size observed in a recent single-cell experiment
successfully. We predicted that the symmetric cell division
appears more frequently compared to the asymmetric case
for both types of cells found in breast circulating tumour
cells. Using the same parameter values derived from the
tumour growth experiments, our prediction for the cell frac-
tion as a function of the cell colony size agrees well with
experimental results. The cell colony size (five to eight cells)
calculated from our theory for the emergence of one cell
phenotype from the other is in good agreement with the
experimental observations (five to nine cells).

The asymmetric cell division has not been observed in the
breast circulating tumour cell experiment directly, although the
experiment implies that cells of one phenotype produce daugh-
ters of the other phenotype [33]. However, in a more recent
experiment this was detected in breast cancer [34]. It was
found that the newly formed cell doublet, after one cell div-
ision, can be the same cell type (symmetric division) or

different (asymmetric division, producing two daughter cells
with one expressing the cytokeratin K14 while the other does
not). It is also possible that the state transition is not only
coupled to cell division but can also appear through tumour
microenvironment remodelling [56]. However, inclusion of
these processes will add two more free parameters to our
model, which is not needed to give the agreement between
theory and experiments. In addition, such a state transition is
not observed after cytokinesis was inhibited in breast cancer
experiment [34]. Nevertheless, our mathematical model
could be extended to incorporate these possibilities should
this be warranted in the future.

Although the asymmetric cell division explains the bidir-
ectional state transition, the underlying mechanism for such
an asymmetric division is still unclear. In the experiments
[28,33,34], the different states of cancer cells are mainly deter-
mined by the expression level of one or several proteins. It is
possible that these proteins (HER2, K14, etc.) are redistribu-
ted in the daughter cells unequally during cell division,
which could be realized through a stochastic process or regu-
lation of other proteins [34,57,58].

The reversible phenotype transitions in cells have been
found in many different types of cancers [59–61], which not
only lead to the development of drug resistance but also
induce very complex drug responses, as discussed here.
Although each cell type is sensitive to one specific drug, the
heterogeneous tumour derived from breast circulating
tumour cells shows an obvious response to Paclitaxel but not
to Notch inhibitor. Our model provides a quantitative expla-
nation for the different time courses of the tumour under
distinct treatments. The failure of the Notch inhibitor, even at
the initial treatment is due to its target, the HER2− cell,
which is a minority in the heterogeneous cell population, and
has a slower proliferation rate compared to the HER2+ cell.
Both experiments and our theory show a significant delay of
tumour recurrence under the combination treatment with
two drugs applied to the tumour simultaneously. We also pre-
dict that a sequential treatment strategy with Paclitaxel first,
followed by Notch inhibitor (not in a reverse order of drugs)
can show similar treatment effect as the one with two drugs
used at the same time. In addition, the sequential treatment
reduces the quantity of drugs administered each time, which
can reduce the adverse effects and selection pressure for
cancer cells from the drugs in principle [45]. Although not
reported in the experiments [33] and discussed in our present
model, treatment-induced mutations in cancer cells have
been reported for different chemotherapeutic drugs [62,63].
These newmutations may promote additional escapemechan-
isms and lead to treatment failure, which could be investigated
in further studies.

One advantage of the mathematical model is that we can
steer the evolutionary dynamics of each subpopulation by
applying the right drug at the appropriate time to control the
tumour burden. This allows for a fuller exploration of the par-
ameter space, which cannot be easily done in experiments.
Finally, we propose that patients could benefit from drugs
which inhibit the plasticity of the cancer cells [34]. Taken
together, our model could be applied to explore intratumour
heterogeneity found in other type of cancers [34,59–61]. From
the examples presented here and similar successful studies,
we expect that the physical andmathematical modelsmay pro-
vide a quantitative understanding for the cancer progression
and also stimulate new ideas in oncology research [19,48,64–66].
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We should emphasize that mathematical models sharpen the
questions surrounding themechanisms of intratumour hetero-
geneity, but real data from patients are needed to understand
the origins of intratumour heterogeneity.
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