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Nonperturbative leakage elimination for a logical qubit encoded in a mechanical oscillator
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Continuous-variable (CV) systems are attracting increasing attention in the realization of universal quantum
computation. Several recent experiments have shown the feasibility of using CV systems to, e.g., encode a
qubit into a trapped-ion mechanical oscillator and perform logic gates [C. Flühmann et al., Nature (London)
566, 513 (2019)]. The essential next step is to protect the encoded qubit from quantum decoherence, e.g., the
motional decoherence due to the interaction between a mechanical oscillator and its environment. Here we
propose a scheme to suppress quantum decoherence of a single-mode harmonic oscillator used to encode qubits
by introducing a nonperturbative leakage elimination operator (LEO) specifically designed for this purpose.
Remarkably, our nonperturbative LEO can be used to analytically derive exact equations of motion without
approximations. It also allows us to prove that the effectiveness of these LEOs depends only on the integral of the
pulse sequence in the time domain, while details of the pulse shape do not make a significant difference when the
time period is chosen appropriately. This control method can be applied to a system at an arbitrary temperature
and arbitrary system-bath coupling strength, which makes it extremely useful for general open quantum systems.
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I. INTRODUCTION

Decoherence, which is inevitable due to the coupling with
the surrounding environment, is regarded as the main barrier
to modern quantum technologies such as quantum computing.
Suppression of decoherence has long been a challenge and
has attracted considerable attention both for investigations of
fundamental theories in quantum mechanics and for practical
applications in nanoengineering [1,2]. Fortunately, an open-
loop quantum control method called dynamical decoupling,
originating from the spin-echo effect in nuclear magnetic
resonance experiments [3,4], provides a universal and effec-
tive method in suppressing decoherence. The effectiveness
of these controls has been confirmed both in theory [5–9]
and in abundant experiments largely focused on two-level
systems such as electron or nuclear spins in a solid-state sys-
tem [10,11], semiconductor quantum dots [12,13], diamond
nitrogen-vacancy centers [14–17], atomic ensembles [18–20],
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superconducting qubits [21,22], and photonic qubits in a
ring cavity [23]. However, the quantum control theory based
on leakage elimination operation has remained out of reach
for continuous-variable (CV) systems, such as a harmonic
oscillator.

The latest experiments have demonstrated the feasibility
of using CV systems in encoding qubits into CV systems
and performing logic gates [24–26]. The higher-dimensional
space benefits from large information storage and hardware-
efficient quantum error correction protocols, which allows de-
tection of small shift errors and correction without disturbing
the information stored in the state. Specifically, a trapped-ion
mechanical oscillator was proposed to realize encoded qubits
[24] based on the Gottesman-Kitaev-Preskill (GKP) code. The
GKP code is an error-correcting code useful for detecting
and correcting small (classical) errors contained in phase
space displacements [27–29]. Thus, the natural next step is
to protect the encoded qubit from quantum decoherence due
to the interaction between the CV system and its quantum
environment.

Leakage elimination operators (LEOs) [30–32] can be used
to suppress errors by eliminating or reducing the interaction
between the system and bath. LEOs specifically focus on
eliminating leakage from the encoded subspace to other states
of the system. Although the suppression of decoherence of
a damped harmonic oscillator has been studied using suit-
ably tailored external forcing [7] based on so-called “bang-
bang” (BB) controls, it is essentially a perturbative theory by
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assuming that the pulses are extremely strong so that the
system-reservoir interaction Hamiltonian can be neglected
during pulsing [33]. This is quite unrealistic for most exper-
iments. Therefore, it has become a worthwhile objective to
develop nonperturbative versions of LEO theory for a physical
model with realistic system-bath interactions where arbitrary
pulse sequences can be employed in the control process.

The general idea of LEO suppression is to modify the inter-
action Hamiltonian by successive pulse controls so that the av-
erage effect of the unwanted environment is eliminated [5–8].
This can be illustrated as follows. The Hamiltonian for the
desired system and environment can be written as H = HS +
HB + Hint, where HS, HB, and Hint represent, respectively,
the Hamiltonian of the system, environment, and interaction
between the system of interest and the bath. If an operator RL

satisfies the symmetry condition {RL,Hint} = 0, [RL,HS] =
0, and [RL,HB] = 0, it is an example of an LEO. Although
other more complicated pulse sequences exist, this is the most
efficient and often easiest to implement experimentally. As
limm→∞ (e−iHt/mR†

Le
−iHt/mRL )m = e−iHSt e−iHBt , one can en-

tirely remove the influence of the environment by employing a
well-designed successive set of time-dependent pulses acting
only on the system. For a single-mode harmonic oscillator,
we aim to eliminate leakage to other energy levels. In this
case HS = ω0a†a, and an LEO is given by RL = exp(−iπa†a)
according to the symmetry requirements, as long as the in-
teraction Hamiltonian is of the form Hint = ∑

k gkBk (a + a†)
and no matter the specific form of the environment. This
LEO can be obtained by operating a controllable Hamiltonian
HLEO = C(t )a†a on the desired system for a time τ , i.e., RL =
exp(−iHLEOτ ). Note that Bk = bk + b†

k when the harmonic
oscillator is coupled with a reservoir described by a variety
of independent oscillators bk as considered in this paper. Note
that the method proposed here is also feasible to suppress the
decoherence when the harmonic oscillator interacts with other
forms of an environment, e.g., a spin bath of N independent
spin- 1

2 particles, in which the interaction Hamiltonian reads
Hint = ∑

k gk (a + a†)σ (k)
z [34], then Bk = σ (k)

z with σ (k)
z being

the Pauli matrix of the kth spin particle.
Here we investigate the nonperturbative dynamical equa-

tion of a single-mode harmonic oscillator with time-
dependent frequency via the Heisenberg-Langevian method.
Different from the widely used quantum-state-diffusion
(QSD) equation, which is exactly valid only for zero temper-
ature [33,35], the present control method is valid for arbitrary
temperature and arbitrary system-bath coupling strength. This
makes it possible to suppress the decoherence of an open
system surrounded by high-temperature and high coupling
strength environment. We derive the exact equations of motion
without any approximations, and we find that the expectation
value of the annihilation operator can be perfectly preserved
when implementing successive external pulses on the desired
system. We further study the influence of important factors
on the effectiveness of LEO control and compare the perfor-
mance of three different types of pulses.

The paper is organized as follows. In Sec. II we introduce
the model and derive the exact equation of motion of a single-
mode harmonic oscillator. In Sec. III we present the results
for the suppression of decoherence of a harmonic oscillator
by applying three different types of pulses. We show that

the effectiveness of quantum control is determined by the
integrals of the pulse sequences, which is irrelevant to details
of the pulse shape when the time period is relatively small.
Finally, we summarize our results in Sec. IV.

II. GENERAL FORMALISM

Consider a system with a single-mode harmonic oscillator
(a with frequency ωa) interacting with a reservoir described
by a variety of independent bosonic oscillators (bj with
frequencies ω j). The Hamiltonian after the rotating wave
approximation is given by

H/h̄ = ωa(t )a†a +
∑
j

ω jb
†
jb j +

∑
j

g j (b
†
ja + b ja

†), (1)

where gj is the coupling strength between the oscillator and
the reservoir. We will assume that the product of the oscilla-
tor’s mass and frequency is constant [36], i.e., m(t )ωa(t ) =
const, indicating the annihilation and creation operators
are not explicitly time dependent. The Heisenberg equa-
tions of motion are ȧ = i[H, a]/h̄ = −iωa(t )a − i

∑
j g jb j ,

ḃ j = i[H, b j]/h̄ = −iω jb j − ig ja, respectively. The equa-
tions for the reservoir operators can be directly integrated:
bj (t ) = bj (0)e−iω j t − ig j

∫ t
0 dt ′a(t ′)e−iω j (t−t ′ ). a(t ) can be

transformed to the slowly varying annihilation operator
A(t ) = ei

∫ t
0 ωa(s) dsa(t ), which satisfies

Ȧ = −
∫ t

0
dt ′G(t − t ′)e−i

∫ t ′
t ωa(s) dsA(t ′) + F (t ). (2)

Here G(t ) = ∫
dωJ (ω)e−iωt is the Fourier transformation of

the interaction spectrum intensity J (ω) = ∑
j |g j |2δ(ω − ω j ).

When e−i
∫ t ′
t ωa(s) ds is a fast oscillation term and G(t − t ′) is

a slowly varying function, the first integral term in Eq. (2)
tends to zero according to the Riemann-Lebesgure lemma
[33,35,37,38]. Then Eq. (2) reduces to Ȧ = F (t ), where
F (t ) = −i

∑
j g jb j (0)e

∫ t
0 i[ωa (s)−ω j ] ds denotes the noise oper-

ator of the environment and thus determines the evolution
involving the harmonic oscillator operator. Note that the
Heisenberg-Langevian approach works for arbitrary temper-
ature, which is different from the QSD equation for zero tem-
perature [33,35]. However,

∫ t
0 F (t ) dt = 0 if ei

∫ t
0 [ωa(s)−ω j ] ds is

quickly oscillating. Therefore, A(t ) = A(0), illustrating that
the desired harmonic oscillator system is decoupled from the
environment when the frequency of the oscillator is appropri-
ately chosen.

The system is assumed to have an initial state
|α0〉〈α0|

⊗∏
j ρ j , where the reservoir is in thermal equilib-

rium ρ j = ∑
n j

|n j〉〈n j |e−βn j h̄ω j/z with z = ∑∞
n j=0 e

−βn j h̄ω j ,
β = 1/(kBTe), kB denotes the Boltzmann constant, and Te
is the temperature of the environment. We then investigate
the evolution of the expectation value α(t ) = 〈A(t )〉 which
is independent of reservoir temperature simply because the
expectation value of F (t ) = −i

∑
j g jb j (0)e

∫ t
0 i[ωa (s)−ω j ] ds is

zero as tr(ρ jb j (0)) = 0. Therefore, its evolution satisfies

α̇(t ) = −
∫ t

0
dt ′G(t − t ′)e−i

∫ t ′
t ωa(s) dsα(t ′). (3)
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FIG. 1. The coherent amplitude |α(t )| as a function of time for
different memory times γ0 without control (a) and with regular rect-
angular control (b). Other parameters are α(0) = 5, ω0 = 1, � =
5, ω1 = 8, T = 0.05, �/T = 0.7. For simplicity, these parameters
are expressed in units of the bare frequency ω0, and the parameters
involving time, such as T, �, t , are written in the units of 1/ω0.

Here we consider a non-Markovian environment correspond-
ing to the Ornstein-Uhlenbeck process with the exponential
decay correlation function G(t ) = e−γ0|t |�γ0/2, where 1/γ0

characterizes the memory time of the environment and �

denotes the coupling strength between the system and bath.
In the limit γ0 → ∞ the system evolves under a Markovian
environment with white noise.

III. RESULTS

A. Oscillator motion without quantum control

Without quantum control, the frequency of the oscillator is
constant, i.e., ωa(t ) = ω0, where ω0 is the bare frequency of
the oscillator. The general solution of the coherent amplitude
can be found by direct computation as in Appendix A. It
is worth noting that when γ0 → ∞, the correlation function
reduces to G(t ) = δ(t )�/2. Then the coherent amplitude of
the oscillator of interest is α(t ) = α0e−�t/2, indicating that the
ideal Markovian process is uncontrollable.

Figure 1(a) shows the time dependence of the coherent
amplitude |α(t )| for different γ0, which can be used to find the
boundary between Markovian and non-Markovian dynamics
through increasing γ0. It can be seen that |α(t )| will expo-
nentially decay to zero in a Markovian environment when
γ0 → ∞ as shown by black dotted curve but decreases more
slowly to zero when γ0 is smaller and larger memory time.
Specifically, the system dynamics of the non-Markovian case
when γ0 = 5 is very similar to that of Markovian case.

B. Oscillator motion with quantum control

The decoherence induced by environment can be greatly
suppressed by applying a time-dependent LEO control,
HLEO = C(t )a†a, where C(t ) is the function describing the
external pulses operating only on the system of interest. In the
following, we will consider three types of pulse control and
analyze the key parameters which determine the performance
of quantum control.

We first apply a sequence of normal rectangular pulses
added to the system. These are characterized by C1(t ) =
ω1 for nT < t � nT + � (n � 0), and otherwise C1(t ) = 0.
Here ω1 is the pulse strength, T represents the time period, and
� denotes the duration of the pulse (the width). The detailed
solution is provided in Appendix B.

0 2 4 6 8 10
0

1

2

3

4

5(a)

0 2 4 6 8 10
0

1

2

3

4

5(b)

0 2 4 6 8 10
2

3

4

5(c)

0 2 4 6 8 10
4

5(d)

FIG. 2. The time evolution of |α(t )| for different pulse ampli-
tudes ω1 when (a) γ0 = 1 and (b) γ0 = 5 with T = 0.05, �/T =
0.7; for different ratios of pulse duration and period �/T with
fixed T = 0.05 (c), and for different time periods T with fixed
ratio �/T = 0.7 (d) when γ0 = 1, ω1 = 15. Other parameters are
α(0) = 5, ω0 = 1, � = 5.

Compared to the case without quantum control shown in
Fig. 1(a), Fig. 1(b) indicates that by applying successive rect-
angular pulses the decoherence of the harmonic oscillator can
be remarkably suppressed in a non-Markovian environment.
Generally, it is easier to eliminate the decoherence with longer
memory time, that is, the smaller γ0. Such a phenomenon
can be interpreted in the following way. The single-mode har-
monic oscillator A is coupled to a non-Markovian Ornstein-
Uhlenbeck process, which is equivalent to that A is coupled
resonantly to the other harmonic oscillator B that is damped in
a Markovian environment [39]. The linewidth of the oscillator
B is proportional to γ0. For small γ0, the trap frequency
of the oscillator A is effectively renormalized such that two
oscillators A and B become off-resonant when applying a
series of fast pulses operating on A, resulting in the great
suppression of decoherence of A. Whereas for larger γ0, i.e.,
a larger linewidth of oscillator B, it’s more difficult to make
A and B off-resonant. That is, it’s more difficult to suppress
decoherence with larger γ0. As can be seen from Fig. 1(b),
the decoherence can be completely removed when γ0 = 0.1.
When γ0 gets larger, although the suppression of decoherence
is not perfect, the decoherence can also be slowed down.
Interestingly, even for large γ0 = 5, which indicates that the
system dynamics is very close to the Markovian case γ0 → ∞
as shown in Fig. 1(a), we find that the rectangular pulse
control is still effective at suppressing the decoherence as
shown in Fig. 1(b). Whereas for γ0 → ∞ shown by the black
dotted curve, the time evolution would not be modulated with
any control such that it is identical to the Markovian case
given in Fig. 1(a).

The effectiveness of quantum control can be further im-
proved by increasing the pulse strength ω1, as depicted in
Figs. 2(a) and 2(b). For the case of γ0 = 1 shown in Fig. 2(a),
|α(t )| nearly remains constant and the desired system is
perfectly decoupled from the environment when the pulse
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FIG. 3. (a, b) The time evolution of the expectation value |α(t )|
for different amplitudes of Gaussian noise (μ = 0, σ = 1) with
different time periods T in (a) T = 0.05, (b) T = 0.4. (c, d) The com-
parison of time evolution of coherent amplitude |α(t )| for the case
without control, under rectangular control and sine function control
when (c) T = 0.05 and (d) T = 0.6 with ω2 = πω1/2, �/T =
0.5. Other parameters are α(0) = 5, ω0 = 1, � = 5, γ0 = 1, ω1 =
15, ω2 = πω1/2, �/T = 0.5.

amplitude is increased to ω1 = 50. By contrast, for the case of
γ0 = 5 shown in Fig. 2(b), a larger pulse strength is required
to overcome the decoherence if the dynamical behavior is
more analogous to that of Markovian process. Figures 2(c)
and 2(d) show that the ratio between the pulse duration and
period �/T is very crucial, while the time period itself is
not relevant for the effectiveness of quantum control when
T is not very large. It is expected that there is an accelerated
decline of coherent amplitude with decreasing �/T , as shown
in Fig. 2(c). The coherent amplitudes with various short time
periods T = 0.01, 0.05, 0.1 for the same ratio �/T = 0.7
appear to evolve in a similar fashion as plotted in Fig. 2(d).
This agrees with previous observations that the effectiveness
of quantum control is determined only by the integral of the
pulse sequence over time if the ratio of duration time and
period is suitable [35].

In practice, the pulses are noisy and not rectangular
due to stochastic quantum fluctuations and environmental
noise. Here we consider a general Gaussian noise [35,37,40],
C1(t ) → C1(t )[1 +Wn(t )], where W describes the noise
strength and n(t ) denotes the Gaussian noise with average
value μ and standard deviation σ . The integral of the pulses
remains unchanged within the same time range when taking
noise into account; consequently, the effects of quantum con-
trol in two cases should be identical in principle. It should
be emphasized that the time period of pulses should not be
too large, otherwise, the conclusion may differ. We present
in Figs. 3(a) and 3(b) the influence of Gaussian noise on
the dynamics of the harmonic oscillator with different time
periods. It is worth noting that when the pulses are fast
enough, T = 0.05, for example, the noise doesn’t significantly
change the effects of quantum control as shown in Fig. 3(a).
Whereas, when the time period is larger, such as T = 0.4
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FIG. 4. (a) The coherent amplitude |α(t )| as a function of time
for different γ0 with zero-energy control. Other parameters are
α(0) = 5, ω0 = 1, � = 5, ω3 = 25, T3 = 0.5. (b) For γ0 = 5, T3 =
0.5, the time evolution of |α(t )| for different pulse amplitudes ω3

when zero-energy pulses are applied.

shown in Fig. 3(b), the evolution is more susceptible to the
additional noise compared to the case with shorter time period
even though the integrals of pulses are the same.

Now consider a sine function pulse control C2(t ) =
ω2 sin (2πt/T ) when nT < t � nT + � (n � 0), and other-
wise C2(t ) = 0, where the time duration parameter � and
time period T are the same as for the regular rectangular
pulses, and ω2 denotes the pulse amplitude. To investigate
whether the effectiveness of quantum control depends on the
details of the pulses under the condition of possessing the
same integral over time, we choose the pulse strength such
that ω2 = πω1/2 and �/T = 0.5. We compare the dynamics
of |α(t )| for the case without control, with rectangular control,
and with sine function control, respectively, for a small time
period T = 0.05 in Fig. 3(c) and a relatively large T = 0.6
in Fig. 3(d). In Fig. 3(c) the evolution of rectangular control
and sine function control are all the same, while in Fig. 3(d)
there is a significant difference between these two kinds of
controls. We conclude that, when the pulses are relatively
fast, the effectiveness of the quantum control depends only
on the integrals of pulses over time rather than the details of
the successive pulses.

Finally, consider a practical pulse control described by
C3(t ) = ω3 for nT3 < t � (n + 1/2)T3 and C3(t ) = −ω3 for
(n + 1/2)T3 < t � (n + 1)T3 (n � 0), where ω3 is the pulse
strength, and T3 represents the time period. The average
value of the energy is zero after a complete control period
[38,40,41]. It has been illustrated that such zero-energy con-
trol can assist in accelerating holonomic quantum computa-
tion [41]. When adopting rectangular pulses or sine function
pulses, the average control frequency may be much larger than
the bare frequency of the target system. However, the average
frequency is zero because of the consecutive sign changes
under the control. This clarifies that the adiabatic speedup
effects are not caused by an effective energy increase [38].
For the same situation, we will show that the decoherence can
be greatly inhibited even though affected by zero-energy-cost
pulse control, which may eliminate the misunderstanding that
the control pulses are only for increasing the effective bare
frequency of the oscillator. Compared to the case without
any control shown in Fig. 1(a), we show in Fig. 4(a) that
by applying a series of zero-energy-change pulses, the dy-
namics of the harmonic oscillator can be remarkably slowed
down when the process is non-Markovian. In particular, when
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γ0 = 0.1, the coherent amplitude |α(t )| remains constant and
the effects of environment can be completely eliminated as
shown by the red dashed curve. Moreover, when γ0 is large,
improving the pulse strength, ω3, is an effective method to
further suppress the decoherence as described in Fig. 4(b).
When the pulse strength is increased to ω3 = 250 indicated
by green dash-dotted curve, |α(t )| remains nearly unchanged.

IV. CONCLUSION

In summary, we have found leakage elimination operators
that suppress the decoherence of a single-mode harmonic os-
cillator coupled to a reservoir of many independent oscillators.
We developed the nonperturbative version of an exact LEO
theory for the harmonic oscillator by applying the Heisenberg-
Langevian method without making approximations. This is
significantly different from previous studies that assumed
extremely strong and fast pulses. Moreover, this method is
still applicable for a finite temperature and strong coupling
strength. By applying three kinds of consecutive pulses on the
desired harmonic oscillator, it was shown that the expectation
value of the annihilation operator remains constant over time
and the adverse effects induced by the environment can be
eliminated. We also found that the effectiveness of LEO con-
trol is independent of the fluctuations of the pulse amplitude
and the detailed shape of the pulses. It is primarily determined
by the integral of the pulse sequences when the time period is
relatively small. We expect this work to provide an effective
quantum error suppression method for encoded qubits using
a high-dimensional trapped-ion mechanical oscillator such as
in Ref. [24].

We would point out that the proposed dynamical decou-
pling method is capable of suppressing the motional deco-
herence effect only for a non-Markovian environment. The
heating effect described within the framework of Marko-
vian process induces the one-way information loss into the
environment, which doesn’t permit the external pulses to
efficiently preserve the coherence. Luckily, for experiments
based on trapped ions, the heating of ions can be significantly
suppressed either by resolved sideband cooling or by sym-
pathetic cooling with a different species of atomic ions [42].
With cooling of ions, the quantum motional decoherence due
to the coupling with the surrounding environment is one of
the remaining dominant factors for the experiment encoding a
logical qubit into the state of a trapped ion mechanical oscil-
lator [24]. The present method is capable of suppressing such
a decoherence effect in non-Markovian environment. Note
that the motional decoherence also could be induced by the
dephasing due to trap frequency fluctuations, which is fairly
different in nature and may not be directly mitigated by the
proposed method, but possible in principle by appropriately
choosing another LEO.
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APPENDIX A: OSCILLATORMOTIONWITHOUT
QUANTUM CONTROL

In this Appendix, we present a detailed general solution of
the harmonic oscillator with the case of no control.

While defining α(t ) = e−(γ0−iω0 )t u(t ), Eq. (3) becomes

u̇(t ) − (γ0 − iω0)u(t ) + �γ0

2

∫ t

0
u(t ′) dt ′ = 0, (A1)

with initial condition u(0) = α(0). We can write the general
solution as u(t ) = (A3eA1t + A4eA2t )α(0) with the coefficients
satisfying the following conditions:

A2
1 − (γ0 − iω0)A1 + �γ0/2 = 0,

A2
2 − (γ0 − iω0)A2 + �γ0/2 = 0,

A2A3 + A4A1 = 0,

A3 + A4 = 1. (A2)

We thus obtain the general solution of the harmonic oscillator
as

α(t ) = e−(γ0−iω0 )t (A3e
A1t + A4e

A2t )α(0). (A3)

APPENDIX B: OSCILLATORMOTIONWITH
RECTANGULAR CONTROL

In this Appendix, we give an analytical expression of the
harmonic oscillator with the case of rectangular control.

For the regular rectangular control pulses, by solving the
dynamical equation, we obtain α(t ) = Un(t )α(nT ) when
nT � t � nT + � (n ∈ N) with time evolution operator
Un(t ) = e−(γ0−ic1 )t (A3neA1nt + A4neA2nt ) and c1 = ω0 + ω1.
Similarly, when nT + � < t � (n + 1)T , α(t ) can be
easily expressed as α(t ) = U ′

n(t )α(nT + �), where the
time evolution operator U ′

n(t ) = e−(γ0−ic2 )t (A′
3ne

A′
1nt +

A′
4ne

A′
2nt ) with c2 = ω0. For simplicity, we rewrite

the evolution operators as U1,n = Un(nT + �) =
e−(γ0−ic1 )(nT+�)[A3neA1n (nT+�) + A4neA2n(nT+�)] and
U2,n = U ′

n[(n + 1)T ] = e−(γ0−ic2 )(n+1)T [A′
3ne

A′
1n (n+1)T +

A′
4ne

A′
2n(n+1)T ], for t = nT + � and t = (n + 1)T (n ∈ N),

respectively. The coefficients A1n,A2n,A3n, and A4n are
defined by

A3n

A1n
eA1nnT + A4n

A2n
eA2nnT =−2e(γ0−ic2 )nT

�γ0U2,n−1

dU ′
n−1(t )

dt

∣∣∣∣
t=nT

,

A3ne
A1nnT + A4ne

A2nnT = e(γ0−ic1 )nT ,

A2
1n − (γ0 − ic1)A1n + �γ0/2 = 0,

A2
2n − (γ0 − ic1)A2n + �γ0/2 = 0. (B1)
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The coefficients A′
1n,A

′
2n,A

′
3n,A

′
4n satisfy the following conditions:

A′
3n

A′
1n

eA
′
1n (nT+�) + A′

4n

A′
2n

eA
′
2n(nT+�) = −2e(γ0−ic1 )(nT+�)

�γ0U1,n

dUn(t )

dt

∣∣∣∣
t=nT+�

,

A′
3ne

A′
1n (nT+�) + A′

4ne
A′

2n(nT+�) = e(γ0−ic2 )(nT+�),

A′2
1n − (γ0 − ic2)A′

1n + �γ0/2 = 0,

A′2
2n − (γ0 − ic2)A′

2n + �γ0/2 = 0. (B2)

After numerous iterations, α(t ) can be reformulated as

α(t ) =

⎧⎪⎨
⎪⎩
Un(t )α(0), 0 < t � �, n = 0
U ′
n(t )U1,0α(0), � < t � T, n = 0

Un(t )U2,n−1U1,n−1U2,n−2 · · ·U2,0U1,0α(0), nT < t � nT + �, n > 0
U ′
n(t )U1,nU2,n−1U1,n−1U2,n−2 · · ·U2,0U1,0α(0), nT + � < t � (n + 1)T, n > 0.

(B3)
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